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ABSTRACT. We establish almost sure invariance principles (ASIP), a strong
form of approximation by Brownian motion, for non-stationary time series
arising as observations on sequential maps possessing an indifferent fixed point.
These transformations are obtained by perturbing the slope in the Pomeau-
Manneville map. Quenched ASIP for random compositions of these maps is
also obtained.

1. Introduction. Almost surely invariance principle (ASIP) is a very strong sta-
tistical property. It is a matching of the trajectories of the dynamical system with a
Brownian motion in such a way that the error is negligible in comparison with the
Birkhoff sum. Limit theorems such as the central limit theorem (CLT), the func-
tional central limit theorem and the law of the iterated logarithm (LIL) transfer
from the Brownian motion to time-series generated by observations on the dynam-
ical system.

Haydn, Nicol, Torok, Vaienti [4] dealt with ASIP for a non-stationary process
given by the observation along the orbit obtained by concatenating maps chosen
in a given set. They are in one and more dimensions a.e. piecewise expanding,
more precisely their transfer operator (Perron-Frobenius operator) with respect to
the Lebesgue measure is quasi-compact on a suitable Banach space. This allows to
approximate the original process with reverse martingale differences plus an error.
Same approach is applied to random dynamical system with sufficient hyperbolicity
in [3]. Based on Skorokhod embedding technique, Cuny and Merlevede [2] recently
showed that reverse martingale differences satisfy ASIP under some conditions. The
error is shown to be essentially bounded due to the presence of a spectral gap in
the transfer operator on a Banach space continuously injected in L*°. Therefore
ASIP for non-stationary dynamical systems in [4] and quenched ASIP for random
dynamical systems in [3] are satisfied.

However, if the transfer operator with respect to the Lebesgue measure is not
quasi-compact on a suitable Banach space, the approach described above fails to
work. Such example for non-stationary dynamical systems and related statistical
properties are provided in a preceding series of papers [1,5,6].
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The first paper [1] considered composition of Pomeau-Manneville like maps, ob-
tained by perturbing the slope at the indifferent fixed point 0. They obtain polyno-
mial decay of correlations for particular classes of centered observables, which could
also be interpreted as the decay of the iterates of the transfer operator on functions
of zero (Lebesgue) average; this fact is also known as loss of memory.

The last two papers [5, 6] considered the same system and proved self-norming
CLT under the assumption that it is sufficiently chaotic and the variance grows
at a certain rate. Moreover, they proved self-norming CLT for nearby maps and
quenched CLT for random compositions of maps in the same family provided the
system is sufficiently chaotic and the base map of random dynamical system has
strong mixing.

In this paper, the same system as [6] is considered and some of its properties
are improved, namely the stronger statistical property (ASIP) is obtained. Our
construction for Gaussian variable in ASIP is close to Proposition 2.1 in [2], that
is, applying Skorohod embedding to tail series, but we won’t impose strong condi-
tions like (2.1), (2.2) in [2], which loses lots of information of Skorohod embedding.
Instead, we will give a sharp condition for ASIP (see our Lemma 4.4). Surprisingly,
this condition can be verifed by our system considered here. Besides, due to non-
uniformity of our system, the error rate of our ASIP is just slightly less than % (not
1 in [2]). So we will not give an explicit formula for it.

2. Definitions and notations. Consider a family of Pomeau-Manneville maps on
0,1: 0 <a <1,

< 1
< T (1)
Given n,m,k € N,0 < 8 < «, denote:
Ty :=Tg,,
T4 =Ty 0 Tyym—10 -0 Tpn,

Tn ::T{L:TnOTn,10~-~OT1.

The transfer operator (Perron-Frobenius operator) Py, associated to T, is defined
by the duality relation:

/g - Prfdm = /g oTy - fdm for all f € L', g € L*, where dm is Lebesgue measure.

Similar to T}, denote:
Py, = Pg,,
P = Py 0 P10+ 0 Py,
P".=P'=P,0FP, 10---0P.
As in [1], define X (z) := z,z € [0,1], a cone C, C L'[0, 1] by:

C,:={feC0,1]: f >0, f decreasing, X**!.f increasing, f(z) < ax_o‘/fdm}
From [1], if a is chosen large enough, C, is preserved by every P,,, hence by every

Prtm We fix such a large a from now on. The following decay of correlations
holds:
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Theorem 2.1 (see [1,6]). Assume K,M > 0, ¢ € C'[0,1] and hy € C, with
lowllor < K, ||hwllpr < M for all k> 1.
Then, for 1 <p < L, there is a constant Ck nr,ap such that for all m,n € N:

1—pa

- (log n)er—vaZ,

1
1P (Pn - o — /¢k ~hedm)||Le < CrMpap  ——
nr«

Corollary 2.2. Assume K,M > 0, ¢, € Lip[0,1] = W1°([0,1]) and hy € C,
are s.t. |||y < M, [[@llwioe = [|6k]| e + 5UD, yep0 LB < K for all
k>1.

Then, for 1 <p < é, there is a constant Cx pr,a,p Such that for all m,n € N:

1—pa

—(logn)m . (2)
nre

1
P2 (b - By — / b - hadm)|| e < Crarop - —o—

For simplicity, in many of the following statements —— - will be used as the

pa
rate of decay, ignoring the logn-factor. This is still correct if taking « a slightly
larger value (and is actually the correct rate of decay for the stationary case).

Proof. Using convolution, for ¢, € Lip[0, 1], there is ¢x . € C*°|0, 1] such that
| fr,e — PrllLoe < €l|gr|lwre < Ke,

h,cllwree < [[@r]lwr < K.
By Theorem 2.1,

n+m 1 1-po
1P G e = [ Gne hudm)llon < iy 5 - (logm) 57,
nra

Let € — 0,
[Pt (Breye - ha — /¢k,e < hydm) — PriT (g - by, — /¢k - hpdm)||Lr
<e-|lorllwree - (PR hellLe + |hellpr - (1P 1] o)

1
Sa-e-K-(1+||hk||L1)-(/ L amyb S0,
0,1 T

)

The last inequality holds since Pt by, Prt1'1 € Cy. Hence (2) holds. O

Definition 2.3 (ASIP for a Non-stationary Dynamical System). Given a non-
stationary dynamical system ([0, 1], B, (T%)k>1, dm) and an observation ¢ € Lip|0, 1],
denote ¢y, := ¢ — [ ¢ o T dm.

Then (¢ 0T*)x>1 satisfies ASIP if there are e € (0, 1) and independent mean zero
Gaussian variables (Gj)r>1 on some extended probability space of ([0, 1], B, dm)

such that almost surely,
Y ppoTF =" G =03,

k<n k<n

>80 - %+ 051
k<n

with ¥2 := /(Z b 0 TF)2dm — 0.

k<n
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We point out that if (¢x o T%),>1 satisfies ASIP, then it also satisfies the self-
norming CLT and LIL:

oTk
Zusn 20T o),
X
. Dpcn S0 T"
limsup ——==1
n—oo /%2 loglog X2
I Zk<n ¢k © Tk
liminf ——— =
n—oo /32 loglog X2
In fact, there is a matching of the Birkhoff sums Zkgn ¢ o TF with a standard

Brownian motion B; observed at times of order ¥2 so that >, ¢x o T* equals
By plus a negligible error almost surely.

Notation 2.4. a, = b, (resp. a, 3 b,) means there is a constant C' > 1 such that

~

ct-b,<a, <C-b, for all n (resp. a, < C -b, for all n).

3. The main theorem. Our main theorem is the following:

Theorem 3.1 (ASIP). Consider the non-stationary dynamical system ([0, 1],
B, (Ti)k>1,dm), where dm is Lebesgue measure, Ty, := Tg, are Pomeau-Manneville
maps, 0 < B, < a < 1, and an observation ¢ € Lip[0,1]. If X7 = [(3 <, ok ©
T*)2dm =~ n?, then

1+ 2« 1

1
((bk o Tk)kZI satisﬁes ASIP when v > 5 + m, o < g

The main steps of the proof are the following;:

First step. Decompose ), _, ¢y o0 T* as reverse martingale differences plus error
term. a

Second step. Prove the error term has uniform LP-bound.

Third step. Apply Skorokhod embedding to reverse martingale differences, obtain
a sequence of suitable Gaussian variables from Brownian motion.

Fourth step. Prove that when ~ > % + 4(1141220(‘1) , o < %, then the ASIP is satisfied.

First, we will cite/improve some lemmas below:

Step 1: Decomposition.

Lemma 3.2 ([6]). Foralln > 1, define Hy, 10T := K[}, _, ¢poT*|T~ TV 5]
Then there are reverse martingale differences (y, OTk)kzl w.r.t. decreasing filtration
(T=*B)k>1 such that:

Z%OT}C:ZU)kOTk-FHnHOTnH, (3)
k<n k<n
7= [(C oot Pdm+ [ H2, 01" dm, (1)
k<n

Zkﬁn Pl:lj_ll (¢/€ ’ Pkl) o T

Hn+1 OT”+1 = pn+iq (5)
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Step 2: Uniform bound.

Lemma 3.3 (lower bound, see [1]).
inf P"1(z) > 0.

Lemma 3.4 (upper bound).

1
sup || Hy||or < oo, if 1 <1< —, (6)
n 2a
1
sup [[Hy o T"[[1r < 00, if 1 <7 < o, (7)
n (0%
1
sup||¢noTn||L7‘<OO, Zf1§T<% (8)

Proof. (See also the Note Added in Proof in [6])
By (2), (5), Lemma 3.3, and P"™'1 € Cy, let 1 <r < 5=

/|Hn+1 oT"+1|Tdm:/|Hn+1|T-P"+11dm

= [1X P PP

i<n

n 7 r n —r 1 r
< ([ 13 P @ PO dm) - [Pl 3 (3 ) < e,

i<n i<n “

So (7) holds when 1 <r < 5-.
To prove (6), let 1 <r < %, by Lemma 3.3, we have:

sup/ |Hpt1|"dm 3 sup/ |Hpia|” - P 1dm = sup/ |Hp1 0T dm < oo.
n n n

By (3), (7) and sup,, ||¢nl||re < o0: sup, |[ton o T"||Lr < oo, when 1 < r <
1

i O
2c

Lemma 3.5. )

/wkodem Y2 +0(1), when a < 1
k<n

Proof. Take r =2 in (7), i.e. & < 1, (4) becomes:

Ei:/(ZUJkOTk) dm +[|Hyy1 0 T[22 Z/¢kOdem+O( )-

k<n k<n

4. Proof of Theorem 3.1.

Step 3: ASIP criteria. The Skorokhod embedding will be used to match Zkgn Vi
o T* with a Brownian motion. For convenience, we define the following notation

from now on:
0’721 = Z/d)k oT*dm.

k<n
By Lemma 3.5, when o < %,
2 2
o, on’ = X mnl.
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Therefore, from now on, we assume
o2 =,
Lemma 4.1. When o < g, let Ry := Y5, w’“;T then

2 2
R2d
o 1f 2dm

2
On On

— 1.

Furthermore, (Ry,)n>1 is reverse martingale w.r.t. (T""B),>1.
Proof. When o < i, by (8), we have,

0721_‘_1 _ 0721—|—f1/)721+1 o T 1dm _ o2 +0(1) 1
on on on '

Since reverse martingale differences (¢, o T’“) k>1 is orthogonal series, then

2 2 [e’e)
oT O — Oj_ 1 _
R2dm = wk dm =Y Sl < —dx =02
" o - ) 2 2 n—l
k>n k>n k Tn-1

0T
g,

E[Ru|T~"*VB] = Ryy1 + E[~—5—|T~"*VB] = Rup1,

R2d R o2 . .
Hence L 0227" =/ . 2t 1, (Ry)n>1 Is reverse martingale. O

Skorokhod embedding for R, .

Lemma 4.2 (see [7], Theorem 2). There are a constant C' > 1, optional times 7, N\
0 and a Brownian motion (By);>o0 on an extended probability space of ([0, 1], B, dm)
such that:

R, =B, 9)
T .
E[7n — Tnt1|Gns1] = E[&W M+ DB), where G, = o(r, T~'B,i > n), (10)
Un
1 doT
6 . E[(Tn - Tn+l)2|gn+1] < E[wnT| n+1)8] < C- [( — Tn+1) |gn+1].
(11)
Approzimation for reverse martingale differences (1n, 0 T™)p>1.
Lemma 4.3. When o < 1, let 62 := [ R2dm. If there is €g > 0, such that
T — 02 = 0(627) a.s.
Then there is small € > 0 s.t.

|Z1/)10T ZBJz B512+1 0| =o0(ol7%) as.

i<n i<n
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Proof. By Lemma 4.1, §2 ~ ¢, 2. By Lemma 4.2 and definition of R,,, we have for
any ¢ > 1:

That is, for any 7 > 1:
¥ o T = (BTz - B‘Fi+1) o7

For m < n, write Y, ;o T" as:

Z ’(/JiOTi—f— Z ’(/JiOTi: Z ’Q/JiOTi‘f' Z (BTZ'_BTZ'JA)'O'?

i<m-—1 m<i<n i<m—1 m<i<n
% 2
E ;0T +Bé?%'0m_Béi o2+ g BJ2'(O’ — 07 )+ emm,
1<m—1 m+1<i<n

where the error term:
Cm,n = Z (Br, — B62) (U - ‘72 )+ (B, — Béfn) ) Ur2n —(Br,y — Bs2

2
cO,.
n+1) n
m+1<i<n

By Hoélder continuity of Brownian motion near ¢ = 0, for any ¢ < l, fixed m > 1:
lemnl < D m =071 (07 — 07 )) + [T — 00| - 0py + |Tn1 — 64| - 0
m+1<i<n

< Y o) (0F ot 1)+ o80T 07, o0 ) 0% S oahPFe).
m+1<i<n

We can choose ¢ < %, st. 2 — (2 + O)C < 1, then there is small ¢ > 0 s.t.

27
&
) a

2—(2+4+¢e)c<1—¢€ and |epn| = o(o}
Therefore, (¢, o T™),>1 satisfies:

| 0T =Y (Bp —Bs )0l = o(oy ) as.

i<n i<n

ASIP for (¢n, 0 T™)p>1.
Lemma 4.4. (¢, o T™),>1 satisfies ASIP if
da < v, and there is g > 0, s.t. T, — 62 = 0(627°) a.s.

Proof. From Lemma 4.3 and (3):
Y ¢ioT = (Bpz— By )-0i +0(oy ) + Hypr o T as

i<n i<n

By (7), take r < %,r> 2 thereis € > 0s.t. L'+ (1—¢)>1and

n+1 © T r < 1
/| 1 E’) | dm ~ n’Y'T_(lfé/)'

That is, When4a<”y,there1sr€( ), € >0st L (1—¢€)>1and

n+1 OT r < 1
/| 1 6/) |dmm ﬂ-(l—e/)'
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By the Borel-Cantelli Lemma:
Hpp1 0T = o0(ch~) as. (12)
If we define G; := (Bjz — B5?+1) - 02, then by (12) and Lemma 3.5,
| Z gioT" — Z Gi| = O(U,lfé,) = 0(211;5’) a.s.
i<n i<n
Besides, by Lemma 3.5 again,
Ey? o T
Y EGi =) ElBg —Bg, ) oil’=) (6] =8i1) -0 =) —g— o}
i<n i<n i<n i<n ?
= %2 +0(1) =22 + 0(x20-).
Therefore, (¢, o T™),>1 satisfies ASIP. O

Step 4: Estimates for ASIP. From Lemma 4.4, we only need to find the condi-
tions for y < 1 and o < % in order that there is ¢y > 0 such that

T — 02 = 0(6279) a.s.

Decompose T, — 62 as three terms: R, + R, 4 Sp:

I o vio (i+1)
Rn - Z(Tl Ti+1 — [ |T B])

i>n Z
7" ’(Z)2 o T’L 7(-+1) 1/}2 o 1_'Z
R = E[ 22— |7~ J2 ] A —
N
GRoTi gl
Sy = : —E :
LU

Estimate R;l and R;;. First note that R;L, R;; are reverse martingales with respect
to filtrations (G, )n>1 and (I'~"B),>1 respectively:

Lemma 4.5.

1 2 / 1
a< -, y>- = R, =0(62T) R

2+4€g
L2 o(82+).

n —

. 2
Proof. By (8), Ky, := Y., [|¢}oT"dm 3 n 32 0. By the martingale maximal
inequality: a

IE||Supi2n R§||2 - 1 E|R [ < z/,40Tz
62+€0 ~ 62(2+Eo) n 2+€0
n n z>n
1 1 < 1 n 1 z+1 Uf)
= 2(2+60) +Z Ki- )= 2(2+60) +Z Ki——5—)
6 i>n +1 577- i>n
1 U- 1 1 <1
o Ol 0 ) = : S
~ 6721(2-‘4-60) 8—7 +§ 16-2 ~ §2ete) (Ui_% +/U§ xm;% dx).
When ~v > Z? the last 1ntegra1 converges, hence:
/
E||Sup2iin Rl |2 - 1 < 1 .
611 €0 ~ 472507; ~ n2v—1—60'y

On



INVARIANCE PRINCIPLE FOR INTERMITTENT NON-STATIONARY SYSTEM 9

Choose w > 0, s.t. w- (27 —1—¢yy) > 1, by Borel-Cantelli Lemma:
sup R, = 0(5?3?5}]) a.s.
i>[N«|

For any n, there is N s.t. [N¥] <n < |[(N+1)¥]:

2+€ 2+€
Ryl _ SUPix | Nw) [Ril O . O N
5%+eo — 52+eo 5721-1-50 =0 52+60 a.s

(Ve ]

Since o < &, using (8) and Lemma 4.1, we have

2 2 2 _ 2 w -
5LNw = 0'721 7ULNWJ+U7I_ULNWJ<1+TL—LNJ<1+N L
~ 2 = 2 ~ 3 ~ o
% T Olne 4o TN ) N
52+€
Hence when v >1— 1 a < ¢, zjifoj = O(1),|R}| = o(627<0) a.s.

Ifv > 5, we can ﬁnd w and small ep such that w- (2y—1—€yy) > 1,y >1— %
are all satisfied. Then

1 2
R, = 0(627) a.s. when a < 37> 3

The estimate of R;; is similar. O

Estimate S,,. Denote

S = (W7oT - /w o Tdm).
i<n
Lemma 4.6. When a < 1, if there is ¢ > 0,
S = 0(0,21(1_6/)) a.s

then there is €g > 0 s.t.
S, = 0(027<) a.s.

Proof. By Lemma 4.1, 02 ~ ¢2_ ;. Take any ¢y < 2¢/, then we have

2o T? 2o T? Si—Sl Sy , 1 1
Sn =D (Fr— —ET >=Z T = TS (o)
i>n i i ion i Tn i>n o;  Oit1
o} 1 > 1 2+42¢’ 2
1 +2€ +€
N 2+25 + Z 4,652 N o2 12€ + /4 6t dz 3 07, = 0(6;,7).
i>n g; n On T4

Decompose S!,. To estimate S/: from the calculation on page 1140 in [6], it is the
sum of following five terms:

Z(¢§ oTt — /¢§ o Tldm), (13)

i<n
/Hz+1 o T dm, (14)
— H?  oT", (15)
Z —2- (o T" Hipy o T, (16)

i<n
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22~(gbl-oTi-HioTi—/qbioTi-HioTidm). (17)

i<n
FEstimate (13): By Sprindzuk’s Theorem in [§],

13) X nz = o)) < 0(c21=)) as. if v > l,e’ is small.
~ n v 2
FEstimate (14): By (7),
/ 1

(14) = 0(1) < o(c2=)) as. if a < Z’E/ is small.

Estimate (15): By (12),
(15) = 0(621=)) as. if 4a < v, € is small.
FEstimate (16): First note that:
(1 0 T - Hiyy o0 Ti“)izl is reverse martingale difference w.r.t. (T"B’)izl.

Using (7), (8) when a < % and Hélder inequality, we have

|Eign(¢i o' Hipy o T™) ~ ica JYP T HY 0T dm
S20=) = S

|2dm

(<) N )

o o Tl 2y o T s

1
i<n On
Choose w > 0 s.t. w- (2y(1 —€') — 1) > 1, by Borel-Cantelli Lemma:

 Digve @i o T' - Higy o T
lim

N—o00 Ufj(\}w_fl)

For any n € N, thereis N € Ns.t. [N¥] <n < [(N +1)”]. Then by Martingale
inequality, (7) and (8) when a < § again, we have

=0 a.s.

g <<l v | Egcisiovnye) Yo T Higa o TP

4(1—€")
TINe)
< E(1 22 ve j<jcic|(vanys Vi © T'- HiyqoTH1?)
~ N2yw(l—¢)
i w w—1
<L(N+1)J_LNJ< N '
~ N2'YUJ(1—€’) ~ N27w(17€l)

Therefore if 2y > 1, then we can choose small €’ s.t. 2yw(1 —¢€¢)+1—w > 1. By
the Borel-Cantelli Lemma, we have

i i 2(1—¢’
| Y. ieTHin OT+1|:0(UU(M ).

<<l
INeJslve) e

Besides, using (7) and (8) when o < § again, we have

2 2 2 2 w w o
Tlvne) _ Tine) T O@e) TNy g LWV DO = [N9) L N7
i) oine) h oine) A
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2
Hence when v > 1 — 1 Zlaysu=) O(1). Therefore,

w’ IiNw|

|Z1/)iOTi'Hi+1 o T < | Z YioT" - Hipy o T

isn i<L(N+1)»)
. i I, i+l < 2(1—€") 2(1—€')
ey D, wioT' Hipy o T S o(oy(vhyu)) +0(0 ™)
J<i<|[(N+1)« ]
2(1—¢€ ¢
3 O(UU(WJ )) < o(02(17¢)),

Therefore, when ~ > %, a < %, we can find small ¢ such that v > 1 — %, 2y(1 —
¢)—1> L hold and (16) = 0(0721(175,)).

FEstimate (17): Let U, := (17). From the proof of Lemma 3.4 in [6]: for m < n,

/|Un—Um|2dms 16l - (n—m+ S jTR). (18)

m<j<n

Although ¢ is not C! in this paper, (18) still holds for ¢ € Lip[0, 1] by the same
argument in Corollary 2.2. Then, when a < %:

U, 9 1 . 2a 1
- < . 2 ) < -~
/|ai<1€’>| dm 3 SA0—) (n+> j7) 3 )

1—2
n j<n “

Choose w > 0 and small ¢ s.t. w-(2y(1—¢€)—1=-) > 1. By Borel-Cantelli Lemma:

ULN“)J = O(Uf](\}wf )) a.s.

For any n, there is N s.t. |[N¥] <n < [(N +1)¥], then:

|Un|§ |ULNUJJ|+ sup |Un—U|_N“’j|
[N“]<n<[(N+1))
=o(otya )+ sup Uy, — Uy |-
LN“]<n<[(N+1))

Estimate SupLN“’JSHSl_(N'i‘l)“’J |Un — ULNUJJ |:

(SN fns (V41 [Un = U e 24
2(1—¢') m
TN

- YN j<n< (N41)w ) S 1Un = Ulne [2dm

4(1—¢’)
TN
1 . sa N2(w71)+w133a
NTiE Z (n— [N*] + Z ) 3 N2vw(d—¢) -
TIN“|  [N«|<n<[(N+1)“] |N@|<j<n

By Borel-Cantelli lemma, when v > 1 — % + %5, small € > 0, then
2c

2vw(l =€) — 2w —1) — 1
Yol — €) 20— 1) — e > 1,
sup |Un = Uiy = o0} ya ) < o(02 ).

[N« | <n<[(N+1)«]
Therefore:
(17) = U,, = o(c2=)),
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Ify>14 4(11t220;), we can find w s.t. w- (27— 5=) > 1,7 > 1— 5= + % are
all satisfied. Then by Lemma 4.6, there is small ¢y > 0:
1 1+ 2a 1
S, = 0(627<0) as. if -4 — =.
o0n) as iy > 5+ 52 < 5
Therefore:
1 142« 1
W — 02 = 0(62T¢0) as. if e — —.
T, - =o0(0; )a81’y>2+4(1_2a),04<8
By Lemma 4.4,

1 1+2 1
((bn o Tn)nzl satisfies ASIP, if v > 5 + ﬁ, o < g

5. Applications of Theorem 3.1.

Theorem 5.1 (Nearby maps). Consider the non-stationary dynamical system
([0,1), B, (Tk)k>1,dm) where dm is Lebesgue measure, Ty = Tp,, Ty, = Tp, are
Pomeau-Manneville maps, 0 < Bo, B < % and an observation ¢ € Lip|0,1]; as-
sume ¢ is not co-boundary w.r.t. Ty in L?([0,1],dm), i.e.

¢ # c+oly— for any measurable ¥ and constant c.
Then there is € > 0 such that
for any Br. € (Bo — €, Bo +¢€), (¢i 0 T")i>1 satisfies ASIP.

Proof. From [6] Theorem 4.1, there is n > 0 s.t. [|[¢py, o T"||p2 > n, for all n > 1,
therefore 32 >~ n when Sy, B < i. By Theorem 3.1, ASIP is satisfied. O

Theorem 5.2 (Random compositions). Consider finitely many maps ([0,1], B,
(Tk)o<k<d,dm), where dm is Lebesque measure, Ty, = Tp,, 0 < k < d, are Pomeau-
Manneville maps, 0 < B < %, and an observation ¢ € Lip[0,1]; assume ¢ is not
co-boundary w.r.t. Ty in L2([0,1],dm).

Define a symbolic dynamical system ({0,1,--- ,d}N, o, P®N) where o is the left
shift and P is a probability on {0,1,--- ,d}. Define random compositions by T =
T(oh—10)y © T(oh-20)y © =+ © T(w), and random variance ¥} (w) = I(Zign poT! —
m(¢oTl))2dm forw € {0,1,--- ,d}N. Then (poT™ —m(¢oT™)),>1 satisfies ASIP
for P®N_g.e. w.

Proof. From [6] Lemma 5.1, there is a C' > 0 and almost surely an N, € N s.t.
¥2(w) > Cn, for all n > N,, when S < . By Theorem 3.1, ASIP is satisfied for
each such w. O

Remark 5.3. Note that although [6] proved that %2 (resp. X2(w)) has linear
growth for ¢ € C*[0,1], the linear growth still holds for ¢ € Lip[0,1] by the same
argument in Corollary 2.2.
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