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Abstract. We establish almost sure invariance principles (ASIP), a strong
form of approximation by Brownian motion, for non-stationary time series
arising as observations on sequential maps possessing an indifferent fixed point.
These transformations are obtained by perturbing the slope in the Pomeau-
Manneville map. Quenched ASIP for random compositions of these maps is
also obtained.

1. Introduction. Almost surely invariance principle (ASIP) is a very strong sta-
tistical property. It is a matching of the trajectories of the dynamical system with a
Brownian motion in such a way that the error is negligible in comparison with the
Birkhoff sum. Limit theorems such as the central limit theorem (CLT), the func-
tional central limit theorem and the law of the iterated logarithm (LIL) transfer
from the Brownian motion to time-series generated by observations on the dynam-
ical system.

Haydn, Nicol, Török, Vaienti [4] dealt with ASIP for a non-stationary process
given by the observation along the orbit obtained by concatenating maps chosen
in a given set. They are in one and more dimensions a.e. piecewise expanding,
more precisely their transfer operator (Perron-Frobenius operator) with respect to
the Lebesgue measure is quasi-compact on a suitable Banach space. This allows to
approximate the original process with reverse martingale differences plus an error.
Same approach is applied to random dynamical system with sufficient hyperbolicity
in [3]. Based on Skorokhod embedding technique, Cuny and Merlevède [2] recently
showed that reverse martingale differences satisfy ASIP under some conditions. The
error is shown to be essentially bounded due to the presence of a spectral gap in
the transfer operator on a Banach space continuously injected in L∞. Therefore
ASIP for non-stationary dynamical systems in [4] and quenched ASIP for random
dynamical systems in [3] are satisfied.

However, if the transfer operator with respect to the Lebesgue measure is not
quasi-compact on a suitable Banach space, the approach described above fails to
work. Such example for non-stationary dynamical systems and related statistical
properties are provided in a preceding series of papers [1, 5, 6].
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The first paper [1] considered composition of Pomeau-Manneville like maps, ob-
tained by perturbing the slope at the indifferent fixed point 0. They obtain polyno-
mial decay of correlations for particular classes of centered observables, which could
also be interpreted as the decay of the iterates of the transfer operator on functions
of zero (Lebesgue) average; this fact is also known as loss of memory.

The last two papers [5, 6] considered the same system and proved self-norming
CLT under the assumption that it is sufficiently chaotic and the variance grows
at a certain rate. Moreover, they proved self-norming CLT for nearby maps and
quenched CLT for random compositions of maps in the same family provided the
system is sufficiently chaotic and the base map of random dynamical system has
strong mixing.

In this paper, the same system as [6] is considered and some of its properties
are improved, namely the stronger statistical property (ASIP) is obtained. Our
construction for Gaussian variable in ASIP is close to Proposition 2.1 in [2], that
is, applying Skorohod embedding to tail series, but we won’t impose strong condi-
tions like (2.1), (2.2) in [2], which loses lots of information of Skorohod embedding.
Instead, we will give a sharp condition for ASIP (see our Lemma 4.4). Surprisingly,
this condition can be verifed by our system considered here. Besides, due to non-
uniformity of our system, the error rate of our ASIP is just slightly less than 1

2 (not
1
4 in [2]). So we will not give an explicit formula for it.

2. Definitions and notations. Consider a family of Pomeau-Manneville maps on
[0, 1]: 0 < α < 1,

Tα(x) =

{

x+ 2αx1+α, 0 ≤ x ≤ 1
2

2x− 1, 1
2 < x ≤ 1

. (1)

Given n,m, k ∈ N, 0 < βk < α, denote:

Tk := Tβk
,

T n+m
m := Tn+m ◦ Tn+m−1 ◦ · · · ◦ Tm,

T n := T n
1 = Tn ◦ Tn−1 ◦ · · · ◦ T1.

The transfer operator (Perron-Frobenius operator) Pk associated to Tk is defined
by the duality relation:∫

g · Pkfdm =

∫
g ◦ Tk · fdm for all f ∈ L

1
, g ∈ L

∞

, where dm is Lebesgue measure.

Similar to Tk, denote:

Pk := Pβk
,

Pn+m
m := Pn+m ◦ Pn+m−1 ◦ · · · ◦ Pm,

Pn := Pn
1 = Pn ◦ Pn−1 ◦ · · · ◦ P1.

As in [1], define X(x) := x, x ∈ [0, 1], a cone Ca ⊂ L1[0, 1] by:

Ca := {f ∈ C1(0, 1] : f ≥ 0, f decreasing, Xα+1·f increasing, f(x) ≤ ax−α

∫

fdm}

From [1], if a is chosen large enough, Ca is preserved by every Pn, hence by every
Pn+m
n . We fix such a large a from now on. The following decay of correlations

holds:
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Theorem 2.1 (see [1, 6]). Assume K,M > 0, φk ∈ C1[0, 1] and hk ∈ Ca with
||φk||C1 ≤ K, ||hk||L1 ≤ M for all k ≥ 1.

Then, for 1 ≤ p < 1
α
, there is a constant CK,M,α,p such that for all m,n ∈ N:

||Pn+m
m+1 (φk · hk −

∫

φk · hkdm)||Lp ≤ CK,M,α,p ·
1

n
1

pα
−1

· (logn)
1−pα

αp−pα2 .

Corollary 2.2. Assume K,M > 0, φk ∈ Lip[0, 1] = W 1,∞([0, 1]) and hk ∈ Ca

are s.t. ||hk||L1 ≤ M, ||φk||W 1,∞ := ||φk||L∞ + supx 6=y∈[0,1]
|φk(x)−φk(y)|

|x−y| ≤ K for all

k ≥ 1.
Then, for 1 ≤ p < 1

α
, there is a constant CK,M,α,p such that for all m,n ∈ N:

||Pn+m
m+1 (φk · hk −

∫

φk · hkdm)||Lp ≤ CK,M,α,p ·
1

n
1

pα
−1

· (logn)
1−pα

αp−pα2 . (2)

For simplicity, in many of the following statements 1

n
1
pα

−1
will be used as the

rate of decay, ignoring the logn-factor. This is still correct if taking α a slightly
larger value (and is actually the correct rate of decay for the stationary case).

Proof. Using convolution, for φk ∈ Lip[0, 1], there is φk,ǫ ∈ C∞[0, 1] such that

||φk,ǫ − φk||L∞ ≤ ǫ||φk||W 1,∞ ≤ Kǫ,

||φk,ǫ||W 1,∞ ≤ ||φk||W 1,∞ ≤ K.

By Theorem 2.1,

||Pn+m
m+1 (φk,ǫ · hk −

∫

φk,ǫ · hkdm)||Lp ≤ CK,M,α,p ·
1

n
1
pα

−1
· (log n)

1−pα

αp−pα2 .

Let ǫ → 0,

||Pn+m
m+1 (φk,ǫ · hk −

∫

φk,ǫ · hkdm)− Pn+m
m+1 (φk · hk −

∫

φk · hkdm)||Lp

≤ ǫ · ||φk||W 1,∞ · (||Pn+m
m+1 hk||Lp + ||hk||L1 · ||Pm+n

m+1 1||Lp)

≤ a · ǫ ·K · (1 + ||hk||L1) · (

∫

[0,1]

1

xαp
dm)

1
p → 0.

The last inequality holds since Pn+m
m+1 hk, P

n+m
m+1 1 ∈ Ca. Hence (2) holds.

Definition 2.3 (ASIP for a Non-stationary Dynamical System). Given a non-
stationary dynamical system ([0, 1],B, (Tk)k≥1, dm) and an observation φ ∈ Lip[0, 1],
denote φk := φ−

∫

φ ◦ T kdm.

Then (φk◦T
k)k≥1 satisfies ASIP if there are ǫ ∈ (0, 1) and independent mean zero

Gaussian variables (Gk)k≥1 on some extended probability space of ([0, 1],B, dm)
such that almost surely,

∑

k≤n

φk ◦ T k −
∑

k≤n

Gk = o(Σ1−ǫ
n ),

∑

k≤n

EG2
k = Σ2

n +O(Σ2(1−ǫ)
n ),

with Σ2
n :=

∫

(
∑

k≤n

φk ◦ T k)2dm → ∞.
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We point out that if (φk ◦ T k)k≥1 satisfies ASIP, then it also satisfies the self-
norming CLT and LIL:

∑

k≤n φk ◦ T k

Σn

d
→ N(0, 1),

lim sup
n→∞

∑

k≤n φk ◦ T k

√

Σ2
n log logΣ

2
n

= 1,

lim inf
n→∞

∑

k≤n φk ◦ T k

√

Σ2
n log logΣ

2
n

= −1.

In fact, there is a matching of the Birkhoff sums
∑

k≤n φk ◦ T k with a standard

Brownian motion Bt observed at times of order Σ2
n so that

∑

k≤n φk ◦ T k equals
BΣ2

n
plus a negligible error almost surely.

Notation 2.4. an ≈ bn(resp. an - bn) means there is a constant C ≥ 1 such that
C−1 · bn ≤ an ≤ C · bn for all n (resp. an ≤ C · bn for all n).

3. The main theorem. Our main theorem is the following:

Theorem 3.1 (ASIP). Consider the non-stationary dynamical system ([0, 1],
B, (Tk)k≥1, dm), where dm is Lebesgue measure, Tk := Tβk

are Pomeau-Manneville
maps, 0 < βk < α < 1, and an observation φ ∈ Lip[0, 1]. If Σ2

n :=
∫

(
∑

k≤n φk ◦

T k)2dm % nγ, then

(φk ◦ T k)k≥1 satisfies ASIP when γ >
1

2
+

1 + 2α

4(1− 2α)
, α <

1

8
.

The main steps of the proof are the following:

First step. Decompose
∑

k≤n φk ◦ T k as reverse martingale differences plus error
term.

Second step. Prove the error term has uniform Lp-bound.

Third step. Apply Skorokhod embedding to reverse martingale differences, obtain
a sequence of suitable Gaussian variables from Brownian motion.

Fourth step. Prove that when γ > 1
2 +

1+2α
4(1−2α) , α < 1

8 , then the ASIP is satisfied.

First, we will cite/improve some lemmas below:

Step 1: Decomposition.

Lemma 3.2 ( [6]). For all n ≥ 1, define Hn+1◦T
n+1 := E[

∑

k≤n φk◦T
k|T−(n+1)B].

Then there are reverse martingale differences (ψk◦T
k)k≥1 w.r.t. decreasing filtration

(T−kB)k≥1 such that:
∑

k≤n

φk ◦ T k =
∑

k≤n

ψk ◦ T
k +Hn+1 ◦ T

n+1, (3)

σ2
n =

∫

(
∑

k≤n

ψk ◦ T
k)2dm+

∫

H2
n+1 ◦ T

n+1dm, (4)

Hn+1 ◦ T
n+1 =

∑

k≤n Pn+1
k+1 (φk · P k1)

Pn+11
◦ T n+1. (5)
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Step 2: Uniform bound.

Lemma 3.3 (lower bound, see [1]).

inf
n,x

Pn1(x) > 0.

Lemma 3.4 (upper bound).

sup
n

||Hn||Lr < ∞, if 1 ≤ r <
1

2α
, (6)

sup
n

||Hn ◦ T n||Lr < ∞, if 1 ≤ r <
1

2α
, (7)

sup
n

||ψn ◦ T n||Lr < ∞, if 1 ≤ r <
1

2α
. (8)

Proof. (See also the Note Added in Proof in [6])
By (2), (5), Lemma 3.3, and Pn+11 ∈ Ca, let 1 ≤ r < 1

2α :
∫

|Hn+1 ◦ T
n+1|rdm =

∫

|Hn+1|
r · Pn+11dm

=

∫

|
∑

i≤n

Pn+1
i+1 (φi · P

i1)|r · |Pn+11|1−rdm

≤ (

∫

|
∑

i≤n

Pn+1
i+1 (φi · P

i1)|rdm) · ||(Pn+11)1−r||L∞ - (
∑

i≤n

1

i
1
rα

−1
)r < ∞.

So (7) holds when 1 ≤ r < 1
2α .

To prove (6), let 1 ≤ r < 1
2α , by Lemma 3.3, we have:

sup
n

∫

|Hn+1|
rdm - sup

n

∫

|Hn+1|
r · Pn+11dm = sup

n

∫

|Hn+1 ◦ T
n+1|rdm < ∞.

By (3), (7) and supn ||φn||L∞ < ∞: supn ||ψn ◦ T n||Lr < ∞, when 1 ≤ r <
1
2α .

Lemma 3.5.
∑

k≤n

∫

ψ2
k ◦ T kdm = Σ2

n +O(1), when α <
1

4
.

Proof. Take r = 2 in (7), i.e. α < 1
4 , (4) becomes:

Σ2
n =

∫

(
∑

k≤n

ψk ◦ T k)2dm+ ||Hn+1 ◦ T
n+1||2L2 =

∑

k≤n

∫

ψ2
k ◦ T

kdm+O(1).

4. Proof of Theorem 3.1.

Step 3: ASIP criteria. The Skorokhod embedding will be used to match
∑

k≤n ψk

◦ T k with a Brownian motion. For convenience, we define the following notation
from now on:

σ2
n :=

∑

k≤n

∫

ψ2
k ◦ T kdm.

By Lemma 3.5, when α < 1
4 ,

σ2
n % nγ ⇐⇒ Σ2

n % nγ .
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Therefore, from now on, we assume

σ2
n % nγ .

Lemma 4.1. When α < 1
4 , let Rn :=

∑

k≥n
ψk◦T

k

σ2
k

, then

σ2
n+1

σ2
n

→ 1,

∫

R2
ndm

σ−2
n

→ 1.

Furthermore, (Rn)n≥1 is reverse martingale w.r.t. (T−nB)n≥1.

Proof. When α < 1
4 , by (8), we have,

σ2
n+1

σ2
n

=
σ2
n +

∫

ψ2
n+1 ◦ T

n+1dm

σ2
n

=
σ2
n +O(1)

σ2
n

→ 1.

Since reverse martingale differences (ψk ◦ T k)k≥1 is orthogonal series, then
∫

R2
ndm =

∑

k≥n

∫

ψ2
k ◦ T

k

σ4
k

dm =
∑

k≥n

σ2
k − σ2

k−1

σ4
k

≤

∫ ∞

σ2
n−1

1

x2
dx = σ−2

n−1,

E[Rn|T
−(n+1)B] = Rn+1 + E[

ψn ◦ T n

σ2
n

|T−(n+1)B] = Rn+1,

∫

R2
ndm =

∑

k≥n

σ2
k − σ2

k−1

σ4
k−1

·
σ4
k−1

σ4
k

=
∑

k≥n

σ2
k − σ2

k−1

σ4
k−1

(1− o(1))2 ≥

∫ ∞

σ2
n−1

1

x2
dx · (1 − o(1))2.

Hence
∫
R2

ndm

σ
−2
n

=
∫
R2

ndm

σ
−2
n−1

·
σ
−2
n−1

σ
−2
n

→ 1, (Rn)n≥1 is reverse martingale.

Skorokhod embedding for Rn.

Lemma 4.2 (see [7], Theorem 2). There are a constant C > 1, optional times τn ց
0 and a Brownian motion (Bt)t≥0 on an extended probability space of ([0, 1],B, dm)
such that:

Rn = Bτn , (9)

E[τn − τn+1|Gn+1] = E[
ψ2
n ◦ T n

σ4
n

|T−(n+1)B], where Gn = σ(τi, T
−iB, i ≥ n), (10)

1

C
· E[(τn − τn+1)

2|Gn+1] ≤ E[
ψ4
n ◦ T n

σ8
n

|T−(n+1)B] ≤ C · E[(τn − τn+1)
2|Gn+1].

(11)

Approximation for reverse martingale differences (ψn ◦ T n)n≥1.

Lemma 4.3. When α < 1
4 , let δ

2
n :=

∫

R2
ndm. If there is ǫ0 > 0, such that

τn − δ2n = o(δ2+ǫ0
n ) a.s.

Then there is small ǫ′ > 0 s.t.

|
∑

i≤n

ψi ◦ T
i −

∑

i≤n

(Bδ2
i
−Bδ2

i+1
) · σ2

i | = o(σ1−ǫ′

n ) a.s.
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Proof. By Lemma 4.1, δ2n ≈ σ−2
n . By Lemma 4.2 and definition of Rn, we have for

any i ≥ 1:

Bτi = Ri =
∑

k≥i

ψk ◦ T
k

σ2
k

,

Bτi −Bτi+1 =
ψi ◦ T

i

σ2
i

.

That is, for any i ≥ 1:

ψi ◦ T
i = (Bτi −Bτi+1) · σ

2
i .

For m < n, write
∑

i≤n ψi ◦ T
i as:

∑

i≤m−1

ψi ◦ T
i +

∑

m≤i≤n

ψi ◦ T
i =

∑

i≤m−1

ψi ◦ T
i +

∑

m≤i≤n

(Bτi −Bτi+1) · σ
2
i

=
∑

i≤m−1

ψi ◦ T
i +Bδ2m

· σ2
m −Bδ2

n+1
· σ2

n +
∑

m+1≤i≤n

Bδ2
i
· (σ2

i − σ2
i−1) + em,n,

where the error term:

em,n =
∑

m+1≤i≤n

(Bτi −Bδ2
i
) · (σ2

i − σ2
i−1)+ (Bτm −Bδ2m

) ·σ2
m − (Bτn+1 −Bδ2

n+1
) ·σ2

n.

By Hölder continuity of Brownian motion near t = 0, for any c < 1
2 , fixed m ≫ 1:

|em,n| ≤
∑

m+1≤i≤n

|τi − δ2i |
c · (σ2

i − σ2
i−1) + |τm − δ2m|c · σ2

m + |τn+1 − δ2n+1|
c · σ2

n

≤
∑

m+1≤i≤n

o(δ
(2+ǫ0)c
i )·(σ2

i −σ2
i−1)+o(δ(2+ǫ0)c

m )·σ2
m+o(δ

(2+ǫ0)c
n+1 )·σ2

n - o(σ2−(2+ǫ0)c
n ).

We can choose c < 1
2 , s.t. 2 − (2 + ǫ0)c < 1, then there is small ǫ′ > 0 s.t.

2− (2 + ǫ0)c < 1− ǫ′ and |em,n| = o(σ1−ǫ′

n ) a.s..
Therefore, (ψn ◦ T n)n≥1 satisfies:

|
∑

i≤n

ψi ◦ T
i −

∑

i≤n

(Bδ2
i
−Bδ2

i+1
) · σ2

i | = o(σ1−ǫ′

n ) a.s.

ASIP for (φn ◦ T n)n≥1.

Lemma 4.4. (φn ◦ T n)n≥1 satisfies ASIP if

4α < γ, and there is ǫ0 > 0, s.t. τn − δ2n = o(δ2+ǫ0
n ) a.s.

Proof. From Lemma 4.3 and (3):
∑

i≤n

φi ◦ T
i =

∑

i≤n

(Bδ2
i
−Bδ2

i+1
) · σ2

i + o(σ1−ǫ′

n ) +Hn+1 ◦ T
n+1 a.s.

By (7), take r < 1
2α , r > 2

γ
, there is ǫ′ > 0 s.t. γ·r

2 · (1− ǫ′) > 1 and
∫

|
Hn+1 ◦ T

n+1

σ
(1−ǫ′)
n

|rdm -
1

n
γ·r
2 ·(1−ǫ′)

.

That is, when 4α < γ, there is r ∈ ( 2
γ
, 1
2α ), ǫ

′ > 0 s.t. γ·r
2 · (1− ǫ′) > 1 and

∫

|
Hn+1 ◦ T

n+1

σ
(1−ǫ′)
n

|rdm -
1

n
γ·r
2 ·(1−ǫ′)

.
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By the Borel-Cantelli Lemma:

Hn+1 ◦ T
n+1 = o(σ1−ǫ′

n ) a.s. (12)

If we define Gi := (Bδ2
i
−Bδ2

i+1
) · σ2

i , then by (12) and Lemma 3.5,

|
∑

i≤n

φi ◦ T
i −

∑

i≤n

Gi| = o(σ1−ǫ′

n ) = o(Σ1−ǫ′

n ) a.s.

Besides, by Lemma 3.5 again,

∑

i≤n

EG2
i =

∑

i≤n

E[(Bδ2i
−Bδ2i+1

) · σ2
i ]

2 =
∑

i≤n

(δ2i − δ2i+1) · σ
4
i =

∑

i≤n

Eψ2
i ◦ T

i

σ4
i

· σ4
i

= σ2
n = Σ2

n +O(1) = Σ2
n +O(Σ2(1−ǫ′)

n ).

Therefore, (φn ◦ T n)n≥1 satisfies ASIP.

Step 4: Estimates for ASIP. From Lemma 4.4, we only need to find the condi-
tions for γ < 1 and α < 1

4 in order that there is ǫ0 > 0 such that

τn − δ2n = o(δ2+ǫ0
n ) a.s.

Decompose τn − δ2n as three terms: R
′

n +R
′′

n + Sn:

R
′

n =
∑

i≥n

(τi − τi+1 − E[
ψ2
i ◦ T

i

σ4
i

|T−(i+1)B]),

R
′′

n =
∑

i≥n

(E[
ψ2
i ◦ T

i

σ4
i

|T−(i+1)B]−
ψ2
i ◦ T

i

σ4
i

),

Sn =
∑

i≥n

(
ψ2
i ◦ T

i

σ4
i

− E
ψ2
i ◦ T i

σ4
i

).

Estimate R
′

n and R
′′

n. First note that R
′

n, R
′′

n are reverse martingales with respect
to filtrations (Gn)n≥1 and (T−nB)n≥1 respectively:

Lemma 4.5.

α <
1

8
, γ >

2

3
=⇒ R

′

n = o(δ2+ǫ0
n ), R

′′

n = o(δ2+ǫ0
n ).

Proof. By (8), Kn :=
∑

i≤n

∫

|ψ4
i ◦ T

i|dm - n - σ
2
γ
n . By the martingale maximal

inequality:

E|
| supi≥n R

′
i|

δ2+ǫ0
n

|2 -
1

δ
2(2+ǫ0)
n

E|R′
n|

2 -
1

δ
2(2+ǫ0)
n

∑

i≥n

∫

ψ4
i ◦ T

i

σ8
i

dm

=
1

δ
2(2+ǫ0)
n

·(−
Kn−1

σ8
n

+
∑

i≥n

Ki·(
1

σ8
i

−
1

σ8
i+1

)) -
1

δ
2(2+ǫ0)
n

·(
Kn−1

σ8
n

+
∑

i≥n

Ki·
(σ8

i+1 − σ8
i )

σ16
i

)

-
1

δ
2(2+ǫ0)
n

· (
1

σ
8− 2

γ
n

+
∑

i≥n

(
σ8
i+1 − σ8

i

σ
16− 2

γ

i

)) -
1

δ
2(2+ǫ0)
n

· (
1

σ
8− 2

γ
n

+

∫ ∞

σ8
n

1

x
16− 2

γ
8

dx).

When γ > 1
4 , the last integral converges, hence:

E|
| supi≥n R

′
i|

δ2+ǫ0
n

|2 -
1

σ
4−2ǫ0−

2
γ

n

-
1

n2γ−1−ǫ0γ
.
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Choose ω > 0, s.t. ω · (2γ − 1− ǫ0γ) > 1, by Borel-Cantelli Lemma:

sup
i≥⌊Nω⌋

R′
i = o(δ2+ǫ0

⌊Nω⌋) a.s.

For any n, there is N s.t. ⌊Nω⌋ ≤ n ≤ ⌊(N + 1)ω⌋:

|R′
n|

δ2+ǫ0
n

≤
supi≥⌊Nω⌋ |R

′
i|

δ2+ǫ0
⌊Nω⌋

·
δ2+ǫ0
⌊Nω⌋

δ2+ǫ0
n

≤ o(1) ·
δ2+ǫ0
⌊Nω⌋

δ2+ǫ0
n

a.s.

Since α < 1
8 , using (8) and Lemma 4.1, we have

δ2⌊Nω⌋

δ2n
-

σ2
n

σ2
⌊Nω⌋

=
σ2
⌊Nω⌋ + σ2

n − σ2
⌊Nω⌋

σ2
⌊Nω⌋

- 1 +
n− ⌊Nω⌋

σ2
⌊Nω⌋

- 1 +
Nω−1

Nω·γ
.

Hence when γ ≥ 1− 1
ω
, α < 1

8 ,
δ
2+ǫ0
⌊Nω⌋

δ
2+ǫ0
n

= O(1), |R′
n| = o(δ2+ǫ0

n ) a.s.

If γ > 2
3 , we can find ω and small ǫ0 such that ω · (2γ − 1− ǫ0γ) > 1, γ ≥ 1− 1

ω

are all satisfied. Then

R′
n = o(δ2+ǫ0

n ) a.s. when α <
1

8
, γ >

2

3
.

The estimate of R
′′

n is similar.

Estimate Sn. Denote

S′
n :=

∑

i≤n

(ψ2
i ◦ T

i −

∫

ψ2
i ◦ T

idm).

Lemma 4.6. When α < 1
4 , if there is ǫ′ > 0,

S′
n = o(σ2(1−ǫ′)

n ) a.s.

then there is ǫ0 > 0 s.t.

Sn = o(δ2+ǫ0
n ) a.s.

Proof. By Lemma 4.1, σ2
n ≈ σ2

n+1. Take any ǫ0 < 2ǫ′, then we have

Sn =
∑

i≥n

(
ψ2
i ◦ T

i

σ4
i

− E
ψ2
i ◦ T

i

σ4
i

) =
∑

i≥n

S′
i − S′

i−1

σ4
i

= −
S′
n−1

σ4
n

+
∑

i≥n

S′
i · (

1

σ4
i

−
1

σ4
i+1

)

-
1

σ2+2ǫ′
n

+
∑

i≥n

σ4
i+1 − σ4

i

σ
4· 6+2ǫ′

4
i

-
1

σ2+2ǫ′
n

+

∫ ∞

σ4
n

1

x
6+2ǫ′

4

dx - δ2+2ǫ′

n = o(δ2+ǫ0
n ).

Decompose S′
n. To estimate S′

n: from the calculation on page 1140 in [6], it is the
sum of following five terms:

∑

i≤n

(φ2
i ◦ T

i −

∫

φ2
i ◦ T

idm), (13)

∫

H2
n+1 ◦ T

n+1dm, (14)

−H2
n+1 ◦ T

n+1, (15)
∑

i≤n

−2 · (ψi ◦ T
i ·Hi+1 ◦ T

i+1), (16)
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∑

i≤n

2 · (φi ◦ T
i ·Hi ◦ T

i −

∫

φi ◦ T
i ·Hi ◦ T

idm). (17)

Estimate (13): By Sprindzuk’s Theorem in [8],

(13) - n
1
2 = o(nγ(1−ǫ′)) ≤ o(σ2(1−ǫ′)

n ) a.s. if γ >
1

2
, ǫ′ is small.

Estimate (14): By (7),

(14) = O(1) ≤ o(σ2(1−ǫ′)
n ) a.s. if α <

1

4
, ǫ′ is small.

Estimate (15): By (12),

(15) = o(σ2(1−ǫ′)
n ) a.s. if 4α < γ, ǫ′ is small.

Estimate (16): First note that:

(ψi ◦ T
i ·Hi+1 ◦ T

i+1)i≥1 is reverse martingale difference w.r.t. (T−iB)i≥1.

Using (7), (8) when α < 1
8 and Hölder inequality, we have

∫

|

∑

i≤n(ψi ◦ T
i ·Hi+1 ◦ T

i+1)

σ
2(1−ǫ′)
n

|2dm =

∑

i≤n

∫

ψ2
i ◦ T

i ·H2
i+1 ◦ T

i+1dm

σ
4(1−ǫ′)
n

≤
∑

i≤n

||ψ2
i ◦ T

i||L2 · ||H2
i+1 ◦ T

i+1||L2

σ
4(1−ǫ′)
n

-
n

n2γ(1−ǫ′)
.

Choose ω > 0 s.t. ω · (2γ(1− ǫ′)− 1) > 1, by Borel-Cantelli Lemma:

lim
N→∞

∑

i≤⌊Nω⌋(ψi ◦ T
i ·Hi+1 ◦ T

i+1)

σ
2(1−ǫ′)
⌊Nω⌋

= 0 a.s.

For any n ∈ N, there is N ∈ N s.t. ⌊Nω⌋ ≤ n ≤ ⌊(N + 1)ω⌋. Then by Martingale
inequality, (7) and (8) when α < 1

8 again, we have

E
max⌊Nω⌋≤j≤⌊(N+1)ω⌋ |

∑

j≤i≤⌊(N+1)ω⌋ ψi ◦ T
i ·Hi+1 ◦ T

i+1|2

σ
4(1−ǫ′)
⌊Nω⌋

-
E(|

∑

⌊Nω⌋≤j≤i≤⌊(N+1)ω⌋ ψi ◦ T
i ·Hi+1 ◦ T

i+1|2)

N2γω(1−ǫ′)

-
⌊(N + 1)ω⌋ − ⌊Nω⌋

N2γω(1−ǫ′)
-

Nω−1

N2γω(1−ǫ′)
.

Therefore if 2γ > 1, then we can choose small ǫ′ s.t. 2γω(1− ǫ′) + 1−ω > 1. By
the Borel-Cantelli Lemma, we have

max
⌊Nω⌋≤j≤⌊(N+1)ω⌋

|
∑

j≤i≤⌊(N+1)ω⌋

ψi ◦ T
i ·Hi+1 ◦ T

i+1| = o(σ
2(1−ǫ′)
⌊Nω⌋ ).

Besides, using (7) and (8) when α < 1
8 again, we have

σ2
⌊(N+1)ω⌋

σ2
⌊Nω⌋

=
σ2
⌊Nω⌋ + σ2

⌊(N+1)ω⌋ − σ2
⌊Nω⌋

σ2
⌊Nω⌋

- 1 +
⌊(N + 1)ω⌋ − ⌊Nω⌋

σ2
⌊Nω⌋

- 1 +
Nω−1

Nω·γ
.
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Hence when γ ≥ 1− 1
ω
,

σ2
⌊(N+1)ω⌋

σ2
⌊Nω⌋

= O(1). Therefore,

|
∑

i≤n

ψi ◦ T
i ·Hi+1 ◦ T

i+1| ≤ |
∑

i≤⌊(N+1)ω⌋

ψi ◦ T
i ·Hi+1 ◦ T

i+1|

+ max
⌊Nω⌋≤j≤⌊(N+1)ω⌋

|
∑

j≤i≤⌊(N+1)ω⌋

ψi ◦ T
i ·Hi+1 ◦ T

i+1| - o(σ
2(1−ǫ′)
⌊(N+1)ω⌋) + o(σ

2(1−ǫ′)
⌊Nω⌋ )

- o(σ
2(1−ǫ′)
⌊Nω⌋ ) ≤ o(σ2(1−ǫ′)

n ).

Therefore, when γ > 2
3 , α < 1

8 , we can find small ǫ′ such that γ ≥ 1− 1
ω
, 2γ(1−

ǫ′)− 1 > 1
ω
hold and (16) = o(σ

2(1−ǫ′)
n ).

Estimate (17): Let Un := (17). From the proof of Lemma 3.4 in [6]: for m < n,
∫

|Un − Um|2dm - ||φ||2W 1,∞ · (n−m+
∑

m≤j≤n

j
2α

1−2α ). (18)

Although φ is not C1 in this paper, (18) still holds for φ ∈ Lip[0, 1] by the same
argument in Corollary 2.2. Then, when α < 1

4 :
∫

|
Un

σ
2(1−ǫ′)
n

|2dm -
1

σ
4(1−ǫ′)
n

· (n+
∑

j≤n

j
2α

1−2α ) -
1

n2γ(1−ǫ′)− 1
1−2α

.

Choose ω > 0 and small ǫ′ s.t. ω ·(2γ(1−ǫ′)− 1
1−2α ) > 1. By Borel-Cantelli Lemma:

U⌊Nω⌋ = o(σ
2(1−ǫ′)
⌊Nω⌋ ) a.s.

For any n, there is N s.t. ⌊Nω⌋ ≤ n ≤ ⌊(N + 1)ω⌋, then:

|Un| ≤ |U⌊Nω⌋|+ sup
⌊Nω⌋≤n≤⌊(N+1)ω⌋

|Un − U⌊Nω⌋|

= o(σ
2(1−ǫ′)
⌊Nω⌋ ) + sup

⌊Nω⌋≤n≤⌊(N+1)ω⌋

|Un − U⌊Nω⌋|.

Estimate sup⌊Nω⌋≤n≤⌊(N+1)ω⌋ |Un − U⌊Nω⌋|:
∫

|
sup⌊Nω⌋≤n≤⌊(N+1)ω⌋ |Un − U⌊Nω⌋|

σ
2(1−ǫ′)
⌊Nω⌋

|2dm

≤

∑

⌊Nω⌋≤n≤⌊(N+1)ω⌋

∫

|Un − U⌊Nω⌋|
2dm

σ
4(1−ǫ′)
⌊Nω⌋

-
1

σ
4(1−ǫ′)
⌊Nω⌋

∑

⌊Nω⌋≤n≤⌊(N+1)ω⌋

(n− ⌊Nω⌋+
∑

⌊Nω⌋≤j≤n

j
2α

1−2α ) -
N2(ω−1)+ω 2α

1−2α

N2γω(1−ǫ′)
.

By Borel-Cantelli lemma, when γ > 1− 1
2ω + α

1−2α , small ǫ′ > 0, then

2γω(1− ǫ′)− 2(ω − 1)− ω
2α

1− 2α
> 1,

sup
⌊Nω⌋≤n≤⌊(N+1)ω⌋

|Un − U⌊Nω⌋| = o(σ
2(1−ǫ′)
⌊Nω⌋ ) ≤ o(σ2(1−ǫ′)

n ).

Therefore:

(17) = Un = o(σ2(1−ǫ′)
n ).
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If γ > 1
2 +

1+2α
4(1−2α) , we can find ω s.t. ω · (2γ− 1

1−2α ) > 1, γ > 1− 1
2ω + α

1−2α are

all satisfied. Then by Lemma 4.6, there is small ǫ0 > 0:

Sn = o(δ2+ǫ0
n ) a.s. if γ >

1

2
+

1 + 2α

4(1− 2α)
, α <

1

8
.

Therefore:

τn − δ2n = o(δ2+ǫ0
n ) a.s. if γ >

1

2
+

1 + 2α

4(1− 2α)
, α <

1

8
.

By Lemma 4.4,

(φn ◦ T n)n≥1 satisfies ASIP, if γ >
1

2
+

1 + 2α

4(1− 2α)
, α <

1

8
.

5. Applications of Theorem 3.1.

Theorem 5.1 (Nearby maps). Consider the non-stationary dynamical system
([0, 1],B, (Tk)k≥1, dm) where dm is Lebesgue measure, T0 = Tβ0, Tk = Tβk

are
Pomeau-Manneville maps, 0 < β0, βk < 1

8 and an observation φ ∈ Lip[0, 1]; as-

sume φ is not co-boundary w.r.t. T0 in L2([0, 1], dm), i.e.

φ 6= c+ ψ ◦ T0 − ψ for any measurable ψ and constant c.

Then there is ǫ > 0 such that

for any βk ∈ (β0 − ǫ, β0 + ǫ), (φi ◦ T
i)i≥1 satisfies ASIP.

Proof. From [6] Theorem 4.1, there is η > 0 s.t. ||ψn ◦ T n||L2 > η, for all n ≫ 1,
therefore Σ2

n % n when β0, βk < 1
4 . By Theorem 3.1, ASIP is satisfied.

Theorem 5.2 (Random compositions). Consider finitely many maps ([0, 1],B,
(Tk)0≤k≤d, dm), where dm is Lebesgue measure, Tk = Tβk

, 0 ≤ k ≤ d, are Pomeau-
Manneville maps, 0 < βk < 1

8 , and an observation φ ∈ Lip[0, 1]; assume φ is not

co-boundary w.r.t. T0 in L2([0, 1], dm).
Define a symbolic dynamical system ({0, 1, · · · , d}N, σ, P⊗N) where σ is the left

shift and P is a probability on {0, 1, · · · , d}. Define random compositions by T k
ω :=

T(σk−1ω)0 ◦ T(σk−2ω)0 ◦ · · · ◦ T(ω)0 and random variance Σ2
n(ω) =

∫

(
∑

i≤n φ ◦ T i
ω −

m(φ◦T i
ω))

2dm for ω ∈ {0, 1, · · · , d}N. Then (φ◦T n
ω −m(φ◦T n

ω ))n≥1 satisfies ASIP
for P⊗N-a.e. ω.

Proof. From [6] Lemma 5.1, there is a C > 0 and almost surely an Nω ∈ N s.t.
Σ2

n(ω) ≥ Cn, for all n ≥ Nω when βk < 1
4 . By Theorem 3.1, ASIP is satisfied for

each such ω.

Remark 5.3. Note that although [6] proved that Σ2
n (resp. Σ2

n(ω)) has linear
growth for φ ∈ C1[0, 1], the linear growth still holds for φ ∈ Lip[0, 1] by the same
argument in Corollary 2.2.
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