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Abstract: MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument onboard 

NASA's Terra (launched in 1999) and Aqua (launched in 2002) satellite missions as part of the 

more extensive Earth Observation System (EOS). By measuring the reflection and emission by the 15 
Earth-Atmosphere system in 36 spectral bands from the visible to thermal infrared with near-daily 

global coverage and high-spatial-resolution (250m ~ 1 km at nadir), MODIS is playing a vital role 

in developing validated, global, interactive Earth system models. MODIS products are processed 

into three levels, i.e., Level-1 (L1), Level-2 (L2) and Level-3 (L3). To shift the current static and “one-

size-fits-all” data provision method of MODIS products, in this paper, we propose a service-20 
oriented flexible and efficient MODIS aggregation framework. Using this framework, users only 

need to get aggregated MODIS L3 data based on their unique requirements and the aggregation 

can run in parallel to achieve speedup. The experiments show our aggregation results are almost 

identical to the current MODIS L3 products and our parallel execution with 8 computing nodes 

can achieve 88.63 times faster than serial code execution on a single node.  25 

Keywords: big climate data; flexible data aggregation; climate analytics as a service 

 

1. Introduction 

In the past decades, the emerge of terabyte remote sensing data offers an excellent chance for Earth 

Science study. As a remote sensing instrument, the MODIS (Moderate Resolution Imaging 30 
Spectroradiometer) is a key instrument onboard NASA's Terra (launched in 1999) and Aqua 

(launched in 2002) satellite missions as part of the more extensive Earth Observation System (EOS) 

[1]. MODIS measures the reflection and emission by the Earth-Atmosphere system in 36 spectral 

bands from the visible to thermal infrared with near-daily global coverage and high-spatial resolution 

(250m ~ 1 km at nadir) [2,3]. These measurements provide a critical observational basis for 35 
understanding global dynamics and processes occurring over the land, the oceans, and the 

biophysical impacts [1,4,5]. MODIS is playing a vital role in developing validated, global, interactive 

Earth System Models able to predict global change accurately enough to assist policymakers in 

making sound decisions concerning the protection of our environment [6]. MODIS products are 

processed into three levels, i.e., Level-1 (L1), Level-2 (L2) and Level-3 (L3) [7-9].  40 
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The L1 products contain geolocation and the raw reflectance and radiance measurements for all 36 

MODIS spectral bands, at 250 m, 500 m, or 1 km spatial resolutions [1,10]. The L2 products contain 

the geophysical properties, such as cloud mask, cloud and aerosol optical thickness, retrieved from 

the L1 products [8,11,12]. The retrieval process is usually based on sophisticated algorithms 

developed by the MODIS science teams. Because L2 products are derived from the L1 products, they 45 
usually have the same or similar spatial resolution. For example, the MODIS cloud product (product 

name "MOD06" for Terra and "MYD06" for Aqua) has a nominal spatial resolution of 1 km [13]. The 

L3 processing produces Earth-gridded geophysical variables statistics, which have been averaged 

(e.g., daily or monthly), gridded (e.g., 1° × 1° degree), or otherwise rectified or composited in time 

and space. The L3 MODIS Atmosphere products (product name "MOD08" for Terra and "MYD08" 50 
for Aqua) contain hundreds of 1° × 1° global gridded Scientific Data Sets (SDSs) or statistics derived 

from the L2 products of Aerosol, Water Vapor, Cloud, and Atmospheric Profile [8,9,14]. The L1 and 

L2 products are often called pixel products, and the L3 products are often called gridded products. 

All MODIS Atmosphere products can be acquired through the NASA Level-1 and Atmosphere 

Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) [15]. 55 

Compared to the L2 products, the L3 products are much smaller and much easier to handle. For 

example, one day of MODIS L2 cloud property products (288 granules) is about 100 GB, whereas one 

daily averaged L3 product is only about 200 MB. Moreover, as mentioned above, the L2 products 

consist of discrete pixels. In contrast, the L3 product contains continuous grids, which are much easier 

to use and are more appropriate for comparisons, such as outputs from climate models or reanalysis 60 
data. For these reasons, the majority of MODIS users use L3 products.  

However, the aggregation from the L2 to the L3 products has to analyze a large volume of the dataset 

with the statistical methods, resulting in a time-consuming computational process for the decadal 

MODIS data. Moreover, as the L3 products contain specific statistics for each variable from the L2 

product, users often experience a hard time choosing the appropriate variables with the desired 65 
statistics. For example, the newest Collection 6.1 L3 MODIS Atmospheric products contain 965 to 

1144 statistical SDSs derived from 127 scientific variables in L2 MODIS Cloud Product, which 

contains the satellite-retrieved cloud physical and optical properties. However, users rarely need all 

variables in the L3 MODIS product for the research-oriented study.  

To address the above challenge and shift the paradigm from static data products to on-demand 70 
services, we adopt the service-oriented architecture and propose flexible and efficient MODIS 

aggregation services. To achieve flexibility, our services aggregate L2 MODIS Atmospheric products 

based on each user's unique requirement on spatiotemporal resolution, location, sampling rate, 

variable list and statistics list. To achieve efficiency, our aggregation algorithm can run in parallel 

with distributed computation resources to speed up the aggregation process. 75 

It is necessary to point out that the NASA Goddard Earth Sciences Data and Information Services 

Center (GES DISC) has developed a user-oriented gridded data visualization system, which is the 

NASA Giovanni system [16] (https://giovanni.gsfc.nasa.gov/giovanni/). It offers flexible 

visualizations on various L3 variables based on customizable requirements including input variables, 

output statistics (such as minimum, maximum and time average), time range, and spatial area. 80 
However, as it is not an L2-to-L3 aggregation system, there are limitations compared with what our 

algorithm provides. First of all, Giovanni only hosts and processes the existing L3 data that has the 

fixed spatial resolution for different L3 variables, while our study directly aggregates L2 data to be 

L3 data with flexible spatial resolution. Secondly, the output statistics by Giovanni are based on the 

input L3 statistics. In that way, the input L3 statistics that represent the sub-scale variation of the 85 
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selected variables are not accessible by Giovanni, such as standard deviation, histogram and joint 

histogram. In our algorithm, as the L3 statistics are from L2 data, the aforementioned statistics with 

different time ranges and spatial resolutions are included. Therefore, although Giovanni provides a 

user-friendly web environment with substantive geophysical variables inclusion, a user-oriented L2-

to-L3 aggregation system is still in demand.  90 

We note this paper is an extension of our conference paper [17]. The extensions include: 1) the 

variables that can be aggregated by our aggregation services expanded greatly from only cloud 

fraction calculation to all scientific variables in Level 2 product, 2) our aggregation services now 

support additional flexibility including spatiotemporal resolution and on-demand statistics setting, 

3) this paper includes comparisons with MODIS L3 products in both aggregation result and 95 
aggregation process, 4) the computation experiments done in this paper are based on the full 

capability of the services while the conference paper only experimented cloud fraction calculation. 

In the rest of this paper, we introduce the MODIS L2 data and our efficient and flexible aggregation 

service in section 2. The aggregation result comparison with the L3 data and aggregation 

computational efficiency are discussed in section 3. Section 4 summarizes our work and contribution. 100 

2. Data and Methods  

In this section, we present our methodology for constructing the flexible aggregation framework, 

which aims to provide sufficient choices for users to develop the targeted L3 product for their 

scientific purpose. Each of the sub-section covers a major component of our methodology: 1) flexible 

aggregation, 2) parallel aggregation, 3) service-oriented aggregation.  105 

2.1. General procedures of the Flexible Aggregation 

To demonstrate our flexible L2-to-L3 aggregation algorithm, we choose the Terra/Aqua MODIS L2 

cloud product (MOD06/MYD06) with the 6.1 collection version. This product contains 20 variables 

with 1-km and 5-km spatial resolution. The 5-km resolution is averaged or sampled from 1-km pixels 

to save more computational time with the least loss of representable data in the aggregation process 110 
for the L3 product [9]. Correspondingly, the Terra/Aqua MODIS L3 cloud products (MOD08/MYD08) 

have temporal resolutions as daily (MOD08_D3/MYD08_D3), 8-days days (MOD08_E3/MYD08_E3) 

and monthly average (MOD08_M3/MYD08_M3). All three products have 1° × 1° degree gridded data. 

Unlike the static L3 product, in this study, the aggregation process is set to be flexible for the 

spatiotemporal resolutions, the scope of regions, the sampling rate, and the combination of input 115 
variables from L2 products with the statistics.  

First of all, we set the spatial coverage of the aggregation to be optional for users to define. Instead of 

obtaining the aggregated L3 results globally, the user can choose a rectangle region with a specific 

spatial resolution by setting the boundaries of latitude and longitude and the grid size, respectively. 

Note that the current L3 product is aggregated based on the 5-km variables in the L2 product, which 120 
samples one out of five pixels of the 1-km variables. As such, the sub-pixel variation within 5-km is 

diminished, especially on a regional scale. Therefore, in this study, the aggregation is based on the 1-

km variables in the L2 product. Furthermore, we provide an option to define the sampling rate (i.e., 

sampling of L2 input data for computation of L3 statistics [9]) for the 1-km variables. Accordingly, 

the MODIS 1-km geolocation product (MYD03) is taken into account. Nonetheless, the range of the 125 
rectangle aggregation region must be divisible for the defined grid resolution. Otherwise, the 
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sampling process would be implemented on irregular grid boxes, which is not scientifically 

meaningful.  

Secondly, instead of providing the fixed temporal resolution, we offer an optional range of time for 

users to choose so that users are allowed to study any atmospheric events ranging from days to years 130 
by knowing the particular start date and end date of the events [18-19]. In turn, as the temporal 

resolution is defined in a flexible way to cover different time range, it cannot generate L3 outputs 

with regular daily, 8-days, and monthly temporal resolution within the defined range of time. It can 

be improved in the development of the algorithm in future studies. Notwithstanding, the flexibility 

of the spatiotemporal coverage and the sampling rate allows users to control the representative of 135 
the L3 statistics in their studies without any post-processes, which is illustrated by an example in 

section 3.2. 

As most users would not apply all of the statistical datasets in the L3 product, the aggregation and 

the download process for these MODIS data are fundamentally inconvenient. In this study, with the 

combination of variables and statistics, users are allowed to choose the targeted statistics as the L3 140 
output product. Based on the Collection 6/6.1 MOD08/MYD08 products there are up to 14 different 

types of statistics, including Simple Statistics (i.e., mean, minimum, maximum and standard 

deviation), Pixel Counts, Histogram, Joint Histogram, Quality Assurance (QA) weighted Statistics 

and Fraction Statistics [9]. In this study, the Fraction Statistics, Simple Statistics, Pixel Counts, 

Histogram and Joint Histogram are considered. The Fraction Statistics are used for computing the 145 
cloud fraction only, it is a mandatory L3 output in our algorithm. The Histogram is defined as the 

one-dimensional histogram counts (referred to as “1D histogram”) and the Joint Histogram 

represents the joint two-dimensional histogram counts (referred to as “2D histogram”). Although the 

accounted statistics are optional for users, the user-requested statistics are forced to be combined with 

every user-requested L2 variable, as the calculation of each variable with each statistic is integrated 150 
into the internal aggregation process. It aims to maintain the simplicity of the aggregation algorithm 

without increasing the computational time. Note that the 2D histogram is for a pair of two variables 

in the L2 product. Users are also required to provide the same amount of the second L2 variables to 

pair with each of the first requested L2 variables if the 2D histogram is selected. 

In summary, Table 1 lists all inputs that are configurable for users to build the designated L3 product 155 
with the algorithm presented in this study. The input format for the seven statistics is set to be True 

or False for whether be calculated as outputs. The variable names from the L2 product should be 

listed in an input file. Note that the 1D and 2D histogram also require an appropriate definition of 

bin size and interval for the corresponding variable. As a result, if users choose to include 1D and 2D 

histogram in the output, they are then required to provide the intervals of 1D and 2D histogram 160 
followed by the corresponding selected variables in two separated input files (see Table 1). The 

reference bin boundaries and intervals of variables in L2 atmosphere products for the histogram and 

joint histogram can be found in Appendix B and C in Hubanks, et al. [9]. The general steps of our 

aggregation algorithm are listed as follows. 

Table 1. The inputs that users can define in the aggregation algorithm 165 
User-defined Inputs Formats 

Input Data Path [data input path, file prefix] 
Output Data Path [data output path, file prefix] 

Range of time Start Date and End Date (yyyy/mm/dd) 
Regional Boundaries [latitude1, latitude2, longitude1, longitude2] 

Spatial resolution [Latitude degree; Longitude degree] 
Sampling rates Positive integer 

Statistics 7 statistics with value of True/False 
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Input file of user-defined variables Variable names with the histogram intervals 
Variable with Joint 2D histogram Variable names with the joint histogram intervals 

1) Read all input options from the user, including the spatiotemporal resolutions, the defined 

sampling rate, the selected variables with the desired statistics, and the list of variable names of 

the L2 products. 

2) Create an empty Python dictionary that is used to store data values in key (i.e., value pairs with 

designated key names in strings). It provides a flexible way to store and refer to the aggregated 170 
values of each combination of selected L2 variables and statistics given by the user. For instance, 

if a user request two variables with five statistics as the aggregation output, there will be ten keys 

assigned in Python dictionary. Each key is a L3 variable name that is combined by the requested 

L2 variable and statistics (e.g., “cloud_fraction_minimum”).  

3) Initialize the data arrays corresponding to each key names that represents each combination of 175 
selected L2 variables and statistics in the Python dictionary. Note that different combination of 

L2 variables and statistics has varied data dimensions. The L2 variables with statistics other than 

1D and 2D histogram has two dimensions (i.e., latitude × longitude). Otherwise, any L2 variables 

with a statistic of 1D histogram is in three dimensions, which are latitude, longitude, and variable 

intervals of the 1D histogram. Similarly, any L2 variables with a statistic of 2D histogram 180 
therefore has four dimensions. Take the example in step 2), the “cloud_fraction_minimum” is a 

2D array, while the “cloud_fraction_histogram_counts” is a three-dimensional array.  

4) As shown in the user guide of the collection 6 MODIS L3 product [8], the definition of Day of the 

daily L3 product is different from that in the natural way, which ranges from 00:00 to 24:00 UTC. 

Consequently, as explained further below, the adjustment of the definition of Day is applied after 185 
the initialization of the Python dictionary. 

5) Read all values and the affiliated attributes (e.g., fill values, offsets, scale factors, physical units; 

etc.) from selected variables of the L2 products with the defined sampling rate within the defined 

range of time that is adjusted by the new definition of Day.  

6) Note that the L2 MODIS atmosphere products include runtime QA information for all variables. 190 
For instance, the cloud optical property QA flags (e.g., “Quality_Assurance_1km”) in 

MOD06/MYD06 products describe the product quality, retrieval processing and scene 

characteristic flags [20]. The data with no confidence are assigned with the affiliated fill value. As 

the Collection 6 and 6.1 L3 atmosphere products no longer have QA-weighted aggregations of 

the L2 cloud properties (MOD06/MYD06) for the seven selected statistics in this study [8,9], we 195 
develop our flexible algorithm for the statistics without QA weighting. Therefore, the invalid L2 

input data are filtered by the affiliated fill value and all valid input L2 data are then assigned 

equal weights for the statistics calculation. 

7) Aggregate the variables into the defined grid boxes over the defined region and store them in the 

Python dictionary. Then, calculate the requested statistics for each variable in each corresponding 200 
key name in the Python dictionary. The calculations of each of seven statistics are listed below: 

a. The minimum and maximum: The initial keys with the minimum and maximum are set 

to be negative and positive infinitely, respectively. During the aggregation, the value of 

the keys is replaced by the new minimum/maximum value until the end of the process. 
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b. The pixel counts: For cloud fraction, the pixel count of each grid is the total number of 205 
L2 pixels within the grid. For other cloud properties, the pixel count of each grid is the 

number of confident cloudy pixels derived from the “cloud mask” in the MYD06_L2 

product. 

c. The mean value: For cloud fraction of each grid, the mean value is the number of 

confident cloudy pixels divided by the number of total L2 pixels within the grid. For 210 
other cloud properties, the mean value of each grid is the summation of L2 pixel values 

within the grid divided by the number of total L2 pixels within the grid. Note that the 

pixel counts of each selected variable is calculated if the user only requests the calculation 

of the mean value. 

d. The standard deviation: Normally, the standard deviation 𝜎 in each grid is calculated as 215 
𝜎 = √∑(𝑥𝑖 − 𝜇)2 𝑁⁄ , where 𝑥𝑖 is the L2 value of each pixel within the grid, 𝜇 is the grid 

mean value and 𝑁  is the grid pixel counts. However, it is impossible to aggregate 

∑(𝑥𝑖 − 𝜇)2as the final grid mean value 𝜇  is absent until the end of the aggregation. 

Instead, we derive the equation of standard deviation as 𝜎 = √∑𝑥𝑖2 𝑁⁄ − 𝜇2 . In this 

formula, we can obtain the 𝑥𝑖
2 during the aggregation and further get the 𝜎 after the 220 

calculation of 𝜇 and 𝑁 at the end of the process. Note that the pixel counts and the mean 

value of each selected variable is required if the user only requests the calculation of the 

standard deviation. 

e. The 1D histogram: In each grid, we count the numbers in each bin within the interval 

range that defined by users for the 1D histogram. 225 

f. The 2D histogram: In each grid, we count the numbers in each bin within the interval 

range that defined by users for the 2D histogram. 

8) Generate an HDF file (version 4 and/or version 5) to store the aggregated outputs values and 

attributes. 

As mentioned in step 4), the MODIS L3 atmospheric products with collection 6/6.1 have a new 230 
definition of a day compared with that with collection 5. Instead of the natural definition of day for 

24 hours, the new definition adjusted the first 3 hours of the day to the previous day and set the last 

3 hours of the day to the beginning of the next day. Details can be found in Hubanks, et al. [9]. In 

order to validate the aggregation result from our method, we must be consistent with the Collection 

6 MODIS L3 products. As a result, the actual time range in the aggregation is 3 hours later than the 235 
user-defined time range. It needs attention if users request the time range within a month. Otherwise, 

the effect of this adjustment is negligible [9].  

Note that the internal aggregation method in step 7) is developed based on the Algorithm Theoretical 

Basis Document (ATBD) of MODIS atmosphere L3 Product [9]. It has limitations on the equal-angle 

latitude-longitude gridding for the arithmetic mean calculation, while recent studies show that a 240 
geometric mean and standard deviation would be more appropriate, especially for aerosol optical 

properties [21-23]. However, the development of the internal aggregation method is beyond the scope 

of this study, readers are referred to Sayer and Knobelspiesse [21], Levy et al. [22], Colarco et al. [23] 

and references therein for details on the improvements of aggregation methods.  

2.2. Parallelization of the aggregation algorithm  245 
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In this section, we explain our scalable approach for MODIS data aggregation. The overall logic of 

our scalable MODIS aggregation approach is shown in Figure 1, which follows the MapReduce big 

data programming model [24-26]. To show the generalization of our approach, we implemented it 

using two distributed frameworks/systems: Dask [27] and the Message Passing Interface (MPI) 

[28,29]. Users can choose either one implementation based on the software environment of their own 250 
distributed systems. 

 

For the rest of the section, we explain the workflow of implementing scalable data aggregation. we 

take one-month Terra/Aqua MODIS L2 data (288 granules per day for 31 days) as an example to 

explain our approach. For one month's data, the total (MOD03/MYD03, MOD06/MYD06) file pair 255 
number is 8928 (288 × 31). By first creating a list of 8928 file pairs and setting partition number to be 

N, our approach will generate N Map tasks and one task for one partition of 8928/N file pairs. These 

N Map tasks run in parallel on distributed nodes, as shown in the "Map" Stage in Figure 1. We specify 

N as the total number of the parallel processes that are allocated for this data aggregation task in the 

cluster environment and will evaluate the scalability of our data aggregation method in Section 3.2.  260 
 

Each Map task calls the execution function that takes one list of MOD03/MYD03 files and one list of 

MOD06/MYD06 files in that partition as inputs and generates a 2D (e.g., 180 × 360 for global 1° × 1° 

resolution) array whose element contains the aggregated L3 statistics for each grid. The Map function 

first initializes the 2D empty arrays of L3 statistics according to user-defined inputs, it then goes 265 
through the process explained in section 2.1 to compute the L3 statistics of each data file pair. Lastly, 

it aggregates the results of the list of the MOD03/MYD03 and MOD06/MYD06 file pairs and returns 

the 2D array of the aggregated L3 statistics of those file pairs.  

 

After receiving outputs from the Map phase, the 2D arrays of Level 3 statistics are shuffled and 270 
aggregated to two final 2D arrays via a Reduce phase. For our Dask and MPI implementations, we 

used a similar Map function so that all 8928 tasks from all file pair combinations can be executed in 

parallel. After the tasks are done, results are integrated via a for a loop.  

 

Figure 1. Illustration of data partitioning based parallel aggregation with one month data. 275 

2.3. Service-based MODIS aggregation framework  

To integrate the above efforts and further simplify how users can easily obtain flexible aggregation 

results without writing any codes, we adopt the service-oriented architecture [30,31] to provision our 

aggregation capability as services to achieve better efficiency and flexibility than the traditional way 

of downloading data to a local machine and then analyzing it. Similar to the Climate Analytics-as-a-280 
Service (CAaaS) framework [32], complicated and time-consuming climate data analytics are done 
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efficiently in a distributed environment and users only need to interact with the data analytics service 

via service calls.  

Specifically, we employ an open-source framework called Stratus (Synchronization Technology 

Relating Analytic Transparently Unified Services) [33]. The Stratus framework provides an 285 
orchestration approach for incorporating Earth data analytic services as a unified solution. It defines 

a common set of APIs for request/response to support different service protocols and/or libraries, 

including ZeroMQ [34-36], OpenAPI [37] and REST [38]. 

 
Figure 2. Integration of Stratus service framework with parallel MODIS aggregation. 290 

Figure 2 illustrates a typical way to deploy the Stratus service framework as a broker between users 

and back-end computing resources. Stratus client-code runs on users' computers to send requests 

(step 1). By only having Stratus client code, not MODIS aggregation code, on the user's computer, L2 

data does not need to be downloaded to the user's computer. Stratus server-side code runs a server 

which could be a separate server machine or part of the powerful computer cluster. By collocating 295 
the Stratus server with compute cluster, data can be accessed by both without an additional copy. If 

L2 data requested by a user is already on the disk of the Stratus server, the data can be reused without 

duplicated download. If L2 data is not local, the Stratus server will automatically download them 

from proper data servers (step 2), such as NASA LAADS DAAC for MODIS L2 products. After data 

is ready, the Stratus server code will submit a job to the computer cluster (step 3) so that parallel 300 
aggregation can be achieved using our techniques in section 2.3 (step 4). After the job is done (step 

5), the Stratus server will return the aggregated L3 results to the user (step 6). We note Figure 2 is 

only one integration solution. We could easily achieve other ways of deployment. For instance, we 

could deploy a Stratus client and server on a single machine with a web server so users can directly 

interact with the webserver to send requests via a web browser. In this way, we do not need to install 305 
or run any code at the user end.  

3. Results 

In this section, we evaluate our work from three perspectives: 1) whether our aggregated results are 

the same with L3 MODIS product, 2) the flexibility of our approach, 3) the scalability and efficiency 

of our approach. 310 

3.1. Comparison with Level-3 MODIS cloud product in Collection 6.1 (MYD08_D3) 
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The straightforward way to validate the aggregation result is to compare the result with the newest 

version of MODIS L3 products. In this section, we compare the five statistics (i.e., Mean, Pixel Counts, 
Minimum, Maximum and Standard Deviation) of the cloud top temperature and the cloud fraction with 

that from the Collection 6.1 Aqua MODIS L3 daily cloud product (MYD08_D3) on Jan 1st, 2008.  315 

According to the user’s guide and ATBD of MODIS atmosphere L3 Product [9], the statistics of cloud 

top properties and cloud fraction are computed based on the 5-km L2 cloud top properties and cloud 

fraction from the Collection 6.1 MOD06/MYD06 product. In the L2 MOD06/MYD06 Product [8], the 

variables at 5-km resolution are averaged by the 5 × 5 1-km L1B input pixels. For example, a 5-km 

cloud fraction is calculated based on the fraction of cloudy pixels to the total pixels identified by the 320 
native 1-km Cloud Mask Flags (see table 5 in Hubanks, et al. [9]) within the corresponding 5 × 5 km 

retrieval box.  

It is reasonable to aggregate the 5-km L2 cloud fraction instead of computing the fraction of 1-km 

cloudy pixels as it is computationally efficient. To be consistent with the MYD08_D3 product, in this 

section, we choose the 5-km cloud top temperature and the 5-km cloud fraction from the MYD06 325 
product at the input value. The input settings are listed in Table 2. However, for a flexible spatial 

scale, the best quality of the aggregation is to use the native 1-km pixels from the L2 product. As a 

result, other than the direct comparison with the MYD08_D3 product, the default L3 cloud fraction 

in our algorithm is obtained directly by calculating the fraction of cloudy pixels identified by the 

native 1-km Cloud Mask Flags to the total pixel counts within each 1° × 1° degree grid box. 330 

Table 2. The inputs defined for the directly comparison with MYD08_D3 product on Jan 1st, 2008 

User-defined Input Input Value 
Range of time 2008/01/01 to 2008/01/01 

Regional Boundaries -90°N~90°N; 180°W~180°E 
Spatial resolution 1° by 1° 

Sampling rates 1 
Statistics Mean, Pixel Counts, Minimum, Maximum, Standard Deviation 

Input variables for aggregation 5-km Cloud Top Temperature and 5-km Cloud Fraction 

Figure 3 compares the global distribution of the mean value and the pixel counts of the cloud top 

temperature from our python-based flexible aggregation result with that from the MYD08_D3 

product. In addition, Table 3 lists the globally averaged absolute difference of each of five statistics 

and the percentage of the number of 1° × 1° grids with an absolute difference less than 1e-4. For 335 
absolute difference within 1e-4, it can be considered as zero by ignoring the numerical errors due to 

computational precision. In Figure 3, the results from the python-based flexible aggregation over 

most of regions (97.3%; see Table 3) match exactly (absolute difference < 1e-4) with the MYD08_D3. 

However, there are still some grids that randomly distributed globally that have slight differences in 

both the pixel counts (~1 count difference in each grid box) and the mean value (~0.03 Kelvin). These 340 
residual differences are possibly due to the reprocessed input L2 granules after the generation of L3 

products in the collection 6.1 algorithm from LAADS. As the globally averaged differences of all five 

statistics (see Table 3) is close to zero (ranging from 1e-5 to 1e-3), we believe that these errors have a 

negligible impact on the accuracy of the aggregation result.  

Table 3. The globally averaged differences of the statistics of cloud fraction and cloud top 345 
temperature between the python-based flexible aggregation and the MYD08_D3 product in Jan 1st, 

2008. 

Variable Statistics Difference 
(This study - MYD08_D3) 

Percentage of grids with 
absolute difference < 1 × 10−4 
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Cloud Fraction 

Minimum 2.26 × 10−6 97.7% 
Maximum −2.59 × 10−6 99.5% 

Pixel Counts −1.54 × 10−5 98.6% 
Mean 4.33 × 10−5 98.6% 

Standard Deviation 4.95 × 10−5 98.9% 

Cloud Top 
Temperature 

Minimum 4.10 × 10−4 96.5% 
Maximum 1.22 × 10−3 87.4% 

Pixel Counts −1.56 × 10−5 98.9% 
Mean 3.44 × 10−5 97.3% 

Standard Deviation 3.08 × 10−5 99.2% 

 

 

Figure 3. The comparison of the mean value and pixel counts of cloud top temperature between the 350 
python-based flexible aggregation algorithm and the MYD08_D3 product on Jan 1st, 2008. 

Figure 4 shows the difference in the mean and pixel counts of the cloud fraction between the two 

products. The cloud fraction pixel counts represent the total collected pixels from the input L2 

granules. As we use the 5-km cloud fraction to compute the mean daily cloud fraction, the difference 

of the mean value and the pixel counts are within ±0.01 and within ±1 pixel counts, respectively (see 355 
Figure 4 and Table 3). The mean cloud fraction over most of regions (98.6%; see Table 3) is well-

matched (absolute difference < 1e-4) with the MYD08_D3. However, users should be noticed that the 

cloud fraction computed by the fraction of 1-km cloudy pixels within each grid box is not supposed 

to be identical with the cloud fraction in MOD08/MYD08 products. In our algorithm, although users 

are allowed to choose the MOD06/MYD06 5-km cloud fraction as the input for the L3 cloud fraction, 360 
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we recommend using the mandatory L3 cloud fraction computed based on the 1-km cloud mask flags 

if users request a finer spatiotemporal resolution. In summary, the well-matched aggregation result 

with the L3 product demonstrates the accuracy of the flexible aggregation.  

 

Figure 4. The comparison of the cloud fraction between the python-based algorithm and the MYD08_D3 365 
product on Jan 1st, 2008. 

3.2. Comparison of usage difference of L3 data and flexible aggregation 

After the validation of the aggregation result, in this section, we present the difference of conducting 

the 15-day averaged cloud top temperature over the northeast Pacific Ocean by using the current L3 

products and the flexible aggregation framework. Table 4 lists the required aggregation inputs for 370 
this case. It aims to demonstrate three advantages of flexible aggregation compared with leveraging 

the current L3 MODIS products, which are listed below. 

Table 4. The inputs defined for the 15-day averaged cloud top temperature over the North-east 

Pacific Ocean 

User-defined Input Input Value 
Range of time 2008/01/01 to 2008/01/15 

Regional Boundaries 20°N~40°N; 120°E~150°E 
Spatial resolution 0.5° by 0.5° 

Sampling rates 1 
Statistics All seven statistics 

Input variables for aggregation 1-km Cloud Top Temperature 
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First of all, this aggregation framework helps to get the most targeted dataset that the user needs 375 
without operating any post-processing method. For example, if the user needs the MODIS product 

for a specific range of time within a particular geolocation area. The user has to download the MODIS 

L3 product and then write codes to derive the targeted data with the desired spatiotemporal 

resolution. It would require much more efforts than simply using the flexible aggregation framework 

for the targeted dataset. 380 

Secondly, although the recent L3 MODIS product already has around 1000 SDSs, it is still limited 

regarding all possible combinations of seven statistics with the 127 L2 variables. The flexible 

aggregation is possible for deriving any combination of the statistics and the L2 variables. 

Specifically, our approach can maximally generate 762 (127x6) statistical SDSs based on single L2 

variables for the first six statistics and C(127,2) = 8001 SDSs based on the combination of two L2 385 
variables for the joint 2D histogram, although some of the combinations may not be scientifically 

meaningful. In other words, if users aim to obtain a statistical SDS that does not exist in the current 

L3 product but can be found from the L2 variables, the flexible aggregation is capable to achieve it. 

Thirdly, instead of downloading the L3 data for the post-processing, users can use the flexible 

aggregation to directly process the desired dataset on a server (such as a cluster with many compute 390 
nodes) using our proposed service (see section 2.3). The service can download the required L2 data 

for aggregation automatically at the server. This could save space and time from searching and 

downloading the L3 data from the data repository.  

By using the current L3 product, users have no way but to develop a post-processing code to address 

the inconsistency with the desired L3 output, including the difference of spatiotemporal resolution, 395 
and the sampling rates. Moreover, the downloaded L3 product also requires storage space from the 

user side. In this case, the daily L3 product for 15 days takes ~3 GB, while the flexible aggregation 

output only takes ~100 MB for the selected variables and statistics as the flexible aggregation 

framework only requires users for the defined inputs to generating the L3 output. Figure 5 shows the 

flow chart of conducting the desired result by using the two different methods. From the flexible 400 
aggregation side, the user only needs to take efforts on defining the inputs as the following steps are 

operated internally. From the side of using the current L3 product, the user's post-processing code 

must be able to handle the time average, the interpolation of grids with sub-resolution (i.e., 0.5° by 

0.5° grid), and the rectangle region extraction. Therefore, using the flexible aggregation method is 

more time-saving and space-saving compared with using the current L3 product.  405 
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Figure 5. The flow chart of the aggregation on the desired cloud top temperature by using the flexible 

aggregation framework (left) and the current L3 product (right). The dash box indicates the internal 

process in the python-based flexible aggregation method. 

However, it is necessary to point out that the processing time of our aggregation increases with the 410 
requested number of files regarding the range of time. It is possible to have a longer processing time 

using our aggregation method than downloading the current L3 product. To overcome this shortage, 

we further apply two different scalable approaches (see section 2.2) to evaluate the speed-up of our 

aggregation process, which is presented in the next section. 

3.3. Speed-up improvement of the parallelization  415 

In this section, we explain the experiments we conducted to benchmark and evaluate the differences 

of using different parallel platforms. We choose five variables from Aqua MODIS Collection 6.1 L2 

cloud product (MYD06) associated with L2 geolocation fields (MYD03) in Jan 2008 as our aggregation 

inputs. The inputs are listed in Table 5. In one month, each of MYD06 and MYD03 products has 8,928 
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files with a total data size of 738 GB. The files are located on a centralized data node and accessed via 420 
a network file system (NFS). For software, we used Python (version 3.6.8), Dask (version 1.1.4), and 

MPI (version 1.4.1).  

Table 5. The inputs defined for the Speed-up evaluation. 

User-defined Input Input Value 
Range of time 2008/01/01 to 2008/01/31 

Regional Boundaries -90°N~90°N; 180°W~180°E 
Spatial resolution 1° by 1° 

Sampling rates 5 
Statistics All seven statistics 

Input variables for aggregation 
1-km Cloud Top Temperature, 1-km Cloud Top Pressure, 1-km 

Cloud Top Height, 1-km Cloud Emissivity and 1-km Cloud 
Mask Flag 

All experiments were done in a local High-Performance Computing (HPC) cluster. Each computer 

node has two 16-core Intel Xeon Gold 6140 Skylake CPUs (36 cores in total) and 384 GB of memory. 425 
To make a fair comparison, we allocate 2 CPU cores and 20 GB of memory for each parallel process. 

By running on 1, 2, 4, 6 and 8 nodes, we can have 32, 64, 128, 192 and 256 parallel processes 

respectively. For Dask execution, we use Slurm [39] to initiate one additional node as the scheduler 

of distributed jobs, before calling Dask’s scale function to start up the worker nodes to execute the 

jobs.  430 
Table 6. Execution time (in Seconds) and speedup results for scalability evaluation. The serial 

execution of one month data aggregation takes 36,162 seconds, which serve as baseline to calculate 

the speedup of our parallel approaches with Dask and MPI.   

Num of nodes Num of 
processes 

Dask execution 
time 

Dask 
speedup 

MPI execution 
time MPI speedup 

1 2 19,105 1.89 18,368 1.97 
1 4 10,036 3.60 9,459 3.82 
1 8 5,143 7.03 4,919 7.35 
1 16 3,076 11.75 2,646 13.67 
1 32 1,586 22.80 1,579 22.90 
2 64 811 44.59 803 45.03 
4 128 540 66.97 564 64.12 
6 192 484 74.71 416 86.93 
8 256 418 86.50 408 88.63 

 

Figure 6. Execution time results (in Seconds) for scalability evaluation by a) increasing the number of 435 
processes within a node and b) increasing the number of nodes with 32 processes per node. 



Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 18 

 

We show the execution and speedup results for scalability evaluations of Dask and MPI-based 

parallel approach in Table 6 and Figure 6. In Table 6, we see the speedup increases almost linearly 

with the number of processes in execution, reaches up to 86.50 speedups in Dask and 88.63 speedups 

compared to the serial execution. We also demonstrate the scaling up the execution time of Dask and 440 
MPI in Figure 6a, by increasing the number of processes from 2 to 32 within one computation node. 

It shows the execution times decrease proportionally with the increase of the processes and 

demonstrate parallelization improves the data aggregation in both Dask and MPI. We also listed the 

exact scaling out execution times of the two parallelization approaches by increasing the number of 

nodes (each node has 32 processes), as shown in Figure 6b. It shows the execution times of Dask and 445 
MPI decrease with the increase of the computing nodes from 1 to 8 nodes, especially the time almost 

proportionally decrease by increasing 1 computing node to 2 nodes, which demonstrates the 

parallelization help improves speed up the data aggregation. When scaling up to more nodes such 

as 6 or 8 nodes, the execution time slightly improves, we believe the overhead of communications 

increases when more nodes and processes are involved. For the comparison between MPI and Dask, 450 
the speedups done via MPI are better than those via Dask in most cases. We think it is due to less 

coordination overhead for MPI-based parallelization. It shows the advantage of MPI because of its 

low coordination overhead, especially if the static scheduling via the MPI approach happens to 

achieve relatively balanced workloads among different nodes.  

4. Summaries and Conclusions 455 
While the development of remote sensing techniques greatly improves our understanding of the 

Earth, it also brings two challenges. First, the ever-increasing volume of the available remote sensing 

observation data is difficult to download and process. Second, the current static and “one-size-fits-

all” data provision method by most remote sensing data providers such as NASA DAACs is difficult 

to meet increasing diverse usage requirements from the community. To address these two challenges, 460 
we propose a service-oriented flexible and efficient MODIS aggregation framework. Using this 

framework, users only need to get aggregated MODIS L3 data based on their unique requirements 

and the aggregation can run in parallel to achieve speedup. The experiments show our aggregation 

results are almost identical to the current MODIS L3 products and our parallel execution with 256 

processes (8 computing nodes) in total can be 88.63 times faster than serial code execution on the 465 
single node.  

Our work is an open source at a GitHub repository [40] via link https://github.com/big-data-lab-

umbc/MODIS_Aggregation. The installation document of our library and some usage examples of 

our algorithm are shown in the GitHub repository. The examples mainly demonstrate how to conduct 

local execution, Dask-based distributed execution and MPI-based distributed execution. All these 470 
three execution modes invoke the same functions implemented by our library. Besides these core 

usage examples, we also show examples for result comparison and service-based deployment. 

Because commercial cloud computing providers such as Amazon Web Services (AWS) [41] 

provide both service-oriented architecture and on-demand distributed computing environment, our 

work can be easily extended to work with these environments. We believe our work shows promising 475 
opportunities for many other climate data analytics applications. 

It is necessary to admit that there are still limitations in our aggregation framework. First of all, 

the current version of our algorithm does not support L3 outputs with regular daily, 8-days, and 

monthly temporal resolution within the defined range of time, as the temporal resolution is defined 

in a flexible way to cover different time range. Secondly, the current version has not yet been capable 480 
of replicating all L3 statistics from Collection 6/6.1 MOD08/MYD08 products, especially for those the 

L2 runtime QA information is needed for physical properties based aggregation. For instance, the 

cloud optical properties that are classified regarding different cloud phases (i.e., liquid, ice and 
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mixed) in L3 products have an additional dependency on the cloud retrieval phase flag in the runtime 

QA flag from the MOD06/MYD06 product. Our algorithm does not support the additional 485 
combinations of L3 statistics on these variables. Accordingly, the current version of the algorithm is 

not able to handle the various requests of quality control on the input L2 data either. The 

improvements could be achieved in future developments. However, since our algorithm is openly 

accessible on GitHub, it is convenient for users to extend the input preprocessing module of our 

algorithm to meet the requirement of their L2 input quality control.  490 
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