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Abstract

Predicting violent storms and dangerous weather conditions with current mod-
els can take a long time due to the immense complexity associated with weather
simulation. Machine learning has the potential to classify tornadic weather
patterns much more rapidly, thus allowing for more timely alerts to the pub-
lic. To deal with class imbalance challenges in machine learning, different data
augmentation approaches have been proposed. In this work, we examine the
wall time difference between live data augmentation methods versus the use
of preaugmented data when they are used in a convolutional neural network
based training for tornado prediction. We also compare CPU and GPU based
training over varying sizes of augmented data sets. Additionally we examine
what impact varying the number of GPUs used for training will produce given
a convolutional neural network on wall time and accuracy. We conclude that
using multiple GPUs to train a single network has no signficant advantage over
using a single GPU. The number of GPUs used during training should be kept as
small as possible for maximum search throughput as the native keras multi-GPU
model provides little speedup with optimal learning parameters.
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1. Introduction

Forecasting storm conditions using traditional, physics based weather models
can pose difficulties in simulating particularly complicated phenomena. These
models can be inaccurate due to necessary simplifications in physics or the
presence of some uncertainty. These physically based models can also be com-
putationally demanding and time consuming. In the cases where the use of
accurate physics may be too slow or incomplete using machine learning to cat-
egorize atmospheric conditions can be beneficial [1]. Machine learning has been
used to accurately forecast rain type [1, 2], clouds [2], hail [3], and to perform
quality control to remove non-meteorological echos from radar signatures [4].

A forecaster must use care when using binary classifications of severe weather
such as those which are provided in this paper. The case of a false alarm
warning can be harmful to public perception of severe weather threats and has
unnecessary costs. On the one hand, an increased false alarm rate will reduce the
public’s trust in the warning system [5]. On the other hand, a lack of warning
in a severe weather situation can cause severe injury or death to members of
the public. Minimizing both false alarms and missed alarms are key in weather
forecasting and public warning systems.

With advances in deep learning technologies, it is possible to accurately and
quickly determine whether or not application data is of a possibly severe weather
condition like a tornado. Specifically one can use an supervised neural network
such as a convolutional neural network (CNN) for these binary classification
scenarios. However these CNNs must be heavily tuned and hardened to prevent
false positives, or worse, false negatives from being produced. These CNNs
require large amounts, hundreds of thousands and even millions, of data samples
to learn from. Without an ample amount of data to learn from a CNN has no
hope of achieving accurate predictions on anything except the original training

data provided. Of the 183,723 storms in the data set used in this work only
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around 9,000 entries have conditions which lead to tornadic behavior in the
future [6]. This imbalance of tornado versus no tornado results in a situation
where a machine is very good at predicting no potential tornado but is very bad
at predicting when there is a tornado imminent leading to false negatives.

It is for these reasons that there is a real motivation to acquire more data
that would result in tornadic conditions however one cannot simply go outside
hoping to collect storm data that result in these conditions. This heralds the
need of synthetic data to bolster the amount of data used for training a neural
network. Synthetic data must be generated such that it is indistinguishable from
real data and can be used in conjunction with the natural data to train a neural
network on a more balanced data set which produces fewer if any false nega-
tives. To train and tune a neural network of this nature is very time consuming
and resource intensive taking anywhere from several hours to several days given
enough data. In order to quickly tune, train, and test the validity of a neural
network with several different hyperparameter combinations, a variation of the
parallel framework originally introduced in [7] to train many networks simulta-
neously with varying hyperparameter values in a high performance computing
environment is used.

In addition to training multiple networks simultaneously, each on a different
GPU, it is also possible to train a single network across multiple GPUs. We
therefore explore the question of whether it is more efficient to train several
networks simultaneously, or to parallelize the training of a single network. In
addition we examine the effect that using multiple GPUs during training has
on the network’s accuracy. This discussion of accuracy constitutes an extension
of the original special session paper [8].

This paper has several contributions. (1) Benchmarking of two data augmen-
tation approaches and their effects to deep learning training times. Through the
benchmarking, we examine their differences in terms of the effective use of re-
sources. (2) Benchmarking of MPI-based parallel deep learning hyperparameter
tuning. This is done with a custom framework that allows for in-depth exam-

ination of all possible hyperparameter configurations in an HPC environment.
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(3) Benchmarking of CPU and GPU based parallel deep learning hyperparame-
ter tuning. (4) Lastly, investigation of the effect of multiple GPUs on accuracy.

The remainder of this paper is organized as follows. Section 3 gives a basic
introduction to convolution neural networks and the problem of data augmenta-
tion. Section 4 introduces the natural data used for training the neural networks
and the preprocessing method used on the data prior to training. Section 5
discusses hyperparameters and their importance in training and the parallel
framework used for hyperparameter tuning in a high performance computing
environment. Section 6 presents the effect of various hyperparameter configura-
tions on the wall time for training as well as on accuracy of the training. Lastly

Section 7 collects the conclusions of this work.

2. Related Work

There are a plethora of papers and textbooks on deep learning and neural
networks that go over methods for solving data imbalances. These texts, such as
[9], [10], and [11] all talk about the importance of data augmentation to prevent
bias, overfitting of the network, and more. Pundits and blogs may talk about
the use of live augmentations as a cure all to an imbalanced data set because
tools are readily available to do this task however there is little consideration for
the possible performance benefits of using data that has been augmented apriori
to run time. This work seeks to demonstrate that there is a clear difference in
training time with regards to preaugmented data and live augmented data even
in the case of an idle CPU during GPU training sessions rather than discuss the
benefits of augmentation versus not.

There are several tools that exist for hyperparameter searching yet they do
not solve all of the problems presented for tuning in our HPC environment or do
not solve them adequately enough. Two mainstream frameworks are Talos and
sklearn’s GridCVSearch. Talos aims to the fix the clunky interface of sklearn
by replacing the Keras fit method with a method that takes dictionary inputs

and automatically searches over them during fitting. However both these frame-
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works are limited to a single node and as such would not automatically fully
utilize a HPC system if given the resources to do so. The framework mentioned
Section 5.2, from [7, 6], exists to solve that problem by creating an HPC based
framework for hyperparamter searching. This framework has innate limitations
like a lack of in-depth analytics on a hyperparameter by hyperparameter ba-
sis, lacks support for live data augmentation, and only has one type of parallel
schema available. This work creates a parallel framework which solves all of the
aforementioned problems.

There are a slew of technical reports and papers that talk about the impor-
tance of benchmarking and improving parallel timings such as [12], [13], and
[14]. Texts which deal specifically with training neural networks even go so far
as to mandate GPUs for training like in [9]. In the case where one may have
access to many mid to high end GPUs, or may be considering a purchase of
them, how many is too many? This work aims cover, in a high level manner,
how use case is an important factor for the number of GPUs that should be

used for optimal training times.

3. Deep Learning with Convolutional Neural Networks

The general idea and information behind neural networks is that when given
a set of inputs and known outputs we train a neural network to make predictions
about future data inputs whose output is unknown. In order to gauge how
accurate the network has become we provide data that was not in the learning
data set and the CNN uses the knowledge gained from training to guess the
outcome of data that it has not seen before [9]. We test against a testing set
of data where our outputs are still known but the answers are not provided
to the network. We then grade its accuracy based on the correctness of these
predictions. A general neural network is made of three phases as seen in [10].
There is the input layer where the data is pushed into the network. Then there
are some number of hidden layers which are responsible for digesting the input

data and learning from it. Then finally the output layer whose output meaning
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is predetermined by the context of the problem. For example the output can
be a binary classification of the input data, maybe even a new image entirely,
but whatever output is produced, the network itself has no understanding of
what the output truly means. In the context of tornado prediction consider
a 32 x 32 grid of data points where each data point contains the composite
reflectivity, 10 meter west-east wind component, and the 10 meter south-north
wind component as the data used to predict future conditions. Then the mean
future vertical wind velocity will serve as the indicator that a tornado will occur
[7, 6]. A single input to the neural network would be a 32 x 32 x 3 array
with each variable in its own grid. This data would then be evaluated by the
first hidden layer whose result would be pushed into the second hidden layer,
and so on until the final result is put into the output layer. The output layer
would contain an integer, specifically 0 or 1 in this case. A binary classifier in
the context of mean future vertical wind velocity might seen nonsensical with
regards to the question: what is the mean future vertical wind velocity given
these input conditions? However the network is not attempting to, nor is it
capable of, answering that question. With this binary classification the network
provides an answer to: is the mean future vertical wind speed large enough
to be considered tornadic? With regards to this question the network sensibly
outputs either 0 for no or 1 for yes. These three weather conditions from a
storm snapshot can be made into images as seen in Figure 1 which predicts if
the winds result in a future tornado. With the lack of natural data available
researchers must turn to synthetic data.

There are several methods to acquire synthetic data for fitting a CNN. The
current method, outside of machine learning, is through storm simulation mod-
els. These are very computationally expensive often taking days for only a few
hours of simulated data. On top of that there are variations between each of the
models used to simulate these storms each with their own meaningful results
and possible drawbacks. The computational expensive of these models and the
time taken to generate the synthetic data is what gives machine learning an

edge. If a storm can be predicted without the need for simulations, because
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the neural network takes raw satellite data and quickly produces a prediction,
then solving the data imbalance for the initial training gives CNN’s a clear ad-
vantage. Similarly, if we can train the CNN using quickly generated synthetic
data we can forgo the need for these expensive simulations alltogether in the
prediction process.

An alternative to simulated data would be using primitive duplication meth-
ods like data reflection and data rotation which can be used to fill out an existing
data set rather than generating strictly new data. If the conditions present on
the data grid can cause a tornado then simply reflecting the data grid over an
axis results in a technically different storm that also results in a tornado. When
only five percent of the data is storms that result in a tornado you would need
to augment every entry in 19 unique ways to balance the data set to a perfect

fifty-fifty balance of tornadic versus not tornadic.

4. Data

The data set used in this analysis was obtained from the Machine Learning
in Python for Environmental Science Problems AMS Short Course, provided
by David John Gagne from the National Center for Atmospheric Research [15].
Each file contains the reflectivity, 10 meter U and V components of the wind
field, 2 meter temperature, and the maximum relative vorticity for a storm
patch, as well as several other variables. These files are in the form of 32 x 32 x 3
images describing the storm. We treat the underlying data as an image and
push it through the CNN as if it were a normal RGB image. This allows
our findings to generalize to other non-specialized CNNs. Figure 1 shows two
examples image from one of these files. Storms are defined as having simulated
radar reflectivity of 40 dBZ or greater as seen in Figure 1 (b). Reflectivity,
in combination with the wind field, can be used to estimate the probability of
specific low-level vorticity speeds. In the case of Figure 1 (a), the reflectivity and
wind field were not sufficient enough to cause future low-level vorticity speeds.

The dataset contains nearly 80,000 convective storm centroids across the central
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Figure 1: Sample images of radar reflectivity and wind field for a storm which (a) does not

and (b) does produce future tornadic conditions.

United States.

We preprocessed the original NCAR storm data containing 183,723 distinct
storms, each of which consists of 32 x 32 x 3 grid points, and extracted composite
reflectivity, 10 m west-east wind component in meters per second, and 10 m
south-north wind component in meters per second at each grid point giving
approximately 2 GB worth of data. We use the future vertical velocity as the
output of the network. This gives us 3 layers of data per storm entry producing
a total data size of 183,723 x 32 x 32 x 3 floats to feed into the neural network.
We use 138,963 storms for training the model and 44,760 storms for testing the
accuracy of the model. We track the total wall time for training and testing

over both image sets.
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5. Parallelism of Hyperparameter Tuning

5.1. Hyperparameters

As the popularity and depth of deep networks continues to grow, efficiency
in tuning hyperparameters, which can increase total training time by many
orders of magnitude, is also of great interest. Efficient parallelism of such tasks
can produce increased accuracy, significant training time reduction and possible
minimization of computational cost by cutting unneeded training.

We define hyperparameters as anything that can be set before model training
begins. Such examples include, but are not limited to, number of epochs, num-
ber and size of layers, types of layers, types and degree of data augmentation,
batch size, learning rates, optimizer functions, and metrics. The weights that
are assigned to each node within a network would be considered a parameter,
as opposed to a hyperparameter, since they are only learned through training.
With so many hyperparameters to vary, and the near infinite amount of combi-
nations and iterations of choices, hyperparameter tuning can be a daunting task.
Many choices can be narrowed down by utilizing known working frameworks and
model structures, however, there is still a very large area to explore even within
known frameworks. This is compounded by the uniqueness of each dataset and
the lack of a one-size-fits all framework that is inherent with machine learning.

Section 5.2 talks about the new MPI based framework which used the Dask
framework in [7] as a baseline conceptually but many aspects, including how

analytics are handled, have been improved or redesigned entirely.

5.2. MPI Framework for Parallelized Training

The Dask framework for hyperparamter tuning in an HPC environment from
[7, 6] was used as a baseline for the new framework. We replace Dask with
MPI by using the latest mpidpy. Dask had predetermined configurations for
a SLURM based master-worker setup. With MPI we created two parallelism
setups. The first is a typical master-worker configuration. The master-worker
system allows one master process to distribute a specific combination of hyper-

parameters to each process. This allows for the most optimal load balancing
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Figure 2: The preaugmented data is saved to disk before training begins. It is then loaded

from disk to be used during training.

scheme at the cost of using one node for book keeping. The master node dis-
tributes a hyperparameter configuration to a worker node, waits for the work to
finish, then collects all timing results and other metrics from the worker node
and saves the results into a collection of JSON files.

The second parallelism configuration is the fully sychronized setup. We cre-
ated a custom combination generator that takes in a dictionary full of all possible
hyperparameters values and a process id and returns a dictionary that contains
a specific combinations of hyperparameters. At a higher level this generator al-
lows all combinations of hyperparameters to be indexed without actually being
generated until they are needed by the workers. This generator also attempts
to balance the loads by distributing the more theoretically intensive jobs evenly
among all processes such that each process gets heavy and light work periodi-
cally throughout the training process.

By replacing Dask with these systems we have enabled a method which
allows us to measure the effects of every single hyperparameter combination
rather than just viewing things grouped by batch size. We now have the ability
to group by any arbitrary hyperparameter and examine how each one plays a
role in the training time and accuracy of the model. We also changed the base
CNN used for testing to use multiple GPUs by using Keras’ multi_gpu_model
wrapper. TensorFlow will always allocate memory on all GPUs but may not
bother to use the any additional GPUs provided. By using multi_gpu_model

Keras duplicates the network on every GPU and trains each network with mini-
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batches of the original batch and then computes new weights based on the each
of the mini-batches. In this way Keras does all high level management for

multiple GPUs rather than TensorFlow.

6. Results

We use the framework detailed in Section 5.2 to investigate the effect of
hyperparameters on wall time; to reflect that these are tests, relatively small
numbers of epochs are used. Sections 6.1.1 and 6.1.2 take a close look at how
each hyperparameter impacts training time of the neural network using both
preaugmented data and live data augmentation, respectively. Then with the
same framework we examine how varying the number of GPUs impacts wall time
performance in Section 6.1.3, the central idea being that this helps determine
an optimal hardware configuration for future training of similar networks with
an immense data size. All forms of augmentation are done using Keras’ datagen
API with identical inputs. Any differences in accuracy are an artifact of seeding
or data shuffling during training. With this in mind we present only wall times
as a demonstration of how some hyperparamters can have a meaningful impact
on wall time and thus should be tuned carefully, perhaps even last, to prevent
cumbersome training times.

Extending the results presented originally in [8], the additional Section 6.2
investigates how batch size and GPU count affect accuracy; to ensure the net-
works are fully trained as well as to reflect real world usage patterns, in this
section we use a much greater number of epochs than are used in the previous
sections.

The numerical studies in this work use a distributed-memory cluster of com-
pute nodes with large memory and connected by a high-performance InfiniBand
network. The CPU nodes feature two multi-core CPUs, while the 2018 GPU
node has four GPUs. The following specifies the details:

e 2018 CPU nodes: 42 compute nodes, each with two 18-core Intel Xeon
Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache,

11
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6 memory channels). Each node has 384 GB of memory (12x 32 GB DDR4
at 2666 MT/s). The nodes are connected by a network of four 36-port
EDR (Enhanced Data Rate) InfiniBand switches (100 Gb/s bandwidth,
90 ns latency).

e 2018 GPU node: 1 GPU node containing four NVIDIA Tesla V100
GPUs connected by NVLink and two 18-core Intel Skylake CPUs. The
node has 384 GB of memory (12 x 32 GB DDR4 at 2666 MT/s).

6.1. The Effect of Data Augmentation on Wall Time
6.1.1. Preaugmented Data

Each network was trained using a single node’s total resources with the
framework mentioned in Section 5.2 regardless of whether CPUs or GPUs were
used during training. This section contains the wall time results for training
all neural networks using data which has been preaugmented before training
with primitive methods and saved to disk. This means that the network will
not perform any live augmentation but rather read in the preaugmented data
directly from disk. By timing in this way all the computational time will be
tied directly to moving data and training the network. This is sketched in
Figure 2. Additionally the words “data multiplier” refers to data that has been
augmented enough that the total size of the data has increased multiplicatively
by the multiplier. A data multiplier of 2 means that data has been augmented
to be twice as large in size.

The results in Table 1 are made of up of the total times to train networks
with various hyperparameter configurations using the 2018 CPU hardware. The
timing in the upper left corner of the first subtable is the time taken to train
a network on preaugmented data which has the same number of total records
as the original nonaugmented data using a batch size of 128, 5 epochs, and a
learning rate of 0.001. Similarly the bottom right entry of that same subtable is
the time taken to train a network on preaugmented data which has four times
as many entries as the original unaugmented dataset using a batch size 4096, 5

epochs, and a learning rate of 0.001.

12
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The first subtable in Table 1 used 5 epochs and a learning rate of 0.001
for training all subconfigurations within the table. The first column of this
subtable uses as many records as the original dataset but each network in the
column used a different batch size for training. As the batch size increases the
time taken to train the network decreases. However the time saved after each
increase in batch size does not scale proportionally with the change in batch
size. Now consider only the first row of the first subtable. All networks trained
in this row use the same number of epochs, the same learning rate, and the
same batch size of 128 but the total number of records increase multiplicatively
with the column’s associated multiplier. The first entry in the row uses the
same number of entries as the original dataset but the second entry in that row
uses twice as many entries and the last row uses four times as many entries. As
the number of total entries used doubles the timings grow proportionally larger.
With two times the amount of data used to train the network the network takes
twice as long to train. Similarly using four times as much data results in the
time taken to train being four times larger than the first entry in the row. The
more data used the longer it takes to train. These changes in timings hold for
all subtables in Table 1.

Examine the upper right entry in each of the subtables. Each of these entries
were trained using the same learning rate, batch size, and dataset but with a
varying number of epochs. The first subtable uses the least number of epochs
and also has the fastest time among the three. The second subtable uses double
the number of epochs as the first and also takes twice as long to train. Similarly
the third subtable takes three times as long to train and uses three times as many
epochs as the first subtable. An increase in the number of epochs means the
data is passed that many more times to the network for training. It is sensible
then that the time taken to train would increase linearly with the number of
epochs used so long as all other hyperparamters are the same.

Table 2 contains the times taken to train networks with various hyperpa-
rameter configurations using the 2018 GPU hardware. All timing results draw

the same conclusions as Table 1 except all timings for the GPUs are 10x faster
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Figure 3: The original data is first loaded from disk. When an epoch starts the one batch
of data is augmented and trained on. While the network trains on that batch another is

augmented in parallel as indicated by the green arrow.

and in some instances even 12x faster. This massive increase in speedup is
expected by researchers in the machine learning community and is a common
theme seen when comparing CPU based training versus GPU based training.
The process of training a convolutional neural network such as the one discussed
in Section 1 uses many complex matrix operations in the process of computing
weights for the hidden layers of the network. GPUs are specifically designed to
do matrix operations of many flavors and it is accepted fact that they do these
operations much faster than CPUs. Sensibly then, these specialized accelerators
perform the training process considerably faster than a CPU. In the case of the
2018 GPUs there are four GPUs training the neural network at any one time as
opposed to the two CPUs used to train the neural networks in the CPU tables.

Since there is no data augmentation happening during training, all the times
listed are pure training times. The timings for the CPUs improve dramatically
as the batch size is increased regardless of the number of epochs. The GPUs
are so effective with regards to training that batch size plays a smaller role in

the training time. GPUs are, in all regards, faster than CPUs for training.

6.1.2. Live Augmentation
This section contains the results that use live data augmentation during

training. The original natural data is loaded, but while training the data is

14



Table 1: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 CPUs with preaugmented data in seconds.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 195 369 737
256 124 253 484
512 95 194 384
1024 77 159 310
2048 64 125 251
4096 56 107 211
10 Epochs Data Multiplier
Batch Size 1 2 4
128 373 720 1494
256 238 486 962
512 189 382 763
1024 154 313 629
2048 123 240 506
4096 110 210 422
15 Epochs Data Multiplier
Batch Size 1 2 4
128 574 1120 2239
256 367 740 1408
512 284 558 1140
1024 233 468 929
2048 184 370 730
4096 158 308 649

15



Table 2: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 GPUs with preaugmented data in seconds.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 20 36 72

256 12 24 47

512 11 18 38

1024 10 17 32

2048 10 16 30

4096 13 18 37

10 Epochs Data Multiplier
Batch Size 1 2 4
128 36 74 146

256 24 48 96

512 22 36 7

1024 19 32 62

2048 17 30 58

4096 20 36 67

15 Epochs Data Multiplier
Batch Size 1 2 4
128 56 110 223

256 37 72 144

512 32 55 109

1024 25 48 99

2048 25 48 88

4096 32 56 98

16
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pushed through the primitive augmentation methods provided by Keras. The
training times that are seen represent the wall time taken to move data, augment
the data on-the-fly, and train the network. A high level view of this process can
be seen in Figure 3. Keras’ primitive augmentation supports parallel augmen-
tation meaning that data is being augmented in parallel to the networks being
trained. This parallel operation can be seen as the green arrows in Figure 3.

Live augmentation is typically done so that one does not need to preaugment
gigabytes or even terabytes of unbalanced data. In some cases, you may even
do live augmentation to turn small amounts of balanced or unbalanced data
into larger amounts of balanced data so while the original dataset may fit into
memory the larger augmented dataset might not. If your data is too large to fit
into memory then preaugmented data would be I/O bound as it is read from
disk rather than being CPU bound by being augmented on-the-fly.

Table 3 shows similar timing behaviors to Table 1 when examining how
the data multiplier scales the timing results but a much stronger diminishing
return when batch size is increased. In order to do live data augmentation
Keras starts as many processes as there are cores on a node. The processes
rotate, scale, and so on in parallel and send the data back to the main process.
These processes are then cleaned up by the operating system forcing the main
process to block during this time. This becomes a clear bottleneck as we can see
that the timings for smaller batch sizes are much worse than the larger batch
sizes. However the times approach the preaugmented timings as the overheard
of process creation becomes a smaller player in the time it takes to augment
the data. The less data that can be live augmented the less time the spawned
processes work meaning they spend more time being created and cleaned up
than they do actually generating new data.

The overhead is even more aparent when examining Table 4 compared to
Table 2. The scaling in each individual row has the same behavior but all of the
rows in Table 4 are much slower than expected. Subtable 3 is 2x to 3x slower
than the preaugmented numbers in the same positions. This is clearly due to

the CPU bounded operations that are inherent with live data augmentation.
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Additionally if you examine the data mulitplier 4 column of subtable 3 the
time savings as batch size increase disappears and makes way for varying wall
times that are completely unrelated to the increase in batch size. Any savings
that would normally be obtained from increasing batch size are lost due to the
overhead of live augmentation.

The timings for primitive live augmentation methods using CPUs and GPUs
are anywhere from a few minutes to a couple hours. The GPU training is so
efficient the GPU spends most of its time waiting for the data to be augmented
rather than training. In cases where you are doing CPU based training the
processor is working hard to both train and augment the data in tandem and

often does not have the spare resources to balance both tasks.

6.1.3. The Effect of GPU Count on Wall Time

This section contains the wall time results for varying the number of GPUs
while training. The number of GPUs used during training can be treated as
a hyperparameter, as it has an impact on both training time and prediction
accuracy.” If the impact of using more GPUs is negligible then all future hy-
perparamter sweeps should use the lowest number of GPUs possible. If luck
would have it that the optimal number of GPUs can be evenly divided amongst
the MPI processes during training, then result would be great boon for efficient
training in the future. We use Keras’ mult_gpu_model which will automatically
force TensorFlow to use all available GPUs by duplicating the graph on each
GPU and training each of these with mini-batches in a process we refer to as
“forced” parallelism. Additionally it has already been show in Section 6.1.2 that
live augmentation is far slower than preaugmented data thus for this section we
only use preaugmented data to cut down the wall time as much as possible.

Table 5 contains the wall times for the numbers of GPUs versus data mul-
tiplier grouped by epochs on the 2018 GPUs with preaugmented data, forced
parallelism, and a batch size of 32768. Consider the first row of 5 epoch table.
For one GPU as the data multiplier increases the wall time increases propor-

tionally. Now consider the data multiplier 1 column of the 5 epoch table. As
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Table 3: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 CPUs with live augmented data in seconds.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 2534 5052 9859
256 1324 2597 5174
512 723 1445 2897
1024 390 776 1527
2048 210 425 852
4096 154 302 527
10 Epochs Data Multiplier
Batch Size 1 2 4
128 5066 10122 19627
256 2626 5271 10322
512 1376 2766 5520
1024 762 1501 3026
2048 429 847 1735
4096 305 620 1636
15 Epochs Data Multiplier
Batch Size 1 2 4
128 7369 14779 30372
256 3893 7950 15476
512 2083 4161 8304
1024 1155 2327 4511
2048 631 1278 2555
4096 388 798 1689

19



Table 4: Wall time for batch size versus data multiplier grouped by epochs with learning rate

0.001 for the 2018 GPUs with live augmented data in seconds.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 37 70 142

256 35 69 138

512 36 72 140

1024 37 72 142

2048 38 76 150

4096 44 83 163

10 Epochs  Data Multiplier
Batch Size 1 2 4
128 73 146 285

256 71 143 286

512 69 141 278

1024 73 144 284

2048 77 150 295

4096 83 161 329

15 Epochs Data Multiplier
Batch Size 1 2 4
128 108 214 442

256 105 211 429

512 107 216 426

1024 109 217 432

2048 117 229 445

4096 126 245 502
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the number of GPUs increases the time remains nearly identical despite the
doubling, tripling, and quadrupling of the compute power being used during
training. Even considering the entire 5 epoch subtable yields the same behav-
ior: as the number of GPUs increase the wall time remains qualitatively the
same. All other subtables exhibit the same behavior as the 5 epoch subtable.
While the increase in epochs causes a general increase in the subtable timings,
changing the number of GPUs does nothing to improve these timings. Concep-
tually the batch size of the table is 1/5 of all data with regards to a multiplier
of 1. Multiple GPUs should have a real edge over a single GPU yet there this
is not demonstrated. This is to say that the number of GPUs does nothing to
improve wall time despite differences in data size.

Table 6 contains the wall times for the number of GPUs versus epochs
grouped by data multiplier with preaugmented data, forced parallelism, and
a batch size of 128. Consider the first row of the first subtable. For one GPU
with a data multiplier of 1 and a varying number of epochs as the number of
epochs increases the wall time increases proportionally. This proportional in-
crease holds for all rows of the subtable and similarly this table wide behavior
holds for the data multiplier 2 and 4 subtables. Examine the first column of the
last subtable which is the 5 epoch column of data multiplier 4 table with a vary-
ing number of GPUs. As the number of GPUs increases the time also increases
though the increase in time is steepest from one GPU to two GPUs. From there
the time increase is 10 seconds per GPU additional GPU. As the number of
epochs increases from 5 to 10 the increase from one GPU to two GPUs triples
from around 20 seconds to approximately 60 seconds. Every additional GPU
increases time by 20 seconds per GPU. As the number of epochs increases from
5 to 15 the increase from one GPU to two GPUs goes from around 20 seconds
to approximately 90 seconds. Every additional GPU is around 30 seconds per
GPU. At the smallest batch size the more GPUs used the slower the training
time.

When even larger cases are run in isolation, this behavior is more easily

observed with the tool nvidia-smi. With just one GPU and a batch size of
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32,768 the GPU is entirely saturated for the majority of run-time with only
occasional drops in GPU usage when the training rolls over to the next epoch.
Similarly submitting a 4 GPU job with a batch size of 131,072, meaning each
GPU gets as much data as the multiplier 1 case, results in maximum saturation
as well. This is why timings at much larger batch sizes seem much closer in time
as the GPUs spend around the same amount of time computing and idling. This
would give the impression that it takes Keras more time to distribute the data
to the GPUs than compute and finalize all other information associated with

computation.
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Table 5: Wall time for GPUs versus data multiplier grouped by epochs with batch size 32768,
learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism in

seconds.

5 Epochs Data Multiplier

GPUs 1 2 4
1 11 18 34
2 11 18 33
3 11 18 33
4 11 18 33

10 Epochs  Data Multiplier

GPUs 1 2 4
1 17 29 58
2 16 30 59
3 16 30 57
4 18 31 60

15 Epochs Data Multiplier

GPUs 1 2 4
1 25 44 92
2 23 4 88
3 23 45 84
4 26 45 38
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Table 6: Wall time for GPUs versus epochs grouped by data multiplier with batch size 128,
learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism in

seconds.

1 Data Multiplier Epochs
GPUs 5 10 15
1 20 38 61
2 2t 581 77
3 31 55 83
4 41 61 92
2 Data Multiplier Epochs
GPUs 5 10 15
1 42 76 114
2 53 103 154
3 59 112 168
4 64 123 182
4 Data Multiplier Epochs

GPUs 5 10 15
1 8 157 229
2 106 215 311
3 116 231 340
4 125 247 368
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6.2. The Effect of Batch Size and GPU Count on Accuracy

In this section we present accuracy results for varying batch size and the
number of GPUs used during training. In order to ensure the network is fully
trained, greater numbers of epochs are used (up to 1000) than in the previous
sections. The data multiplier is kept to 1 so as not to artificially inflate run
time.

Figure 4 shows training accuracy curves varied by number of GPUs for batch
sizes 128, 4,096, and 32,768. Note that the sudden drops in accuracy (especially
prominent in the batch size 4,096 plot) result from the use of dropout layers. In
the batch size 128 plot accuracy plateaus after only a small number of epochs
and the curves for each GPU count lie on top of each other, virtually indistin-
guishable. As batch size increases a tendency emerges for higher GPU counts to
have a slightly higher accuracy for any given number of epochs. With a batch
size of 32,768, throughout most of the time spent training the 4 GPU curve has
an accuracy about 1% higher than the 1 GPU curve with the same batch size.

The training accuracy curves resulting from keeping GPU count fixed and
varying batch size are shown in Figure 5. The 2 GPU plot on the left and
the 4 GPU plot on the right are virtually identical, as would be expected from
the results in Figure 4. For any fixed number of epochs increasing batch size
decreases accuracy. Even after 1,000 epochs there is an approximately 10%
difference in accuracy between the batch size 128 curve and the batch size 65,536
curve.

When using Keras’ mult_gpu_model a copy of the network is sent to each
GPU. For every batch, each copy of the network is trained on a smaller subset of
the original batch, then the resulting weights are aggregated together and copied
back to each network. This ensures that after every batch each copy of the
network is identical, even though they have all been trained on different subsets
of the original batch. The size of these subsets is equal to the total batch size
divided by the number of GPUs used. Therefore, when comparing the training
of two different networks, one might expect that when the respective batch sizes

divided by the respective GPU counts equal some constant, their training curves
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will be more or less the same. Figure 6 does exactly this, varying both GPUs
and batch size at the same time so that the batch size divided by GPU count is
constant. We see that in fact the training curves are not the same. The effect of
a smaller batch size outweighs the effect of a lower GPU count, and vice versa.

Table 7 contains the testing accuracies of the network, organized by batch
size versus epochs, with 2 GPUs, data multiplier 1, learning rate 0.001, preaug-
mented data, and forced parallelism. We provide only the 2 GPU table since it
allows us to provide data for the batch size 65,536 runs, and since other GPU
counts result in similar accuracies. By considering just a single row of this table
we see that the testing accuracies follow a similar trend to what is exhibited
by the training accuracies in Figure 5, that is, accuracy decreases as batch size
increases. Therefore, when using a larger batch size a network must be trained
for a greater number of epochs to reach a similar accuracy as that reached by a
network trained using a smaller batch size. By examining individual columns we
see that testing accuracy plateaus between 92% and 93%. This would indicate
that the network configuration which can reach a testing accuracy of around
93% in the least amount of time would be the optimal configuration.

The corresponding timings of each run of the network are presented in Ta-
ble 8. Here we see that total training time increases linearly with epochs, but
increases non-linearly with batch size. The speedup of training time decreases
with each doubling of batch size until the speedup is negligible. We see that in
the case of our test network that this point of negligible speedup is reached by a
batch size of 4,096. This is in contrast to the effect that batch size has on accu-
racy, since it can be seen in Table 7 that accuracy continues to decrease across
an entire row. As a result of these effects, neither maximizing nor minimzing
any of these hyperparameters leads to optimal performance. This behavior can
be observed when examining Table 8. The 256 batch size 100 epoch run and the
1024 batch size 200 epoch run both have an accuracy of approximately 93% and
a run time of approximately 5 minutes. However the 128 batch size 100 epoch
run has comparable accuracy but is double the run time at approximately 10

minutes. Additionally the 4096 batch size 400 epoch run has a 10 minute run
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Table 7: Training accuracies for batch size versus epochs with 2 GPUs, data multiplier 1,

learning rate 0.001 for the 2018 GPUs with preaugmented data and forced parallelism.

2 GPUs Batch Size
Epochs 128 256 512 1024 2048 4096 8192 16384 32768 65536
5 87.96 90.26 8255 85.23 87.86 89.28 83.00 79.98 76.21 68.57
10 92.02 86.88 87.37 88.21 89.18 88.95 89.00 84.44 83.55 77.65
15 9141 8841 89.98 91.11 88.79 87.60 8575 86.20 85.98 76.67
100 93.03 93.15 91.90 90.02 88.68 87.09 88.68 88.54 89.23 88.09
200 93.45 93.26 93.14 93.57 9239 89.91 87.14 88.49 87.48 86.60
300 93.50 93.77 93.41 93.21 9227 9253 89.66 87.63 89.03 86.80
400 92.19 93.43 93.52 93.08 92.63 92.90 90.88 88.30 88.53 87.12
500 91.12 93.40 9349 93.14 93.11 9227 9290 90.87 90.37 88.32
600 93.27 9294 93.23 93.27 92.86 9249 91.71 90.95 88.81 88.95
700 93.29 93.48 93.62 93.08 9298 92.77 92.28 90.11 87.71 88.18
800 92.58 93.32 9341 93.26 93.23 92.81 92.33 90.93 90.97 89.84
900 93.96 93.38 93.24 93.11 89.23 93.36 92.70 89.98 87.06 90.34
1000 92.12 92.98 93.23 9348 92.92 93.34 92.37 91.29 89.05 87.21

time for the same comparable accuracy.
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Table 8: Timing for batch size versus epochs with 2 GPUs, data multiplier 1, learning rate

0.001 for the 2018 GPUs with preaugmented data and forced parallelism.

2 GPUs Batch Size
Epochs 128 256 512 1024 2048 4096 8192 16384 32768 65536
5 00:31 00:17 00:12 00:11 00:10 00:13 00:13 00:14 00:15 00:15
10 00:59 00:33 00:23 00:18 00:17 00:18 00:21 00:21 00:23 00:24
15 01:22 00:48 00:34 00:27 00:25 00:27 00:27 00:26 00:26  00:27
100 09:12 05:23 03:38 02:45 02:23 02:23 02:29 02:24  02:22  02:19
200 18:14 10:49 07:14 05:32 04:42 05:12 04:47 04:42 04:29 04:26
300 27:33 16:15 10:54 08:13 07:07 07:37 07:16 06:58 06:47 06:35
400 36:47 2146 14:25 11:03 09:35 10:19 09:30 09:17 08:54  08:50
500 46:10 27:07 18:04 13:44 11:50 12:41 11:57 11:27 11:11 10:55
600 55:33 32:44 21:42 16:31 14:17 15:24 14:11 13:57 13:15  13:20
700 64:39 38:06 25:29 19:12 16:30 17:43 16:33 16:03  15:33  15:13
800 73:40 43:48 28:58 21:58 18:41 20:20 1857 1824 1752 17:24
900 83:21 49:03 32:56 24:44 21:16 22:55 21:16 20:35 19:57  19:26
1000 92:02 54:55 36:29 27:40 23:40 25:22 23:58 22:48 22:42  21:39
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Figure 4: Training accuracy curves for different batch sizes, varying GPU counts, with data
multiplier 1 and learning rate 0.001 for the 2018 GPUs with preaugmented data and forced

parallelism.
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7. Conclusions

There is not a lot of discussion on whether or not one should augment the
data prior to experimentation. Careful consideration should be taken with re-
gards to the time taken to train a network as can be seen in Section 6.1. The
time difference between using preaugmented data versus the use of primitive live
augmentation methods is substantial. If the disk space is available one should
always opt for preaugmented data over primitive live method. This becomes es-
pecially important if one is looking to take advantage of accelerators like a GPU.
The GPU training is so efficient the GPU spends most of its time waiting for the
data to be augmented rather than training. In Section 6.1.1 the preaugmented
data times were on the scale of minutes compared to the primitive live augmen-
tation methods seen in Section 6.1.2 whose times were in hours. In cases where
you are doing CPU based training the processor is working hard to both train
and augment the data in tandem and often does not have the spare resources to
balance both tasks. Preagumented data was clearly the better choice for both
GPU and CPU training. Additionally, GPU training was so much faster than
CPU training that even the GPUs in older CPU/GPU nodes (from 2013) were
faster than the state-of-the-art CPUs from 2018 used in the studies here [6].

While the GPU training was clearly better than the CPU training, there
are still more variables to tackle. The question, “do more GPUs equate to
better performance time?,” may seem obvious but the results in Section 6.1.3
beg to differ. Initially one might suspect that putting more computing power
behind training will result in faster run times but this is not the case. At the
smallest batch size, the more GPUs used, the slower the training time. The
mini-batch system Keras uses does not cater toward pushing and pulling small
amounts of data to the GPUs as the wall time is always worse as the number
of GPUs increase for this batch size. Additionally the number of GPUs does
nothing to improve wall time despite differences in data size. A single GPU
still out performs all other counts of GPUs across the board. With just one

GPU and a batch size of 32,768, the GPU is entirely saturated for the majority
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of run-time with only occasional drops in GPU usage when the training rolls
over to the next epoch. Similarly submitting a 4 GPU job with a batch size
of 131,072, meaning each GPU gets as much data as the multiplier 1 case,
results in maximum saturation for very short bursts of a couple seconds. The
original predictive model is computationally cheap to train and as such it is
not unlikely that this leads to one GPU having the best performance times.
Each additional GPU exhibits a near constant increase in time as it is only a
small amount of overhead to micromanage additional GPUs. This is to say that
training a more simple cheap network where one wants to train with as many
hyperparameter combinations as possible should be done with only one high
end GPU per process. With a node that has four GPUs you can train four
networks per node rather than just one per node which dramatically increases
throughput. For a sufficiently complex network it is still possible that multiple
GPUs are more efficient as the extra computing power can be put to good use
rather than left idling.

The tests in Section 6.2 show that the number of GPUs have no meaningful
impact accuracy for small batch sizes. Yet when we increase batch size to be
so large that the GPUs are fully saturated with full memory we see a large
drop in accuracy on an epoch by epoch basis. This alludes to larger batch sizes
being impractical for training unless one uses many more epochs to correct this
large drop. As mentioned in Section 6.1.3 one must use larger batch sizes to see
full computational saturation and huge boosts to speedup. If one were trying
to see speedup while maintaining accuracy it would make sense to increase the
number epochs to account for the accuracy lost due to batch size enlargement.
However in many cases the speedup is completely lost by doing so. This further
reinforces the arguement that the minimal number of GPUs necessary should
be used in training a single network. This maximizes training throughput in
regards to the number of networks trained at a time and the optimal speedup

for the majority of training cases.

32



575

580

585

590

595

600

Acknowledgements

This work is supported by the grant “CyberTraining: DSE: Cross-Training of
Researchers in Computing, Applied Mathematics and Atmospheric Sciences us-
ing Advanced Cyberinfrastructure Resources” from the National Science Foun-
dation (grant no. OAC-1730250). Co-author Carlos Barajas additionally ac-
knowledges support as HPCF RA. The hardware used in the computational
studies is part of the UMBC High Performance Computing Facility (HPCF).
The facility is supported by the U.S. National Science Foundation through the
MRI program (grant nos. CNS-0821258, CNS-1228778, and OAC-1726023)
and the SCREMS program (grant no. DMS-0821311), with additional substan-
tial support from the University of Maryland, Baltimore County (UMBC). See
hpcf .umbc. edu for more information on HPCF and the projects using its re-

sources.

References

[1] V. Nourani, S. Uzelaltinbulat, F. Sadikoglu, N. Behfar, Artificial intelli-
gence based ensemble modeling for multi-station prediction of precipitation,

Atmosphere 10 (2) (2019) 80-27.

[2] W. Ghada, N. Estrella, A. Menzel, Machine learning approach to classify
rain type based on Thies disdrometers and cloud observations, Atmosphere

10 (251) (2019) 1-18.

[3] A. McGovern, K. L. Elmore, D. J. Gagne II, S. E. Haupt, C. D. Karstens,
R. Lagerquist, T. Smith, J. K. Williams, Using artificial intelligence to
improve real-time decision-making for high-impact weather, Bulletin of the

American Meteorological Society 98 (10) (2017) 2073-2090.

[4] V. Lakshmanan, C. Karstens, J. Krause, K. Elmore, A. Ryzhkov, S. Berk-
seth, Which polarimetric variables are important for weather/no-weather
discrimination?, Journal of Atmospheric and Oceanic Technology 32 (6)

(2015) 1209-1223.

33


hpcf.umbc.edu

605

610

615

620

625

[5]

[10]

[11]

[12]

L. R. Barnes, E. C. Gruntfest, M. H. Hayden, D. M. Schultz, C. Benight,
False alarms and close calls: A conceptual model of warning accuracy,

Weather and Forecasting 22 (5) (2007) 1140-1147.

C. A. Barajas, An Approach to Tuning Hyperparameters in Parallel: A
Performance Study Using Climate Data, M.S. Thesis, Department of Math-

ematics and Statistics, University of Maryland, Baltimore County (2019).

C. Becker, W. D. Mayfield, S. Y. Murphy, B. Wang, C. Barajas, M. K. Gob-
bert, An approach to tuning hyperparameters in parallel: A performance
study using climate data, Tech. Rep. HPCF-2019-13, UMBC High Per-
formance Computing Facility, University of Maryland, Baltimore County
(2019).

URL http://hpct.umbc.edu

C. A. Barajas, M. K. Gobbert, J. Wang, Performance benchmarking of
data augmentation and deep learning for tornado prediction, in: 2019 IEEE
International Conference on Big Data (Big Data), IEEE, 2019, pp. 3607—
3615.

F. Chollet, Deep Learning with Python, Manning, 2018.
D. Osinga, Deep Learning Cookbook, O'Reilly Media, 2018.

F. H. K. dos Santos Tanaka, C. Aranha, Data augmentation using GANs,
ArXiv abs/1904.09135.

C. Barajas, P. Guo, L. Mukherjee, S. Hoban, J. Wang, D. Jin, A. Gan-
gopadhyay, M. K. Gobbert, Benchmarking parallel implementations of k-
means cloud type clustering from satellite data, in: C. Zheng, J. Zhan
(Eds.), Benchmarking, Measuring, and Optimizing. Bench 2018, Vol. 11459
of Lecture Notes in Computer Science, Springer-Verlag, 2019, pp. 248-260.

C. Barajas, M. K. Gobbert, G. C. Kroiz, B. E. Peercy, Challenges and

opportunities for the simulation of calcium waves on modern multi-core

34


http://hpcf.umbc.edu
http://hpcf.umbc.edu
http://hpcf.umbc.edu
http://hpcf.umbc.edu

and many-core parallel computing platforms, Int. J. Numer. Meth. Biomed.

Engng.doi:10.1002/cnm.3244.

s [14] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer, Imagenet training in
minutes, in: Proceedings of the 47th International Conference on Parallel
Processing, ACM, New York, NY, USA, 2018, pp. 1-10. doi:10.1145/
3225058.3225069.

URL http://doi.acm.org/10.1145/3225058.3225069

s [15] R. Lagerquist, D. J. Gagne II, Basic machine learning for predicting
thunderstorm rotation: Python tutorial, https://github.com/djgagne/
ams-ml-python-course/blob/master/module_2/ML_Short_Course_
Module_2_Basic.ipynb (2019).

35


http://dx.doi.org/10.1002/cnm.3244
http://doi.acm.org/10.1145/3225058.3225069
http://doi.acm.org/10.1145/3225058.3225069
http://doi.acm.org/10.1145/3225058.3225069
http://dx.doi.org/10.1145/3225058.3225069
http://dx.doi.org/10.1145/3225058.3225069
http://dx.doi.org/10.1145/3225058.3225069
http://doi.acm.org/10.1145/3225058.3225069
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb
https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/ML_Short_Course_Module_2_Basic.ipynb

	Introduction
	Related Work
	Deep Learning with Convolutional Neural Networks
	Data
	Parallelism of Hyperparameter Tuning
	Hyperparameters
	MPI Framework for Parallelized Training

	Results
	The Effect of Data Augmentation on Wall Time
	Preaugmented Data
	Live Augmentation
	The Effect of GPU Count on Wall Time

	The Effect of Batch Size and GPU Count on Accuracy

	Conclusions

