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Abstract—Dust plumes originating from the Earth’s major
arid and semi-arid areas can significantly affect the climate
system and human health. Many existing methods have been
developed to identify dust from non-dust pixels from a remote
sensing point of view. However, these methods use empirical
rules and therefore have difficulty detecting dust above or below
the detectable thresholds. Supervised machine learning methods
have also been applied to detect dust from satellite imagery,
but these methods are limited especially when applying to areas
outside the training data due to the inadequate amount of
ground truth data. In this work, we proposed an automatic
dust segmentation framework using semi-supervised machine
learning, based on a collocated dataset using Visible Infrared
Imaging Radiometer Suite (VIIRS) and Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO). The
proposed method utilizes unsupervised machine learning for
segmentation of VIIRS imagery, and leverages the guidance from
the dust labels using the dust profile product of CALIPSO to
determine the dust clusters as the final product. The dust clusters
are determined based on the similarity of spectral signature from
dust pixels along the CALIPSO tracks. Experiment results show
that the accuracy of the proposed framework outperforms the
traditional physical infrared method along CALIPSO tracks. In
addition, the proposed method performs consistently over three
different study areas, the North Atlantic Ocean, East Asia, and
Northern Africa.

Index Terms—dust detection, semi-supervised machine learn-
ing, multi-sensor remote sensing, image segmentation

I. INTRODUCTION

Dust events are common meteorological phenomena in arid
and semi-arid regions, often arising when strong winds uplift
fine-grained dust particles from the surface of the Earth.
Atmospheric dust has various impacts on air quality, weather
formation, radiative balance, biogeochemical cycles, and cli-
mate. On the other hand, dust storms are usually damaging.
Due to climate change, the dynamics of dust storms at a
local scale have changed drastically along with climate and

Julie Bessac
Mathematics and Computer Science Division
Argonne National Laboratory
Lemont, IL, USA
jbessac@anl.gov

Yingxi Shi
Joint Center for Earth Systems Technology
University of Maryland,
Baltimore County
Baltimore, MD, USA
yshi2@umbc.edu

Ling Xu
Department of Mathematics
North Carolina A&T State University
Greensboro, NC, USA
Ixu@ncat.edu

Jianwu Wang
Department of Information Systems
University of Maryland,
Baltimore County
Baltimore, MD, USA
jianwu@umbc.edu

weather variables, such as total precipitation and average wind
speed [1]. Frequencies and intensities of local dust storms are
observed to be increasing, bringing higher impacts on wildlife,
human society, and bio-community [2].

Satellite remote sensing can collect spatiotemporally contin-
uous information of atmospheric components, but it is difficult
to differentiate dust from other atmospheric components espe-
cially over bright surfaces. Depending on the spatial, temporal,
and spectral characteristics, different satellite sensors have
varying capabilities in detecting dust. For example, the Visible
Infrared Imaging Radiometer Suite (VIIRS) on the Suomi
National Polar-orbiting Partnership (Suomi NPP) satellite has
a relatively broad spatial coverage ( 3040 km in the cross-
track direction), making it possible to capture more dust
storm. Meanwhile, the depolarization observation from Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) on-
board the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) enhances the sensor’s ability of
accurately detect non-spherical particles (e.g. dust). However,
the lidar beam only covers a very narrow stripe ( 333m in the
cross-track direction). To detect dust events and extract their
spatial extent, it is beneficial to combine the above two types
of satellite observations in a systematic approach.

Traditional methods of detecting dust from remote sensing
imagery utilize the dust spectrum signatures, such as dust visu-
alization (e.g. dust false color imaging), empirical thresholds,
dust index [3]-[5], and the Deep Blue algorithm [6], [7]. These
methods mainly utilize measurements at wavelengths of 8.5,
11.0, and 12.0 ym and calculate the brightness temperature
differences (BTDs) to differentiate dust from clouds, surfaces,
and other atmospheric particles. These methods are generally
heuristic, by utilizing predefined thresholds that applied to gen-
eral conditions, thus they may fail at extreme circumstances
such as very optically thin or thick dust plumes or observing
conditions that depart largely from the norm.



To address this problem, researchers have been using su-
pervised machine learning methods to learn the relationship
between the dust occurrences and the spectral radiance from
satellite images in a pixel-wise way [8]-[10]. The trained
models are then used to determine whether an observed pixel
on the imagery is dust. However, supervised machine learning
methods suffer from several drawbacks. Firstly, they require
a set of training examples where dust pixels are labeled, but
labeling the imagery pixel-wise is labor intensive and time-
consuming. As an alternative to human labeling, CALIOP ver-
tical feature mask and aerosol profile products are commonly
used to categorize aerosols, but the CALIOP labels are limited
spatially and may not cover the entire observing geometries
[11]. Existing supervised machine learning methods for dust
detection [8], [9] utilized CALIOP dust labels as ground
truth, but the accuracy using the trained model on-track of
CALIPSO to predict off-track is not guaranteed. Even if the
on-track test accuracy is high, the off-track prediction accuracy
can be low, because the model training process is limited
by the amount of on-track dust labels. Secondly, dust over
land is difficult to extract from satellite imagery because
separating dust contribution from complex terrains and surface
contributions can be challenging. Therefore, labeling dust from
imagery by human beings is also prone to error. Thirdly,
existing supervised machine learning methods were trained
using data on the track of CALIPSO and do not take the spatial
variation of dust plume into consideration. It is known that dust
storms appear in a spatial cluster - rather than a pixel - and
evolve over time; thus it is more suitable to take the spatial
context of dust storms into account.

Unsupervised machine learning, on the other hand, can be
used to extract patterns without pre-existing labels, making it
suitable for dust detection from satellite imagery where labels
are rare. However, unsupervised machine learning will not
be able to utilize the dust labels from CALIPSO pixels, thus
the results from unsupervised machine learning methods are
difficult to relate to specific physical meanings.

This research aims to develop an automatic framework using
semi-supervised machine learning to detect dust extent from
VIIRS satellite imagery by integrating unsupervised machine
learning and CALIPSO dust labels. The K-means clustering
is firstly applied to segment VIIRS imagery into clusters, and
then one or multiple clusters are selected as dust clusters based
on their similarities to the dust spectral signature summarized
from a collocated CALIPSO-VIIRS dataset. The dust spectral
signature demonstrates the densely distributed spectral values
of dust observations in different spectral bands. This approach
addresses the limitations of the fixed thresholds and empirical
parameters and ensures reproductivity.

The novelty of this research comes from three aspects:

1) Methodology. As discussed above, both supervised and

unsupervised machine learning methods have limitations
for the task of dust detection. This research proposes
a novel semi-supervised machine learning method that
will address these limitations. The method firstly clusters
the satellite imagery with an unsupervised machine

learning method; and then it determines one or multiple
dust clusters from knowledge distilled in step one. The
dust cluster determination is based on the similarity
between each cluster and the summarized CALIOP dust
labels from the same spatiotemporal region.

2) Application. To the authors’ knowledge, this is the first
time that the semi-supervised machine learning method
is used for dust detection from satellite imagery. The
semi-supervised machine learning method is suitable for
this specific task, because it will leverage the limited
dust labels from CALIOP and produce segmentation
results with a certain level of physical meanings. How-
ever, this semi-supervised machine learning is novel and
different from existing methods for image segmentation
(discussed in Section II.C.) due to the limited number
of CALIOP dust labels.

3) Experiment. The validation of dust detection results
used in the proposed method is a combination of ac-
curacy metrics from both supervised and unsupervised
machine learning methods. Traditional accuracy metrics
from only one type of machine learning methods are not
adequate to evaluate the quality of results. Therefore,
this research utilizes classification metrics — precision,
recall, and F'j-score — to evaluate the results where
the pixels are on-track of CALIPSO; and then utilizes
silhouette scores to evaluate the quality of clustering.
Therefore, the results are evaluated both on-track and
off-track.

The paper is organized as follows. Section II reviews the
literature on dust detection from remote sensing imagery.
Section III states details of the datasets and the preprocessing
steps. Section IV describes the proposed framework of dust
extent extraction. Section V shows the results, including image
segmentation, average accuracy, and method comparison. In
the end, Section VI discusses future directions.

II. RELATED WORKS
A. Traditional dust detection methods

Existing methods of detecting dust plumes from passive
satellite remote sensing have been utilizing the brightness
temperature difference (BTD) between Thermal Infrared (TIR)
bands at around 11 pm and 12 pm wavelengths to detect dust
clouds over land surfaces [12]. This method assigns pixels as
dust pixels with BTD values lower than zero based on the
understanding that the desert dust exists when the BTD values
generally decrease up to below zero [13], [14]. Later, a set of
BTDs with corresponding heuristic thresholds was exploited
to detect dust from meteorological clouds. Ackerman [3]
proposed using two BTDs, i.e., BT11-BT12 and BT8-BT11
(analyzing the signal at 8.5 pm and 11 pum wavelengths) to
detect stratospheric volcanic aerosols over oceans. Similarly,
Wald et al. [15] used the same two BTDs to identify mineral
dust over desert regions. Miller [16] enhanced the investigation
of daytime airborne dust over water and land. However, BTD
has strong correlations with various land and dust properties,



such as the particle size distribution, chemical composition,
and dust layer height [17], [19]. Thus, these threshold-based
methods are sensitive to different dust events, study areas,
or different seasons [19], [20]. Deep Blue algorithm was
developed to calculate aerosol optical depth over land using
the 412 nm band, where the contrast between aerosols and
the bright surfaces such as deserts is larger, making it easy
to differentiate aloft dust from dust on the surface [6], [7].
However, the Deep Blue algorithm can not be used over water.

Recent dust detection methods also integrated 15-day rolling
mean cloud screened BTD for each pixel [4]. Moreover, these
methods have employed more shortwave bands to eliminate
cloud effects [21], aiming to impose multiple fixed thresholds
on calculated dust indices [5], [22], [23]]. However, these
improvements of dust detection did not adequately address
some important issues, such as the sensitivity to airborne dust
identification over bright surfaces (e.g., desert regions), the
dependence of infrared signals on dust plume features (e.g.,
plume height), the sensitivity of BTD to variability in surface
emissivity, and the impact of cirrus clouds on the BTD signal
(4], [24].

B. Supervised machine learning for dust detection

To address the limitations of fixed thresholds or empirical
parameters, machine learning, including deep learning algo-
rithms, can be utilized to learn the complex relationships
between dust occurrences and the spectral radiance from
satellite imagery, thus making it possible to outperform the
derived thresholds from statistical analysis. A few researchers
have started to investigate the performance of different ma-
chine (and deep) learning methods in dust detection. Existing
studies have explored the common classification methods,
including Support Vector Machines, Random Forests, Deep
Neural Networks, and Convolutional Neural Networks [8], [9].
It is found that machine learning algorithms outperform the
derived thresholds from statistical analysis [10]. For exam-
ple, Strandgren et al. [25] developed an algorithm based on
Artificial Neural Network (ANN) to study the characteristics
of clouds and aerosols based on both SEVIRI and CALIOP.
Shi et al. [8] compared different supervised machine learning
methods, including SVM, Random Forest, Logistic Regres-
sion, on the capability of classifying dust or dust-free pixels
along CALIPSO tracks using the spectral information from
Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite. They also developed a hybrid classification model
combining the physical infrared method with machine learn-
ing methods. Cai et al. [9] compared Logistic Regression,
K-Nearest-Neighbor, Random Forest, Feed Forward Neural
Network, and Convolutional Neural Network on the capability
of classifying dust or dust-free pixels along CALIPSO tracks
using the spectral information from VIIRS satellite. Kolios
and Hatzianastassiou [10] utilized an ANN model to learn the
relationship between the aerosol optical depth (AOD) values,
obtained at the stations of AERONET, and the combinations
of brightness temperatures of SEVIRI. The authors estimated
AOD values during dust outbreaks in the Mediterranean re-

gion. These existing methods are using supervised machine
learning, which is prone to the drawbacks mentioned in the
Introduction section. At this moment, unsupervised and semi-
supervised machine learning has not yet been investigated in
dust detection from remote sensing imagery.

C. Semi-supervised machine learning for image segmentation

While semi-supervised machine learning methods have not
yet been explored for dust detection, there are existing research
using semi-supervised machine learning for various kinds of
semantic image segmentation tasks.

Semantic image segmentation is commonly conducted using
supervised machine learning. One of the best performing meth-
ods is Deep Convolutional Neural Network (DCNN), which
can perform semantic segmentation using pixel-level labels
[26]. Acquiring such pixel-level annotation is time-consuming,
thus researchers have been exploring ways to train models
using weak annotations, such as bounding box annotations or
image-level labels. Papandreou et al. [27] explored using either
bounding boxes and image-level labels or a mixture of few
strongly labeled and many weakly labeled images to conduct
semantic image segmentation using Expectation-Maximization
(EM) methods. For dust detection, the CALIOP dust labels are
pixel-based, but the pixels are limited on CALIPSO tracks.
These labels are neither sufficient to form a bounding box,
nor sparse enough to be one label per image.

Another direction is to use adversarial learning for semi-
supervised semantic segmentation [28]. This type of semantic
segmentation utilizes fully labeled images and unlabeled im-
ages to perform segmentation. For example, Hung et al. [29]
proposed an adversarial learning method for semi-supervised
semantic segmentation, and leverage unlabeled images to en-
hance the segmentation results. A fully-convolution discrimi-
nator network is trained between the labeled map and the input
image to optimize the segmentation loss, the adversarial loss,
and a semi-supervised loss based on the confidence map. For
dust detection, the CALIOP dust labels on-track are not able to
form fully labeled images, thus the adversarial learning is not
suitable. Further semi-supervised machine learning methods
for the task of dust detection are yet to be explored.

III. STUDY AREA AND DATA PREPARATION
A. Study areas

In this study, we selected three study areas covering different
spatiotemporal ranges, see Fig. 1, (1) North Atlantic Ocean
(74AW-20W, 13N-43N) for the whole year of 2014, (2) Asian
(110.9E-135.85E, 28.26N-44.38N) in Spring season (March,
April, and May) in 2014, and (3) Northern Africa, Europe,
and the Mediterranean (30W-60E, ON-60N) in the Summer
season (June, July, and August) in 2014. These three study
areas have different challenges regarding dust detection from
satellite imagery. The North Atlantic study area receives aloft
dust from Sahara desert in Africa’s west coast and the major
task of dust detection in this area is to differentiate dust pixels
from the ocean [30]. The Asian spring study area receives dust
from the Gobi desert and contains polluted dust from industrial



sources, and the major challenge in this area is the difficulty of
extracting dust from complex surface types [31]. The Northern
Africa study area has the most dust events during the summer
season, usually from aloft dust from the Sahara desert, and
the challenge is to differentiate atmospheric dust from desert
dust on the ground [32]. These three study areas are chosen to
explore the capability and robustness of the proposed method.

Fig. 1. Center points of the entire 2014 collocated data (25139 granules) and
the three study areas: (1) North Atlantic Ocean (74W-20W, 13N-43N), (2)
Asian (110.9E-135.85E, 28.26N-44.38N), and (3) Northern Africa, Europe,
and the Mediterranean (30W-60E, ON-60N).

B. VIIRS

The Visible Infrared Imaging Radiometer Suite (VIIRS)
instrument observes and collects global satellite observations
that span the visible and infrared (IR) wavelengths across land,
ocean, and atmosphere (https://ncc.nesdis.noaa.gov/VIIRS/).
VIIRS uses passive radiometer sensors. It has 22 channels
ranging from 0.41 pm to 12.01 pwm. Five of these channels
are high-resolution image bands or I-bands, and sixteen serve
as moderate-resolution bands or M-bands. In this study, we
use the 16 M-bands with 750 m spatial resolution across
visible/reflective, near IR, shortwave IR, medium-wave IR, and
longwave IR. Within these M-bands, M1-M5 and M7 primarily
provide ocean color aerosol information, M6 provides atmo-
spheric correction information, M8 provides cloud particle
size information, M9 provides cirrus cloud cover information,
M10 provides snow fraction information, M11 provides clouds
information, M12-M13 and M15-M16 provide sea surface
temperature and fires, and M 14 provides cloud top properties.

C. CALIPSO

The Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) provide range-resolved infor-
mation on the vertical distribution of aerosols and clouds
(https://www-calipso.larc.nasa.gov/). The Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) the instrument on-
board CALIPSO uses a two-wavelength elastic backscatter
laser that transmits linear polarized light at 532 nm and 1064
nm, coupled with a receiver telescope of 1 m diameter that
measures the perpendicular and parallel components of the
attenuated backscatter at 532 nm and the total attenuated
backscatter at 1064 nm. The CALIOP Level 2 (L2) aerosol
and cloud profile products include information on the aerosol
and cloud backscatter coefficient at 532 nm and 1064 nm, and

the particle depolarization ratio at 532 nm. CALIOP emits 20
laser pulses per second and measures curtains of attenuated
backscatter profiles along the satellite track with a vertical
resolution of up to 30 m [33]. CALIOP also provides a vertical
feature mask product profiling aerosol subtypes and cloud
profiles within 1 km and 5 km, along with other information
in the data. The aerosol subtypes are marine, dust, polluted
continental/smoke, clean continental, polluted dust, elevated
smoke, and dusty marine.

D. VIIRS data download and data preprocessing

This research builds on a collocated VIIRS-CALIPSO
dataset from Cai et al. [9]. The collocated data contains VIIRS
observations only on the CALIPSO tracks to reduce the nec-
essary file size. However, the CALIPSO tracks are too narrow
(333m in the cross-track direction) for dust spatial extent
detection. To obtain the spatial extent of dust, we downloaded
the VIIRS granules (each covering a swath of 3040 km
in the cross-track direction) corresponding to the collocated
data. Two VIIRS products (VNPO2MOD and VNP0O3MOD
products) are downloaded from the Atmosphere SIPS product
search website operated by the University of Wisconsin Madi-
son. VNPO2MOD is the product for VIIRS/NPP Moderate
Resolution 6-Min L1B Swath 750 m, and VNPO3MOD is the
VIIRS/NPP Moderate Resolution Terrain-Corrected Geoloca-
tion 6-Min L1 Swath 750m.

Then we subset the VIIRS granule to the rectangular region
based on the bounding boxes of the collocated data (Fig. 2).
To extract the information related to dust on the CALIPSO
track, we categorized the on-track pixels into two categories
based on aerosol sub-types provided by the CALIOP Level
2 product: 1) dust: pixels containing dust or polluted dust,
2) non-dust: pixels not containing dust or polluted dust. Both
categories are cloud screened.

IV. METHODS

The automatic framework of detecting dust extent is illus-
trated in the workflow, see Fig.3. Step 1, pixels on CALIPSO
tracks are categorized into dust and non-dust. Step 2, each
prepared VIIRS granule subset is clustered using K-means.
Step 3, the segmentation result is generated. Each cluster
occupies a proportion of the VIIRS granule subset. Step 4,
the dust signature of the study area is generated based on
all dust pixels on CALIPSO tracks, and the dust signature
is essentially a matrix with each dust pixel stored in a row,
and the corresponding VIIRS spectral band values stored in a
column. Step 5, similarities of the VIIRS spectral band values
between each cluster in the segmentation result and the dust,
signature are examined to determine if the resulting cluster is
more likely to be dust. Cluster(s) with high similarity values
will be considered as dust cluster(s). Step 6, the resulting dust
extent is generated. Step 7, pixels on track of CALIPSO are
used to validate the resulting dust extent. Silhouette scores are
also calculated to evaluate the quality of clustering.
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Fig. 2. TIllustration of data sets at a selected area in North Africa and the
Mediterranean, (a) VIIRS true-color composite, (b) VIIRS dust composite,
(c) the pixel category on CALIPSO track.
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Fig. 3. Workflow of the methods.

A. K-means clustering

K-means clustering is used to segment the VIIRS imagery
into different clusters initially. K-means clustering [34] is a
method that partitions a dataset of observations (z1,--- ,Z,)

into K (K < n) sub-groups called clusters (C1,---,Ck).
Each cluster Ck is identified by its mean my value and
generally an arbitrary label k. Observations from the dataset
are assigned to the cluster with the nearest mean my, the
Euclidean distance is generally used to measure the closeness
to the cluster center. The underlying principle of the K-means
clustering is to create a partition (C, - - - , Cx) that minimizes
the sum over the clusters of the within-cluster variance. This
within-cluster sum of squares (WCSS) is also called inertia.

Clusters and their means are derived iteratively starting
from a random guess of the cluster means my,--- ,mg, and
by alternatively proceeding through the following two steps
until reaching a stopping criterion. The first step is called
assignment. During which each observation is assigned to
the cluster with the nearest mean m; in terms of Euclidean
distance. The second step is called an update which re-
calculates the mean my, of the observations assigned to each
cluster during the previous step. Several stopping criteria are
used, such as no change in the cluster means at a tolerance
threshold, the number of iterations, and no improvement in
the cluster variance.

Many variations of the K —means clustering have been
proposed in the literature based on different initialization
methods, distances, or different cluster representatives. For
example, the K —medoids use the median of each cluster
instead of the mean. Nevertheless, these methods provide
similar results as the current K-means, and therefore their
results are not included in this report.

B. Dust cluster determination

After obtaining the clusters based on the K-means, it is
essential to determine which cluster (or potentially multiple
clusters) represents dust. We performed an initial data explo-
ration of the spectral bands. The probabilistic distribution of
each band on the CALIPSO track given their dust or non-dust
category is shown in Fig. 4, using the North Atlantic region.
In the figure, the x-axis labels the band number, and the y-axis
shows the value of the spectral bands. It is observed that for
bands M1-M11 (top two subplots), dust and non-dust bands
display similar mean values (orange line); however, the non-
dust category spreads out wider, indicating a larger variance.
Similar features are seen in bands M12-M16 (bottom two
subplots). The other two study areas show different probability
distributions, but the difference between dust and non-dust
categories remains. The significant spectral difference between
dust and non-dust categories inspired us to find the most
similar clusters to the dust category in spectral behavior and
consider them as dust clusters.

Then, the dust clusters from the initial K —means are
determined by incorporating information on dust pixels along
the CALIPSO track. First, all dust pixels from CALIPSO
within a selected study area are aggregated, and the values
of VIIRS M1-M16 bands associated with each dust pixel are
collected as the dust signature (right column of Fig. 4). The
dust signature is essentially a matrix D = [N, M], where N
is the number of dust pixels, and M is the number of spectral
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Fig. 4. (North Atlantic region) Boxplot shows the probability distributions
of all the bands on the CALIPSO track in the dust and non-dust categories.
Right column will be referred to as part of the dust signature.

bands (M1-M16). For each study area, a specific dust signature
matrix is composed.

Second, for a specific VIIRS imagery, after K —means
clustering, the similarities between each cluster and the dust
signature matrix is calculated in a pairwise way. For each
cluster, the number of pairwise similarity calculation is IV xn,
where n is the number of pixels within the cluster. The dust
signature matrix can be extensive regarding the N number.
To reduce the calculation, we select only 10,000 samples
randomly from the dust signature matrix.

The similarity function utilized here is the Euclidean dis-
tance. The cluster that has the highest similarity to the dust
signature matrix is considered as the dust cluster. Addition-
ally, several K-means clusters may contain dust information,
especially since several types of dust (pure, polluted, etc.) are
present. If the similarity values of other clusters to the dust
signature matrix are within a valid range, i.e., the similarity
values are also high enough, then these clusters are considered
as potential dust clusters. Potential dust clusters can comple-
ment the small dust region effect when the number of clusters
(K) is large.

V. EXPERIMENTS AND RESULTS

In this section, we demonstrate the dust extent resulted from
the proposed method, along with the accuracy metrics com-
paring to dust profiles on the collocated CALIPSO tracks and
the silhouette scores that evaluate the quality of the clustering
result. We compared the performances of the proposed method
in different study areas. We also computed the accuracy values
resulted from the proposed method and the physical infrared
method. In the experiment, the number of clusters is set to be
K = 10 by observing the clustering quality using a significant
number of datasets.

Experiments were conducted on the faki server of
UMBC High Performance Computing Facility (HPCF;
https://hpcf.umbc.edu/). Our proposed method was imple-
mented in Python with the support of libraries, such as Satpy
(for satellite image processing), scikit-learn (for K-means
clustering), and matplotlib (for graphics generation).

A. Dust extent extraction using the proposed method

Results from the three different study areas are demonstrated
in the following. To quantify the accuracy of dust detection, the
pixels along the CALIPSO track are used to verify the result.
This can be considered as verifying a classification of dust
vs. non-dust along the CALIPSO track. If a detected dust
pixel is truly in the dust category on the CALIPSO track, then
the detection is successful for the particular pixel. Similarly, if
a detected non-dust pixel is truly not in the dust category on the
CALIPSO track, then the detection is also successful for this
particular pixel. Other cases are considered as unsuccessful
detection.

For the North Africa region in the summer season, Fig.
5 shows the (a) VIIRS true colors composite image, the (b)
VIIRS dust composite image, the (c) the segmentation results
using K = 10, and (d) the extracted dust extent of the
VIIRS imagery. The overall accuracy is 0.78, with the dust
category having a precision of 0.69 and a recall of 0.33,
and the non-dust category having a precision of 0.79 and a
recall of 0.95. For the dust category, the percentage of dust
detected by the proposed method that is CALIPSO observed
dust is 0.69; and the recall is 0.33, meaning the percentage
of CALIPSO observed dust that is correctly detected by the
proposed method.

For the North Atlantic study area, Fig. 6 shows the com-
posite images and the dust extent result generated from the
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Fig. 5. (North Africa/Summer) Composite images of the VIIRS granule subset
at 2014184t1254 and dust extent result.

proposed method. The overall accuracy is 0.72, with the dust
category having a precision of 0.66 and a recall of 0.99, and
the non-dust category having a precision of 0.91 and a recall
of 0.44.
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Fig. 6. (North Atlantic) Composite images of the VIIRS granule subset at
2014224t1712 and dust extent result.

For the Asian dust study area in the Spring season, Fig.
7 shows the composite images and the dust extent result
generated from the proposed method. The overall accuracy
is 0.79, with the dust category having a precision of 0.61 and
a recall of 0.77, and the non-dust category having a precision
of 0.9 and a recall of 0.8.

Additionally, we computed the silhouette coefficients to
measure the clustering quality. The silhouette coefficient takes
values between —1 and 1, and it measures how well each
data-point belongs to each cluster. The silhouette coefficient
is interpreted as follows: the closer to 1, the better it is; a
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Fig. 7. (Asia/Spring) Composite images of the VIIRS granule subset at
2014064t0518 and dust extent result.

value around and below 0.5 indicates that data-point should
belong to neighboring clusters; negative values indicate that
data-points poorly belong to the assigned cluster.

Fig. 8 shows the average silhouette derived from all data-
points, and the silhouette for each data-point is shown. The
three examples from different study areas show the clustering
quality at around 0.4, which indicates that neighboring clusters
can be further merged. The low silhouette scores are due to
the high number of clusters. We found in the experiment that
decreasing the number of clusters can improve the silhouette
score. However, since the goal of the clustering task is to
extract dust extent, we intentionally set the number of clusters
high to segment the image as detailed as possible, and then use
the similarity calculation to merge potential dust clusters. As
can be seen in Fig. 8c, two clusters (2 and 8) are selected are
dust clusters and merged to be the final dust extent. Therefore,
the proposed method complements to relatively low silhouette
values.

B. Comparison of average accuracy with the physical infrared
method

Table I illustrates the mean accuracy value and the stan-
dard deviation generated from all sample imagery using the
proposed method, i.e., the mean overall accuracy at 0.64 and
the standard deviation at 0.11. The mean values and standard
deviations of precision and recall for both the dust and the non-
dust categories are also listed. Overall, the proposed method
achieves a high mean precision for the non-dust category
(0.82) and a high recall for the dust category (0.68).

There are potential ways to improve on-track accuracy of
the proposed method. First, the dust signature summarized for
each spatiotemporal region is not yet refined. A random sample
of 10,000 CALIOP dust labels from each specific spatiotem-
poral region is selected to form the dust profile. However,
the selected samples may not represent every possibility of
dust pixels. Second, the dust signature from CALIOP labels is
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Fig. 8. Silhouette coefficients of the three examples in Figs.5-7. (a) North
Africa region, average silhouette: 0.40. (b) North Atlantic region, average
silhouette: 0.42, (c) Asian Spring dust region, average silhouette: 0.36.

TABLE I
COMPARING THE ON-TRACK ACCURACY BETWEEN THE PROPOSED
METHOD AND THE PHYSICAL INFRARED METHOD.

Accuracy Accuracy
Proposed method | Ackerman (1997)
(31

Mean STD Mean STD
Overall accuracy 0.64 0.11 0.52 0.13
Precision (dust) 0.52 0.16 0.44 0.13
Recall (dust) 0.68 0.32 0.99 0.03
Precision (non-dust) | 0.82 0.15 0.88 0.27
Recall (non-dust) 0.60 0.24 0.23 0.16

limited by CALIPSO’s narrow coverage. Integrating multiple
years’ CALIOP data may improve the representativeness of
dust pixels. Third, the proposed method is sensitive to the
number of clusters (K). Each separate imagery might require
a different initial K number, whereas we specify the number
of clusters as K = 10 in the experiments.

Comparing with the physical infrared method [3], the pro-
posed method achieves a higher mean overall accuracy (0.64
vs. 0.52). For the dust category, the proposed method results
in a higher mean precision (0.52 vs. 0.44), but a lower recall
(0.68 vs. 0.99). This indicates that the proposed method has a
higher percentage of detected dust that is CALIPSO observed
dust, but a lower percentage of CALIPSO observed dust that
is truly detected. For the non-dust category, the proposed
method results in a lower mean precision (0.82 vs. 0.88),
but a higher recall (0.60 vs. 0.23). This indicates that the
proposed method has a lower percentage of detected non-dust
that are CALIPSO observed non-dust, but a higher percentage
of CALIPSO observed non-dust that are truly detected.

Fig. 9 shows the dust extent extracted from the physical
infrared method, where the dust extents are more significant
than the ones generated from the proposed method. Compared
to the true-color and dust composites, it can be observed
that the physical infrared method generates several mistakenly
extracted dust regions. For the case of July 3, 2014, the
physical infrared method wrongly treats the arid area in the
Sahara region as dust. For the case of Mar 5, 2014, the
physical infrared method also treats the entire southern part
of the imagery as dust, where the true-color imagery clearly
shows a thick cloud. It seems that the physical infrared method
differentiates more likely the cloud (white regions in Fig. 9)
from other pixels (yellow regions in Fig. 9), but sometimes it
also fails to detect the cloud as well.

C. Comparison of average accuracy using the proposed
method among three different study areas

Table II illustrates the mean value and standard deviation
of accuracy metrics using the proposed method over the three
different study areas. Overall, the proposed method performs
best detecting the Asian Spring dust with an accuracy of 0.71
but performs worst (overall accuracy: 0.60) detecting dust
extents in the North Atlantic region.

For the dust category, the mean precision ranges 0.45 —
0.55 for the three study areas, indicating 50% of detected
dust is CALIPSO observed dust; but the mean recall shows
significant differences among the three areas. The mean recall
for the North Atlantic region is the highest (0.99), indicating
that almost all CALIPSO observed dust pixels are successfully
detected. The mean recall for North African Summer dust
is the lowest (0.42), indicating that less than half of the
CALIPSO observed dust pixels are detected. One of the
assumptions for the high recall values in the North Atlantic
region is that the surface type in this region is relatively simple:
ocean or cloud. It is relatively easier than detecting dust in the
other two study areas. The North African study area contains
arid areas or deserts, which makes it difficult to differentiate
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Fig. 9. Dust extent resulted from the physical infrared method for the three
example imagery of Figs.5-7. Sub-images a (true color composites), b (dust
composites), and ¢ (results generated from the proposed method) are replicates
of images in Figs.5-7. Subimages d are results generated by Ackerman [3].

TABLE II
COMPARING THE ON-TRACK ACCURACY USING THE PROPOSED METHOD
AMONG THREE DIFFERENT STUDY AREAS.

North Africa | North Atlantic Asia
Summer Spring
Mean | STD | Mean | STD | Mean | STD
Overall 0.64 0.10 0.60 0.12 0.71 0.07
accuracy
Precision 0.56 0.15 0.51 0.13 0.47 0.19
(dust)
Recall 0.42 0.19 0.99 0.01 0.67 0.33
(dust)
Precision 0.68 0.11 0.96 0.03 0.87 0.09
(non-dust)
Recall 0.78 0.12 0.33 0.13 0.70 0.15
(non-dust)

from aloft dust particles. The Asian study area contains a more

complex mixture of surface types, including shrubs, forests,
and deserts.

For the non-dust category, the mean precision ranges 0.68
— 0.96, with the highest precision over the North Atlantic
area, and the lowest precision over the North Africa area.
This indicates that in the North Atlantic area, almost all of
the detected non-dust are CALIPSO observed non-dust, but in
the North Africa area, only less than 70% of the detected non-
dust are CALIPSO observed non-dust. The mean recall values
for the North Africa and Asia study areas are relatively high
(0.78 and 0.70), whereas the mean recall for the North Atlantic
study area is relatively low (0.33). This indicates that in the
North Atlantic area, only 33% of the CALIPSO observed non-
dust pixels are detected. This is probably due to the fact that
the CALIPSO observed non-dust pixels include cloud pixels
and pixels of other aerosol types, such as marine aerosols,
continental aerosols, or smoke. The North Atlantic study area
contains significantly more cloud pixels than the other study
areas, so the mean recall value is the lowest.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we are using a semi-supervised machine
learning method to identify dust extents from satellite imagery.
We designed a workflow to extract dust signature within
spatiotemporal ranges based on CALIOP identified dust pixels
and used these data to select from the K-means clusters as the
final dust extents. We examined the sensitivity of our method
in different experiments, including 1) testing the capability
in detecting dust in different study areas, 2) comparing the
average accuracy to a physical infrared method, 3) comparing
the average accuracy among different study areas. We also
validated our results, 1) using the common classification ac-
curacy matrix for all the pixels along the CALIPSO tracks, and
2) using silhouette coefficient scores to evaluate the clustering
performances.

For the future work, we will improve this study in the fol-
lowing directions. First, we will further validate the resulting
dust extents by comparing it with other existing aerosol and
dust products. One of the products we tried in the experiments
was the Visible Infrared Imaging Radiometer Suite Environ-
mental Data Record (VIIRS Aerosol EDR) product [35], but
the product was not able to detect thin dust and failed to
identify dust pixels in any of our validation time periods.
Second, we will continue search for available products to
validate our results further. In addition, this research utilizes
the CALIOP data to guide the clustering, but the CALIOP
data is only available along the track; thus, it cannot be used
in a fully supervised setup for spatial clustering. Third, we
will explore semi-supervised approaches as an alternative to
segment dust from imagery using a small number of CALIOP-
derived dust labels.

The semi-supervised machine learning method for dust
detection can be easily adopted for other spectral and ther-
mal satellite products, such as the Level 1 products from
MODIS, Geostationary Satellite Server (GOES), and Spinning
Enhanced Visible and Infrared Imager (SEVIRI). In addition,



the procedure of composing a signature matrix using a limited
amount of available ground-truth labels can be applied to the
detection of various other types of extreme events, such as
wildfires, tropical cyclones, dust storms.
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