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Abstract

Existing single-stream logging schemes are unsuitable for in-memory
database management systems (DBMSs) as the single log is often
a performance bottleneck. To overcome this problem, we present
Taurus, an efficient parallel logging scheme that uses multiple log
streams, and is compatible with both data and command logging.
Taurus tracks and encodes transaction dependencies using a vector
of log sequence numbers (LSNs). These vectors ensure that the de-
pendencies are fully captured in logging and correctly enforced in
recovery. Our experimental evaluation with an in-memory DBMS
shows that Taurus’s parallel logging achieves up to 9.9x and 2.9x
speedups over single-streamed data logging and command logging,
respectively. It also enables the DBMS to recover up to 22.9x and
75.6X faster than these baselines for data and command logging,
respectively. We also compare Taurus with two state-of-the-art
parallel logging schemes and show that the DBMS achieves up to
2.8% better performance on NVMe drives and 9.2X on HDDs.
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1 Introduction

A database management system (DBMS) guarantees that a trans-
action’s modifications to the database persist even if the system
crashes. The most common method to enforce durability is write-
ahead-logging, where each transaction sequentially writes its changes
to a persistent storage device (e.g., HDD, SSD, NVM) before it com-
mits [29]. With increasing parallelism in modern multicore hard-
ware and the rising trend of high-throughput in-memory DBMSs,
the scalability bottleneck caused by sequential logging [16, 35, 37,
44] is onerous, motivating the need for a parallel solution.

It is non-trivial, however, to perform parallel logging because
the system must ensure the correct recovery order of transactions.
Although this is straightforward in sequential logging because the
LSNs (the positions of transaction records in the log file) explicitly
define the order of transactions, it is not easy to efficiently recover
transactions that are distributed across multiple logs without central
LSNs. A parallel logging scheme must maintain transactions’ order
information across multiple logs to recover correctly.
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There are several parallel logging and recovery proposals in
the literature [16, 35, 37, 44]. These previous designs, however, are
limited in their scope and applicability. Some algorithms support
only parallel data logging but not parallel command logging [14,
35, 44]; some can only parallelize the recovery process but not the
logging process [8, 30]; a few protocols assume NVM hardware but
do not work for conventional storage devices [3, 4, 6, 10, 15, 21,
22, 36]. As such, previously proposed methods are insufficient for
modern DBMSs in diverse operating environments.

To overcome these limitations, we present Taurus, a lightweight
protocol that performs both logging and recovery in parallel, sup-
ports both data and command logging, and is compatible with mul-
tiple concurrency control schemes. Taurus achieves this by tracking
the inter-transaction dependencies. The recovery algorithm uses
this information to determine the order of transactions. Taurus
encodes dependencies into a vector of LSNs, which we define as
the LSN Vector (LV). LSN Vectors are inspired by vector clocks to
enforce partial orderings in message-passing systems [11, 27]. To
reduce the overhead of maintaining LVs, Taurus compresses the
vector based on the observation that a DBMS can recover transac-
tions with no dependencies in any order. Thus, Taurus does not
need to store many LVs, thereby reducing the space overhead.

We compare the performance of Taurus to a serial logging scheme
(with and without RAID-0 setups) and state-of-the-art parallel log-
ging schemes (i.e., Silo-R [35, 44] and Plover [45]) on YCSB and
TPC-C benchmarks. Our evaluation on eight NVMe SSDs shows
that Taurus with data logging outperforms serial data logging by
9.9% at runtime, and Taurus with command logging outperforms
the serial command logging by 2.9%. During recovery, Taurus with
data logging and command logging is 22.9% and 75.6X faster than
the serial baselines, respectively. Taurus with data logging matches
the performance of the other parallel schemes, and Taurus with
command logging is 2.8x faster at both runtime and recovery. An-
other evaluation on eight HDDs shows that Taurus with command
logging is 9.2X and 6.4X faster than these parallel algorithms in
logging and recovery, respectively.

The main contributions of this paper include:

e We propose the Taurus parallel scheme that supports both
command logging and data logging. We formally prove the
correctness and liveness in the extended version [39].

e We propose optimizations to reduce the memory footprint of
the dependency information that Taurus maintains and exten-
sions for supporting multiple concurrency control algorithms.

e We evaluate Taurus against sequential and parallel logging
schemes, and demonstrate its advantages and generality.

o We open source Taurus and evaluation scripts at https://github.
com/yuxiamit/DBx1000_logging.
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Figure 1: Data Dependency in Parallel Logging — Transaction T2 de-
pends on T1. The two transactions write to different logs.

2 Background

We first provide an overview of conventional serial logging proto-
cols and then discuss the challenges to support parallel logging.

2.1 Serial Logging

In a serial logging protocol, the DBMS constructs a single log stream
for all transactions. The protocol maintains the ordering invariant
that, if T2 depends on T1, then the DBMS writes T2 to disk after
T1. A transaction commits only after it successfully writes the
transaction’s log records to disk. During recovery, the DBMS reads
the log and replays each transaction sequentially until it encounters
an incomplete log record or the end of the file.

Generally, there are two categories of logging schemes. The first
is data logging, where log records contain the physical modifications
that transactions made to the database. The recovery process re-
applies these changes to the database. The other category, command
logging [26], reduces the amount of log data by only recording the
high-level commands (i.e., invocations of stored procedures). The
log records for these commands are typically smaller than physical
changes. The recovery process involves more computation, as all
transactions are re-executed. If the disk bandwidth is the bottleneck,
command logging can substantially outperform data logging.

Although serial logging is inherently sequential, one can improve
its performance by using RAID disks that act as a single storage
device to increase disk bandwidth [31]. Serial logging can also
support parallel recovery if the DBMS uses data logging [33, 35, 44].
But the fundamental property that distinguishes serial logging from
parallel logging is that it relies on a single log stream that respects
all the data dependencies among transactions. On a modern in-
memory DBMS with many CPU cores, such a single log stream is a
scalability bottleneck [35]. Competing for the single atomic LSN
counter inhibits performance due to cache coherence traffic [43].

2.2 Parallel Logging Challenges

Parallel logging allows transactions to write to multiple log streams
(e.g., one stream per disk), thereby avoiding serial logging’s scal-
ability bottlenecks to satisfy the high throughput demands of in-
memory DBMSs. Multiple streams inhibit an inherent natural or-
dering of transactions. Therefore, other mechanisms are required
to track and enforce the ordering among these transactions. Fig. 1
shows an example with transactions T1 and T2, where T2 depends
on T1 with a read-after-write (RAW) data dependency. In this ex-
ample, we assume that 71 writes to Log 1 and T2 writes to Log 2
and they may be flushed in any order. If T2 is already persistent in
Log 2 while T1 is still in the log buffer (shown in Fig. 1), the DBMS
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must not commit T2 since T1 has not committed. Furthermore, if
the DBMS crashes, the recovery process must be aware of such
data dependency and therefore should not recover T2. Specifically,
parallel logging faces the following three challenges.

Challenge #1 - When to Commit a Transaction: The DBMS
can only commit a transaction if it is persistent and all the transac-
tions that it depends on can commit. In serial logging, this require-
ment is satisfied if the transaction itself is persistent, indicating all
the preceding transactions are also persistent. In parallel logging,
however, a transaction must identify when other transactions that
it depends on can commit, especially those on other log streams.

Challenge #2 — Whether to Recover a Transaction: Early-
Lock-Release (ELR) prevents transactions from waiting for log per-
sistency during execution by allowing a transaction to release locks
early before the log records hit disks [8]. But this means that during
recovery, the DBMS has to determine whether transactions success-
fully committed before a crash. It ignores any transaction that fails
to complete properly. For the example in Fig. 1, if T2 is in the log
but T1 is not, the DBMS should not recover T2.

Challenge #3 — Determine the Recovery Order: The DBMS
must recover transactions in the order that respects data dependen-
cies. If both T1 and T2 in Fig. 1 are persistent and have committed
before the crash, the DBMS must recover T1 before T2.

One can resolve some of the above issues if the DBMS satisfies
certain assumptions. For example, if the concurrency control al-
gorithm enforces dependent transactions to write to disks in the
corresponding order, this solves the first and second challenges: the
persistence of one transaction implies that any transactions that it
depends on are also persistent. If the DBMS uses data logging, it
only needs to handle write-after-write (WAW) dependencies, but
not read-after-write (RAW) or write-after-read (WAR) dependen-
cies. For example, consider a transaction T1 that writes A=1, and a
transaction T2 that reads A and then writes B=A+1. Suppose the
initial value of A is 0, and the DBMS schedules T2 before T1, result-
ing in A=1 and B=1. With this schedule, T1 has a WAR dependency
on T2. If the DBMS does not track WAR dependencies and perform
command logging, running T1 before T2 will result in A=1 and B=2,
violating correctness. But if the DBMS performs data logging, T1
will have a record of A=1 and T2 will have a record of B=1. Re-
gardless of the recovery order between T1 and T2, the resulting
state is always correct. Supporting only data logging simplifies
the protocol [35, 44]. These assumptions, however, would hurt
either performance or generality of the DBMS. Our experiments in
Sec. 5 show that Taurus command logging outperforms all the data
logging baselines by up to 6.4X in both logging and recovery.

3 Taurus Parallel Logging

We now present the Taurus protocol in detail. The core idea of
Taurus is to use a lightweight dependency tracking mechanism
called LSN Vector. After first describing LSN Vectors, we then ex-
plain how Taurus uses them in Sec. 3.2 and Sec. 3.3 during runtime
and recovery operations, respectively. Although Taurus supports
multiple concurrency control schemes (see Sec. 4.3), for the sake
of simplicity, we assume strict two-phase locking (S2PL) in this
section. We also assume that the DBMS uses multiple disks with
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Figure 2: LSN Vector (LV) example — The i*”* element of transaction
T’s LV is an LSN of the i-th log, indicating that T depends on one or
more transactions (rendered in dark blue) in the i-th log before that
LSN.

each log file residing on one disk. Each transaction writes only a
single log entry to one log file at commit time. This simplifies the
protocol and is used by other in-memory DBMSs [9, 19, 35, 44].

3.1 LSN Vector

An LSN Vector (LV) is a vector of LSNs that encodes the dependen-
cies between transactions. The DBMS assigns it to either (1) a trans-
action to track its dependency information or (2) a data item to cap-
ture the dependencies between transactions accessing it. The dimen-
sion of an LV is the same as the number of logs. Each element of LV
indicates that a transaction T may depend on transactions before a
certain position in the corresponding log. Specifically, given a trans-
action T and its assigned LV: TLV = (LV[1],LV[2],...,LV[n]),
for any 1 < i < n, the following property holds:

PROPERTY 1. Transaction T does not depend on any transaction
T' that maps to the i-th log with LSN > LV [i].

Fig. 2 shows the LV of an example transaction T with T.LV [2]=7.
It means that T may depend on any transaction that maps to Log 2
with an LSN < 7 but no transaction with an LSN > 7. The semantics
of LV is similar to vector clocks [11, 27]. The following two opera-
tions will be frequently used on LVs: ElemWiseMax and comparison.
The ElemWiseMax is the element-wise maximum function:

LV = ElemWiseMax(LV',LV") = Vi, LV [i] = max(LV'[i], LV"[i])
For comparison, the relationships are defined as follows:
LV <LV’ = Vi LV[i] < LV[i].

Following the semantics of vector clocks, LV captures an approxi-
mation of the partial order among transactions — LVs of dependent
transactions are always ordered and LVs of independent transac-
tions may or may not be ordered. An LV of a transaction is written
to the log together with the rest of the log entry. The dependency
information captured by the LVs is sufficient to resolve the chal-
lenges in Sec. 2.2: (1) A transaction T can commit if it is persistent
and each log has flushed to the point specified by T.LV, indicating
that all transactions that T depends on are persistent. (2) During
recovery, the DBMS determines that a transaction T has committed
before the crash if each log has flushed to the point of T.LV. (3)
The recovery order follows the partial order specified by LVs.

3.2 Logging Operations

The Taurus protocol runs on worker threads and log manager
threads (denoted as Ly, L, . . ., L,). Each log manager writes to a
unique log file. Each worker is assigned to a log manager and we
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assume every log manager has exactly p workers. We first describe
the protocol’s data structures and then explain its algorithms.

Data Structures: On top of a conventional 2PL protocol, Taurus
adds the following data structures to the system.

e T.LV - Each transaction T contains a T.LV tracking its depen-
dency as in Sec. 3.1. Initially, T.LV is a vector of zeroes.

o Tuple.readlV/writeLV - Each tuple contains two LVs that serve
as a medium for transaction LV's to propagate between transac-
tions. Intuitively, these vectors are the maximum LV of trans-
actions that have read/written the tuple. Initially, all elements
are zeroes. This does not necessarily incur extra linear storage
because Taurus maintains them in the lock table (cf. Sec. 4.1).

o [.logLSN — The highest position that has not been allocated in
the log file of L. It is initialized as zero. Workers reserve space
for log records by incrementing L.logLSN.

o L.allocatedLSN — A vector of length p that stores the last LSN
allocated by each worker of L. Initially, all elements are co.

o [ filledLSN — A vector of length p, storing the last LSN filled
by each worker of L. Initially, all elements are zeroes.

The purpose of L.allocatedLSN and L.filledLSN is to determine
the point to which the log manager L can safely flush its log.

o Global.PLV - PLV stands for Persistent LSN Vector. It is a global
vector of length n. The element PLV; denotes the LSN that log
manager L; has successfully flushed up to.

Worker Threads: Worker threads track dependencies by en-
forcing partial orders on the LSN Vectors. The logic of a worker
thread is contained in the Lock and Commit functions shown in
Alg. 1. The 2PL locking logic is in the FetchLock function (Line 2);
Taurus supports any variant of 2PL (e.g., no-wait). After a worker
thread acquires a lock, it runs Lines 3-5 to update the LV of the
transaction: It first updates T.LV to be no less than the LV of previ-
ous writing transactions to reflect WAW and RAW dependencies. If
the access is a write, it also updates T.LV using the tuple’s readLV.

The DBMS calls the Commit function when the transaction fin-
ishes. At this moment, T has locked the tuples it accessed. Since
Taurus updates T.LV for each access, it already captures T's de-
pendency information. It checks if T is read-only, and skips gen-
erating log records if so. Otherwise, it creates the log record for T
(Line 8). The record contains two parts: the redo log and a copy of
T’s current LV. The contents of the redo log depends on the logging
scheme: the keys and values (for data logging), or the high-level
command (for command logging). The DBMS writes the record into
the corresponding log manager’s buffer by WriteLogBuffer (Line 10).
The algorithm then updates T.LV[i] to the returned LSN (Line 11),
thereby allowing future transactions to capture their dependencies
on T. This update only changes T.LV, while the copy of T.LV in
the buffer stays the same. Lines 13-17 update the metadata of the
tuples before releasing the locks. If T reads (writes) a tuple, it up-
dates the tuple’s readLV (writeLV) using T.LV, indicating that the
tuple was read (written) by T and future transactions must respect
this dependency. Updating the LVs and releasing the lock must be
executed atomically, otherwise multiple transactions concurrently
updating the readLV can cause race conditions leading to incorrect
dependencies. As most 2PL schemes use latches to protect lock
release, updating LVs can be piggybacked within those latches.



Algorithm 1: Worker Thread with index j for log L;

1 Function Lock(key, type, T)

# Lock the tuple following the 2PL protocol.

2 FetchLock(key, type, T),

3 T.LV = ElemWiseMax(T.LV, DB[key].writeLV);

4 if type is write then

5 L T.LV = ElemWiseMax(T.LV, DB[key].readLV);

6 Function Commit(T)
7 if T is not read-only then
# Include T’s LV into the log record.

8 logRecord = {CreateLogRecord(T), copy(T.LV)};

9 recordSize = GetSize(logRecord);

LSN = WriteLogBuffer(logRecord, recordSize);
T.LV[i] = LSN# Update T.LV[i] in the memory;

10

11

for key € T’s accesssetdo
\"if T reads DB[key] then # Atomic Section,

: L DB[key].readLV = ElemWiseMax(T.LV, DB[key].readLV); :

: if T writes DB[key] then

\ # T.LV is always no less than DB[key].writeLV
\ | DB[key].writeLV = TLV;

|

Asynchronously commit T if PLV > T.LV and all transactions in

12
13
14

15

16

17

18
| L with smaller LSNs have committed,;
Function WriteLogBuffer(logRecord, recordSize)
L;.allocatedLSN([j] = L;.logLSN;;

Isn = AtomicFetchAndAdd(L;.logLSN, recordSize),
memcpy(L;.logBuffer + Isn, logRecord, recordSize);
L; filledISN[j] = Isn + recordSize;

return Isn + recordSize

20

21

22

23

24

After the DBMS releases transaction T's locks, it has to wait for
PLV to catch up such that PLV > T.LV (indicating T is durable).
All transactions within the same log manager commit sequentially.
Since each log manager flushes records sequentially, this does not
introduce a scalability bottleneck. We employ the ELR optimiza-
tion [8] to reduce lock contention by allowing transactions to re-
lease locks before they are durable.

The Commit function calls WriteLogBuffer (Lines 19-24) to write
an entry into the log buffer. It allocates space in the log manager’s
(L;) buffer by atomically incrementing its LSN by the size of the log
record (Line 21). It then copies the log record into the log buffer
(Line 22). Lines 20 and 23 are indicators for the log manager to decide
up to which point it can flush the buffer to disk. Specifically, before
a transaction increments the LSN, it notifies the log manager (L;)
that its allocated space is no earlier than its current LSN (Line 20).
This leads to allocatedLSN[j] > filledLSN][j], which instructs L;
that the contents after allocatedLSN][j] are unstable and should
not be flushed to the disk. After the log buffer is filled, the transac-
tion updates L;.filledLSN] j] so that allocatedLSN][ j] < filledLSN[j],
indicating that the worker thread has no ongoing operations.

To show how Taurus tracks dependencies, we use the example in
Fig. 3 with three transactions (T1, T2, T3) and two rows A,B. WLOG,
we assume T1 and T2 are assigned to Log 1 and T3 is assigned to
Log 2. In the beginning, A has a writeLV [4,2] and a readLV [3,7]
while object B has [8,6] and [5,11]. @ The DBMS initializes the
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Figure 3: Worker Thread Example. Three transactions (T1, T2, and
T3) are accessing two objects A and B. Transactions are logged to
two files. The diagram is drawn in the time order.

transactions’ LVs as [0,0]. ® TI acquires an exclusive lock on A
and writes to it. Then, T1 updates T1.LV to be the element-wise
maximum among A.writeLV, A.readLV, and T1.LV. In this example,
T1.LV=[max(4,3,0), max(2,7,0)] = [4,7]. Any previous transactions
that ever read or wrote A should have an LV no greater than T1.LV.
® T1 acquires a shared lock on B and then reads it. Then, T1 up-
dates T1.LV to be the element-wise maximum among B.writeLV
and T1.LV. Now T1.LV= [8,7]. @ T2 wants to read A but has to
wait for T1 to release the lock. G T3 wants to write B but has to
wait as well. @ After T1 finishes, T1 writes its redo record and
a copy of T1.LV into the log buffer. After successfully writing to
the buffer, T1 learns its LSN in Log 1 is 16. Then, T1 updates the
first dimension of T1.LV to be 16. Now, T1.LV=[16,7]. ® TI updates
A.writeLV = ElemWiseMax(A.writeLV, T1.LV) = T1.LV = [16,7],
and B.readLV = ElemWiseMax(B.readLV, T1.LV) = [16,11]. Then,
T1releases the locks. After this, T1 waits for itself and all the transac-
tions it depends on to become persistent, equivalently, PLV > T1.LV.
The thread can process other transactions, and periodically check if
T1 should be marked as committed. & T2 acquires the shared lock
on A. T2 then updates T2.LV=ElemWiseMax (T2.LV, A.writeLV) =
[16,7]. This update enforces the partial order that T1.LV < T2.LV
because T2 depends on T1. Since T2 is read-only, it does not create
a log record. It enters the asynchronous commit by waiting for
PLV > T2.LV. ® T3 acquires an exclusive lock on B and updates
T3.LV = ElemWiseMax( T3.LV, B.readLV, B.writeLV) = [16,11]. The
fact that T3 depends on T1 reflects on T3.LV > T1.LV. (o) The log-
ging threads have flushed all transactions before T1.LV = T2.LV =
[16,7] and updated PLV. Observing PLV > [16,7], Taurus marks T1
and T2 as committed. (1) T3 writes its redo record and a copy of
T3.LV to the buffer of Log 2, and gets its LSN as 21. T3.LV increases
to [16,21]. (1) T3 sets B.writeLV to [16, 21] and releases the lock. (13)
When PLV achieves T3.LV = [16, 21], Taurus commits T3.

Log Manager Threads: We use a dedicated thread serving as
the log manager for each log file. The main job of the log manager
is to flush the contents in the log buffer into the file on disk. It
periodically invokes Alg. 2. The algorithm identifies up to which
point of the buffer that no active worker threads are processing.



Algorithm 2: Log Manager Thread L;

Algorithm 3: Log Manager Recovery for Thread L;.

1 readyLSN = L;.logLSN;

2 foreach worker thread j that maps to L; do
# We assume allocatedLSN [j] and filledLSN | j]| are fetched

together atomically;
3 if allocatedLSN[j] > filledLSN[j] then
4 L readyLSN = min(readyLSN, allocatedLSN [j])

5 flush the buffer up to readyLSN;
6 PLV[i] = readyLSN;

Taurus uses allocatedLSN and filledLSN to achieve this goal.
readyLSN is the log buffer position up to which the DBMS can safely
flush; its initial value is L;.logLSN (Line 1). For each worker thread j
that belongs to L;, if allocatedLSN] j] > filledLSN] j], the transaction
in thread j is filling the buffer at a position after allocatedLSN] j]
(Alg. 1, Line 20 and Line 23), so readyLSN should not be greater than
allocatedLSN[ j]. Otherwise, no transaction in worker j is filling
the log buffer, so readyLSN is not changed (Lines 2-4). Lastly, the
log manager flushes the buffer up to readyLSN and updates PLV[i].

The frequency that the DBMS flushes log records to disk is based
on the performance profile of the storage devices. Although each
flush might enable a number of transactions to commit, transac-
tions in the same log file still commit in a sequential order. This
removes ambiguity of transaction dependency during recovery. Se-
quential committing will not affect scalability because ELR prevents
transactions waiting on the critical path.

3.3 Recovery Operations

Taurus’ recovery algorithm replays transactions following the par-
tial orders between their LVs, sufficient to respect all the data
dependencies. Resolving the recovery order is equivalent to per-
forming topological sorting in parallel on a dependency graph.

Data Structures: The recovery process contains the following:

e [.pool — For each log manager, pool is a queue containing
transactions that are read from the log but not recovered.

L.maxLSN - For each log manager, maxLSN is the LSN of the
latest transaction that has been read from the log file.
Global.RLV — RLV is a vector of length n (the number of log
managers). An element RLV; means that all transactions map-
ping to L; with LSN < RLV; have been successfully recovered.
Therefore, a transaction T can start its recovery if .LV < RLV,
at which point all transactions that T depends on have been
recovered. Initially, RLV is a vector of zeroes.

Global ELV - ELV is a vector of length n. An element ELV; is
the number of bytes in Log i. The DBMS uses this vector to
determine if a transaction committed before the crash. Before
the recovery starts, Taurus fetches the sizes of the log files to
initialize ELV, namely, ELV[i] is the size of Log i.

Log Manager Threads: In Alg. 3, the thread reads the log file
and decodes records into transactions (Line 1). A transaction T
committed before the crash if T.LV < ELV. Otherwise, T and trans-
actions after it are ignored for recovery. The transaction is enqueued
into the tail of pool and the value of maxLSN is updated to be the
LSN of T (Lines 2-3). It is crucial that the update of maxLSN occurs
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1 while T = L;.DecodeNext() and T.LV < ELV do
2 L pool.Enqueue(T);
3

pool.maxLSN = T.LSN;
Algorithm 4: Worker Recovery Thread

1 while not IsRecoveryDone() do

# FetchNext atomically dequeues a transaction T such that
T.LV < RLV;

2 T = pool.FetchNext(RLV),

3 Recover(T);

re 4. -~ "y -~ - - - - - - -y - --& T |

4 . if pool is empty then ‘
s | | RLV[i] = Max(RLV[i], pool.maxLSN); |
6 relse I
|

|

after it runs Enqueue, otherwise the transactions may recover in
an incorrect order. If the pool is empty after the DBMS updates
maxLSN but before it enqueues T, then it sets RLV [i]=T.LSN to
indicate that T'is recovered; a worker might recover a transaction
that depends on T before T itself is recovered.

Worker Threads: In Alg. 4, the worker threads keep executing
until the log manager finishes decoding all the transactions and the
pool is empty. A worker thread tries to get a transaction Tfrom pool
such that T.LV < RLV (Line 2). Then, the worker thread recovers
T (Line 3). For data logging, the data elements in the log record
are copied to the database; for command logging, the transaction
is re-executed. During the re-execution, no concurrency control
algorithm is needed, since no conflicts will occur during recovery.
Then, RLV[i] is updated (Lines 4-7). If pool is empty, the thread sets
RLV[i] to pool.maxLSN, the largest LSN of any transaction added to
pool; otherwise, RLV[i] is set to one less than the first transaction’s
LSN, indicating that the previous transaction has been recovered
but not the one blocking the head of pool. In the pseudo-code,
the code for RLV update is protected with an atomic section for
correctness. We use a lock-free design to avoid this critical section
in our implementation. The pool data structure described above
can become a potential scalability bottleneck if a large number of
workers are mapped to a single log manager. There are additional
optimizations that address this issue. For example, we partition
each pool into multiple queues. We also split RLV into local copies
and add delegations to reduce false sharing in CPU caches.

3.4 Supporting Index Operations

Although our discussion has focused on read and update operations,
Taurus can also support scan, insert, and delete operations with an
additional index locking protocol. For a range scan, the transaction
(atomically) fetches a shared lock on each of the result rows using
the Lock function in Alg. 1. When the transaction commits, it goes
through the Commit function and updates the readLV’s of the rows.
To avoid phantoms, the transaction performs the same scan again
before releasing the locks in Commit. If the result rows are different,
we abort the transaction. This scan-twice trick is from Silo [35].



We notice that, assuming 2PL, the transaction only needs to record
the number of rows returned. In the second scan, the rows in the
previous scan still exist because of the shared locks. Therefore, if
the row count remains the same, the result rows are not changed.
If a transaction Tinserts a row with primary key key, it initializes
DB[key].readLV and DB[key].writeLV to be 0. Because the index for
DB[key] is not updated yet, other transactions will not see the new
row. In the Commit function after T releases the locks, it updates
DB[key].writeLV = T.LV. Finally, T inserts key into the index.
When a transaction T deletes a row with primary key key, it first
grabs an exclusive lock of the row and updates T.LV = ElemWiseMax
(T.LV,DBl|key].readLV, DB|key].writeLV). Other transaction try-
ing to access this row will abort due to lock conflicts. In the Commit
function before T releases the locks, it removes key from the index.

3.5 Limitations of Taurus

One potential issue is that the size of LV is linear to the number of
log managers. For a large number of log managers, the computa-
tion and storage overhead of LV will increase. In contrast, serial
logging maintains a single LSN and therefore avoids this problem.
Although we believe most DBMSs use a relatively small number of
log files and thus this overhead is acceptable, Taurus can leverage
LV compression (Sec. 4.1) and SIMD (Sec. 5.6) to mitigate this issue.
Another limitation of Taurus is the latency during recovery for
workloads with high contention. For these workloads, the inherent
recovery parallelism can be lower than the number of log managers.
A large number of inter-log dependencies will exist. In Taurus, the
dependencies propagate through RLV (Alg. 4), incurring relatively
long latency between the recovery of dependent transactions. In
contrast, a serial recovery scheme has no delay between consecu-
tive transactions and may deliver better performance. To address
this, when the contention is high, Taurus will degrade to serial
recovery. Specifically, a single worker recovers all the transactions
sequentially. The worker checks every pool and recovers the trans-
action that satisfies T.LV < RLYV; this approach incurs no delay
between two consecutive transactions. We evaluate this in Sec. 5.6.
Lastly, to exploit parallelism in recovery, workers might need to
scan the whole pool to find the next transaction ready to recover.
Heuristic optimizations like zig-zag scans could help. We defer
developing a data structure for Taurus recovery to future work.

4 Optimizations and Extensions

We now discuss optimizations to reduce overhead, and extensions
to support Optimistic Concurrency Control (OCC) and MVCC.

4.1 Optimization: LV Compression

The design of Taurus as described in Sec. 3 has two issues: (1) the
DBMS stores readLV and writeLV for every tuple, which changes
the data layout and incurs extra storage overhead; (2) the transac-
tion’s LV is stored for each log record, potentially increasing the
log size especially for command logging where each entry is rela-
tively small. We describe optimizations that address these problems.

Tuple LV Compression: Keeping LV's for tuples accessed a
long time ago is unnecessary. Their LVs are too small to affect
active transactions. This optimization thus stores LVs only for
active tuples in the lock table. Transactions operate on their LVs
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Algorithm 5: LV Compression for Log Records
1 Function FlushPLV()

2 currentPLV = Global. PLV

3 logBuffer.append(currentPLV),

4 | LPLV = currentPLV;

5 Function Compress(LV)

6 compressedLV = LV,

7 foreach LV[j] € LV do

8 if LV[j] < L;.LPLV[j] then
L L compressedLV[j] = NaN;

10 return compressedLV;

11 Function Decompress(compressedLV)
12 LV = compressedLV;
13 foreach LV[j] € LV do
14 if LV[j] = NaN then
L | LVIj1 = Li.LPLVIj];

15

16 return LV;

Log Meta-data

Log Meta-data

Most Recent Flushed PLV [ 4 ] | Most Recent Flushed PLV
8 | 22 17 T.LV 8 |22 17 | T.LV
45 4451 2 45 — s B30
Compression Decoding
(a) Logging (b) Recovery

Figure 4: LV Compression. Example of Taurus’s LV compression.

following Alg. 1. If the DBMS inserts a tuple into the lock table, it
assigns its readLV and writeLV to be the current PLV. The system
can evict a tuple from the lock table if no transactions hold locks
on it and both its readLV and writeLV are not greater than PLV.

For the tuples previously evicted from the lock table and later
inserted back, the optimization increases the readLV and writeLV of
these tuples and also the LV of transactions accessing them. This
causes unnecessary dependencies. To make the trade-off between
higher compression ratio and fewer artificial dependencies, we in-
troduce a parameter § and evict a tuple from the lock table only if
Vi, PLV[i] — LV[i] > & is true for both readLV and writeLV. Accord-
ingly, a newly inserted tuple will have readLV[i] = writeLV[i] =
PLV[i] — . Larger § means fewer artificial dependencies, but more
tuples will stay in the lock table, and vice versa.

Log Record LV Compression: We next reduce the log storage.
We let each log record store only a part of the transaction’s LV.
The motivating insight is that for workloads with low to medium
contention, most dimensions of a log record’s LV are too small to be
interesting. For example, suppose that a transaction T depends on
a committed transaction T'. It is not critical to remember precisely
which T’ that T depends on, but only that T depends on some
transaction that happened before a specific point. Therefore, we
can set anchor points (in the form of LVs) into logs and let T only
store the elements in LV beyond the latest anchor point.

In Alg. 5, we introduce a variable LPLV as the anchor point.
L.LPLYV is an LSN Vector that is maintained by each log manager L.



It keeps a copy of the most recent PLV written into L’s log buffer.
Periodically, the log manager calls FlushPLV to append PLV into
the log buffer and updates L.LPLV (Lines 1-4).

To compress a transaction T's LV, we check for every dimension
if T.LV is no greater than L;.LPLV. If T.LV[j] < L;.LPLV[j], we
can increase T.LV[j] to L;.LPLV]j]. Since L;.LPLV is already in the
buffer, the DBMS no longer needs to store T.LV[j] (Lines 6-9).
During recovery, the DBMS performs the opposite operation; if the
Jj-th dimension of an LV was compressed, it replaces it with the
value of LPLV[j] (Lines 12-15). If it reads an anchor from the log,
it updates LPLV. Fig. 4 shows an example of LV compression. In
Fig. 4a, transaction T's LV = [4, 45, 1, 2] is written to the log. The
system compares it against LPLV and finds that T.LV has only one
dimension (the 2nd dimension with value 45) greater than LPLV.
Only the 2nd dimension is written into the log. During recovery,
Fig. 4b shows that Taurus fills in the blanks with the most recently
seen anchor, LPLV = [7, 16, 2, 4]. The compressed LV is decoded
into [7, 45, 2, 4]. Note that the 15¢, 3rd, and 4" dimension of the
decompressed LV are greater than the original T.LV.

The frequency of LPLV flushing makes a trade-off between paral-
lelism in recovery and LV compression ratio. When the frequency is
high, more dimensions of LV are smaller than LPLV and thus it en-
ables better compression, but some amount of recovery parallelism
is sacrificed since the decompressed LVs have larger values.

4.2 Optimization: Vectorization

The logging overhead mainly consists of: (1) the overhead intro-
duced by Taurus where we calculate LVs and move them around;
(2) the overhead of creating the log records and writing them to
the in-memory log buffer; (3) for lock-based concurrency control
algorithms, the latency due to (1) and (2) will result in extra lock
contention; (4) the time cost in persisting the log records to the
disk. All these overheads will not block the DBMS from scaling
up. Among them, (2) and (3) are shared by essentially all the write-
ahead logging algorithms; (4) is moved off the critical path by ELR.
Overhead (1) is linear in the number of log files. In our evaluation
with 16 log files, it is up to 13.8% of the total execution time if imple-
mented naively. We can exploit the data parallelism in LSN Vectors
as the values in a single vector are processed independently. Mod-
ern CPUs provide SIMD extensions that allow processing multiple
vector elements in a single instruction. For example, the instruction
_mm512_max_epu32 can compute the element-wise maximum of
two vectors of 16 32-bit integers. In Sec. 5.6, we show that vectorized
operations reduce Taurus’ overhead by 89.5%.

4.3 Extension: Support for OCC

Our overview of Taurus so far assumes that the DBMS uses 2PL.
Taurus is also compatible with other schemes. We next discuss how
Taurus can support Optimistic Concurrency Control (OCC) [24].
Alg. 6 shows the protocol. Different from a 2PL protocol (Alg. 1), an
OCC transaction calls Access when accessing a tuple and Commit
after finishing execution. The readSet and writeSet are maintained
by the read/write functions in the conventional OCC algorithm,
from which Access is called. In the Access function, the transaction
atomically reads the value, readLV, writeLV, and potentially other
metadata. Common in OCC algorithms, the ValidateSuccess function
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Algorithm 6: OCC Logging for Worker Threads

1 Function Access(key, T)
2 value, readLV, writeLV = load(key) # load atomically;
3 T.LV = ElemWiseMax (T.LV, writeLV);

4 return value

5 Function Commit(T)
6 for key € sorted(T.writeSet) do
7 |  DB[key].lock();

8 for key € T.readSet do
9 foreach dimension i of LV do

10 : if DB[key].readLV[i] < T.LV [i] then #Atomic:

11 : L DBlkey].readLV[i] = T.LV[i] I

12 if not ValidateSuccess()) then

13 L Abort(T);

14 Create log record and write to log buffer similar to Lines 8-11 in
Alg. 1;

15 for key € T.writeSet do

L DB[key].writeLV = ElemWiseMax (DB[key].writeLV, T.LV);

DB[key].release();
Asynchronously commit T if PLV > T.LV and all transactions in

16
17
18
L; with smaller LSNs have committed;

returns true if the values in the readSet are not modified by others.
The atomicity is guaranteed through a latch, or by reading a version
number twice before and after reading the value [35].

For high concurrency, we choose a reader-lock-free design of
the Commit function. The transaction first locks all the tuples in
the writeSet (Lines 6-7). Before validating the readSet (Line 12),
it updates the readLV of tuples in the readSet one dimension at a
time (Lines 9-11). Each update happens atomically using compare-
and-swap instructions. This is necessary because the data item
might appear in the readSet of multiple transactions, and concurrent
updates of readLV might cause loss of data. The reason that the
readLV extension must occur before the validation is to enforce
RAW dependencies. To see a failure example, consider a transaction
T1 modifying the data after T2’s validation but before 72’s updates
on readLV. Then, it is possible that T1 does not observe the latest
readLV, and fails to capture the RAW dependency to T2. Note that
updating readLV before the validation might cause unnecessary
dependencies (i.e., LVs larger than necessary) if the transaction
aborts later in the validation. Such aborts only affect performance
but not correctness. The log managers stays the same as in Alg. 2.

4.4 Extension: Multi-Versioning

We next discuss how Taurus works with MVCC. Concurrency con-
trol algorithms based on logical timestamps allow physically late
transactions to access early data versions and commit transactions
logically early. However, log records are flushed in the physical
time order. Solving the decoupled order requires extra design. Thus,
we assume the recovery process also uses multi-versions. This re-
laxes the decoupling by allowing physically late transactions to
commit logically early in the recovery. It also frees Taurus from
tracking the WAR dependencies because read operations can still



fetch the correct historic version even after the tuple has been mod-
ified. Therefore, Taurus only needs to track the WAW and RAW
dependencies. Different from Sec. 3.1, Taurus for MVCC only adds
a single metadata for the data versions, the LSN Vector LV. Our
discussion is based on the MVCC scheme [25] used in Hekaton [9].

Whenever a transaction reads a data version v, the transaction
updates T.LV to be ElemWiseMax(T.LV,v.LV) to catch RAW depen-
dencies. When a transaction updates the data by adding a new data
version v after the old version u during normal processing phase, it
first updates the timestamps as in MVCC, then it updates T.LV to
be ElemWiseMax(T.LV, u.LV), and v.LV to be empty.

If the transaction T commits, before it replaces its transaction
ID with its end timestamyp, it iterates data versions in the writeSet.
For a data version v in the writeSet, it replaces v.LV to be T.LV. The
log record of T contains T.LV and the commit timestamp of T. The
former identifies whether T should recover and the recovery order,
and the latter decides the visible data version as well as the logical
timestamp of the new versions when writing the data.

During recovery, Alg. 3 and Alg. 4 are executed. Only the visible
version is returned for read operations. Whenever a write happens,
the transaction writes a new version with the commit timestamp.
Different from MVCC, transactions no longer acquire locks during
recovery because no conflicts will occur. Without Taurus, the logical
timestamps in log records enforce a total order. Taurus exploits
parallelism to recover non-conflicting transactions in parallel.

5 Evaluation

We implemented both the 2PL and OCC variants of Taurus in the
DBx1000 in-memory DBMS [1] to evaluate its performance. We
evaluate them on three storage types: (1) NVMe SSDs, (2) HDDs,
and (3) Persistent Memory (PM) simulated by a RAM disk. The
performance profiles of these devices highlight different properties
of Taurus. As the mainstream storage, NVMe SSDs provide high
I/0O bandwidth, enabling insights into the performance in produc-
tion. HDDs have limited bandwidth, which is better for command
logging. The cutting-edge PM largely eliminates disk bandwidth
restrictions and exposes CPU and memory overheads.
We compare Taurus to the following protocols all in DBx1000:

No Logging: The DBMS has all logging functionalities disabled.
It does not incur any logging-related overhead and therefore serves
as a performance upper bound.

Serial Logging: This is our baseline implementation that uses
a single disk and supports both data logging and command logging.

Serial Logging with RAID-0 Setup: This is the same configu-
ration as Serial Logging, except that it uses a RAID-0 array across
the eight disks using Linux’s software RAID driver.

Plover: This parallel data logging scheme partitions log records
based on data accesses [45]. It uses per-log sequence numbers to
enforce a total order among transactions. Each transaction gener-
ates multiple log entries.

Silo-R: Lastly, we also implemented the parallel logging scheme
from Silo [35, 44]. Silo uses a variant OCC that commits transactions
in epochs. The DBMS logs transactions in batches that are processed
by multiple threads in parallel. Silo-R only supports data logging
because the system does not track write-after-read dependencies.
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5.1 Workloads

The choices of the benchmarks provide a comprehensive evalua-
tion of Taurus and baselines. YCSB, TPC-C Payment, and TPC-C
New-Order represent short transactions with moderate contention,
short transactions with low contention, and long transactions.

Yahoo! Cloud Serving Benchmark (YCSB): This benchmark
simulates the workload pattern of cloud-based OLTP systems [7]. In
our experiments, we simulate a DBMS with a single table. Each data
row has 10 fields and each field contains 100 bytes. We evaluate two
databases with 10 GB and 500 GB of data. We build a single index
for each table. The access pattern of transactions visiting the rows
follows a Zipfian distribution; we set the distribution parameter
to 0.6 to simulate moderate contention. Each transaction accesses
two tuples and each access has a 50% chance to be a read operation
(otherwise a write operation). We will perform sensitivity studies
regarding these workload parameters in Sec. 5.6. The size of a com-
mand log record is smaller than that of a data log record.

TPC-C: This is the standard OLTP benchmark that simulates a
wholesale company operating on warehouses [34]. There are nine
tables covering a variety of necessary information and transactions
are performing daily order-processing business. We simulate two
(Payment and New-Order) out of the five transaction types in TPC-
C as around 90% of the default TPC-C mix consists of these two
types of transactions. When Taurus is running in command logging
mode, each transaction log record consists of the input parameters
to the stored procedure. The workload is logically partitioned by
80 warehouses. We evaluate the full TPC-C workload in Sec. 5.5.

5.2 Performances with NVMe SSDs

We run the DBMS on an Amazon EC2 i3en.metal instance with
two Intel Xeon 8175M CPUs (24 cores per CPU) with hyperthread-
ing (96 virtual cores in total). The server has eight NVMe SSDs.
Each device provides around 2 GB/s bandwidth and in total the
server has 16 GB/s bandwidth. We use at most 80 worker threads
and 16 log manager threads to avoid context switches. Every disk
contains two log files to better exploit the bandwidth.

Logging Performance: Our first experiment evaluates the run-
time performance of Taurus by measuring the throughput when
the number of worker threads changes. We test the logging pro-
tocols with YCSB-500G and TPC-C benchmarks. We measure the
throughput by the number of transactions committed by the worker
threads per second. We keep the 2PL and OCC results separate to
avoid comparisons based on the concurrency control algorithm
performance. We show the 2PL results in Fig. 5 and the OCC results
in Fig. 6. The x-axes are the number of worker threads (excluding
the log managers), and the y-axes are the throughput.

Fig. 5a presents the logging performance for the YCSB-500G
benchmark. Taurus with command logging scales linearly, while
Taurus with data logging plateaus after 48 threads because it is
bounded by the I/O of 16 dedicated writers. The serial command
baseline also reaches a high throughput due to the succinctness
of the command logging. It grows slower after 48 threads. This is
not due to the disk bandwidth because the performance is similar
on the RAID-0 disk array. It is instead because every transaction
that spans multiple threads increments the shared LSN; this leads
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to excessive cache coherence traffic that inhibits scalability [35].
Taurus command logging is more scalable because each log manager
maintains a separate LSN. Serial data saturates the single disk’s
bandwidth. Similar to Taurus, Plover writes records across multiple
files. For each transaction, it generates a log record for each accessed
partition, and accesses the per-log LSN to generate a global LSN for
the transaction. Then, it uses this global LSN to update the per-log
sequence numbers. These updates are atomic to prevent data races.
Plover is limited by the contention of the local counters. Taurus
with command logging is up to 2.4X faster than Plover.

Fig. 5b shows the performance for the short and low-contended
Payment transactions. These results are similar to YCSB. All the
logging baselines incur a significant overhead compared to No
Logging. The gap between No Logging and Taurus reflects the
overheads discussed in Sec. 4.2. The LV maintenance in Taurus
only takes 1.6% of the running time. Taurus command logging has
the best performance. Plover suffers from the increased data ac-
cesses, causing the worker threads to compete for the latches on
the local sequence numbers, essentially downgrading to a single
stream logging. Fig. 5¢ shows the result for the New-Order trans-
actions. These transactions access a larger number of tuples (~30
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tuples each). The overall throughput is lower, making it difficult
to hit the LSN allocation bottleneck. Therefore, serial command
logging scales well. The gap between serial command with RAID-
0 and Taurus command consists of LV-related overheads. Taurus
shows advantages only when the number of workers is adequate.
We project that the serial command logging will reach the cache
traffic limit when there are 120 workers whereas Taurus should still
scale. Similar to Payment transactions, Plover is bounded by the
contention. Fig. 6 shows the comparison between the OCC variant
of Taurus and Silo-R. The No Logging baseline also uses the OCC
algorithm. For all the benchmarks, both Silo-R and Taurus data
logging plateau at a similar level, saturating the disk bandwidth.
Before that, Silo-R performs slightly better than Taurus because
it does not track LSN Vectors. However, Silo-R cannot track RAW
dependencies, so it is incompatible with command logging. Taurus
command outperforms Silo-R in every benchmark, by up to 2.8X.

Recovery Performance: We use the log files generated by 80
worker threads for better recovery parallelism. These files are large
enough for steady measurements and are stored in uncompressed
bytes across the disks with I/O caches cleaned. Fig. 7a shows the
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recovery peformance on YCSB-500G. Plover outperforms Taurus
below 80 threads because it does not need to resolve dependencies.
Each Plover log file contains totally ordered entries, sufficient to
recover independently. Plover saturates the bandwidth after 48
threads. Taurus command scales linearly and exceeds Plover at 80
threads. The serial baselines, regardless of data or command logging,
with a RAID-0 setup or not, are limited by the total sequence order
of transactions. Taurus is up to 42.6X faster than the serial baselines.
The recovery performance of TPC-C Payment is in Fig. 7b. Both
Plover and Taurus data logging hit the I/O bottleneck quickly, while
Taurus command logging scales linearly. Fig. 7c shows the com-
parison for TPC-C New-Order. Taurus command scales well and
outperforms Plover by up to 2.4X. The gap between Plover and
Taurus data is due to dependency resolution and the resulting mem-
ory overhead. Taurus command is slower than Taurus data at 16
threads due to the cost of re-running the transactions. Fig. 8 shows
the results for the OCC baselines. Silo-R requires data logging and
therefore falls behind Taurus command logging. But Silo-R does not
need dependency resolution so it outperforms Taurus data logging
when the number of transactions is large. Silo-R uses latches to
ensure that transactions only apply updates with a higher version
number. This overhead is more significant when transactions are
long. Taurus command logging outperforms Silo-R by up to 9.7x.

5.3 Performance with Hard Disks

To better understand the performance of baselines with limited
bandwidth, we evaluate them on an Amazon EC2 h1.16xlarge
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machine with eight HDDs. Each disk provides 160 MB/s bandwidth
and in total the server has 1.3 GB/s bandwidth. Since the server
only has 256 GB memory, we use YCSB-10G. The data logging and
command logging baselines differ in absolute throughput on HDDs,
so we present them separately. Silo-R is bound by the disk band-
width often, and the difference in concurrency control does not
contribute to the relative order. Therefore, we display the results
for Silo-R and 2PL baselines together.

Logging Performance: Fig. 9a shows the logging performance
of data logging baselines for YCSB-10G. We observe that serial data
saturates the bandwidth of a single disk quickly. Taurus data logging
achieves 7.1x higher throughput than serial data. Serial data logging
on RAID-0 delivers similar performance since the bandwidth of the
disk array is 8x greater. Silo-R and Plover also flush across eight
disks uniformly, thereby achieving similar performance. In Figs. 9b
and 9c, we also observe this pattern for the TPC-C transactions
except that Plover plateaus because of the high contention.

Fig. 9d shows the command logging baselines for the YCSB bench-
mark. Serial command logging outperforms serial data logging due
to smaller log records. Starting from 16 threads, its performance is
limited by the single disk bandwidth. The serial command baseline
on a RAID array plateaus after 24 threads, limited by the cache
coherence traffic. Taurus with command logging is 9.2x faster than
Silo-R and Plover. Fig. 9e shows the throughput for TPC-C Pay-
ment. Taurus plateaus after 16 threads, achieving 5.2X speedup
over Silo-R. Serial command logging suffers from NUMA issues
between 16 threads and 48 threads as the log buffer resides on a
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Figure 11: DRAM Performance.

single socket. For the TPC-C New-Order workload in Fig. 9f, both
serial command with RAID-0 and Taurus command scale well.

Recovery Performance: Fig. 10 shows the recovery perfor-
mance. The serial baselines are again limited by the total order. For
Taurus, the recovery performance of data logging plateaus after
the number of worker threads exceeds 8. It is up to 1.7X faster than
the serial data logging with RAID. Taurus data logging achieves
similar throughput as Silo-R, while Taurus command logging is up
to 6.3% faster. Plover parallels Silo-R except for Payment; here, it
devolves into single-stream logging due to the contention.

The peak performance of Taurus command logging and Taurus
data logging are 11.3X and 5.5X faster than the serial baselines for
YCSB recovery. For TPC-C Payment in Fig. 10e, Taurus command
logging is 7.1 faster than serial command logging. Its performance
decreases with more than 24 workers because parallelism is fully
exploited and more threads only incur more contention.

For TPC-C New-Order, the performance ratios between Taurus
and the serial baselines are 17.5X and 6.7% for command logging (or
data logging lifted by disk arrays) and data logging (without disk
arrays), respectively. If the DBMS uses Taurus command logging
instead of data logging, it improves the performance by 7.7x. This is
up to 56.6X better than serial data logging. Databases with limited
bandwidth can benefit from Taurus supporting command logging.

5.4 Performance with PM (RAM Disk)

We evaluated the performance on DRAM filesystems to simulate a
PM environment. Every operation to this filesystem goes through
the OS. This overhead is shared in the real PM. The PM incurs a
higher latency (<1 us for 99.99%) and has a bandwidth 3-13x lower
compared to DRAM [40]. We conjecture that Taurus command
logging would perform relatively better on a real PM because the
bandwidth might become the bottleneck. Fig. 11 shows the results
on the DRAM filesystem. The advantage of command logging is
greatly reduced when the bandwidth is sufficient. Taurus command
logging scales linearly, while serial command logging is restricted
by the cache coherence traffic. All the parallel algorithms scale well
in recovery. Silo-R outperforms Taurus slightly as it does not resolve
dependencies. We can infer that Taurus does not incur observable
overhead that would preclude it from a PM-based DBMS.

5.5 TPC-C Full Mix

To demonstrate the generality of Taurus and to evaluate Taurus in
a more realistic OLTP workload, we added the support for range
scans, row insertions, and row deletions. We implement all the
types of transactions from the TPC-C benchmark with the 2PL
concurrency control algorithm. The full TPC-C mix consists of 45%
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New-Order, 43% Payment, 4% Order-Status, 4% Delivery, and 4%
Stock-Level. Figure 12 shows the logging performance and recovery
performance. Starting from 32 threads, the logging algorithms are
limited by the workload parallelism. Compared to No Logging, the
overhead caused by Taurus is around 11.7%. In recovery, Taurus
command logging outperforms the serial baselines by 12.8x.

5.6 Sensitivity Study
Now we evaluate the performance when various factors change.

Contention: We use the YCSB-10G workload onthe h1.16xlarge
server to study how the contention level impacts performance. We
adjust the 0 parameter of the Zipfian distribution. A higher 6 value
corresponds to higher contention. Every baseline uses 56 workers.

Fig. 13a shows the throughput when varying 6 for the logging.
When 6 is greater than 1.0, the performance of all the schemes
decreases due to the reduced parallelism in the workload. Fig. 13b
shows the recovery performance. It indicates different trends for se-
rial algorithms and Taurus. For Taurus, the performance drops when
0 goes beyond 0.8 due to the inter-log dependency issue (Sec. 3.5):
dependencies between transactions spanning different logs incur
extra latency that hurts performance at high contention. In con-
trast, serial algorithms have low throughput at low contention, but
perform better with higher 0, because higher data skew makes the
working set fit in on-chip caches, resulting in a higher cache hit rate
and better performance. Since the recovery proceeds sequentially,
contention does not introduce data races, so it does not harm the
performance of the serial baselines. When the contention is high
(i.e., @ > 1), we run Taurus with serial recovery to avoid the high
latency between dependent transactions. This enables Taurus to
achieve good performance under high contention.

Transaction Impact We evaluate YCSB-500G on an EC2 i3en.
metal instance and vary the number of tuples every transaction
accesses from 2 to 2,000. Fig. 14 shows the throughput is inversely
proportional with the transaction length. Fig. 15 shows the time
breakdown of Taurus data logging. When the number of tuples
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accessed per transaction increases from 2 to 200, the LV update
overhead stays fixed at 0.6%, while the tuple tracking overhead of
2PL increases from 10.7% to 72.8%. With the NO_WAIT policy [43]
to avoid deadlocks, the abort rate grows quickly with the number
of tuples accessed. At 2000 tuples per transaction, the abort rate is
high, causing the overhead distribution to change greatly because
overheads grow differently. Some overheads like writing the log
buffer occur once per transaction, some like tuple tracking occur
linearly in the number of tuples accessed, and some like getting
the lock are more sensitive to the contention. At 2,000 tuples per
transaction, the LV updating overhead is around 2.1%.

Number of Log Files We also evaluate the effectiveness of the
SIMD optimizations. We run Taurus command logging with SIMD
on and off against the YCSB-10G workload with 64 threads. Fig. 16
plots the time (in nanoseconds) of LV overhead per transaction with
different numbers of log files. The gap increases with the number
of log files. Using SIMD reduces the overhead by up to 89.5%.

6 Related Work

Early-lock-release (ELR): ELR [8, 13, 23, 32] allows a transaction
to release locks before flushing to log files. Controlled Lock Viola-
tion [12] is similar. Taurus includes ELR in its design.

Single-Storage Logging Algorithms: ARIES [29] has been the
gold standard in database logging and is widely implemented. How-
ever, ARIES does not scale well on multicore processors, as many
recent works have observed [16, 35, 37, 44]. C-ARIES [33] was pro-
posed to support parallel recovery, and CTR [2] improves the recov-
ery time by using multi-versioning and aggressive checkpointing,
but the contention caused by the original ARIES logging remains.

200

Aether [16], ELEDA [18], and BorDER-COLLIE [20] have opti-
mized ARIES by reducing the length of critical sections in logging.
But they still use a single storage device and suffer from the central-
ized LSN bottleneck. TwinBuf [28] uses two log buffers to support
parallel buffer filling. Besides the single storage bottleneck, TwinBuf
relies on global timestamps to order the log records. These schemes
are similar to the serial data baseline we evaluated in Sec. 5.

Single-Stream Parallel Logging Algorithms: P-WAL [30] re-
alizes parallel logging but relies on a single counter to order transac-
tions, incurring scalability issues. Besides, the enforced order causes
serial recovery. Adaptive logging [41] achieves parallel recovery
for command logging in a distributed partitioned database. It infers
dependency information from the transactions’ read/write set. This
approach maintains each transaction’s start and end times to detect
dependencies. PACMAN [38] enables parallel command logging
recovery by using program analysis to learn what computation can
be performed in parallel. Taurus supports both parallel logging and
recovery, while [38] only supports parallel recovery.

Logging Algorithms for Modern Storage: Fast recovery based
on NVM is an active research area [3, 4, 6, 10, 15, 21, 22, 36]. This
line of work leverages the high bandwidth and byte-addressable
nature of NVM to improve the performance. Taurus, in contrast,
can work on both traditional HDD/SSDs and new NVM devices.

Dependency-Tracking Algorithms: Similar to Taurus, [8] also
uses dependency tracking to log to multiple files, but does not log
dependency information as metadata. This leads to two shortcom-
ings: (1) transactions with dependencies have to be logged in order,
incurring significant overhead when there are many inter-log de-
pendencies; (2) it does not support parallel recovery. DistDGCC [42]
is coupled with a dependency tracking logging scheme, but it logs
fine-grained dependency graphs. In [17], Johnson et al. proposed a
parallel logging scheme that relies on single-dimension Lamport
clocks to achieve a global total order. Taurus uses multi-dimension
vector clocks and only preserves partial orders between dependent
transactions, enabling moderate parallelism in recovery. Enforcing
a total order can accelerate the recovery if the inherent parallelism
is low. Taurus provides a serial fallback to fit low-parallelism cases.

Kuafu [14] is an algorithm for replaying transactions in paral-
lel on a replica. It also encodes dependencies but only supports
data logging. Bernstein et al. present a logging algorithm [5] for
multi-partition databases. Their design uses two-dimensional vector
clocks but keeps a total order among cross-partition transactions.

7 Conclusion

We presented Taurus, a lightweight parallel logging scheme for
high-throughput main memory DBMSs. It is designed to support
not only data logging but also command logging, and is compatible
with multiple concurrency control algorithms. It is both efficient
and scalable compared to state-of-the-art logging algorithms.
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