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Abstract: The crystalline structure of silk fibroin Silk I is generally considered to be a metastable
structure; however, there is no definite conclusion under what circumstances this crystalline structure
is stable or the crystal form will change. In this study, silk fibroin solution was prepared from
B. Mori silkworm cocoons, and a combined method of freeze-crystallization and freeze-drying at
different temperatures was used to obtain stable Silk I crystalline material and uncrystallized silk
material, respectively. Different concentrations of methanol and ethanol were used to soak the
two materials with different time periods to investigate the effect of immersion treatments on the
crystalline structure of silk fibroin materials. X-ray diffraction (XRD), Fourier transform infrared
spectroscopy (FTIR), Raman scattering spectroscopy (Raman), Scanning electron microscope (SEM),
and Thermogravimetric analysis (TGA) were used to characterize the structure of silk fibroin before
and after the treatments. The results showed that, after immersion treatments, uncrystallized silk
fibroin material with random coil structure was transformed into Silk II crystal structure, while
the silk material with dominated Silk I crystal structure showed good long-term stability without
obvious transition to Silk II crystal structure. a-chymotrypsin biodegradation study showed that the
crystalline structure of silk fibroin Silk I materials is enzymatically degradable with a much lower rate
compared to uncrystallized silk materials. The crystalline structure of Silk I materials demonstrate a
good long-term stability, endurance to alcohol sterilization without structural changes, and can be
applied to many emerging fields, such as biomedical materials, sustainable materials, and biosensors.

Keywords: silk fibroin; porous material; crystalline structure; stability

1. Introduction

Silk fibroin is a natural biopolymer that can be regenerated and processed into various
material forms, such as films, sponges, hydrogels, and microspheres, and has broad
application prospects in the field of biomaterials [1-3]. However, the various aggregated
structures of silk fibroin have not been clearly revealed for decades. The main body of the
silk fibroin chain segment is formed by alternating blocks of crystalline and amorphous
regions [4,5]. Among them, the crystalline region is dominated by the GAGAGS (amino
acids Gly-Ala-Gly-Ala-Gly-Ser) sequence with short side chains. The arrangement of
amino acid residues in the amorphous region is complex and contains many amino acid
residues with long side chains, such as tyrosine, lysine, and arginine. These residues are
relatively hydrophilic and hinder the regular aggregation and crystallization of the chain
segments, resulting in a random coiled molecular conformation [6,7]. Research on the
crystalline form of silk fibroin can be traced back to Shimizu Masanori, who discovered
the first two crystalline forms of silk fibroin, named silk fibroin « and 3 [8]. Later, two
types of crystals of silk fibroin, Silk I and Silk II, were discovered [9]. The Silk I crystal
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structure model is a repeating unit dipeptide, with a molecular chain in the shape of a
crankshaft. Silk I is neither an «-helical structure nor a (3-sheet structure, and it belongs
to the orthorhombic crystal system [10]. The Silk II crystal structure model is a layered
structure formed by -antiparallel folding, belonging to the monoclinic crystal system,
with the strength, toughness, and anti-solubility of silk fibroin [11]. Valluzzi et al. [12]
discovered a new crystalline form at the interface between silk fibroin solution and air,
called Silk III, a structure similar to a 3-fold helix. Silk III is similar to polyglycine II and is
a member of the hexagonal crystal system. The performance of the silk fibroin materials is
strongly influenced by the individual crystal system.

Studies on the crystalline structure of Silk I is slowly developing. Valluzzi et al. and
Lu et al. demonstrated that adding polyol [13] with a specific balance of hydrophilic
and lipophilic properties while slow drying [14] under controllable relative humidity and
temperature conditions can induce the formation of Silk I. Silk I is a hydrated structure:
increasing the osmotic pressure of the solution can agglomerate silk fibroin macromolecules
to form a Silk I structure [15]. Compared to materials with Silk II crystalline structure,
Silk I crystalline material shows a higher flexibility and faster degradation rate [7,10].
Lu S [16] inserted the prepared porous material Silk I into the subcutaneous layer on the
dorsal surface of SD rats, and all the rats could survive and live in good condition. After
6 weeks, the porous material Silk I was degraded and absorbed by the rats at most. Hu X
et al. demonstrated a new physical approach to control the structure of fibrous proteins
through temperature-controlled water vapor annealing (TCWVA), making it a suitable
starting material for any complex format, such as patterned films, foams, nanofibers,
micro/nano-particles, or gels [10]. Jin H effectively controlled the 3-sheet ratio to obtain
a water-stable film containing Silk I crystals [17]. Zhu M et al. used combined Silk I
microneedles for drug delivery of insulin delivery [18]. Previous studies showed that Silk
I-based materials had a metastable structure with poor stability and short storage time.
In order to make Silk I crystal structure materials more widely used, this paper discusses
the long-term stability of Silk I-based materials in detail, which includes water resistance
stability, monohydric alcohol treatment stability, time stability, high temperature stability,
and enzyme degradation stability, to provide relevant data and promote its applications in
the biomedical field.

2. Results
2.1. Water Resistance Stability

With the extension of the immersion time in water, the dissolution rate of the ran-
domly crimped silk fibroin material (Figure 1) gradually increases, and the dissolution
rate increases significantly after 2-12 h. After 12 h, the dissolution loss rate of SE-R (Silk
Fibroin Random coil porous material) reached 71%. The dissolution loss rate of SF-I (Silk
Fibroin Silk I crystalline structure porous material) remains mostly unchanged with time.
After soaking in deionized water for 12 h, the dissolution loss rate is less than 0.48%. This
result shows that the Silk I crystalline structure material can exist stably in water without
dissolution loss, while the random coil structures in the SF-R sample are lost during the
dissolution process. In Figure 1, SF-I represents Silk I crystalline structure porous mate-
rial, and SF-R represents random coil porous material. The icons in the following text all
represent this meaning.
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Figure 1. Water loss rate of diffefﬁg(ﬁi)lk fibroin materials (SF-I and SE-R) for 2, 4, 6, 8, 10, and 12 h.
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to be used as a new material for tissue engineering scaffolds, tissue induction materials,
cell culture materials, and controllable drug carriers.
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o1k I-based scatfold 1t 1t 1s used as a medical device. 1 he results in this article found that
Silk I-based scaffold is stable in alcohols, such as methanol and ethanol. In addition, Silk
I-based scaffold can be sterilized with ethanol, and it is also stable under high temperature
or long-term storage. These advantages indicate that Silk I-based scaffold materials will
have a wide range of applications in the near future. 11 0f 16
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is used as a medical device. The results in this article found that Silk I-based scaffold is

stable in alcohols, such as methanol and ethanol. In addition, Silk I-based scaffold can be
sterilized with ethanol, and it is also stable under high temperature or long-term storage.
These advantages indicate that Silk I-based scaffold materials will have a wide range of
applications in the near future.

4. Materials and Methods
4.1. Experimental Materials

Fresh mulberry silkworm cocoons of Bombyx mori from Xiancan Silk Biotechnology
Co. Ltd. (Suzhou, China), dialysis bags from Puyi Biotechnology Co. Ltd. (Shanghai,
China), sodium carbonate, sodium bicarbonate, and lithium bromide from Tiancheng
Chemical Co. Ltd. (Shandong, China), anhydrous methanol and absolute ethanol from Al-
addin Reagent Co. Ltd. (Shanghai, China), and «-chymotrypsin from McKellin Biochemical
Technology Co. Ltd. (Shanghai, China) were purchased for this study.

4.2. Preparation of Silk Fibroin Solution

Eighty grams of silkworm cocoon shells were weighed and steamed in a 0.3% (w/v)
Na;CO3/0.1% (w/v) NaHCO3 solution at 100 °C three times, each for half an hour, stirring
once every ten minutes. To remove the degraded sericin on the surface, deionized water
was used to rinse the bombyx mori silk after each cooking. The silk was then dried of the
water absorbed on the surface of the silk fibroin at 60 °C. The weighed 15 g of degummed
silk fibroin was then dissolved in a LiBr solution (9.3 M) at 65 °C for 1 h. After cooling,
the dissolving system was placed in deionized water at 4 °C for dialysis for 3 to 4 days.
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4.3.2. Preparation of Randem eoil Strueture Materials

The silk fibroin (SF) solvtion (9%, 4/2) Was pouted into a pelyethylene peti dish,
frezen at temperatute of =40 dor 21, and freeze-dried it with a freeze dryer ior 48 h 1
obiain a porets material with a curled struchire GF-R i e 10B).

4.4. Water Resistance Stability Determination

After drying the silk fibroin material in a constant temperature and humidity envi-
ronment (25 °C, relative humidity 65%) for 24 h, part of the samples were cut, weighed,
denoted as Mj, and then dried in an oven at 105 °C to a constant weight, denoted as
Mj,. The moisture content of the silk fibroin porous material was calculated according to
Equation (1). One-tenth of a gram of each sample was placed in a 10 mL centrifuge tube,
labeled as My. Each sample was shaken with deionized water at a bath ratio of 1:100 in
a 37 °C water bath for 12 h. After shaking, the samples were centrifuged at a speed of
3500 r/min for 15 min, and the supernatant was taken to measure the value of absorbance
A on a Smartspec ultraviolet spectrophotometer (A = 278 nm). The hot water loss rate of
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silk fibroin material was calculated in regards to Equation (2). Three parallel samples were
in each group, and the results were averaged.

Moisture content(%) = % x 100%, 1)
1

KAV
] ] 00 == 1 00
Dissolution rate(%) Mo My  Moisture content x 100%, ()

where K is the UV absorption constant of the silk fibroin solution (K = 1.1012), A is the
absorbance, and V is the total volume of the solution.

4.5. Determination of Stability of Monohydric Alcohol Treatment
4.5.1. Methanol Treatment

To explore the stability of the crystal structure of silk fibroin material Silk I, two
samples (SF-I and SF-R) were immersed in 99%, 90%, and 75% (v/v) methanol, respectively
The processing time gradient was set to 1 h, 2 h, 4 h, 8 h respectively. After soaking,
the samples were placed in a constant temperature and humidity room (25 °C, relative
humidity 65%) to dry for 24 h. The experimental treatment conditions are based on previous
studies by Puerta et al. [31].

4.5.2. Ethanol Treatment

The SF-I and SF-R samples were immersed in 99%, 90%, and 75% (v/v) ethanol
solution, respectively, with a time gradient set for 1 h, 2 h, 4 h, and 8 h, respectively.
Following immersion treatment each sample was dried in a constant temperature and
humidity room (25 °C, relative humidity 65%) for 24 h. The experimental treatment
conditions are based on previous studies Puerta et al. [31].

4.6. Long Time Stability

To understand the long-term storage stability of Silk I crystalline material, both SF-I
and SF-R samples were placed at room temperature for 1 year, after which the structural
changes were measured.

4.7. Thermal Stability Determination

TA Differential Thermometer SDT Q600 (TA Instruments, New Castle, DE, USA) was
used to measure the mass stability of the silk samples with increasing temperature. The
thermogravimetric curve was obtained at a gas flow rate of 50 mL/min under a nitrogen
atmosphere. Four milligrams of each sample was heated from 25 °C to 450 °C at a heating
rate of 10 °C/min. During heating, the percentage of mass change was recorded.

4.8. Enzymatic Degradation

Each sample was cut into 5 mm x 5 mm size, and the initial weight was recorded
as My. The silk fibroin sample was then put into a 240 U/mL «-chymotrypsin solution
(pH 7.3) for degradation [32]. The temperature was set at 37 °C, with a time gradient of 1 h,
2h,4h,8h,1d,2d, 3 d. After degradation, the sample was taken out, rinsed thoroughly
with deionized water, and dried in an oven at 80 °C until the weight remained constant,
mass M. The remaining mass percentage of the sample was calculated by the formula
(M/My x 100%). The results of the three parallel samples were averaged. The samples
treated with enzyme-free phosphate buffer were used as controls. All silk fibroin materials
were processed using the same procedure.

4.9. Structural Characterization

Processed and unprocessed samples were cut into pieces with scissors, and an 80-mesh
sieve was used to collect the finely divided samples.
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4.9.1. X-ray Diffraction Analysis

The fully automatic X’PERT PRO MPD ray diffractometer (Bruker Corporation, Berlin,
Germany) was used to test the structure of each sample. The diffraction intensity curve
was recorded between 5° and 45° under the conditions of 10°/min scanning speed, 40 kV,
and 30 mA.

4.9.2. Fourier Transform Infrared Spectroscopy

Each sample was thoroughly mixed with KBr, crushed, and then compressed into
transparent small discs with a tablet press. A Nicolet 5700 infrared spectrum analyzer
(Thermo Nicolet Corporation, Waltham, MA, USA) was used to analyze the infrared
absorption spectrum of the sample with a scanning step range of 400~4000 cm .

4.9.3. Raman Scattering Spectroscopy

Raman spectrum was measured using a Japanese HORIBA Raman Microscopy (HORIBA
Ltd., Kyoto City, Japan). The excitation wavelength was 532 nm, slit width was 100 pm,
and 1200 gr/mm grating was selected. The scanning time of the fixed sample was 20 s, and

the Raman scattering spectrum recording step range was 200~2000 cm 1.

4.10. Morphology Characterization

The lyophilized silk fibroin samples before and after the 90% methanol immersion
treatment were pasted with carbon conductive glue on a dedicated sample table, and Au
was sprayed for 180 s under 10 mA conditions to give the samples surface conductivity.
The morphology of samples were characterized and analyzed by 54700 cold field emission
scanning electron microscope.

5. Conclusions

Comparing different stability performance of silk fibroin material with random coil
structure, silk fiber with Silk II structure, and Silk I-based scaffold, it is found that Silk
I-based scaffold has significant water resistance, thermal stability, and time stability. The
immersion treatment of molecular alcohols also maintained adequate chemical stability.
The soaking of methanol and ethanol can promote the conversion of silk fibroin from
random coil structure to Silk II structure, but it will not cause the change of Silk I crystal.
Silk I crystal structure can exist stably in methanol and ethanol solution. Silk I-based
scaffold can be quickly degraded by enzyme. This kind of material with stable structure
and fast enzymatic hydrolysis provides a new choice for the application of silk fibroin in

the biomedical field.
Abbreviation
SF Silk Fibroin
SF-R Silk Fibroin Random coil porous material
SF-1 Silk Fibroin Silk I crystalline structure porous material
GAGAGS Amino acid sequence Gly-Ala-Gly-Ala-Gly-Ser
XRD X-ray diffraction
FTIR Fourier transform infrared spectroscopy
SEM Scanning electron microscope
TGA Thermogravimetric analysis
MT Methanol treatment.
Tg Glass transition temperature
Tm Melting temperature
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