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Abstract

We present analytic estimates of the fractional uncertainties on the mass, radius, surface gravity, and density of a
transiting planet, using only empirical or semi-empirical measurements. We first express these parameters in terms
of transit photometry and radial velocity (RV) observables, as well as the stellar radius Rå, if required. In agreement
with previous results, we find that, assuming a circular orbit, the surface gravity of the planet (gp) depends only on
empirical transit and RV parameters, namely the planet period P, the transit depth δ, the RV semi-amplitude Kå, the
transit duration T, and the ingress/egress duration τ. However, the planet mass and density depend on all these
quantities, plus Rå. Thus, an inference about the planet mass, radius, and density must rely upon an external
constraint such as the stellar radius. For bright stars, stellar radii can now be measured nearly empirically by using
measurements of the stellar bolometric flux, the effective temperature, and the distance to the star via its parallax,
with the extinction AV being the only free parameter. For any given system, there is a hierarchy of achievable
precisions on the planetary parameters, such that the planetary surface gravity is more accurately measured than the
density, which in turn is more accurately measured than the mass. We find that surface gravity provides a strong
constraint on the core mass fraction of terrestrial planets. This is useful, given that the surface gravity may be one
of the best measured properties of a terrestrial planet.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet surface composition (2022)

1. Introduction

The internal composition and structure of small, terrestrial
planets are generally difficult to characterize. As is well known,
mass–radius relationships alone do not constrain the internal
composition of a planet beyond a measurement of its bulk
density. The internal structure is crucial, because it determines
the bulk physical properties of planets and provides valuable
insights into their formation, history, and present composition.
Unterborn et al. (2016) found that the core radius, the presence
of light elements in the core, and the existence of an upper
mantle have the largest effects on the final mass and radius of a
terrestrial exoplanet. The final mass and radius in turn directly
determine the planet’s habitability. For example, the core mass
fraction (CMF) affects the strength of a planet’s magnetic field,
which shields it against harmful radiation from the host star.

At present, we have ∼330 small planets (<4 R⊕) with
masses and radii constrained to better than 50%.7 Such
measurement uncertainties are generally good enough to
determine the general structure of many exoplanets. However,
for low-mass terrestrial planets with thin atmospheres,
planetary masses and radii must be measured to precisions
better than 20% and 10%, respectively, in order to constrain the
CMF and structure (Dorn et al. 2015; Schulze et al. 2020).
However, high-precision measurements of low-mass exo-

planets between 1 and 4 R⊕ are challenging. Additionally,
because of the large number of individual discoveries, and

because (to date) they have been mostly detected around faint
Kepler/K2 (Borucki et al. 2010; Howell et al. 2014) targets
(with typical Kepler and K2 magnitudes of K∼ 15 and K∼ 12,
respectively, Vanderburg et al. 2016), they are difficult to
follow up with high-resolution radial velocity (RV) observa-
tions and thus obtain precise masses and other fundamental
physical properties. This has already begun to change with the
Transiting Exoplanet Survey Satellite mission (TESS; Ricker
et al. 2015), because its main science driver is to detect and
measure masses and radii for at least 50 small planets (<4 R⊕)
around bright stars. At the time of writing, 24 such planets have
already been confirmed, and almost all have masses and radii
measured to better than 30%.8

The discoveries of the TESS mission will also raise very
important questions in exoplanet science. The one that we
address here relates to the achievable precision with which we
shall be able to constrain the fundamental parameters of a
transiting planet, such as its mass, density, and surface gravity.
Given precise photometric and spectroscopic measurements of
the host of a transiting planet system, it is possible to measure
the planet surface gravity with no external constraints (South-
worth et al. 2007). On the other hand, measuring the mass or
radius of a transiting planet requires some external constraint
(Seager & Mallén-Ornelas 2003). Since, until very recently, it
has only been possible to measure the mass or radius of the
closest isolated stars directly, theoretical evolutionary tracks or
empirical relations between stellar mass and radius and other
properties of the star have often been used (e.g., Torres et al.
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2010). However, these constraints typically assume that the star
is representative of the population of systems that were used to
calibrate these relations. In the case of theoretical evolutionary
tracks, there may be systematic errors due to uncertainties in
the physics of stellar structure, atmospheres, and evolution, or
second-order properties of the star, such as its detailed
abundance distribution, which can manifest as irreducible
systematic uncertainties on the stellar parameters. For example,
most evolutionary tracks assume a fixed solar abundance
pattern scaled to the iron abundance [Fe/H] of the star, and
thus the same [α/Fe] as the Sun. If the host star has a
significantly different [α/Fe] than the Sun, that will lead to
incorrect inferences about the properties of the planet. By using
evolutionary tracks that assume a solar [α/Fe], one might infer
an incorrect density and mass of the planet, and therefore an
incorrect core/mantle fraction.

Thus, a direct empirical or nearly empirical measurement of
the radius or mass of the star that does not rely on assumptions
that may not be valid is needed (see Stassun et al. 2017 for a
lengthier discussion on the merits and benefits of using
empirical or semi-empirical measurements to infer exoplanet
parameters). As has been demonstrated in numerous papers
(see, e.g., Stevens et al. 2017), with Gaia (Gaia Collaboration
et al. 2018) parallaxes, coupled with the availability of absolute
broadband photometry from the near-UV to the near-IR, it is
now possible to measure the radii of bright (V 12 mag) stars.
This allows for direct, nearly empirical measurements of the
masses and radii of transiting planets and their host stars (and
indeed any eclipsing single-lined spectroscopic binary) in a
nearly empirical way. See Stevens et al. (2018) for an initial
exploration of the precisions with which these measurements
can be made.

In this paper, we build upon the work of Stevens et al. (2018)
by also assessing the precision with which the surface gravity
gp of transiting planets can be measured. Given that a
measurement of gp only requires measurements of direct
observables from the transit photometry and radial velocities
without the need for external constraints, the precision on gp in
principle improves with ever more data, assuming no
systematic floor. Thus we seek to address two questions. First,
with what fractional precision can gp be measured, and how
does this compare to the fractional precision with which the
density or mass can be measured? Second, how useful is gp as a
diagnostic of a terrestrial planet’s interior structure and,
potentially, habitability?

Answering these questions is quite important because the
surface gravity of a planet may be a more fundamental
parameter than the radius and mass, at least in addressing
certain questions, such as its habitability (O’Neill & Lenar-
dic 2007; Valencia & O’Connell 2009; van Heck &
Tackley 2011). For example, the surface gravity, along with
the equilibrium temperature and mean molecular weight,
determines the scale height of any extant atmosphere. If a
planet’s surface gravity provides more of a lever arm in
determining certain aspects of the planet’s interior or atmos-
phere, and if we can achieve a better precision in the
measurement of the planet surface gravity than of its radius,
then we can use that to better constrain the composition of the
planet and ultimately its habitability. Thus, given the
importance of the planetary surface gravity, mass, and radius
in constraining the habitability of a planet, it is critical to
understand how well we can measure these properties.

Here we focus on the precision with which the surface
gravity, density, mass, and radius of a transiting planet can be
measured essentially empirically. We will employ methodol-
ogies that are similar to those used in Stevens et al. (2018), and
thus this work can be considered a companion paper to
that one.

2. Analysis

We begin by deriving expressions for the surface gravity gp,
mass Mp, density ρp, and radius Rp, of a transiting planet in
terms of observables from photometric and RV observations, as
well as a constraint on the stellar radius Rå from a Gaia parallax
combined with a bolometric flux from a spectral energy
distribution (SED) (Stassun et al. 2017; Stevens et al.
2017, 2018).

2.1. Planet Surface Gravity

The planet surface gravity is defined as
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where Må is the stellar mass, P and e are the planetary orbital
period and eccentricity, MJ is Jupiter’s mass, and i is the
inclination angle of the orbit. In the second equality, we have
assumed that Mp=Må.
Using Newton’s version of Kepler’s third law and

Equation (2), the surface gravity can then be expressed as
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For the majority of the following analysis, we will assume
circular orbits (e= 0) for simplicity and drop the eccentricity
dependence. This analysis could be repeated for eccentric
orbits, but the algebra is tedious and does not lead to
qualitatively new insights. The assumption of circular orbits
thus provides a qualitative expectation of the uncertainties on
the planetary parameters. Furthermore, in many cases it is
justified because we expect that many of the systems to which
this analysis is applicable will have very small eccentricities.
We also further assume that =isin 1, which is approximately
true for transiting exoplanets. Under these assumptions, we
have that
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The semimajor axis scaled to the planet radius can be
converted to the semimajor axis scaled to the stellar radius by
using the depth of the transit d º ( )R Rp

2, which is a direct
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observable:
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We can then rewrite the scaled semimajor axis a/Rå in terms of
the stellar density ρå (see, e.g., Sandford & Kipping 2017 for a
precise derivation):
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Noting that, from Equation (4), we can write
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Then a/Rå can be written in terms of observables as
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where the observables are the orbital period P, transit time T
(FWHM), the ingress/egress duration τ, and the transit depth δ.

Inserting this into Equation (9), we find that the planet
surface gravity is given in terms of pure observables as
(Southworth et al. 2007)

p t
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Using linear propagation of uncertainties, and assuming no
covariances between the observable parameters,9 and the
aforementioned assumptions (MP=Må, ~isin 1, e= 0, and
k= 1), we can approximate the fractional uncertainty on the
surface gravity as
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2.2. Planet Mass

We now turn to the uncertainty on the planet mass. We can
approach this estimate in two ways. First, we can start from
Equation (2), again making the same simplifying assumptions,
and solve for Mp in terms of observables. We note that this
method requires the intermediate step of deriving an expression
for the host star mass in terms of direct observables, using the

fact that

p
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and using Equations (5) and (10) to write ρå in terms of
observables. We find
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Using this, we can then derive the planet mass in terms of
observables as
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A more straightforward approach is to use the fact that we
have already derived the planet surface gravity in terms of
observables. Starting from the definition of surface gravity, we
can write
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Using Equation (11), we arrive at the same expression as
Equation (15).
Using Equation (15), we derive the fractional uncertainty on

the planet mass in terms of the fractional uncertainty in the
observables, again assuming no covariances and the simplify-
ing assumptions stated before (MP=Må, ~isin 1, e= 0, and
k= 1). We find
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2.3. Planet Density

We derive the planet density ρp in terms of observables. The
planet density is given by

r
p p

d= = - ( )


M

R

M

R

3

4

3

4
. 18p

p

p

p

3 3
3 2

We have already derived the mass of the planet in terms of
observables in Equation (15). Using this expression, we find
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From this equation, we derive the fractional uncertainty on the
planet density in terms of the fractional uncertainty in the
observables, again assuming no covariances and the simplify-
ing assumptions stated before. We find
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9 See Carter et al. (2008) for an exploration of the covariances between
photometric and RV observable parameters.
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2.4. Planet Radius

Finally, the uncertainty on the planet radius can be trivially
derived from the definition of the transit depth δ, assuming no
limb darkening:
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We note that, by assuming that δ is a direct observable, we
are fundamentally assuming no limb darkening of the star. Of
course, in reality the presence of limb darkening means that the
observed fractional depth of the transit is not equal to δ, and
thus the uncertainty on δ is larger than one would naively
estimate assuming no limb darkening. However, assuming that
the limb darkening is small (as it is for observations in the near-
IR), or that it can be estimated a priori based on the properties
of the star, or that the photometry is sufficiently precise that
both the limb darkening and δ can be simultaneously
constrained, the naive estimate of the uncertainty on δ
assuming no limb darkening will not be significantly larger
than that in the presence of limb darkening.

We also note, however, that analytic solutions to the depth of
transit including limb darkening exist. Heller (2019) calculated
the effect of stellar limb darkening on the transit depth in the
optical for various limb darkening laws and for several stellar
spectral types. They introduced the overshoot factor, oLC,
defined as the difference between the measured transit depth δ
and the Rp/Rå approximation. This overshoot factor can be
calculated using stellar limb darkening laws, and thus the true
transit depth and planet-to-star ratio can be determined
analytically. Mathematically, the true planet to star radius ratio
is defined in terms of the overshoot as:
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This equation is the generalization of Equation (22); i.e., in
the absence of stellar limb darkening (no overshoot, oLC = 0),
Equation (24) becomes Equation (22). Heller (2019) estimated
the value of the overshoot factor as a function of spectral type
using common limb darkening laws. They found values
ranging from 0.15 to 0.27 for spectral types A5, F5, G5, K5,
and M5. Their findings imply that, failing to account for stellar
limb darkening may result in Rp/Rå values that are off by as
much as 27 %. We note, however, that even though we do not
account for limb darkening, we still obtain a fairly good
agreement between the reported literature uncertainties (which
we discuss in Section 4, and which did model limb darkening)
and those we calculate analytically. This indicates that limb
darkening does not significantly affect the ability to constrain
(Rp/Rå)

2 for the types of systems we considered, as noted
earlier.

3. Comparing the Estimated Uncertainties on the Planet
Mass, Density, and Surface Gravity

Comparing the expressions for the fractional uncertainty on
gp,Mp, and ρp (Equations (12), (17), and (20), respectively), we
can make some broad observations on the precision with which
it is possible to measure these three planetary parameters.
First, comparing the uncertainties on gp and Mp, we note that

the only difference is that s MM pp requires the additional term
s( ) R4 R

2. Stevens et al. (2018) estimates that it should be
possible to infer the stellar radii of bright hosts (G 12 mag) to
an accuracy of order 1% using the parallaxes from the final
Gaia data release, currently available absolute broadband
photometry, and spectrophotometry from Gaia and the
Spectro-Photometer for the History of the Universe, Epoch of
Reionization, and Ices Explorer (SPHEREx; Doré et al. 2018).
The exact level of accuracy will depend on the stellar spectral
type and the final parallax precision. It is likely that Rå may
dominate the error budget relative to the other terms, with the
possible exception of the uncertainty in τ. We note that TESS is
able to measure τ more precisely than either Kepler or K2 were
able to for systems with similar physical parameters and noise
properties, primarily because the TESS bandpass is redder than
that of Kepler, and thus the stellar limb darkening is smaller
and less degenerate with τ. Overall, we generically expect the
planetary surface gravity to be measured to smaller fractional
precision than the planet mass.
We now turn to the uncertainty on planetary density. When

comparing the expressions for the uncertainty in Mp to ρp, we
note that the uncertainty due to the depth enters as (1/4)(σδ/δ)
for Mp, whereas it enters as simply σδ/δ for ρp. For large
planets, the depth should be measurable to a precision of ∼1%
or better, particularly in the TESS bandpass, similar to the best
expected precision on Rå. Thus, we expect σδ to be comparable
to s R , and thus both should contribute at the ∼1% level to srp.
On the other hand, we expect s R to dominate over the transit
depth for Mp. Thus, for any given system, we generally expect
the following hierarchy: s s r s s s> > >rM RM p p g g R pp p p p p

.
Similarly, there is a hierarchy in the precision with which the

observed parameters T, P, Kå, δ, τ, and Rå are measured. For
the relatively small sample of planets confirmed from TESS so
far, we find that, in general, the most precise observable
parameter is the orbital period, followed by the stellar radius,
the transit depth, the RV semi-amplitude, and the transit
duration, such that: s s s d s s> > > >d T K R PT K R P .
The ingress/egress time τ is not always reported in discovery
papers, so we do not include it in this comparison. However,
we generally expect that it will be measured to a precision that
is worse than that of T (Carter et al. 2008; Yee & Gaudi 2008).
This hierarchy is in agreement with the findings of Carter

et al. (2008) and Yee & Gaudi (2008), who derived the
following approximate relations for the uncertainties in the
parameters of a photometric transit (assuming no limb
darkening):

s
d
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where Q is the signal-to-noise ratio of the combined transits,
defined as

dº G( ) ( )Q N T , 28tr phot
1 2

where Ntr is the effective number of transits that were observed
and Γphot is the photon collection rate.10 We note that
Equation (28) implicitly assumes uncorrelated photometric
uncertainties. Since, in general, στ> σT, we have that
σδ/δ< σT/T< στ/τ.

In the above equations, we have ignored the uncertainty in
the transit midpoint tc because it does not enter into the
expressions for the uncertainties in Rp, Mp, ρp, or gp. We also
assumed that the uncertainty in the baseline (out-of-transit) flux
is negligible, which is generally a good assumption, particu-
larly for space-based missions such as Kepler, K2, and TESS,
where the majority of the measurements are taken outside of
transit.

We note that, particularly for small planets, when the limb
darkening is significant, and when only a handful of transits
have been observed, τ may be poorly measured (i.e., precisions
of 5%), and therefore its uncertainty will dominate the error
budget. In such cases, it may be more prudent to use additional
external constraints, such as stellar isochrones, to improve the
overall parameters of the system (at the cost of losing the nearly
purely empirical nature of the inferences as assumed in the
derivations above). See Stevens et al. (2018) for additional
discussion.

4. Validation of Our Analytic Estimates

We test the analytic expressions derived in Section 2 using
four confirmed exoplanets and one fiducial hot Jupiter
simulated by Stevens et al. (2018). The confirmed exoplanets
are KELT-26b (Rodríguez Martínez et al. 2020), HD 21749b
(Dragomir et al. 2019), K2-106b (Adams et al. 2017; Guenther
et al. 2017), and Kepler-93b (Ballard et al. 2014; Dressing et al.
2015). These systems have masses and radii of ∼4–448 M⊕
and ∼1.4–21 R⊕.

We estimated the expected analytic uncertainties on the
planet parameters by inserting the values of T, P, Kå, δ, τ, Rå,
and their respective uncertainties from the discovery papers
into Equations (12), (17), (20), and (23). Then, we compared
the analytic uncertainties to those reported in the discovery
papers, which were derived from Markov Chain Monte Carlo
(MCMC) analyses and not using the analytic approximations
presented here. For parameters with asymmetric uncertainties,
we took the average of the upper and lower bounds and
adopted that as the uncertainty.

We note that the discovery papers of all of the examples we
present here (except for KELT-26b) do not provide the transit
duration T (or the FWHM of the transit), but rather T14, which
is defined as the difference between the fourth and first contacts
(see, e.g., Carter et al. 2008). Since we are generally interested
in T, we calculate it from the given observables using

t= - ( )T T 2914

and we estimate its uncertainty with the relationship from
Carter et al. (2008) and Yee & Gaudi (2008):

s t s
t

= t
⎜ ⎟
⎛
⎝

⎞
⎠

( )
T T

1

3
. 30T

We use Equations (29) and (30) to calculate the values of
transit duration and the uncertainties for all the systems for
which only T14 is given.
There are other ways of estimating the uncertainty in T, such

as by propagating the uncertainty on T from Equation (29), or
by assuming that the uncertainty in T is approximately equal to
that of T14. However, these approaches overestimate the
uncertainty on T as compared to Equation (30) because they
do not account for the covariance between the measurements of
T14 and τ. Therefore, we adopt the uncertainty in T from
Equation (30) for all the exoplanets referenced here.
Finally, for systems where the transit depth δ is not provided,

but rather the planet–star radius ratio Rp/Rå, we use linear
propagation of error to estimate σδ, finding

s
d

s
=d

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
( )





R R
4 . 31

R R

p

2 2
p

And we adopt the fractional uncertainties on Rå as reported
in the papers. In some cases these were derived using external
constraints, such as stellar models, and thus may be under-
estimates or overestimates of the empirical uncertainty in Rå

derived from the stellar SED and parallax.
The fractional uncertainties calculated using our analytic

approximations for the five planets in our sample are listed in
Table 1 and shown in Figure 1. As is clear from Figure 1, our
estimates are broadly in agreement with the fractional
uncertainties quoted in the discovery papers. However, we
note that the fractional uncertainties we predict for certain
quantities are systematically larger or smaller than those
reported in the papers. After a careful “forensic” analysis, we
have tracked down the reason for these discrepancies. In the
two most discrepant cases, it is because the authors used
external constraints on the properties of the host star (such as
Teff, [Fe/H], and glog ) combined with stellar evolutionary
tracks, to place priors on the stellar parameters Rå and Må. In
one case (HD 21749), the resulting constraint on ρå is tighter
than results from an empirical constraint on the stellar density
ρå from the light curve. In the other case, the adopted constraint
on ρå is weaker than results from an empirical constraint on the
stellar density ρå from the light curve, but nevertheless the
external (weaker) constraints on Må and Rå were adopted,
rather than the (tighter) empirical constraints. In the remaining
cases, either external constraints were not assumed, and as a
result their parameter uncertainties agree well with our analytic
estimates, or the external constraints were negligible compared
to the empirical constraints and thus the empirical constraints
dominated, again leading to agreement with our analytic
estimates. We ultimately conclude that our analytic estimates
are reliable; however, we describe in detail our forensic
analysis of the systems for pedagogical purposes. In the
following subsections, we discuss each system in further detail.
Before doing so, however, we stress that the advantage of

empirical, model-independent approximations like the ones
presented here is that they do not assume that the physical
properties of any particular system are representative of the
systems used to calibrate the empirical models, or that the

10 Alternatively, assuming all measurements have a fractional photometric
uncertainty σphot, and there are N measurements in transit, the total signal-to-
noise ratio can be defined as d sº ( )Q N phot .
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properties of the systems necessarily agree with the theoretical
predictions. For example, theoretical models that make
assumptions about the elemental abundances of the host star
may not apply to the particular system under consideration.
Therefore, although our empirical approach may lead to weaker
constraints on the parameters of the planets, we believe it leads
to more robust constraints on these parameters.

4.1. A Fiducial Hot Jupiter

Stevens et al. (2018) simulated the photometric time series
and RV measurements for a typical hot Jupiter (Mp=MJ and
Rp= RJ) on a 3 day orbit transiting a G-type star using
VARTOOLS (Hartman & Bakos 2016). They injected a

Mandel-Agol transit model (Mandel & Agol 2002) into an
(out-of-transit flux) normalized light curve, and simulated
measurement offsets by drawing from a Gaussian distribution
with 1 millimagnitude dispersion. They furthermore assumed a
cadence of 100 s. They note that these noise properties are
typical of a single ground-based observation of a hot Jupiter
from a small, ∼1 m telescope. For the RV data, they simulated
20 evenly spaced measurements, each with 10 m s−1 precision
(which they assumed was equal to the scatter, or “jitter”). They
then performed a joint photometric and RV fit to the simulated
data using EXOFASTv2 (Eastman 2017; Eastman et al. 2019)
to model and estimate the star and planet’s properties. They
simulated three different cases: a circular (e= 0) orbit and
equatorial transit, or an impact parameter of b= 0, an eccentric
orbit with e = 0.5 and b= 0, and a circular orbit and b = 0.75.
We consider the parameters and uncertainties for the case of a
circular orbit and equatorial transit, for which our equations are
most applicable, and use the best-fit values and uncertainties
from Table 1 in Stevens et al. (2018).
The fractional uncertainties in the planet mass, surface

gravity, and planetary bulk density quoted in Stevens et al.
(2018) are all roughly 5%, whereas the fractional uncertainty in
the planet radius is 1.7%. These uncertainties are in very good
agreement with our analytic estimates, as Figure 1 and Table 1
show.

4.2. A Real Hot Jupiter

KELT-26b is an inflated ultrahot Jupiter on a 3.34 day polar
orbit around an early Am star characterized by Rodríguez
Martínez et al. (2020). It has a mass of = -

+M M1.41p 0.51
0.43

J and
radius of = -

+R R1.940p 0.058
0.060

J. The photometry (which included
TESS data) and RV data were jointly fit using EXOFASTv2,
and included an essentially empirical constraint on the radius of
the star from the SED and the Gaia Data Release 2 (DR2)
parallax, as well as theoretical constraints from the MESA
Isochrones and Stellar Tracks (MIST) stellar evolution models
(Paxton et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016).
Therefore, unlike the fiducial hot Jupiter discussed above, this
system was modeled using both external empirical constraints
and external theoretical constraints. The uncertainties in the
planet parameters reported by Rodríguez Martínez et al. (2020)
are ∼34% for the mass, ∼33% for the surface gravity, ∼33%
for the bulk density, and 3.8% for the planet’s radius. These are
very close to our estimates of the fractional uncertainties of

Table 1
Analytic and Reported Fractional Uncertainties

Planet Analytic Literature Reference
Mp gp ρp Rp Mp gp ρp Rp

Fiducial HJ 0.06 0.04 0.06 0.01 0.05 0.05 0.05 0.01 Stevens et al. (2018)
KELT-26b 0.34 0.34 0.34 0.03 0.33 0.37 0.35 0.03 Rodríguez Martínez et al. (2020)
KELT-26bå 0.35 0.35 0.35 0.03 0.33 0.37 0.35 0.03
Kepler-93b 0.17 0.16 0.17 0.01 0.17 0.16 0.17 0.01 Ballard et al. (2014)
HD 21749b† 0.26 0.25 0.26 0.05 0.09 0.16 0.21 0.06 Dragomir et al. (2019)

(0.09) (0.14) (0.18)
K2-106b† 0.25 0.14 0.18 0.10 0.11 0.13 0.34 0.10 Guenther et al. (2017)

(0.11) (0.32)

Notes. The second to fifth columns are the analytic uncertainties in Mp (Equation (17)), gp (Equation (12)), ρp (Equation (20)), and Rp (Equation (23)), while the next
four are the uncertainties in those parameters reported in the literature. Planets with a † were analyzed using external constraints from stellar evolutionary models.
KELT-26bå is KELT-26 analyzed without external constraints. The quantities in parentheses below HD 21749b and K2-106b are the values we recover if we assume
external constraints, as explained in Sections 4.4 and 4.5.

Figure 1. Reported fractional uncertainties in Mp (diamonds), gp (squares), ρp
(circles), and Rp (triangles) vs. our model-independent analytic estimates for a
variety of transiting planets. These include a fiducial hot Jupiter (dark blue),
Kepler-93b (pink), KELT-26b (sky blue), KELT-26b without external
constraints (green, open symbols), K2-106b (brown), and HD 21749b (gold).
For K2-106b and HD 21749b, arrows point from the fractional uncertainties
reported in the discovery papers to our “forensic” estimates of the uncertainties
that could be achieved had the authors adopted only empirical constraints. The
open symbols are systems for which no external constraints were used. A
dashed, gray one-to-one line is plotted for reference.
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these parameters, implying that the constraints from the MIST
evolutionary tracks have little effect on the inferred parameters
of the system.

To test this hypothesis, we reanalyzed this system with
EXOFASTv2 without using the external theoretical constraints
from the MIST isochrones, that is, only using the SED of the
star, its parallax from Gaia DR2, and the light curves and radial
velocities. The uncertainties from this analysis are 35% for the
planetary mass, surface gravity, and density, and 3.3% for the
radius. These are consistent with the uncertainties derived from
the analysis using the MIST evolutionary tracks as constraints.
The fractional uncertainties from the original paper and the
analysis without constraints are shown in sky blue (with
constraints) and green (without) in Figure 1. We conclude that
the inferred parameters of the system derived using purely
empirical constraints are as precise (and likely more accurate)
than those inferred using theoretical evolutionary tracks.
Therefore, at least for systems similar to KELT-26, we see
no need to invoke theoretical priors.

4.3. Kepler-93b

Kepler-93b is a terrestrial exoplanet with a 4.7 day period
discovered by Ballard et al. (2014). It has a mass of
Mp= 4.02± 0.68M⊕ and radius of Rp= 1.483± 0.019 R⊕.
With a radius uncertainty of only 1.2%, it is one of the most
precisely characterized exoplanets to date. Ballard et al. (2014)
used asteroseismology to precisely constrain the stellar density,
and then used it as a prior in their MCMC analysis, leading to
the remarkably precise planet radius. Their analysis did not use
external constraints from stellar evolutionary models, however.
Dressing et al. (2015) revisited Kepler-93 and collected
HARPS-N (Mayor et al. 2003) spectra, which they combined
with archival Keck/HIRES spectra to improve upon the
planet’s mass estimate. They thus reduced the uncertainty in
the mass of Kepler-93b from ∼40% (Ballard et al. 2014) to
∼17%. We used the photometric parameters (T, τ, and δ) from
Ballard et al. (2014) and the semi-amplitude Kå from Dressing
et al. (2015) to test our analytic estimates. We compared our
results to the reported uncertainties in Mp, gp, and ρp from
Dressing et al. (2015), since they provide slightly more precise
properties. The uncertainties in the properties of Kepler-93b are
all ∼17%, and 1.2% for the radius, which are in excellent
agreement with our analytic estimates, as shown in Figure 1
and Table 1. Interestingly, this implies that the asteroseismo-
logical constraint on ρå does not significantly improve the
overall constraints on the system.

4.4. HD 21749b

HD 21749b is a warm sub-Neptune on a 36 day orbit
transiting a K4.5 dwarf discovered by Dragomir et al. (2019).
The planet has a radius of -

+
ÅR2.61 0.16

0.17 determined from TESS
data, and a mass of -

+
ÅM22.7 1.9

2.2 constrained from high-
precision, RV data from the HARPS spectrograph at the La
Silla Observatory in Chile. Dragomir et al. (2019) performed an
SED fit combined with a parallax from Gaia DR2 to constrain
the host star’s radius to Rå= 0.695± 0.030 Re. They then used
the relations of Torres et al. (2010) to derive a stellar mass of
Må= 0.73± 0.07 Me, although they do not specify what
values of Teff, [Fe/H], and glog they adopt as input into those
equations, or from where they derive these values. We assume
they were determined from high-resolution stellar spectra.

Finally, they performed a joint fit of their data and constrained
the planetary parameters with the EXOFASTv2 modeling suite,
using their inferred values of Må and Rå as priors.
When comparing our analytic approximations of the

fractional uncertainties in Mp, gp, and ρp to the uncertainties
in the paper, we find that our estimates are systematically larger
than those of Dragomir et al. (2019) by 34% (Mp), 60% (gp),
and 80% (ρp).
Understanding the nature of such discrepancies requires a

closer examination of the methods employed by Dragomir et al.
(2019) as compared to ours. The fundamental difference is that
their uncertainties in the planetary properties are dominated by
their more precise a priori uncertainties on Må and Rå (and thus
ρå), rather than the empirically constrained value of ρå from the
light curve and RV measurements. On the other hand, we
estimate the uncertainty on ρå directly from observables (e.g.,
the light curve and the RV data).
Because their prior on ρå is more constraining than the value

of ρå one would obtain from the light curve, and because the
inferred planetary parameters critically hinge upon ρå, this
ultimately leads to smaller uncertainties in the planetary
parameters than we obtain purely from the light-curve
observables.
To show why this is true, we begin by comparing their prior

in ρå (the value they derive from their estimate of Må and Rå,
which we will denote ρå,prior) to the uncertainty in ρå from
observables (denoted ρå,obs).
Their prior on ρå can be trivially calculated from

r p=  M R3 4 3, and its uncertainty, through propagation of
error, is therefore simply

s
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Inserting the appropriate values from Dragomir et al. (2019)
yields11 ρå,prior= 3.07± 0.49 g cm−3. This represents a frac-
tional uncertainty of s r =r 

0.16,prior,prior
.

Now, combining Equations (7) and (10), we can express
ρå,obs and its uncertainty in terms of transit observables as
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Inserting the fractional uncertainties on P, δ, T, and τ from
the discovery paper into Equation (34), we find
s r =r 

0.37,obs,obs
. This is larger and less constraining than

the fractional uncertainty in the prior on ρå,obs from Dragomir
et al. (2019) by a factor of 2.3. Thus, we expect the prior
onr,prior to dominate over the constraint from the light curve.
However, despite being considerably less constraining than the
prior, the empirical constraint on ρå,obs can still influence the
posterior value if the central value is significantly different than

11 We note that the actual value reported in Section 3.1 of Dragomir et al.
(2019) is ρå = 3.09 ± 0.23 g cm−3, but after careful analysis, we believe that
this value is probably a typographical error, because it differs from the value
we derive and from the posterior value in Table 1 of the paper.
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the prior value. Inserting the values of P, δ, T, and τ in
Equation (33), we find a central value of ρå,obs= 5.56± 2.06
g cm−3. This value is (5.56 – 3.07)/2.06= 1.2σ discrepant
from the prior value. Thus, there is a weak tension between the
empirical and prior values of ρå,obs that should be explored.

If we include the eccentricity in the expression for ρå, we
find much closer agreement between ρå,obs and ρå,prior.

From Winn (2010), we can express the scaled semimajor
axis as a function of eccentricity as

p
d

t w
=

-
+

⎛
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e
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1

1 sin
. 35

1 4 2

We can then combine this equation with Equation (7) to find
the ratio between the inferred ρå assuming a circular orbit
(ρå,obs,c) and that for an eccentric orbit (ρå,obs,e):

r r
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Inserting the values from the paper (e = 0.188 and ω= 98°)
yields ρå,obs= 5.56 g cm−3× 0.568= 3.16 g cm−3, and assum-
ing the same fractional uncertainty as ρå,obs,c of 0.37 (which we
discuss below), we get a value of ρå,obs,e= 3.16± 1.17 g cm−3,
which is∼0.1σ greater than the prior, and in much better
agreement than our estimate without including eccentricity.
The reason why the eccentricity significantly affects ρå,obs in
this case, despite the fact that it is relatively small (e = 0.188),
is that for this system, the argument of periastron is ω; 90°,
which implies that the transit occurs near periastron, and thus
the transit is shorter than if the planet were on a circular orbit
by a factor of
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Thus τ is shorter by the same factor. Since r tµ -( ) T 3 2, by
assuming e= 0 one overestimates the density by a factor of
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approximately recovering the factor above.
The eccentricity also affects the uncertainty in ρå in the

following way:

r

r w
w

w

µ
-

+
- -

-

⎛

⎝
⎜

⎞

⎠
⎟ 



( )( )

( )





e

e
e e

e

1

1 sin
1 1 3 sin

1 3 sin ,
39

,obs,e

,obs,c

2
3

3

2
2

where we have assumed that e= 1. Propagating the uncer-
tainty leads to a final value of ρå,obs,e= 3.16± 2.04 g cm−3,
which is only ∼0.04σ greater than ρå,prior. Thus, the
eccentricity plays a significant role in the parameter uncertain-
ties for this system. The uncertainty in the prior constraint on ρå
is a factor of ∼1.7 times smaller than that derived from the data
alone. We therefore conclude that the prior adopted by
Dragomir et al. (2019) dominates over the empirical value of
ρå from the data (ρå,obs). This also explains why their final
value and uncertainty in ρå ( -

+3.03 0.47
0.50 g cm−3) is so close to

their prior (ρå,prior= 3.07± 0.49 g cm−3).

Assuming that the uncertainty on their priors for Må and Rå

indeed dominates the fractional uncertainty in the resulting
planet parameters, we can reproduce their uncertainties in Mp,
gp, and ρp using their prior to recover their reported fractional
uncertainties as follows.
For the surface gravity gp, we have
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, 40p
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while the planet radius can be expressed as
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Instead of simplifying gp in terms of observables (as we have
done in Equation (11)), we express it in terms of Må and Rå.
Using propagation of error, the uncertainty is
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where we have assumed - »( )e1 12 1 2 since the eccentricity
is small.
Inserting the appropriate values from Table 1 in Dragomir

et al. (2019) in Equations (43) and (44), we recover a fractional
uncertainty in the surface gravity of s =g 0.14g pp

, which is
12.5% different from the value reported in Dragomir et al.
(2019), and thus agrees much better with their results than our
initial estimate.
For the planet’s mass, we start from Equation (41) and

propagate its uncertainty as
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implying a fractional uncertainty in the mass of
s =M 0.093M pp , which is only ∼0.3% discrepant from the
uncertainty in the paper.
Finally, we replicate the analysis for the planet’s density,

starting with
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And the uncertainty in ρp is thus
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which leads to s r =r 0.18pp
, while the paper reports

s r =r 0.21pp
, which is a ∼14% difference.

In summary, we can roughly reproduce the uncertainties in
Dragomir et al. (2019) to better than 15% if we assume that
such uncertainties are dominated by the priors on the stellar
mass and radius. In Figure 1, we plot both our initial fractional
uncertainties and the recovered uncertainties as pairs connected
by golden arrows that point in the direction of the “recovered”
uncertainties based on our forensic analysis.

4.5. K2-106b

K2-106b is the inner planet in a system of two transiting
exoplanets discovered by Adams et al. (2017) and later
characterized by Guenther et al. (2017). It is on an ultrashort,
0.57 day orbit around a G5V star. It has a mass of -

+
ÅM8.36 0.94

0.96

and radius of 1.52± 0.16 R⊕, leading to a high bulk density of
r = -

+13.1p 3.6
5.4 g cm−3. Guenther et al. (2017) used data from the

K2 mission combined with multiple RV observations from the
High Dispersion Spectrograph (Noguchi et al. 2002), the
Carnegie Planet Finder Spectrograph (Crane et al. 2006), and
the Fiber-Fed Echelle Spectrograph (Frandsen & Lind-
berg 1999; Telting et al. 2014) to confirm and analyze this
system. They performed a multi-planet joint analysis of the data
using the code pyaneti (Barragán et al. 2017) and derived
the host star’s mass and radius using the PARSEC model
isochrones and the interface for Bayesian estimation of stellar
parameters from da Silva et al. (2006).

As with HD 21749b, we found large discrepancies (∼50%)
between our analytic estimates and the literature uncertainties
on the planetary mass and density of K2-106b. Unlike HD
21749b, however, the reason for this discrepancy is that the
uncertainty in the density of the host star, and thus in the
properties of the planet, is dominated by the data, including the
light curve + RV, rather than the prior. To see why this is true,
we perform a similar analysis as in Section 4.4, and begin by
comparing the uncertainty in the density from the observables
ρå,obs to the density from the prior ρå,prior.

First, we have that the uncertainty in ρå based purely on the
prior fractional uncertainties on Må and Rå is given by
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Inserting the values of s  MM and s  RR from the paper, we
derive a fractional uncertainty on the density of the star from
the prior of s r =r / 

0.31,prior,prior
. On the other hand, using

Equation (34), the fractional uncertainty in the stellar density
from pure observables ρå,obs is s r =r 

0.15,obs,obs
, a factor of

∼2 times smaller than the fractional uncertainty on ρå
estimated from the prior.

We can compute the uncertainty in the planetary mass
assuming the fractional uncertainty on Må from the prior and
the fractional uncertainty on the measured semi-amplitude Kå

using Equation (45):
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where we have assumed that σP/P= 1. We find
s =M 0.11M pp , which is only 1% different from the uncer-
tainty reported in Guenther et al. (2017).
Further, we infer that Guenther et al. (2017) estimated the

density of the planet by combining their estimate of the mass of
the planet by adopting the prior value of Må, along with the
observed values of Kå and P, with the radius of the planet
derived by adopting the prior value of Rå and the observed
value of transit depth (and thus Rp/Rå). Thus we infer that
Guenther et al. (2017) estimated the uncertainty in the planet
density via
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again assuming that σP/P= 1. Substituting the values quoted
in Guenther et al. (2017) into the expression above, we find
s r =r 0.32pp

, whereas they quote a fractional uncertainty of
s r =r 0.34pp

, a ∼6% difference. On the other hand, if we
analytically estimate the fractional uncertainty on the density of
K2-106b using pure observables (Equation (20)), but assume
their reported value and uncertainty on Rå, we find
s r ~r 0.18pp

, i.e., a factor of ∼2 times smaller.
In the case of the surface gravity of the planet, however, we

find that our analytic estimates and that reported in the paper
only differ by∼8%. The reason is in part because the
uncertainty in the stellar density from the light curve dominates
the uncertainty in the planet properties. In this case, the light
curve and RV data tightly constrain the stellar density, which
implies that µ M R 3. This constraint on ρå causes the prior
estimates of the stellar mass, radius, and their uncertainties to
cancel out in the expression for the planet density:

dµ - - ( )  g P K M R . 52p
1 3 2 3 1 2

Assuming rµ  M R 3 and r ~ constant, we find

d dµ =- - - ( )   g P K R R P K . 53p
1 3 2 1 2 1 3 1

The reason why Equation (53) and Equation (11) do not
agree is because Equation (53) does not include the full
contributions of the uncertainties in the light-curve observables
P, δ, T, and τ.
Figure 1 shows the fractional uncertainties in Mp, gp, and ρp

for K2-106b and brown arrows pointing from the original
values we estimate to the “recovered” values.
We reanalyzed K2-106 with EXOFASTv2 to derive stellar

and planetary properties without using either the MIST stellar
tracks, the Yonsei Yale stellar evolutionary models (YY; Yi
et al. 2001), or the relationships of Torres et al. (2010) that are
built into EXOFASTv2. We first constrained the stellar radius
by fitting the star’s SED to stellar atmosphere models to infer
the extinction AV and bolometric flux, which when combined
with its distance from Gaia EDR3 (Gaia Collaboration et al.
2020) provides a (nearly empirical) constraint on Rå. We find a
fractional uncertainty in Rå of 2.4%, while Guenther et al.
(2017) derive a fractional uncertainty of 10% using the
measured values of Teff, glog , and [Fe/H] from their HARPS
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and HARPS-N spectra, combined with constraints from the
PARSEC model isochrones (da Silva et al. 2006).

We used our estimate of the stellar radius to recalculate the
fractional uncertainties in Mp, gp, ρp, and Rp using our analytic
expressions, and the constraints on the empirical parameters P,
Kå, T, τ, and δ from Guenther et al. (2017). Our derived
fractional uncertainty in the planetary radius is 3.0%, whereas
Guenther et al. (2017) find 10%.12 Our derived fractional
uncertainty on the density of the planet is a factor of 2.3 times
smaller than reported by Guenther et al. (2017). This is because
the radius of the star enters into their estimate of ρp as -

R
3

(Equation (46)), whereas our estimate of ρp only depends
linearly on Rå (Equation (19)). We estimate an uncertainty in
the planet mass of 15%, a bit larger than that reported by
Guenther et al. (2017), because it scales as the square of the
radius of the star (Equation (15)). Finally, the uncertainty in
planetary surface gravity that we estimate is 14%, almost the
same as that estimated by Guenther et al. (2017), because it
does not depend directly on s  RR .

We conclude that a careful reanalysis of the K2-106 system
using purely empirical constraints may well result in a
significantly more precise constraint on the density of K2-
106b, which is already a strong candidate for an exceptionally
dense super-Earth.

5. Discussion

Here we discuss the importance of achieving high-precision
measurements of planetary masses, surface gravities, densities,
and radii, and their general role in a planet’s habitability.

The mass and radius of a planet are arguably its most
fundamental quantities. The mass is a measure of how much
matter a planet accreted during its formation and is also tightly
connected to its density and surface gravity, which we discuss
below. The mass also determines whether a planet can acquire
and retain a substantial primordial atmosphere. Atmospheres
are essential for a planet to maintain weather and thus life (see,
e.g., Dohm & Maruyama 2013). In addition, the planetary core
mass and radius (themselves a function of the total mass) are
related to the strength of a planet’s global magnetic field,
although the strength of the field does depend on other factors,
such as the rotation rate of the planet and other aspects of its
interior. The presence of a substantial planetary magnetic field
is vital in shielding against harmful electromagnetic radiation
from the host star. This is especially true for exoplanets orbiting
M dwarfs, which are much more active than Sun-like stars.
Without a magnetic field to shield against magnetic phenomena
such as flares and coronal mass ejections, planets around such
stars may undergo mass loss and atmospheric erosion on
relatively short timescales (see, e.g., Kielkopf et al. 2019). The
initial mass may also determine whether planets will have
moons, a factor that has been hypothesized to play a role in the
habitability of a planet, as it does for the Earth. Some authors
have even proposed that Mars- and Earth-sized moons around
giant planets may themselves be habitable (see, e.g., Heller
et al. 2014; Hill et al. 2018).

The mean density of a planet is also important because it is a
first-order approximation of its composition. Based on their
density, we can classify planets as predominantly rocky
(typically Earth-sized and super-Earths) or gaseous (Neptune-
sized and hot Jupiters). A reliable determination of the density
and structure of a planet helps to constrain its habitability.
Next, we briefly discuss a few aspects of the importance of

the planetary surface gravity. First, the surface gravity dictates
the escape velocity of the planet, as well as the planet’s
atmospheric scale height, h, defined as

m
= ( )h

k T

g
, 54

p

B eq

where kB is the Boltzmann constant, Teq is the planet
equilibrium temperature, and μ is the atmospheric mean
molecular weight. The surface gravity is connected to mass
loss events and the ability of a terrestrial planet to retain a
secondary atmosphere. Perhaps most importantly, gravity may
be a main driver of plate tectonics on a terrestrial planet. One of
the most fundamental questions about terrestrial or Earth-like
planets is if they can have and sustain active plate tectonics or
whether they are in the stagnant lid regime, like Mars or Venus
(van Heck & Tackley 2011). On Earth, plate tectonics are
deeply linked to habitability for several crucial reasons. Plate
tectonics regulate surface carbon abundance by transporting
some CO2 out of the atmosphere and into the interior, which
helps maintain a stable climate over long timescales (Sleep &
Zahnle 2001; Unterborn et al. 2016). An excess of carbon
dioxide can result in a runaway greenhouse effect, as in the
case of Venus. Plate tectonics also drive the formation of
surface features such as mountains and volcanoes, and play an
important role in sculpting the topography of a rocky planet.
Weather can then bring nutrients from mountains to the oceans,
contributing to the biodiversity of the oceans. Some authors
have argued that plate tectonics, dry land, and continents
maximize the opportunities for intelligent life to evolve (Dohm
& Maruyama 2013).
However, the origin and mechanisms of plate tectonics are

poorly understood on Earth, and are even more so for
exoplanets. The refereed literature on this topic includes
inconsistent conclusions regarding the conditions required for
plate tectonics, and in particular how the likelihood of plate
tectonics depends on the mass of the planet. For example, there
is an ongoing debate about whether plate tectonics are
inevitable or unlikely on super-Earths. Valencia & O’Connell
(2009) used a convection model and found that the probability
and ability of a planet to harbor plate tectonics increase with
planet size. On the other hand, O’Neill & Lenardic (2007) came
to the opposite conclusion, finding that plate tectonics are less
likely on larger planets, based on numerical simulations. The
resolution to this debate will have important consequences for
our assessment of the likelihood of life on other planets.

5.1. Surface Gravity as a Proxy for the Core Mass Fraction

The surface gravity of a planet may also play an important
role in constraining other planetary parameters, such as the
CMF. Here, we considered K2-229b ( = -

+
ÅR R1.197p 0.048

0.045 and
= -

+
ÅM M2.49p 0.43

0.42 , Dai et al. 2019), a potential super-Mercury
first discovered by Santerne et al. (2018). This planet has well

12 We note that when s s   RR R Rp , the fractional uncertainty on the
planetary radius is equal to the fractional uncertainty on the radius of the star
(Equation (22)). While this is approximately the case given the fractional
uncertainty in Rå estimated by Guenther et al. (2017), for our estimate the
uncertainty in Rp/Rå of 1.9% contributes somewhat to our estimated fractional
uncertainty in Rp.
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measured properties, and the prospects for improving the
precision of the planet parameters are good given the brightness
of the host star.

We calculate the CMF of K2-229b as expected from the
planet’s mass and radius, CMFρ, which is the mass of the iron
core divided by the total mass of the planet: CMFρ=MFe/Mp.
We compare this to the CMF as expected from the refractory
elemental abundances of the host star, CMFstar. This definition
assumes that a rocky planet’s mass is dominated by Fe and
oxides of Si and Mg. Therefore, the stellar Fe/Mg and Si/Mg
fractions are reflected in the planet’s CMF. The mass and
radius of K2-229b are consistent with a rocky planet with a
CMF of 0.57, while the relative abundances of Mg, Si, and Fe
of the host star K2-229 (as reported in Santerne et al. 2018)
predict a CMF of 0.29 (Schulze et al. 2020). Figure 2 shows
mass–radius (M–R) ellipses for K2-229b when the mass and
radius are assumed to be uncorrelated (red) and correlated via
the added constraint of surface gravity (black). While
apparently enriched in iron, the enrichment is only significant
at the 2σ level. The surface gravity, however, is correlated to
the mass and gravity, reducing the uncertainty in CMFρ
(black): the M–R ellipse that includes the surface gravity
constraint reduces the uncertainty in the differences of CMF
measures. This arises because the planet’s density and surface
gravity only differ by one factor of Rp. Because the black
contours closely follow the line of a constant CMF of 0.57, we
assert that surface gravity and planet radius may be a better
proxy for CMF than mass and radius. Indeed, at the current
uncertainties, we calculate that the additional constraint of
surface gravity reduces the uncertainty in the CMFρ of K2-
229b from 0.182 to 0.165. This is important given that we have
demonstrated that the surface gravity of a planet is likely to be

one of its most precisely measured properties. Furthermore, the
fractional precision of the surface gravity measurement can be
arbitrarily improved with additional data, at least to the point
where systematic errors begin to dominate.

6. Conclusions

One of the leading motivations of this paper was to answer
the question: “given photometric and RV observations of a
given exoplanet system, can we measure a planet’s surface
gravity better than its mass?” At first glance, the surface gravity
depends on the mass itself, so it seems that the gravity should
always be less constrained. However, upon expressing the
mass, gravity, and density as functions of photometric and RV
parameters, we see that the mass and density have an extra
dependence on the stellar radius, which makes the surface
gravity generically easier to constrain to a given fractional
precision than the mass or density. When expressed in terms of
pure observables, a hierarchy in the precisions on the planet
properties emerges, such that the surface gravity is better
constrained than the density, and the latter is in turn better
constrained than the mass. The surface gravity is a crucial
planetary property because it dictates the scale height of a
planet’s atmosphere. It is also a potential driver of plate
tectonics, and as we show in this paper, it can be an excellent
proxy to constrain a planet’s CMF to better facilitate the
discrimination of the composition of a planet as different from
that of its host star. With current missions such as TESS, we
expect to achieve high precisions in the photometric para-
meters. State-of-the-art RV measurements can now reach
precisions in the semi-amplitude of <5%. As a result, the
uncertainties in the ingress/egress duration τ and the host star
radius Rå may be the limiting factors in constraining the
properties of low-mass terrestrial planets.
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