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Abstract—Abnormal event detection with the lowest latency
is an indispensable function for safety-critical systems, such as
cyber defense systems. However, as systems become increasingly
complicated, conventional sequential event detection methods
become less effective, especially when we need to define indicator
metrics from complicated data manually. Although Deep Neural
Networks (DNNs) have been used to handle heterogeneous data,
the theoretic assurability and explainability are still insufficient.
This paper provides a holistic framework for the quickest and se-
quential detection of abnormalities and time-dependent abnormal
events. We explore the latent space characteristics of zero-bias
neural networks considering the classification boundaries and
abnormalities. We then provide a novel method to convert zero-
bias DNN classifiers into performance-assured binary abnormal-
ity detectors. Finally, we provide a sequential Quickest Detection
(QD) scheme that provides the theoretically assured lowest ab-
normal event detection delay under false alarm constraints using
the converted abnormality detector. We verify the effectiveness of
the framework using real massive signal records in aviation com-
munication systems and simulation. Codes and data are available
at https://github.com/pcwhy/AbnormalityDetectionInZbDNN

Index Terms—Internet of Things, Big Data Analytics, Zero-
bias Neural Network, Deep Learning, Abnormality Detection,
Quickest Detection.

I. INTRODUCTION

Deep Learning (DL) and DNNs have been applied exten-
sively in IoT. On the one hand, DL and DNNs have been
successfully applied in smart devices for accurate recognition
of complicated inputs [1]–[4]. On the other hand, time-
consuming feature engineering is not always required as in
conventional machine learning schemes [5]–[7]. Therefore,
DL and DNNs are regarded as versatile tools to implement
learning components in smart systems [8].

Although DL and DNNs are successful in general appli-
cations, DNNs in safety-critical systems requiring assured
performance are still controversial. Firstly, applications in
safety-critical systems require making accurate decisions with
explainable behaviors, which is a major weakness of DNNs.
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Secondly, DNNs perform well and can be adopted to the
domain of similar tasks. However, they cannot distinguish
unseen data [9], termed as abnormalities, from specific ab-
normal events such as cyber-attacks. Although these unseen
novel data are not usually available during network training,
they are required to be detected in real-time with constrained
false alarms [10]. The two obstacles impede the deployment
of DL and DNNs in safety-critical systems.

For the first challenge, the eXplainable AI (XAI) has been
proposed [11]. However, the XAI methods are insufficient for
applying AI in safety-critical systems. Most of the related
works treat DNN models as blackboxes and can only explain
the importance of input dimensions for decision making and
do not provide insights into the models’ latent space. In safety-
critical scenarios, knowing the models’ behavior and perfor-
mance boundaries are also important aspects for assurability.

To address the second challenge, deep autoencoders (AE)
or Generative Adversarial Networks (GANs) are employed
to capture the latent features of the domain-specific inputs
by compressing and accurately reconstructing them. However,
training AE or GAN models is even more computationally
expensive than training DNN classifiers [12], [13]. Moreover,
autoencoders or GAN models do not guarantee to respond with
constrained false alarms [14]. Existing works have broadly
covered single-shot (nonsequential) abnormality detection but
do not provide methods to aggregate information when a
single-shot detector is not always reliable. In our work, a
single-shot abnormality detector can be treated as an early
warning generator, and we can then use sequential event
detection methods to aggregate information for abnormal event
confirmation. Therefore, the detection of abnormal events is
facilitated by the sequential detection of abnormalities. One
popular method is Quickest Detection, it ensures the lowest
latency under predefined false alarm constraints [15]. However,
there are still some gaps in integrating DNN with sequential
event detection algorithms.

In this paper, we utilize an enhanced deep learning frame-
work based on our previous work, the zero-bias DNN [16],
for the detection of abnormal events based on a hybrid event
detection paradigm. Compared with the previous work, we
apply zero-bias DNN as a single-shot warning generator in
the sequential event detection paradigm. Moreover, Quickest
Event Detection is employed for sequential processing with
minimum latency and false alarm constraints. Additionally, we
provide a thorough analysis of the latent space characteristics
of zero-bias DNN, especially for abnormalities and classifica-
tion errors. The effectiveness of the proposed framework in
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handling massive signal recognition has been demonstrated.
The contributions of this paper are as follows:

• We thoroughly analyze zero-bias DNNs’ latent space
characteristics. We explore the decision boundaries of
different classes and reveal the essence of classification
errors.

• We provide a novel method to efficiently convert existing
DNN classifiers into binary DNN abnormality detectors,
which are with assured performance and better adaptivity.

• We integrate the zero-bias DNN with Quickest Detection
to provide a novel sequential abnormal event detection
framework. We validate the solution on the detection of
identity spoofing attacks on real Automatic Dependent
Surveillance Broadcasting (ADS-B [17]) signals.

Our research offers a solution to accurate detection of ab-
normal events and abnormalities with an assured performance,
thus useful in promoting trustworthy IoT and deepening the
understanding of deep neural networks. Besides, this frame-
work can be applied in other scenarios that require sequential
event detection, such as stock investment or pandemic reaction
[15]. Some of our works are presented in [18]. In this paper, we
significantly improved the methods with better adaptivity and
validated the methods using more datasets and experiments.

The remainder of this paper is organized as follows: A
literature review of related works is presented in Section II.
We formulate our problem in Section III with the methodology
presented in Section IV. Performance evaluation is presented
in Section V with conclusions in Section VI.

II. RELATED WORKS

Abnormality and abnormal event detection plays an increas-
ingly important role in safety-critical and latency-constrained
IoT. Nowadays, heterogeneous data are generated timely in
large volumes. Therefore, quick and reliable identification and
detection of abnormal events and abnormalities are increas-
ingly discussed.

A. Abnormality detection in deep neural networks

A critical problem for learning based device identification
is that classifiers only recognize pretrained data but can not
deal with novel data presented during training. One intuitive
alleviation is to remove the Softmax function. In [19], the
authors first trained a CNN model on known data. They then
remove the Softmax function and turn the neural network into
a nonlinear feature extractor. Finally, they use the DBSCAN
algorithm to perform cluster analysis on the remapped features
and show that the method has the potential of detecting a
limited number of novel classes.

From the perspective of Artificial Intelligence, abnormality
detection is categorized as the Open Set Recognition [20], [21]
problem. In [22], the authors used a GAN model to generate
highly realistic fake data. Then they used the discriminator
network to distinguish whether an input is from an abnormal
source. In [23], the authors provided two methods to deal
with abnormalities: i) Reuse trained convolutional layers to
transform inputs to feature vectors, and then use Mahalanobis

distance to judge the outliers. ii) Reuse the pretrained convolu-
tional layers to transform signals to feature vectors, and then
perform k-means (k = 2) clustering to discover the groups
of outliers. In [24], the authors dynamically trained GAN
networks to identify the poisoned input generated by adver-
saries in federated learning [25]. In [26] the authors employed
autoencoders for robust abnormal detection in industrial IoT.

B. Quickest Detection

Real-time event detection is a critical function in safety-
critical IoT. From the perspective of input data, we may
categorize them into single-shot and sequential detection
paradigms. In single-shot detection [16], event detections are
performed per observation, and the past data will not be
retained for future use. In contrast, the sequential detection
paradigm allows accumulating information from past observa-
tions [14].

From the perspective of the stochastic process, a system
in different states can be described by distributions with
measurable statistical properties [27]. Therefore, transitions
within states cause the change of those properties. The QD
algorithms aim to detect the change as quickly as possible,
subject to predefined false alarm constraints [28]. The process
is essentially an optimization problem. Considering whether
prior observations are independent of an abnormal event’s ap-
pearance, the optimization scheme can be defined in different
forms as reviewed in [29].

Given that the characteristics of the observed system prior
to some specific events are usually known in advance [29].
We can categorize the quickest event detection methods into
two branches: a) detecting events with known postchange
distributions. b) detecting events with unknown postchange
distributions. Generally, detecting known events is faster and
many sequential change point detection algorithms can be
applied directly [30]. For example, in Cumulative Sum Control
Chart (CuSum) algorithm, the statistic metric of an ongoing
event is calculated periodically. The current metric is then
compared with the metrics in the known normal status. And
the discrepancies between the two metrics can be transformed
into a 1-D time series. Finally, the CuSum algorithm sends
an alarm when the cumulative sum of the discrepancies
reaches a threshold. However, a postchange distribution may
not be known in some scenarios. Consequently, nonparametric
strategies have to be used and bring higher latency.

Quickest detection provides a performance-assured solution
to detect change points (related to events) in sequential data.

TABLE I
COMPARISON OF METHODS

Methods Category Feature
Extraction Assurability Controllable

False Alarms
Model

Explainability

QD and manual metric-based
Abnormal Event Detection

Sequential
Detection Manual High Yes High

DL Enabled Known
Event Detection

Single-shot
Detection Automatic No Yes Low

DL Enabled Abnormal
Event Detection

Single-shot
Detection Automatic No No Low

Our approach: Integration
of QD & DL

Sequential
Detection Automatic High Yes Median
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Fig. 1. System model of zero-bias deep learning enabled quickest abnormal
event detection in IoT.

However, the selection of statistic metrics still depends on

manual trial-and-error. A comparison of existing methods is

given in Table I. We focus on real-time sequential detection

of events, especially on integrating the quickest detection

with deep learning seamlessly, and provide an automated and

performance-assured solution for latency-constrained CPS.

III. PROBLEM DEFINITION

In many systems, states are highly correlated with time-

dependent events, e.g., abnormal events or normal operations.

We define that abnormalities are suspicious data caused by
abnormal events. Intuitively, abnormalities could trigger vari-

ations of specific statistical indicator metrics. By analyzing

the drift or variations of these metrics, abnormal events can

be detected sequentially. Our proposed framework is depicted

in Figure 1. We aim to use deep neural networks to process

heterogeneous data from IoT and spot abnormal events through

complex data. We then use the quickest event detection

algorithm to detect ongoing abnormal events with minimum

latency. In this research, the single-shot abnormality detector

is also termed as an early warning generator.

We assume that a surveillance oracle can sequentially collect

a system’s state variables, denoted as:

S = {S1,S2, . . .Sj . . .Sj+m . . . } (1)

where Sj denotes a state variable or record in vector form, an

abnormal event appears at j and is detected at j +m. Real-

time abnormal event detection requires minimizing m with

constrained false alarm.

Some well-known methods are provided in the Quickest

Detection algorithms. For example, in the CuSum algorithm,

a likelihood ratio test is employed to sequentially process the

observed data at each timestamp k, denoted as:

g(k) = ln(
P1(Sk)

P0(Sk)
) (2)

where g(k) is the indicator metric, also termed as the suffi-

ciency metric, P0(·), P1(·) denotes the probabilistic density

functions of normal and abnormal states, respectively. A

constrained cumulative sum of sufficiency metrics is used as

an indicator, denoted as:

s(k) = max(0, s(k − 1) + g(k)) (3)

An alarm will be sent once s(k) is greater than a predefined

threshold, h. The CuSum algorithm has been proved to provide

the lowest worst-case detection latency at specific false alarm

intervals [15], [31]. However, CuSum-style quickest detection

algorithms can hardly handle high-dimension data, where the

analytical form of P0(·) and P1(·) are difficult to obtain. Even

though some works use DNNs to derive g(k) from high dimen-

sion data numerically, the uncertain responses of DNNs make

the theoretical performance assurance impossible. To enable

deep learning for quick and reliable abnormality detection,

we need to: i) use a DNN driven abnormality detection model

to process complex data and provide theoretically assurable

and predictable performance. ii) develop an efficient method

to jointly apply performance-assured DNN and quickest event

detection to provide theoretically guaranteed performance in

detecting abnormal events.

IV. PROPOSED FRAMEWORK

This section will first introduce the zero-bias DNN and

its latent space characteristics. We then provide an efficient

method to convert zero-bias DNN into a performance assured

abnormality detector. Finally, we provide our method to inte-

grate zero-bias DNN with the quickest detection algorithms.

A. Zero-bias Neural Networks

This subsection analyzes the characteristics of zero-bias

neural networks, an enhanced neural network model with

transparent decision characteristics.

We have shown that the last dense layers of a DNN classifier

perform the nearest neighbor matching with biases and weights

using cosine similarity in [16]. To eliminate unwanted biases

and weights, we convert a regular DNN model into a zero-

bias DNN by replacing its classification dense layer (the dense

layer before Softmax function) with a zero-bias dense layer.

We can formulate the zero-bias dense layer as:

Y 0(X) = W 0X + b (4)

L(X) = cosineDistance(Y 0,W 1) (5)

where X is the feature vector. W 1 is a matrix to store

fingerprints of different classes. For any feature vector, A zero-

bias dense layer consists of two functions, linear transform

(equation 4) and fingerprint matching (equation 5). In this

paper, X is an N0 by q matrix, where N0 denotes the number

of features while q denotes the batch size. W 0 is an N1

by N0 matrix where N1 denotes the number of new feature

dimensions. W 0X + b performs linear dimension reduction

as long as N1 < N0. Finally, W1 is a C by N1 matrix in

which C denotes the number of classes, Please be noted that
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Fig. 2. The latent space (hyperspherical surface) for classification in zero-
bias DNNs. Please note that even for a regular neural network, its classes’
governing region can be represented and visualized using a 3D unit spherical
surface [34]

in W1, each row represents a fingerprint of corresponding class

whilst in Y 0 each column represents a feature vector within a

batch of q elements. Therefore, L(·) performs the final label

association. L(·) can be implemented by:

L(X) = RU(W1)×CU(Y0) (6)

where RU(·) or CU(·) denote scaling vectors in each row or

column of the input matrix into unit vectors. Our prior results

[16], [32] also prove that zero-bias DNN can be trained using

common loss functions (e.g., binary crossentropy, MSE, and

etc.).

B. Classification Boundaries of Zero-bias DNN

Mathematically, the cosine similarity in Equation 6 repre-

sents the similarity matching of fingerprints and feature vectors

on an N1-D unit hyperspherical surface. This hyperspherical
surface is termed as the latent space of the zero-bias DNN.
A 3-D concept is depicted in Figure 2. Fingerprints divide

the unit hyperspherical surface into several subregions. If we

remap the dimension of class fingerprints and feature vectors

into 2D, Voronoi Diagram [33] can be used to analyze their

relationship and decision boundaries.

For example, in the DNN enabled MNIST handwritten digit

recognition [35], the network’s last dense layer is replaced by

a zero-bias dense layer with N1 = 10. The Voronoi diagrams

at two training stages (accuracy being 85% and 97%) of class

fingerprints in the latent space are depicted in the left first

column of Figure 3. In the figure, we also depict the feature

vectors from the test set.

In the second (central) column of Figure 3, we present

the latent space of our major task with the zero-bias DNN

(architecture presented in Figure 9). In this experiment, the

neural network is trained to recognize aircraft through their

signals.

Finally, in the third (right) column of Figure 3, we present

the latent space of a drones’ RF signal recognition task [36]

using the DNN model as in Figure 9) with dataset in [37].

In this task, the neural network is trained to recognize three

drones and nine different operational states.

From the observation, even though different datasets and

models are used, there are some similar characteristics in the

latent space of zero-bias DNNs: i) at the early stage of train-

ing, data from different classes are mapped into overlapped

Accuracy 60% on MNIST

Accuracy 90% on MNIST

Accuracy 60% on ADS-B signals

Accuracy 90% on ADS-B signals Accuracy 90% on Drone signals

yAccuracy 60% on Drone signals

Fig. 3. Class fingerprints (purple rectangle), feature vectors (points), class
boundaries (blue lines) and latent space feature vectors (represented by dots
in different colors) from different dataset (MNIST hand written digits [35],
Aviation ADS-B signals [38] and Drones’ RF signals [36], [37]) under
different training stages. All vectors are projected to a 2D space using t-
SNE [39].

clusters. ii) As the training moves on, the data clusters are

gradually separated distinctively. We conclude that in zero-

bias DNNs, the classification error results from overlapped

clusters in the latent space.

C. Abnormality detection with zero-bias DNN

The effectiveness of zero-bias DNN for nonsequential

(single-shot) abnormality detection has been demonstrated in

our prior results [16], [32]. It is better than regular DNN and

comparable to one-class SVM [40]. In this section, we deepen

our previous research and present a solution to convert zero-

bias DNN models into abnormality detectors with predictable

and assurable performance.

1) Deriving abnormality detectors from existing DNN clas-
sifiers: In Figure 3, feature vectors from known classes

are closely projected to the vicinity of the corresponding

class fingerprints. However, for abnormality detection with

assurable performance, we need to understand the detector’s

characteristics under normal and abnormal data.

We use two different datasets to analyze the relation of

normal and abnormal data:

1) We train the zero-bias DNN to recognize handwritten

digits from 1 to 7 and use digits 8, 9, and 0 as abnormal

data. The Voronoi diagram of class fingerprints stacked

with known and abnormal data is depicted in the left part

MNIST dataset with abnormalities

1
2
3
4
5
6
7
Fingerprints
Abnormalities

Signal dataset with abnormalities

Class fingerprint
Class boundaries
Normal data
Abnormalities

Fig. 4. Class fingerprints and feature vectors in the latent space of different
models. The two models are trained with 92% accuracy.
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Fig. 5. Distribution of normal (trained) and abnormal data in the latent space
of zero-bias DNNs.

of Figure 4. Here, the handwritten digits dataset is only

an example to demonstrate the phenomenon.

2) We train the DNN model in Figure 9 on the aviation

communication signal dataset in [38]. We use the 30 most

frequently seen aircraft signals as normal data for the

neural network is trained to recognize. In comparison, the

remaining aircraft’s signals are treated as abnormalities.

The result is presented in the right part of Figure 4.

Even though we used different datasets and models, we

observed a similar phenomenon. That is, the abnormal data

are sparsely distributed in the latent space, and they have few

chances to mix into clusters of normal data, as also depicted

in Figure 5, we come to our first remark:

Remark 1. In the latent space of zero-bias DNN, data from
unknown novel classes, which are termed as abnormalities, are
less likely to mix into the clusters of existing trained classes.

We can also derive a basic principle to convert a zero-

bias dense layer enabled DNN classifier into an abnormality

detector:

Remark 2. We can model the spatial distribution and bound-
aries of normal data in the latent space. Then the incoming
data’s feature vectors that are out of normal data boundaries
are regarded as abnormalities.

For a given DNN model with the zero-bias dense layer, we

model the boundaries of different classes as follows:

Step 1: The training set is utilized to learn the boundaries

of known classes while the validation set will be

mixed with abnormal data (A0) to measure the per-

formance of the converted abnormality detector. We

pass accurately classified data of ith known class from

the training set, denoted as KXi, through layers of

the DNN model and obtain the compressed feature

vectors before fingerprint matching, denoted as:

Y 0[Fn−1(KXi)] = W 0Fn−1(KXi) + b (7)

Where W 0 and b are defined in Equation 4, F (·)n−1

denotes all network layers before the fingerprint

matching. Y 0[Fn−1(KXi)] denotes feature vectors

of accurately classified data in KXi.

Fig. 6. Distribution of erroneously classified data in the latent space of zero-
bias DNN, feature vectors of C, D, E and F are erroneously projected into
governing regions.

Step 2: Calculate the centroid ci0 and covariance matrix (Pi)

of KXi as:

ci0 = mean(Y 0[Fn−1(KXi)]) (8)

Pi = cov(Y 0[Fn−1(KXi)],Y 0[Fn−1(KXi)])

Step 3: Calculate the Mahalanobis distances [41] from the

class centroid ci0 to all accurately classified feature

vectors. Then we use the maximum value as a cut-off

distance COi of class KXi:

COi = max Dm[Y 0[Fn−1(KXi)], c
i
0] (9)

Where Dm(·, ci0) denotes the feature vectors’ Maha-

lanobis distances to ci0.

Step 4: Abnormality detection using cut-off boundaries on

input data X) is formally defined as:

D(X) =

{
1 ∃ i, Dm[Y 0[Fn−1(X)], ci0] ≤ COi

0 Otherwise
(10)

These steps convert zero-bias DNNs into abnormality de-

tectors with binary outputs, also termed as early warning

generators. In essence, we construct statistical models for each

class to describe the distribution of corresponding normal data

with a hard cut-off distance to form its boundary (denoted

as dashed purple lines in Figure 5). From the perspective of

Domain Adaption, abnormalities and normal data are separated

into different domains with different distributions [42].

2) Theoretic performance Analysis: We introduce the hard

cut-off distances of class fingerprints. Therefore, a binary

abnormality detector converted from zero-bias DNN becomes

a binary classifier. We derive two important properties of this

type of binary abnormality detector regarding false positive

and false negative rates.

The accuracy of zero-bias DNN models on known classes

can be obtained after training. As discussed earlier in Section

IV-A, the classification errors are caused by inaccurate pro-

jections. From the perspective of decision boundary and class

boundary, the scenarios that lead to classification error are

depicted in Figure 6. As depicted, the feature vectors C and

D are projected into the wrong class boundaries but out of the

boundaries of normal data. Meanwhile, E and F are projected

into the normal data boundaries of wrong fingerprints.
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Suppose that E and F in Figure 6 are moved out of the

normal data boundaries. The false positive rate of abnormality

detection reaches its upper bound and equals the classification

error α. Furthermore, if C and D are moved into normal data

boundaries, the false positive rate equals zero. Therefore, the

range of false-positive rate of the binary abnormality detector

is actually determined:

Remark 3 (Range of the false positive rate). Suppose that the
classification error of the zero-bias DNN is α, as long as our
statistical model can closely follow the boundary of normal
data, the false positive rate of converted abnormality detector
is less than or equals to α. Denoted as:

FPR ≤ α (11)

Suppose that in a regular case, the feature vectors of

abnormalities are mixed with normal data and uniformly

distributed on the surface of the unit hypersphere, in this case,

the maximum false negative rate is reached.

Remark 4 (Range of false negative (true positive) rates).
The upper bound of the false negative rate under uniformly
distributed abnormalities, equals to ratio of the occupied
regions’ area of normal data divided by the total surface area
of the unit hypersphere, denoted as:

RUFNR =

∑Nc

i=1 S
i
hsp(N1)

Ahsp(N1)

With FNR ≤ RUFNR, TPR ≥ 1−RUFNR (12)

Where Nc is the number of known classes, N1 and Ahsp(N1)
are the dimension and surface area of the unit hypersphere,
respectively. Si

hsp(N1) is the surface area of normal data of
the ith class.

Analytically calculating Si
hsp(N1) is difficult since the

shapes of these occupied subregions are unknown. Therefore,

we use the Monte Carlo method to estimate RUFNR directly.

Corresponding pseudo code is presented in Algorithm 1.

Specifically, we first generate M random points uniformly

distributed on the surface of the N1-D unit hypersphere (in

line 2). We then count the number of points that are within

the cut-off distance of each known class (from line 5 to 10).

Finally, the ratio
chx

M
is the sum of the covered areas of known

classes’ regions. The captured rate directly indicates the value

of RUFNR. Empirically, we set M = 50, 000. In essence, we

sample the latent space randomly and count the number of

points captured by known classes’ regions.

D. Zero-bias DNN for quickest abnormal event detection

1) Sequential formalization and detectability: Given the

theoretic analysis of the binary abnormality detector in sec-

tion IV-C2, we can model the response of zero-bias DNNs

as switching between two probability distributions before and

after the appearance of an abnormal event, namely P0 and P1,

respectively. Since we have converted the zero-bias DNN into

Algorithm 1 Estimating RUFNR

1: function RUFNR(N1, Nc,M,List[CO], List[ci0])
2: HX ← UniformHypersphereRand(N1,M)
3: chx ← 0
4: for k ← 1 . . .M do
5: for i ← 1 . . . Nc do
6: if Dm[HXk, c

i
0] ≤ COi then

7: chx ← chx+ 1
8: break

9: end if
10: end for
11: end for
12: return

chx

M
13: end function

Fig. 7. Range of true positive and false positive rates and detectability criteria.

a binary abnormality detector, we can formulate P0 and P1

into two Bernoulli Distributions [43]:

P0(Ik) = FPRIk(1− FPR)1−Ik

P1(Ik) = (1− FNR)IkFNR1−Ik

= (TPR)Ik(1− TPR)1−Ik (13)

where Ik ∈ {0, 1} is the output of the binary abnormality

detector with Ik = D(Xk). FPR can be estimated on

existing data, and the range of FNR and TPR can be

estimated using Algorithm 1. As long as the P0 and P1 are

different, the abnormal event causing drifts from P0 to P1 can

be sequentially detected. We have the following determinant

under regular scenarios:

Remark 5 (Sequential detectability). Abnormal events are
assured to be sequentially detectable if the binary abnor-
mality detector’s True Positive rate (TPR) lower bound
(1−RUFNR) are greater than its False Positive rate (FPR)
upper bound (α).

Remark 4 shows that the true positive and false negative

rates are within different ranges, if 1 − RUFNR ≤ α,

the two variables’ spanning ranges are partially overlapped

(depicted in Figure 7) and we may encounter an extreme

case: TPR = FPR. Therefore, the abnormal event is only

conditionally detectable.

2) Quickest detection algorithm: With Remark 5, we can

use Quickest Detection algorithm to detect the appearance of

an abnormal event with the lowest latency at a given false

alarm run length. We will present both the Bernoulli Gener-
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alized Likelihood Ratio (GLR) Chart and its approximation,

the multiple Bernoulli CuSum Chart, respectively. Compared

with the existing nonparametric solutions, we discretize the

continuous probabilistic function space. And the detection

problem is transformed into a sequential parametric hypothesis

testing problem.

Using Bernoulli GLR Chart [44] to sequentially detect

abnormal events. We have:

Rk = max
0≤τ≤k−1,β≤TPR≤1

ln

∏k
i=τ+1 TPRIk(1− TPR)1−Ik∏k
i=τ+1 FPRIk(1− FPR)1−Ik

= max
0≤τ≤k−1

(k − τ) ln

[
T̂PR · T̂PR(1− FPR)

FPR(1− T̂PR)

+ ln
1− T̂PR

1− FPR

]
(14)

Where T̂PR ≈ TPR ∈ [1 − RUFNR, 1) is the estimated

true positive rate of binary abnormality detector and τ is the

estimated time when an abnormal event happens. T̂PR is

dynamicaly estimated as follows:

T̂PR = min

{
B1,max

[
1−RUFNR,

∑k
i=τ+1

k − τ
Ik

]}
(15)

Where B1 = 1−ε is the maximum possible value of TPR and

ε is a tiny positive number to assure T̂PR < 1. An alarm is

triggered if Rk > hGLR and hGLR is a pre-defined threshold.

hGLR can be chosen as suggested in [44]:

hGLR = log10(ARL · FPR) (16)

Where ARL is the average run length between false alarms.

Theoretically, we have to store a long sequence (0 ≤ τ ≤
k − 1) of previous abnormality detection results to detect an

abnormal event. Fortunately, we can use a sliding window to

store relevant data and reduce the computational complexity.

In [45] and [44], it is shown that a GLR chart with a window

is asymptotically optimal if the window size m is sufficiently

large.

It is also numerically verifiable that the detection latency

of Bernoulli GLR charts can be closely approximated with

a countable set of Bernoulli CuSum Charts, where the iden-

tical detection threshold hCuSum is shared among them and

hCuSum = hGLR [44], [46]. The approximated range of TPR
covered by each CuSum chart is:

T̂PRi = 1−RUFNR +
TPRmax · i2

U2
(17)

Where U is the total number of CuSum charts, in which greater

than 100 is recommended, i denotes the index of each chart.

TPRmax is the max possible value of the true positive rate

that is less than 1. 1 − RUFNR denotes the lower bound of

the true positive rate. Therefore, given an average run length

between false alarms, ARL, we have the worst case average

detection delay as:

T̄GLR ∼ hCuSum

I(P1, P0)
(18)

where hCuSum is the threshold for triggering the alarm while

I(P1, P0) is the Kullback-Leibler information number [31].

Please be noted that we use the characteristic of multiple

Bernoulli CuSum charts to demonstrate the properties of

detection delay.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

framework in two folds. We first use a massive real-world sig-

nal dataset [38] to train an aircraft signal identity recognition

DNN model. Then we use the proposed method to convert the

DNN model into a binary abnormality detector that functions

as an early warning generator. Finally, we evaluate the perfor-

mance of sequential abnormal event detection using different

event detection algorithms with various configurations. In this

section, the abnormal event is denoted as receiving signals

generated by identity spoofing attackers.

A. Dataset and application scheme

Our dataset is available in [38], we use the wide-spreading

signals from the ADS-B system [17], which provides a

great variety of signals from commercial aircraft’s signal

transponders with their unique IDs as labels. Specifically,

aircraft use transponders at 1090MHz to broadcast their geo-

coordinates, velocity, altitude, heading, as well as its unique

ID to the Air Traffic Control Center (ATC). The integrity and

trustworthiness of ADS-B messages are critical to aviation

safety. However, the ADS-B system does not contain cryp-

tographic identity verification mechanisms. Thus, the aircraft

IDs can be forged easily, which makes the whole system

vulnerable to identity spoofing attacks (depicted in Figure 8).

Our previous works [16], [32], [47] have shown that the

responses of the zero-bias DNN to known (learned) aircraft

and unknown sources (also from unknown aircraft) can be

modeled by different probability distributions. Here we define

the appearance of unknown aircraft’s signals as abnormal

events. We use the framework in this paper to convert the

original aircraft identification model into a binary abnormality

detector. And then use sequential event detection algorithms

to process responses from the binary abnormality detector to

detect the appearance of the adversaries that transmit fake

ADS-B signals.

Fig. 8. Identity spoofing attack in aviation communication systems.

From the perspective of DL, the input is the raw signal

collected by a Software Defined Radio Receiver (USRP B210),

and the DNN is trained to identify the known aircraft through

their signals. As in our prior work [16], [32], we take the first

1024 samples from each signal record. And then convert the

1024 samples into a 32 by 32 by 3 tensor, which incorpo-

rates pseudonoise, magnitude-frequency, and phase-frequency
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features. The architecture of our DNN model is depicted

in Figure 9 with a description of the dataset in Table II.

After training to recognize known aircraft, the zero-bias DNN

model is then converted to a binary abnormality detector as in

Section IV-C.

TABLE II
DESCRIPTION OF DATASET

Usage Description

Training 60% of signal records from 28 aircraft.

Test 40% of signal records from 28 aircraft.

Normal data The test set.

Abnormal data Signal records from the remaining 100 aircraft.

Fig. 9. Deep neural network architecture of zero-bias aircraft identification
model [32].

B. Performance of the converted binary abnormality detector

The zero-bias neural network model for aircraft signal

recognition is trained with 92% accuracy in identifying known

aircraft. After training, its unit hypersphere coverage ratio is

12.7%. The binary abnormality detector trained on our dataset

has a true positive and a true negative rate of 95% and 92%,

respectively, which is closely matched with our prediction as

in Remark 3 and 4. We compare the performance of our binary

abnormality detector with the existing methods in Table III. As

presented, the binary abnormality detector converted from the

zero-bias neural network achieves the best performance. This

binary abnormality detector is then used as an early warning

generator for sequential abnormal event detection.

The relation of the performance of the converted abnormal-

ity detector and the zero-bias DNN model’s accuracy before

conversion is given in Figure 10a. Meanwhile, the coverage

ratio of all classes on the unit hyperspherical surface during

training is given in Figure 10b. As predicted, when the accu-

racy of zero-bias DNN gets higher, the abnormality detector

simultaneously produces higher true positive and lower false

TABLE III
COMPARISON OF SINGLE-SHOT ABNORMALITY DETECTORS.

Metric One-class SVM 1 Zero-bias DNN 1 Regular DNN 1 Ours

False
Positive

0.19 0.2 0.2 0.07

False
Negative

0.05 0.05 0.28 0.05

1 Each of the them requires a threshold value to distinguish abnormalities,
thresholds are selected according to the maximum margin of separation as
in our previous work [16].
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Fig. 10. Comparison of metrics: (a) True Positive and False Positive rates of
the converted binary abnormality detector. (b) Latent space (unit hypersphere
surface) coverage ratio during the training of a zero-bias DNN model.

positive rates. Interestingly, the occupied area becomes smaller

when the zero-bias DNN model gets higher accuracy.

C. Quickest abnormal event detection

To further evaluate our proposed method, we first define

a quality metric, Q =
TPR

FPR
, for the binary abnormality

detector. Then, we can use numerical simulation to evaluate

the performance of zero-bias DNN under different Q values

and different sequential detection algorithms: CuSum [31],

EWMA (Exponentially Weighted Moving Average [48]) chart,

and sliding window [49]. We simulate the possible values

of hGLR, FPR, and TPR that a binary abnormality de-

tector can encounter with TPR ∈ [0.6, 0.99], FPR = 0.4,

Q ∈ [1.625, 2.25]. We configure three sequential detection

algorithms as follows:

• GLR chart: we set the event detection threshold

hCuSum ∈ [10, 20.0].
• EWMA chart: we set λ = 0.15 and L ∈ [3.0, 4.0].
• Sliding window for moving average: we set the length of

the window to L ∈ [50, 300] with a threshold 0.7.

We select the parameters of all these sequential detection

algorithms to cover the full range (0 to 1) of the false alarm

rate.

The results are presented in Figure 11a, 11b and 11c,

respectively. We summarize the observed phenomenons as

follows:

• As in Figure 11a, we compare the detection delay of

different algorithms using different parameters. In the

GLR chart and sliding window, the detection delay in-

creases linearly as the detection threshold gets higher

or the length window gets longer. However, when using

the EWMA chart, we observe some nonlinear growth

patterns in the detection delay when the quality metric

of the binary abnormality detector is low. Therefore,

EWMA’s detection delay is sensitive to the configura-

tion of parameters. It outperforms the GLR chart and

sliding window when the quality metric of the binary

abnormality detector is sufficiently high. Meanwhile, the

GLR chart provides the lowest detection delay even when

the quality metric of the binary abnormality detector is

low.

• As in Figure 11b, we compare the relation of detection

delay and false alarms. In the three algorithms, we get a
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Fig. 11. Comparison of sequential event detectors under various quality metrics: (a) Comparison of detection delays with different configurations of sequential
detection algorithms. (b) Comparison of average false alarm rates and detection delays. (c) Comparison of detection delays under zero false alarm constraints

longer detection delay if we want a low false alarm rate.
We also notice that the sliding window gets the longest
detection delay when the false alarm ratio is constrained
to a specific value. Meanwhile, if we allow some false
alarms, the GLR chart gets lower detection delay even
when the quality metric of the binary abnormality detec-
tor is low.

• Finally, as in Figure 11c, we compare the distribution of
detection delays of the three algorithms when the false
alarm ratio is zero. The distribution of detection delays
in GLR chart spans within smaller ranges. Meanwhile,
the EWMA chart provides the best performance while
the quality metric of the binary abnormality detector is
sufficiently high.

In general, the quality of the single-shot binary abnormality
detector significantly benefits the quick detection of abnor-
mal events in these sequential statistical tests. The CuSum
algorithm-enabled GLR chart provides the most balanced per-
formance under various quality metrics of binary abnormality
detectors.

VI. CONCLUSIONS AND FUTURE SCOPE

In this paper, we have significantly extended the analysis
of our previously proposed zero-bias DNN and combined
it with the Quickest Detection algorithms. We facilitate the
application of Deep Learning in the detection of abnormalities
and time-dependent abnormal events with the assured lowest

latency. We first used the Voronoi diagram to explore the latent
space characteristics of zero-bias DNNs. We then proposed a
solution to convert zero-bias DNN classifiers, which are easier
to obtain, into binary abnormality detectors with assurable and
predictable performance. We developed a method to model the
converted abnormality detectors using Bernoulli distribution,
which perfectly adapts to the Generalized Likelihood Ratio
based Quickest Detection scheme with theoretically assured
detection delay under specified false alarms. Finally, we vali-
dated the framework using both massive ADS-B signal records
from real aviation communication systems.

Our work in this paper contributes to the development
of a more reliable and trustworthy AI paradigm for IoT.
However, we still have several challenges in the future. Firstly,
DNNs have to get trained rapidly facing the requirements
of data-intensive applications such as cloud computing [50].
We can exploit the latent space characteristics of DNNs dis-
cussed in this paper to develop data-efficient machine learning
paradigms. Secondly, it is computationally expensive to retrain
DNNs from scratch when we encounter new tasks [51]. There-
fore, developing efficient incremental learning algorithms to
expand existing DNNs’ capability continuously will also be
of great significance. Thirdly, DNN models may encounter
adversarial attacks in the real world. We need to explore
the feature space of DNNs to find protection mechanisms
[52]. Finally, in our signal identification and detection applica-
tion, we may encounter highly realistic fake inputs generated
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by Generative Adversarial Networks (GANs) [4]. Such fake
inputs will significantly increase the difficulty of detection.
Therefore, it is important to introduce fake signal generators
when deriving more reliable signal identification and detection
networks.
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