
Brief Announcement: A Randomness-efficient Massively Parallel
Algorithm for Connectivity

Moses Charikar
Stanford University
Stanford, CA, USA

moses@cs.stanford.edu

Weiyun Ma
Stanford University
Stanford, CA, USA

wyma@cs.stanford.edu

Li-Yang Tan
Stanford University
Stanford, CA, USA

liyang@cs.stanford.edu

ABSTRACT
We give a randomness-efficient Massively Parallel Computation
(MPC) algorithm for deciding whether an undirected graph is con-
nected. For Connectivity on n-vertex,m-edge graphs whose com-
ponents have diameter at most D = 2o(logn/log logn), our algorithm
runs in R = O(logD + log logm/n n) rounds and uses a total of
(logn)O (R) random bits, O(m) machines, and n1−Ω(1) space per
machine with good probability.1 Our algorithm achieves a super-
polynomial saving in randomness complexity as compared to the
breakthrough algorithm of Andoni et al. (FOCS ’18) and the subse-
quent improvement by Behnezhad et al. (FOCS ’19). Our algorithm
has the same round complexity as that of Behnezhad et al., but uses
more total space.

Our Connectivity algorithm is an instantiation of a general
method we develop for converting randomized algorithms in the
PRAM model to highly randomness-efficient MPC algorithms. We
show that for k = o(logn/log logn) and p = nO (1), any time-k p-
processor randomized PRAM algorithm computing a function on
n input bits can be converted to an equivalent strongly sublinear
MPC algorithm with O(k) rounds and only a total of (logn)O (k )

random bits. Our Connectivity algorithm follows from applying
this method to the recent CRCW PRAM algorithm of Liu, Tarjan,
and Zhong (SPAA ’20).

Our approach is based on the design of a pseudorandom gener-
ator for PRAM algorithms. The analysis of our generator is built
on classic and influential results in circuit complexity (Håstad ’86;
Nisan and Wigderson ’88), which we generalize from the setting
of small-depth circuits to the more powerful setting of PRAM al-
gorithms. The parameters that we achieve are optimal given the
current state of the art in complexity theory, in the sense that
further improvements will imply P , NC1.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Theory
of computation → Massively parallel algorithms; Pseudo-
randomness and derandomization.

1With good probability means with probability at least 1−1/poly((m logn)/n), which
is the same as in Liu, Tarjan, and Zhong (SPAA ’20).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’21, July 26–30, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8548-0/21/07.
https://doi.org/10.1145/3465084.3467951

KEYWORDS
massively parallel computation, connectivity, PRAM, pseudoran-
dom generators, average-case lower bounds

ACM Reference Format:
Moses Charikar, Weiyun Ma, and Li-Yang Tan. 2021. Brief Announcement:
A Randomness-efficient Massively Parallel Algorithm for Connectivity. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Com-
puting (PODC ’21), July 26–30, 2021, Virtual Event, Italy. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3465084.3467951

1 INTRODUCTION
The Massively Parallel Computation (MPC) model [4, 13] has re-
cently emerged as the standard framework for capturing the capa-
bilities of modern parallel computing platforms such as MapReduce,
Hadoop, and Spark. In this model a set of machines perform com-
putation synchronously in rounds. In each round, each machine
can perform a local computation on the messages it receives from
the previous round, and send the computation results to other ma-
chines as input for the subsequent round. We work in the strongly
sublinear MPC regime where the local space of any machine, i.e.
the total size of the messages received or sent by the machine in a
round, is at most O(N ε ) for a small constant 0 < ε < 1, where N is
the size of the input.

In this work, we consider the problem of graph connectivity in
the MPC model, which is a fundamental problem that has been
intensively studied in parallel computation. A recent breakthrough
of Andoni et al. [1] gave a O(logD log logm/n n)-round random-
ized MPC algorithm for Connectivity on n-vertex, m-edge, D-
diameter graphs that usesO(m) total space, breaking a longstanding
O(logn)-round barrier. If O(m1+Ω(1)) total space is allowed, their
algorithm runs in O(logD) rounds. This was followed by the work
of Behnezhad et al.[5], who improved the round complexity to
O(logD + log logm/n n) while using O(m) total space.

1.1 This work: Randomness-efficient MPC
algorithm for Connectivity

This work focuses on the randomness efficiency of randomized algo-
rithms. The goal of reducing the randomness usage of randomized
algorithms is not only of basic theoretical interest, but also well-
motivated from a practical point of view since high-quality random
bits can be difficult or costly to obtain. Recently, there has been
a surge of interest in improving the randomness efficiency of al-
gorithms for various problems in different models of parallel and
distributed computation [2, 6–8, 10, 11, 19].

Session 7: Distributed ML, Topology, and Parallel Algorithms PODC ’21, July 26–30, 2021, Virtual Event, Italy

431

https://doi.org/10.1145/3465084.3467951
https://doi.org/10.1145/3465084.3467951


We are primarily interested in designing randomness-efficient
algorithms in the MPC model. For Connectivity, the aforemen-
tioned randomized MPC algorithms of [1, 5] use Ω(n) random bits.
Our main result is the following:

Theorem 1 (Randomness-efficient MPC algorithm for Connectiv-
ity). For D = 2o(logn/log logn), Connectivity on n-vertex,m-edge,
D-diameter graphs can be computed by a strongly sublinear random-
ized MPC algorithm that runs in R = O(logD + log logm/n n) rounds
and uses a total of (logn)O (R) random bits and O(m) machines with
good probability.

We note that for D = 2o(logn/log logn), the total number of ran-
dom bits used by our algorithm is (logn)O (R) = o(nδ ) for any
arbitrarily small constant δ > 0. Thus our algorithm achieves a
super-polynomial saving in randomness complexity as compared
to the algorithms of [1, 5].

For D = Ω(logm/n n), the round complexity of our algorithm
matches that of the algorithm of [1] which runs inO(logD) rounds
whenO(m1+Ω(1)) total space is allowed. Our algorithm also has the
same round complexity as that of [5], while the latter uses only
O(m) total space.

Our main result (Theorem 1) follows from a general method
that we develop for converting a randomized algorithm in the
Parallel Random Access Machine (PRAM) model into an equivalent
MPC algorithm that is highly randomness-efficient and has round
complexity asymptotically the same as the time of the PRAM. In
the PRAM model, a set of processors run synchronously in time
steps and have access to a shared memory. In each time step, each
processor can read a cell in the shared memory, write to a cell in
the shared memory, or perform its own computation locally. It is
known that every PRAM algorithm can be efficiently simulated by
an MPC algorithm [9, 13]. We show the stronger statement that we
can efficiently simulate small-time randomized PRAM algorithms
by MPC algorithms that are also randomness-efficient:

Theorem 2 (Converting randomized PRAM algorithms to random-
ness-efficient MPC algorithms). LetM be a randomized PRAM with
k time steps, p processors, and c memory cells that computes a func-
tion f : {0, 1}n → {0, 1}, where each processor generates at most r
independent random bits in each time step. Assume that p, c ≤ nO (1),
r ≤ (logn)O (1), and k = o(logn/log logn). Then f can be computed
by a strongly sublinear randomized MPC algorithm that runs inO(k)
rounds and uses O(p + c) machines and only a total of (logn)O (k )

random bits.

Our method applies to all versions of PRAM, particularly the
most powerful concurrent read concurrent write version of PRAM
(CRCW PRAM), which allows for multiple processors to read and
write to the same memory cell at the same time.2 In contrast with
prior workwhichmostly focused on obtaining randomness-efficient
versions of specific parallel algorithms, a key feature of Theorem 2
is that it applies to general PRAM algorithms.

We obtain Theorem 1 by applying Theorem 2 to a very recent
randomized CRCW PRAM algorithm by Liu, Tarjan, and Zhong
2In particular, our method applies to the most powerful Priority variant of CRCW
PRAMs, where whenever multiple processors attempt to write to the same memory
cell at a time step, the one with the smallest ID succeeds. It applies to the weaker
variants of Arbitray or Common CRCW PRAMs as well.

[16], which computes Connectivity in O(logD + log logm/n n)-
time using O(m) processors and cells with good probability.

1.2 Technical overview
At a high level, our Theorem 2 builds on and extends the classic
derandomization framework for small-depth boolean circuits [17].
Ingredients that go into this framework include several influential
results of circuit complexity, notably Håstad’s average-case lower
bounds [12] and the Nisan-Wigderson hardness versus randomness
paradigm [18].We begin by noting that CRCWPRAMs are computa-
tionally more powerful than circuits, and the best known simulation
result only shows that every time-k p-processor CRCW PRAM can
be simulated by a circuit of depth O(k) and size p2k+O (1) [15]. This
is a considerable blow-up in size, and furthermore, the simulation
is non-constructive. For both these reasons, we cannot apply the
derandomization framework for small-depth boolean circuits as it is
to CRCW PRAMs, but instead have to generalize each of the several
components that go into the framework from the setting of boolean
circuits to that of CRCW PRAMs. Due to the added power of CRCW
PRAMs, this involves overcoming several technical challenges that
we now discuss.

Central to our approach is the design of a pseudorandom genera-
tor for CRCW PRAMs, which is a function that stretches a small
number of truly random bits, which we call the random seeds, into
a near-exponential number of bits that look random, which we call
the pseudorandom bits. Our overarching strategy for proving Theo-
rem 2 is to replace the random bits used by a given CRCW PRAM
with pseudorandom bits produced by a pseudorandom generator
while preserving the success probability. The pseudorandom gener-
ator we use is the classic Nisan-Wigderson generator [18] which is
designed to fool small-depth circuits of polynomial size. We show
that the Nisan-Wigderson generator can in fact also fool the more
powerful class of small-time CRCW PRAMs with polynomially
many processors:

Theorem 3 (Nisan-Wigderson generator fools CRCW PRAMs,
informal statement). Let G : {0, 1}d → {0, 1}m be the Nisan-
Wigderson generator with d = (logm)O (k ). Then any deterministic
CRCW PRAM with k time steps and p = mO (1) processors cannot
distinguish between the distributions Um and G(Ud ) well. Here, Ud
and Um denote the uniform distribution on {0, 1}d and {0, 1}m re-
spectively.

The seed length d that we achieve here is optimal given the cur-
rent state of the art in complexity theory, in the sense that an im-
provement to (logm)o(k ) = (logp)o(k ) will imply P , NC1. Indeed,
this is true even for the weaker model of Boolean circuits, as had
been noted by Nisan [17]. Briefly, an efficient pseudorandom gener-
ator for size-p depth-k circuits with seed length (logp)o(k ) implies
a lower bound against the circuits of depth k = ω(logp/log logp),
and it is known that every function in NC1 can be computed by a
circuit of depth k = O(logp/log logp) (see e.g. [14, 20]).

A challenge arising in the PRAM case is that, in a randomized
CRCW PRAM on n input bits, a processor can generate as many as
r = (logn)O (1) random bits in a single time step, which requires us
to feed pseudorandom bits to processors in groups of size at most
r . In comparison, random bits in a circuit are wired to the gates in

Session 7: Distributed ML, Topology, and Parallel Algorithms PODC ’21, July 26–30, 2021, Virtual Event, Italy

432



the same way as the input bits. To address this challenge, we prove
a stronger version of Theorem 3 that, even if a processor is allowed
to read as many as r input bits in a single time step, the PRAM still
cannot distinguish between the pseudorandom bits and the truly
random bits.

Our proof of correctness of the Nisan-Wigderson generator cru-
cially relies on the existence of a function that is average-case hard
against CRCW PRAMs, i.e. showing that no CRCW PRAM algo-
rithm can compute this function correctly on noticeably more than
half of the inputs. In the simpler setting of small-depth circuits,
the analogous lower bound is given by a seminal result of Hås-
tad [12], which showed that a polynomial-size circuit of depth
o(log ℓ/log log ℓ) cannot compute the parity function on ℓ input
bits correctly on more than a fraction of 1/2 + o(1) of the inputs.
This lower bound underlies the proof of correctness of the Nisan-
Wigderson generator in fooling small-depth circuits. For the more
challenging setting of CRCW PRAMs, Beame and Håstad [3] proved
a worst-case lower bound, showing that a CRCW PRAM with poly-
nomially many processors that runs in time o(log ℓ/log log ℓ) can-
not compute the ℓ-bit parity function on all inputs. Our next result
establishes an average-case lower bound against CRCW PRAMs,
thereby simultaneously strengthening both [12] and [3]:

Theorem 4 (Average-case hardness of parity in CRCW PRAMs).
Any CRCW PRAM with o(log ℓ/log log ℓ) time steps and ℓO (1) pro-
cessors cannot compute the parity function on ℓ input bits correctly
on more than a fraction of 1/2 + o(1) of the inputs.

In addition to being the key tool in our proof that the Nisan-
Wigderson generator fools CRCW PRAMs (Theorem 3), we believe
that Theorem 4 is of independent interest as it sheds new light on
the limitations of CRCW PRAMs.

Our proof Theorem 4 extends Håstad’s proof framework for
the case of circuits to the more general setting of CRCW PRAMs.
The specifics of the CRCW PRAM model necessitates significant
changes to Håstad’s proof. One main difference is that, since the
dependence of the state of a processor in a PRAM on the input is
more complicated than that of a gate in a circuit, we use the notion
of the degree of the partition associated to a processor introduced
by [3] as a quantitative measure of such dependence. Moreover,
Håstad’s proof uses an induction that collapses two consecutive
levels of a circuit into one at each step, an operation that does not
have a natural analogy in PRAMs. As a solution, we propose a new
inductive framework that does not modify the given PRAM but
zooms in to only a subset of the time steps at each inductive step.

ACKNOWLEDGMENTS
Moses Charikar was supported by a Simons Investigator Award.
Weiyun Ma was supported by a Stanford Graduate Fellowship. Li-
Yang Tan was supported by NSF CAREER Award CCF-1942123.

REFERENCES
[1] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin Zhong.

2018. Parallel Graph Connectivity in Log Diameter Rounds. In Proceedings of
the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
674–685.

[2] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. 2020. Efficient deterministic
distributed coloring with small bandwidth. In Proceedings of the 39th Symposium
on Principles of Distributed Computing. 243–252.

[3] Paul Beame and Johan Hastad. 1989. Optimal bounds for decision problems on
the CRCW PRAM. Journal of the ACM (JACM) 36, 3 (1989), 643–670.

[4] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication steps for
parallel query processing. J. ACM 64, 6 (2017), 40:1–40:58.

[5] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab
Mirrokni. 2019. Near-optimal massively parallel graph connectivity. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 1615–
1636.

[6] Artur Czumaj, Peter Davies, and Merav Parter. 2020. Graph sparsification for
derandomizing massively parallel computation with low space. In Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures. 175–185.

[7] Artur Czumaj, Peter Davies, and Merav Parter. 2020. Simple, deterministic,
constant-round coloring in the congested clique. In Proceedings of the 39th Sym-
posium on Principles of Distributed Computing. 309–318.

[8] Mohsen Ghaffari, David G Harris, and Fabian Kuhn. 2018. On derandomizing
local distributed algorithms. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 662–673.

[9] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,
and Simulation in the Mapreduce Framework. In Proceedings of the 22nd Interna-
tional Conference on Algorithms and Computation (ISAAC) (Yokohama, Japan).
374–383. https://doi.org/10.1007/978-3-642-25591-5_39

[10] David G Harris. 2019. Derandomized concentration bounds for polynomials, and
hypergraph maximal independent set. ACM Transactions on Algorithms (TALG)
15, 3 (2019), 1–29.

[11] David G Harris. 2019. Distributed local approximation algorithms for maximum
matching in graphs and hypergraphs. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 700–724.

[12] Johan Håstad. 1987. Computational Limitations of Small-Depth Circuits. MIT
Press, Cambridge, MA, USA.

[13] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of com-
putation for MapReduce. In Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 938–948.

[14] Maria Klawe, Wolfgang J Paul, Nicholas Pippenger, and Mihalis Yannakakis. 1984.
On monotone formulae with restricted depth. In Proceedings of the sixteenth
annual ACM symposium on Theory of computing. 480–487.

[15] M LI and Y YESHA. 1989. New lower bounds for parallel computation. Journal
of the Association for Computing Machinery 36, 3 (1989), 671–680.

[16] Sixue Cliff Liu, Robert E Tarjan, and Peilin Zhong. 2020. Connected components
on a pram in log diameter time. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures. 359–369.

[17] Noam Nisan. 1991. Pseudorandom bits for constant depth circuits. Combinatorica
11, 1 (1991), 63–70.

[18] Noam Nisan and Avi Wigderson. 1994. Hardness vs randomness. Journal of
computer and System Sciences 49, 2 (1994), 149–167.

[19] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-time deterministic
network decomposition and distributed derandomization. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing. 350–363.

[20] Luca Trevisan and Tongke Xue. 2013. A derandomized switching lemma and an
improved derandomization of AC0. In 2013 IEEE Conference on Computational
Complexity. IEEE, 242–247.

Session 7: Distributed ML, Topology, and Parallel Algorithms PODC ’21, July 26–30, 2021, Virtual Event, Italy

433

https://doi.org/10.1007/978-3-642-25591-5_39

	Abstract
	1 Introduction
	1.1 This work: Randomness-efficient MPC algorithm for Connectivity
	1.2 Technical overview

	Acknowledgments
	References



