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ABSTRACT
We give a randomness-efficient Massively Parallel Computation
(MPC) algorithm for deciding whether an undirected graph is con-
nected. For Connectivity on n-vertex,m-edge graphs whose com-
ponents have diameter at most D = 2o(logn/log logn), our algorithm
runs in R = O(logD + log logm/n n) rounds and uses a total of
(logn)O (R) random bits, O(m) machines, and n1−Ω(1) space per
machine with good probability.1 Our algorithm achieves a super-
polynomial saving in randomness complexity as compared to the
breakthrough algorithm of Andoni et al. (FOCS ’18) and the subse-
quent improvement by Behnezhad et al. (FOCS ’19). Our algorithm
has the same round complexity as that of Behnezhad et al., but uses
more total space.

Our Connectivity algorithm is an instantiation of a general
method we develop for converting randomized algorithms in the
PRAM model to highly randomness-efficient MPC algorithms. We
show that for k = o(logn/log logn) and p = nO (1), any time-k p-
processor randomized PRAM algorithm computing a function on
n input bits can be converted to an equivalent strongly sublinear
MPC algorithm with O(k) rounds and only a total of (logn)O (k )

random bits. Our Connectivity algorithm follows from applying
this method to the recent CRCW PRAM algorithm of Liu, Tarjan,
and Zhong (SPAA ’20).

Our approach is based on the design of a pseudorandom gener-
ator for PRAM algorithms. The analysis of our generator is built
on classic and influential results in circuit complexity (Håstad ’86;
Nisan and Wigderson ’88), which we generalize from the setting
of small-depth circuits to the more powerful setting of PRAM al-
gorithms. The parameters that we achieve are optimal given the
current state of the art in complexity theory, in the sense that
further improvements will imply P , NC1.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Theory
of computation → Massively parallel algorithms; Pseudo-
randomness and derandomization.

1With good probability means with probability at least 1−1/poly((m logn)/n), which
is the same as in Liu, Tarjan, and Zhong (SPAA ’20).
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1 INTRODUCTION
The Massively Parallel Computation (MPC) model [4, 13] has re-
cently emerged as the standard framework for capturing the capa-
bilities of modern parallel computing platforms such as MapReduce,
Hadoop, and Spark. In this model a set of machines perform com-
putation synchronously in rounds. In each round, each machine
can perform a local computation on the messages it receives from
the previous round, and send the computation results to other ma-
chines as input for the subsequent round. We work in the strongly
sublinear MPC regime where the local space of any machine, i.e.
the total size of the messages received or sent by the machine in a
round, is at most O(N ε ) for a small constant 0 < ε < 1, where N is
the size of the input.

In this work, we consider the problem of graph connectivity in
the MPC model, which is a fundamental problem that has been
intensively studied in parallel computation. A recent breakthrough
of Andoni et al. [1] gave a O(logD log logm/n n)-round random-
ized MPC algorithm for Connectivity on n-vertex, m-edge, D-
diameter graphs that usesO(m) total space, breaking a longstanding
O(logn)-round barrier. If O(m1+Ω(1)) total space is allowed, their
algorithm runs in O(logD) rounds. This was followed by the work
of Behnezhad et al.[5], who improved the round complexity to
O(logD + log logm/n n) while using O(m) total space.

1.1 This work: Randomness-efficient MPC
algorithm for Connectivity

This work focuses on the randomness efficiency of randomized algo-
rithms. The goal of reducing the randomness usage of randomized
algorithms is not only of basic theoretical interest, but also well-
motivated from a practical point of view since high-quality random
bits can be difficult or costly to obtain. Recently, there has been
a surge of interest in improving the randomness efficiency of al-
gorithms for various problems in different models of parallel and
distributed computation [2, 6–8, 10, 11, 19].
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We are primarily interested in designing randomness-efficient
algorithms in the MPC model. For Connectivity, the aforemen-
tioned randomized MPC algorithms of [1, 5] use Ω(n) random bits.
Our main result is the following:

Theorem 1 (Randomness-efficient MPC algorithm for Connectiv-
ity). For D = 2o(logn/log logn), Connectivity on n-vertex,m-edge,
D-diameter graphs can be computed by a strongly sublinear random-
ized MPC algorithm that runs in R = O(logD + log logm/n n) rounds
and uses a total of (logn)O (R) random bits and O(m) machines with
good probability.

We note that for D = 2o(logn/log logn), the total number of ran-
dom bits used by our algorithm is (logn)O (R) = o(nδ ) for any
arbitrarily small constant δ > 0. Thus our algorithm achieves a
super-polynomial saving in randomness complexity as compared
to the algorithms of [1, 5].

For D = Ω(logm/n n), the round complexity of our algorithm
matches that of the algorithm of [1] which runs inO(logD) rounds
whenO(m1+Ω(1)) total space is allowed. Our algorithm also has the
same round complexity as that of [5], while the latter uses only
O(m) total space.

Our main result (Theorem 1) follows from a general method
that we develop for converting a randomized algorithm in the
Parallel Random Access Machine (PRAM) model into an equivalent
MPC algorithm that is highly randomness-efficient and has round
complexity asymptotically the same as the time of the PRAM. In
the PRAM model, a set of processors run synchronously in time
steps and have access to a shared memory. In each time step, each
processor can read a cell in the shared memory, write to a cell in
the shared memory, or perform its own computation locally. It is
known that every PRAM algorithm can be efficiently simulated by
an MPC algorithm [9, 13]. We show the stronger statement that we
can efficiently simulate small-time randomized PRAM algorithms
by MPC algorithms that are also randomness-efficient:

Theorem 2 (Converting randomized PRAM algorithms to random-
ness-efficient MPC algorithms). LetM be a randomized PRAM with
k time steps, p processors, and c memory cells that computes a func-
tion f : {0, 1}n → {0, 1}, where each processor generates at most r
independent random bits in each time step. Assume that p, c ≤ nO (1),
r ≤ (logn)O (1), and k = o(logn/log logn). Then f can be computed
by a strongly sublinear randomized MPC algorithm that runs inO(k)
rounds and uses O(p + c) machines and only a total of (logn)O (k )

random bits.

Our method applies to all versions of PRAM, particularly the
most powerful concurrent read concurrent write version of PRAM
(CRCW PRAM), which allows for multiple processors to read and
write to the same memory cell at the same time.2 In contrast with
prior workwhichmostly focused on obtaining randomness-efficient
versions of specific parallel algorithms, a key feature of Theorem 2
is that it applies to general PRAM algorithms.

We obtain Theorem 1 by applying Theorem 2 to a very recent
randomized CRCW PRAM algorithm by Liu, Tarjan, and Zhong
2In particular, our method applies to the most powerful Priority variant of CRCW
PRAMs, where whenever multiple processors attempt to write to the same memory
cell at a time step, the one with the smallest ID succeeds. It applies to the weaker
variants of Arbitray or Common CRCW PRAMs as well.

[16], which computes Connectivity in O(logD + log logm/n n)-
time using O(m) processors and cells with good probability.

1.2 Technical overview
At a high level, our Theorem 2 builds on and extends the classic
derandomization framework for small-depth boolean circuits [17].
Ingredients that go into this framework include several influential
results of circuit complexity, notably Håstad’s average-case lower
bounds [12] and the Nisan-Wigderson hardness versus randomness
paradigm [18].We begin by noting that CRCWPRAMs are computa-
tionally more powerful than circuits, and the best known simulation
result only shows that every time-k p-processor CRCW PRAM can
be simulated by a circuit of depth O(k) and size p2k+O (1) [15]. This
is a considerable blow-up in size, and furthermore, the simulation
is non-constructive. For both these reasons, we cannot apply the
derandomization framework for small-depth boolean circuits as it is
to CRCW PRAMs, but instead have to generalize each of the several
components that go into the framework from the setting of boolean
circuits to that of CRCW PRAMs. Due to the added power of CRCW
PRAMs, this involves overcoming several technical challenges that
we now discuss.

Central to our approach is the design of a pseudorandom genera-
tor for CRCW PRAMs, which is a function that stretches a small
number of truly random bits, which we call the random seeds, into
a near-exponential number of bits that look random, which we call
the pseudorandom bits. Our overarching strategy for proving Theo-
rem 2 is to replace the random bits used by a given CRCW PRAM
with pseudorandom bits produced by a pseudorandom generator
while preserving the success probability. The pseudorandom gener-
ator we use is the classic Nisan-Wigderson generator [18] which is
designed to fool small-depth circuits of polynomial size. We show
that the Nisan-Wigderson generator can in fact also fool the more
powerful class of small-time CRCW PRAMs with polynomially
many processors:

Theorem 3 (Nisan-Wigderson generator fools CRCW PRAMs,
informal statement). Let G : {0, 1}d → {0, 1}m be the Nisan-
Wigderson generator with d = (logm)O (k ). Then any deterministic
CRCW PRAM with k time steps and p = mO (1) processors cannot
distinguish between the distributions Um and G(Ud ) well. Here, Ud
and Um denote the uniform distribution on {0, 1}d and {0, 1}m re-
spectively.

The seed length d that we achieve here is optimal given the cur-
rent state of the art in complexity theory, in the sense that an im-
provement to (logm)o(k ) = (logp)o(k ) will imply P , NC1. Indeed,
this is true even for the weaker model of Boolean circuits, as had
been noted by Nisan [17]. Briefly, an efficient pseudorandom gener-
ator for size-p depth-k circuits with seed length (logp)o(k ) implies
a lower bound against the circuits of depth k = ω(logp/log logp),
and it is known that every function in NC1 can be computed by a
circuit of depth k = O(logp/log logp) (see e.g. [14, 20]).

A challenge arising in the PRAM case is that, in a randomized
CRCW PRAM on n input bits, a processor can generate as many as
r = (logn)O (1) random bits in a single time step, which requires us
to feed pseudorandom bits to processors in groups of size at most
r . In comparison, random bits in a circuit are wired to the gates in
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the same way as the input bits. To address this challenge, we prove
a stronger version of Theorem 3 that, even if a processor is allowed
to read as many as r input bits in a single time step, the PRAM still
cannot distinguish between the pseudorandom bits and the truly
random bits.

Our proof of correctness of the Nisan-Wigderson generator cru-
cially relies on the existence of a function that is average-case hard
against CRCW PRAMs, i.e. showing that no CRCW PRAM algo-
rithm can compute this function correctly on noticeably more than
half of the inputs. In the simpler setting of small-depth circuits,
the analogous lower bound is given by a seminal result of Hås-
tad [12], which showed that a polynomial-size circuit of depth
o(log ℓ/log log ℓ) cannot compute the parity function on ℓ input
bits correctly on more than a fraction of 1/2 + o(1) of the inputs.
This lower bound underlies the proof of correctness of the Nisan-
Wigderson generator in fooling small-depth circuits. For the more
challenging setting of CRCW PRAMs, Beame and Håstad [3] proved
a worst-case lower bound, showing that a CRCW PRAM with poly-
nomially many processors that runs in time o(log ℓ/log log ℓ) can-
not compute the ℓ-bit parity function on all inputs. Our next result
establishes an average-case lower bound against CRCW PRAMs,
thereby simultaneously strengthening both [12] and [3]:

Theorem 4 (Average-case hardness of parity in CRCW PRAMs).
Any CRCW PRAM with o(log ℓ/log log ℓ) time steps and ℓO (1) pro-
cessors cannot compute the parity function on ℓ input bits correctly
on more than a fraction of 1/2 + o(1) of the inputs.

In addition to being the key tool in our proof that the Nisan-
Wigderson generator fools CRCW PRAMs (Theorem 3), we believe
that Theorem 4 is of independent interest as it sheds new light on
the limitations of CRCW PRAMs.

Our proof Theorem 4 extends Håstad’s proof framework for
the case of circuits to the more general setting of CRCW PRAMs.
The specifics of the CRCW PRAM model necessitates significant
changes to Håstad’s proof. One main difference is that, since the
dependence of the state of a processor in a PRAM on the input is
more complicated than that of a gate in a circuit, we use the notion
of the degree of the partition associated to a processor introduced
by [3] as a quantitative measure of such dependence. Moreover,
Håstad’s proof uses an induction that collapses two consecutive
levels of a circuit into one at each step, an operation that does not
have a natural analogy in PRAMs. As a solution, we propose a new
inductive framework that does not modify the given PRAM but
zooms in to only a subset of the time steps at each inductive step.
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