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Abstract—Miscommunication of diagnostic uncertainty can
deeply affect the quality of treatment a patient receives. A
standardized quantification based on the language used in med-
ical reports is a solution for gaining clarity about the amount
of uncertainty an author intended to convey. We use natural
language processing techniques to create a dictionary of terms
and phrases used in a corpus of radiology reports that are
indications of uncertainty or certainty. Using this dictionary,
we model reports by analyzing them as both a collection of
sentences and a collection of words. We assign reports a rating
on a scale of 0-5 to quantify how uncertain a particular report is.
Our results suggest that by using a dictionary of both certainty
and uncertainty descriptors, we can characterize and quantify
diagnostic uncertainty of medical reports.

Index Terms—medical uncertainty, diagnostic uncertainty,
natural language processing, NLP, word2vec
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I. INTRODUCTION

Uncertainty in medicine can arise with the use of any
medical instrument or test, as well as at the stage of diagnosis,
as there is always a margin of error. Diagnostic uncertainty
is an innate aspect of the medical field with major impacts:
at least 1 in 20 U.S. adults experience diagnostic errors [1].
A misunderstanding between two parties about the intended
amount of uncertainty to be conveyed can result in incorrect
decisions by either over treating or under diagnosing [2].
These misunderstandings are prevalent as the manifestation of
diagnostic uncertainty is a vague area without clear models
or measurements. Medical reports, due to their direct link
to patient care, are a modality with greater consequences in
terms of miscommunicating a level of diagnostic uncertainty.
A standardized model to quantify the uncertainty intended by

an individual writing a medical report could have significant
benefits in managing diagnostic uncertainty.

II. BACKGROUND AND RELATED WORK

A. Medical Uncertainty

Past research has shown that manually identifying uncertain
sentences in medical text is an achievable task [3], [4], [5].
Diagnostic uncertainty is defined through the language that
is used in medical reports to express a patient’s condition
[6]. Specific words and phrases are shown to be indicators of
(un)certainty. When annotating medical reports for uncertainty
manually, experts look for this diction as an indication that a
sentence should be marked.

In [4], guidelines are provided for manual annotation of
speculation and scope in medical text in creation of the
BioScope corpus, a collection of sentences annotated for
speculation and negation. Similar work was done by [3]
in which they attempted to classify sentences as high, low,
and no speculation, but found that a significant difference
between high and low speculation could not be achieved. This
result provides support for a binary classification between no
speculation and speculation, but does not consider expressed
certainty.

While medical reports, among all medical text, have the
most direct impact for individual patient diagnosis, the corpus
used by [3] contains only abstracts and no medical reports, and
the BioScope corpus constructed by [4] contains only 1,954
radiology reports. The limited amount of medical reports used
in previous research prevents a complete understanding of the
language used in medical reports indicating (un)certainty.



Research has also shown that it is possible to classify
sentences as uncertain given a human-annotated ground truth
[5], [7], [8]. As far as automated methods, the natural language
text processor developed by [9] to identify clinical information
in radiology reports strove to identify the following concepts:
“no”, “low certainty”, “moderate certainty”, “high certainty”,
and “cannot evaluate”. It was not clear, however, how these
concepts were assigned to the reports and what they represent
quantitatively in terms of levels of (un)certainty.

What has not been shown is a completely automatic method
for quantifying (un)certainty using a dictionary of terms and
phrases that either indicate certainty or uncertainty. While this
analysis has only been previously performed at a sentence-
level analysis, our work includes both sentence and word-level
analysis.

B. Rating Uncertainty

Reiner’s [6] study proposes a standardized method for
quantifying and characterizing diagnostic uncertainty using a
scale from 0 (definitive level of certainty) to 5 (highest degree
of uncertainty). To our knowledge, no other research proposing
a comparable scale or method for rating diagnostic uncertainty
exists. This scale is reasonable to implement partially due to
its simplicity. The goal of quantifying uncertainty in medical
reports is so authors and readers can easily use an automated
system to clarify the amount of uncertainty present. A 6-level
scale can capture the complexities of (un)certain language
used in medical reports and offer a quantification to lessen the
opportunities for miscommuncation of diagnostic uncertainty.

This scale is not clearly defined, but the descriptions that
are given use words like “high”, “highest”, and “intermediate”
to explain what each level of the scale represents. As these
words are comparative in nature, they are not necessarily
in agreement with a goal of being objective, as there may
be variance between corpora as to what the highest level of
uncertainty is. There is also an assumption that the absence of
uncertain language is equivalent to “no uncertainty”. However,
[6] characterizes medicine as a generally imprecise practice.
Therefore, the “neutral” language of a medical report may
be less uncertain than directly uncertain language, but more
uncertain than directly certain language, an observation [6]
fails to appreciate. [6] does not use data to implement the
proposed model or specify how it should be applied to
actual medical reports. Improving on this previous work, the
implementation we propose is a data-driven approach based on
NLP to quantify diagnostic uncertainty. As the scale is specific
towards radiology reports, this is they type of data we will
use. The purpose of our analysis is to provide a comprehensive
pipeline of rating uncertainty in medical reports and ultimately
show the actual distribution of uncertainty in a set of data that
is likely generalizes for all radiology reports.

III. METHODOLOGY

We implement the scale of [6] on a dataset of 20,238
medical reports to show that it is a valid way of representing

the uncertainty communicated through the language of a
report. Our methodology proposes two ways to model data
and assign ratings.

A. Data

We built a dataset to be used in this research that is
composed of medical reports from three databases of radiology
teaching files: Medical Image Resource Center (MIRC) [10]
(2319 teaching files), MyPACS [11] (16195 teaching files),
and Eurorad [12] (7307 teaching files). These teaching files are
formatted into 10 sections. During preprocessing, we removed
all but 5: Title, Findings, Diagnosis, Discussion, and DDX.
DDX stands for differential diagnosis, a type of diagnosis
in which a healthcare provider compares different possible
pathologies.

Typical natural language preprocessing steps were carried
out to remove punctuation, numeric values, excess white space,
make text lowercase, and stem each term in the text, and
remove files under 10 words as they did contain enough
semantic information for analysis. After all pre-processing
steps were complete, the database of medical reports contained
20,238 distinct teaching files.

B. Dictionary of (Un)certainty Descriptors

To begin creating a dictionary that will adequately encom-
pass the (un)certain language used in this corpus of medical
reports, one can turn to experts and the language they cate-
gorize as “certainty descriptors” in medical ontologies. These
terms and phrases are meant to be used to describe a range of
uncertainty, including opinions of complete certainty. The first
ontology used is RadLex from RSNA Informatics [13] This
ontology clearly organizes terms and phrases into a “certainty
descriptors” list, but does not differentiate between terms and
phrases that are certain and uncertain. For example, both the
terms “definite” and “uncertain” are featured in this category.
The second ontology, SNOMED Clinical Terms (SNOMED
CT) [14], can provide similar terms and phrases under the
heading “finding status values” which contains subheadings
such as “qualifier for certainty of diagnosis”.

We separated these terms and phrases into two distinct
word lists, certainty descriptors and uncertainty descriptors,
due to the relative ambiguity of phrases and terms taken from
these ontologies. The presence of terms and phrases expressing
complete certainty in the medical ontologies shows that they
are important elements for quantifying the uncertainty of a
medical report, but there must be a differentiation between
these semantically contrasting terms and phrases.

Using only these expert-defined terms and phrases as an
initial dictionary of (un)certainty descriptors, we found that
less than 50% of our teaching files contained these terms
and phrases. Given the ubiquity of uncertainty in medical
diagnosis, this finding demonstrates that this was not an
adequate depiction of the language used for (un)certainty in
our corpus of teaching files.



C. Expansion of Dictionary: Prior Works

Prior research [3], [4], [5] involving human linguistic anno-
tation provided additional terms and phrases that were deter-
mined to denote uncertainty. Adding these terms and phrases
to the initial dictionary generated from the medical ontologies
yielded a dictionary of (un)certainty descriptors with 86 terms
and phrases indicating uncertainty and 5 terms and phrases
indicating certainty. Using this dictionary of (un)certainty
descriptors, we found that 15.5% of teaching files contained no
instances of any certainty descriptor. This dictionary contained
words and phrases that clearly indicate (un)certainty, but did
not yet consider the context of (un)certainty in medical reports.

D. Expansion of Dictionary: Word2Vec

A useful tool for considering the context of language is
Word2Vec [15]. Word2Vec produces high-quality word vectors
that models similar words in close proximity in a multidimen-
sional space. Words are considered to have multiple degrees
of similarity so that different qualities of a particular word can
be analyzed for similarity in a subspace of the overall model.
Word2Vec is also able to model n-grams accurately [16]

We used a Word2Vec model to learn new (un)certainty
terms and phrases to add to the dictionary based on the cooc-
currence of these terms and phrases in the corpus of teaching
files with the terms and phrases already in our dictionary
of (un)certainty descriptors. We expect the words garnered
from this method would be more characteristically latent
(un)certainty terms and phrases related to (un)certain concepts,
ideas, and contexts. For this process, we built a Word2Vec
model using all cleaned but un-stemmed data and generated
lists of the top 10 similar words for each of our (un)certainty
dictionary terms and phrases which included 2 through 6 word
n-grams. We then used the Python library TextBlob to tag parts
of speech and only added adjectives, verbs, and adverbs to our
dictionary. This was done to combat the noisiness of medical
terms and diagnoses that are prevalent in our dataset, since
there is a greater chance of these commonly used medical
terms and diagnoses to co-occur with (un)certainty terms and
phrases. It is the (un)certainty descriptors, however, not the
diagnoses themselves, which indicate (un)certainty. Therefore,
we considered the medical terms and diagnoses noise when
they appeared in the Word2Vec similarity lists and did not
add them to the (un)certainty dictionary.

After this expansion, our dictionary contained 254
(un)certainty descriptors: 230 uncertain terms and phrases, and
24 certain terms and phrases. While the initial division of
certain/uncertain terms and phrases was performed manually,
all words added to the dictionary from the Word2Vec model
were automatically assigned to whichever class their parent
word was in. A final manual check was performed to assure
words were in the correct class before proceeding. With the
expanded dictionary, only 11% of teaching files contained no
instances of any (un)certainty descriptors. Although there were
many more terms and phrases in the uncertainty class of the
dictionary, we chose not to perform normalization because

most teaching files do not contain most of the terms and
phrases in the dictionary.

We continued to get more similar terms and phrases from
our Word2Vec model to see if results could be improved,
but, as a considerable decrease in teaching files without
(un)certainty descriptors was not seen, the dictionary was left
at 254 descriptors. Finally, we stemmed each term in the
dictionary. For the n-grams, we stemmed each term in the
ngram separately and rejoined the stemmed terms with a white
space.

E. Modelling and Rating Uncertainty

In order to give a more complete characterization of
(un)certainty in medical reports, we chose to analyze teaching
files on not just the number of times (un)certainty descriptors
appeared throughout a document, explained in the next sec-
tion, but also by how many sentences contain (un)certainty
descriptors.

1) Sentence Level: for sentence level analysis, we calcu-
lated a relative count of the uncertain sentences in a teaching
file. If a sentence contains any term from the uncertain class,
it was labelled as uncertain, whereas sentences with any term
from the certain class were labelled as certain. It is possible for
sentences to be labelled as both certain and uncertain in our
algorithm. We then subtracted the number of certain sentences
from the number of uncertain sentences, so that any sentence
labelled as both certain and uncertain would be considered
the same as sentence that was not labelled. The final result
was then found by dividing the previous result by the total
number of sentences in that teaching file, in order to account
for variable document length.

2) Word Level: : for a word level analysis, multiple ways
of calculating uncertainty values were considered. Performing
an absolute count analysis, in which each instance of a term is
given equal weight regardless of the length of a teaching file
or what the rarity of the term in question, is too simple of an
approach. Relative count provides for more sound results as it
does take the length of a document into account. Still, there is
reason to believe that more common language should not so
heavily influence the outcomes. For example, the uncertainty
term “or” is very frequently used in our data (a total of 52769
occurrences). Therefore, we chose to use Term Frequency
Inverse Document Frequency (TF-IDF) in this model.

TF-IDF is a common statistic used in information retrieval
and NLP. [17] introduces the idea of weighing a term based on
its occurrences throughout the corpus in document retrieval.
This study states that some frequent terms and phrases can
be less effective as a means of retrieval due to their non-
discriminating nature and proposes that less frequent words
be more valuable. More specifically, this study suggests cor-
relating a terms matching value with its collection frequency
(how many times it appears throughout all documents). This
is the basic idea of inverse document frequency (IDF).



[18] later introduces the concept of TF-IDF by combining
Jones’ [17] idea of IDF and Luhn’s [19] theory of term
frequency (TF). The latter assumes frequently-used terms and
phrases to be often essential to the content of the document.
Salton’s [18] approach accounts for both specification of the
content of a single document as well as the relationship of
such a document within a larger corpus by giving more weight
to not only terms and phrases that are more frequent, but
also terms and phrases that appear less across all documents.
This study finds TF-IDF to be a more effective approach
for indexing purposes and information retrieval compared to
conventional boolean retrieval [20].

We generated the TF-IDF scores for the teaching files based
on the following formulas:

wi,j = tfi,j × log(
N

dfi
) (1)

TF-IDFdi
=

∑
w(U)i,j −

∑
w(C)i,j (2)

where in (1), wi,j is the TD-IDF values of the jth (un)certainty
descriptor in the ith document, tfi,j is the term frequency of
jth (un)certainty descriptor in the ith document, or the sum
of occurences of the jth (un)certainty descriptor in the ith
document divided by the length of the ith document, N is the
total number of documents in the corpus, and dfi is the number
of documents that contain the jth (un)certainty descriptor;
in (2), TF-IDFdi

is the TF-IDF values of the ith document,∑
w(U)i,j is the TF-IDF value of the jth uncertainty descriptor

in the ith document, while
∑

w(C)i,j is the TF-IDF value of
the jth certainty descriptor in the ith document. To summarize,
we first calculated the TF-IDF value of each descriptor in the
dictionary, summed up the TF-IDF values of all uncertain and
certain descriptors and phrases separately, and then used the
difference between the two sums as the TF-IDF values of the
teaching files.

F. Hierarchical Clustering

To show the validity of ratings generated from the TF-
IDF values, we performed hierarchical clustering as a proof
of concept on the entire corpus. With clusters of teaching
files generated from hierarchical clustering, we then assigned
a second set of (un)certainty ratings to files in each cluster,
based on the most frequent TF-IDF value-generated rating
in the corresponding cluster. We chose hierarchical clustering
over k-means clustering, due to the repeatability and lack of
randomness of the former, regardless of the number of clusters.
We define accuracy of clustering-assigned ratings to be the
number of teaching files whose two ratings match, over the
total number of teaching files.

We first generated feature vectors for every teaching file.
Each vector had 258 features: TF-IDF values of each term
and phrases in the (un)certainty descriptor dictionary (254
features), the sum of TF-IDF values of all certainty descriptors,
the sum of TF-IDF values of all uncertainty descriptors, the

overall TF-IDF value of the teaching file, and the median
of TF-IDF values of all teaching files. This last feature
was included as a constant to avoid the existence of zero-
vectors, as they would prevent the usage of cosine similarity
as a distance measure. We used both cosine similarity and
euclidean distance to cluster the files.

To determine the optimal number of clusters, we calculated
the accuracy of clustering-assigned ratings on 6 to 1000
clusters. Less than 6 clusters did not allow for potential 100%
accuracy, as there would not be enough clusters for every
rating. Accuracy greatly leveled off with 1000 clusters, so this
number was deemed large enough for our analysis.

IV. RESULTS

A. Modelling and Rating Uncertainty: Assignment of Uncer-
tainty Level Ratings

1) Sentence Level: in the sentence level model, the range of
relative sentence count values was standard going from -1 to 1.
We defined ratings of the 0-5 scale by an equal division of the
model into 6 ranges. In this scale, 0 represents a definitive level
of certainty and 5 represents the highest level of uncertainty.
The distribution of these ratings is shown in the top row of
Table I.

2) Word Level: in the word level model, we obtained
TFIDF values ranging from -0.0767 to 0.2055. The findings
from this analysis show that the model takes the shape of a
relatively normal curve. This observation was confirmed by the
proximity between the mean (0.0181) and the median (0.0184)
of TF-IDF values of all teaching files. Therefore, ratings are
assigned using the typical distribution of a bell curve with
respect to standard deviation. Rating distribution is shown in
the second row of Table I.

B. Hierarchical Clustering: Accuracy of Clustering-Assigned
Uncertainty Level Rating

We graphed accuracy of uncertainty level rating assignment
by cluster number by both euclidean distance and cosine
similarity, and manually picked out points of interest, such as
points that indicate significant increase in accuracy, beginning
and end points, as well as the cluster number at which accuracy
reaches 80%. Table II shows the selected number of clusters
and their corresponding accuracy.

V. DISCUSSION

What our research has shown is that it is possible to
quantify uncertainty based on (un)certain language in more
than one way with normalized results. However, without a
gold standard truth, it is not possible to determine what the
best way to assign ratings really is. Still, we are able to show
the natural distribution of uncertainty in medical reports in two
different ways, and this is a characterization of uncertainty in
medical reports that has not been previously presented.

Our method tries to adequately capture the complexities
of language by not limiting our dictionary to the terms
and phrases that can be manually identified as indicators of



TABLE I
THIS TABLE SHOWS THE DISTRIBUTION OF RATINGS AMONG EACH MODEL AS WELL AS THE AGREEMENT OF RATINGS BETWEEN BOTH MODELS.

Teaching Files with: Rating 0 Rating 1 Rating 2 Rating 3 Rating 4 Rating 5 Total Number of Files
Sentence Level (S) 19 24 2937 4537 10990 1731 20238
Word Level (W) 216 3038 6633 8103 1842 406 20238
Agreement (A) 9 11 481 931 1159 114 2705

A
S ∪ W

4.0% 0.4% 5.3% 8.0% 10.9% 5.6% 15.4%

TABLE II
CLUSTER LABEL ACCURACY

Cluster Number Euclidean Accuracy Cosine Accuracy
6 74.45% 55.78%
10 80.48% 55.79%
21 81.06% 56.78%
22 85.92% (+4.88%) 56.79%
127 89.68% 61.77%
128 89.68% 75.05% (+13.28%)
711 93.51% 80.00%
1000 93.91% 81.78%
Total Increase 19.46% 26.00%

(un)certainty. Our dictionary of descriptors includes the terms
and phrases discovered from the Word2Vec model because
they are likely to be associated with (un)certainty, even in a
latent way, considering that they are used in similar ways to
the (un)certainty descriptors defined by experts.

Our analysis on medical reports at the word level demon-
strates that uncertainty follows a normal curve. Therefore, we
use ranges based on the model of the data to dictate what
rating a teaching file received. The results of the sentence level
analysis do not have the same normalized shape, but rather a
skewed distribution with very few teaching files at the left side
of the model, but also very few at the other extreme. As these
values range from -1 to 1, they are best fit to a quantification by
equally dividing the range of values into 6 levels of uncertainty
without any outlier calculations.

The low levels of agreement between the two analyses,
shown in Table I, indicate that modelling uncertainty on a
collection of words and a collection of sentences are very
different processes conceptually. The reasoning behind doing
a word level analysis is the available characterization of
uncertainty from radiologists through RadLex and SNOMED.
These (un)certainty descriptors are not organized as complete
sentences, but rather individual terms and phrases that could be
used in conjunction with one another. Modelling on individual
words using TF-IDF presumes that descriptors are not equally
(un)certain, and that a greater term frequency, regardless of
distribution across sentences, or a lower document frequency,
indicates greater uncertainty. Conversely, the sentence level
analysis is primarily supported by previous research from
linguists in the creation of corpora of sentences that are
said to indicate uncertainty. These corpora consider a binary
classification of sentences being either uncertain or not with
the phrases indicating uncertainty being considered equally
uncertain. Our analysis is much the same, but with the addition

of a “certain” classification.

On the word level, teaching files containing either no
(un)certainty descriptors or an equal number of uncer-
tain/certain descriptors will have a quantification of 0.0, sim-
ilarly with teaching files containing either no (un)certainty
sentences or an equal number of uncertain/certain sentences on
the sentence level. It is reasonable to expect that these teaching
files would receive a rating of 2 or 3, but this expectation is not
confirmed by a word-level analysis where they have a rating
of 1 (minimal uncertainty). Additionally, it is worth noting
that only 512 teaching files have a net negative score in this
analysis, meaning there are the only 512 teaching files that
are more certain than uncertain. In sentence level analysis, the
normality of the range of values rates 0.0 in the middle at
rating 2 as expected, but there are still only 171 teaching files
with a net negative score. These results challenge [6] as the
descriptions provided for ratings 0 and 1 show that teaching
files in these categories should be more certain than uncertain.
Instead, data shows that the limited amount and model range
of teaching files with a net negative score means that a scale of
uncertainty in medical reports should likely not be a symmetric
scale of certainty and uncertainty but rather a scale in which
most ratings are indicative of more uncertainty than certainty.

We observe from Table II that euclidean distance greatly
outperforms cosine similarity. More specifically, given 6 clus-
ters, an accuracy of 55.78% is achieved by cosine similarity,
compared to 74.45% by euclidean distance. This observation
is also evident when we set an accuracy threshold of 80%.
Under euclidean distance, accuracy reaches 80% at as early as
10 clusters, while it takes 711 clusters under cosine similarity
to achieve a similar accuracy. However, we see a greater
overall increase in accuracy under cosine similarity (26.00%
compared to 19.46% of euclidean distance), as well as likely
a faster increase (biggest increase of accuracy between two
adjacent cluster number of cosine similarity is 13.28% com-
pared to 4.88% of euclidean distance). This is likely due to
the fact that, in this model, the overall inaccurate nature of
cosine similarity allowed for more room for improvement.

Although this result is seemingly contradictory to the
general expectation, as cosine similarity is commonly used
in document comparison [21], it can be explained by the
use of TF-IDF values of (un)certainty descriptors as features
in document vectors. It is typical of document comparison
for every word in a corpus to be a feature which results in
very large, sparse vectors. Since our vectors only included the
254 (un)certainty descriptors, they were in comparison much



smaller and less sparse. The variability of document length is a
main reason to use cosine similarity for document comparison,
but TF-IDF values already normalize this factor. As a result,
the magnitude of the vector is no longer an indication of the
length of the file, but conveys more general information about
the uncertainty of the teaching file. Euclidean distance better
captures such information than cosine similarity.

A limitation of our research is our lack of ground-truth
uncertainty ratings for medical reports to allow for a measure
of accuracy of our uncertainty ratings, but it may be difficult
to obtain valid manual ratings considering the minimal de-
scriptions given in [6] explaining the 0-5 scale. Additionally,
a further limitation could be that our dataset consists only
of teaching files. These reports are written with a different
intention than the average medical report, as they strive to
teach or demonstrate a diagnosis. Therefore, there is reason
to believe that they overall contain less uncertainty than the
average medical report.

VI. CONCLUSION AND FUTURE WORKS

Miscommunication of diagnostic uncertainty in medical
reports can lead to delayed or incorrect diagnosis, and the
quantification of this uncertainty can lessen, or possibly elim-
inate, such miscommunication. This study has implemented
a scale of uncertainty in medical reports from 0 (definitive
level of certainty) to 5 (highest degree of uncertainty) on a
large corpus of data to show the shape and distributions of
uncertainty in medical reports. We found that using NLP to
detect instances of (un)certainty terms and phrases in medical
reports can lead to the modelling of diagnostic uncertainty
quantities in more than one way depending on if a medical
report is conceptually viewed as a collection of words or
of sentences. Additionally, a dictionary of these (un)certainty
terms and phrases to be detected can be robust and include
the language of (un)certainty found in most medical reports
of a certain corpus by using medical ontologies, prior work
on diagnostic uncertainty in medical texts, and Word2Vec to
create the dictionary.

This work can be improved upon with the incorporation
of a ground-truth for rating diagnostic uncertainty in medical
reports. With this addition, it would be possible to compare
the two different analyses presented here in terms of accuracy
and determine if one can be considered better. The proposed
distributions shown in our results could provide context to
a manual rater to encourage more accurate and consistent
ratings. Another advancement for this research could be to use
medical reports that are not teaching files, as well as modelling
(un)certainty in other medical texts such as journals. As the
research shown in medical journals may later be incorporated
into diagnosis, it is likely necessary that levels of uncertainty
are clear to readers of these texts as much as readers of medical
reports. [10]
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