

The FASEB Journal / Volume 35, Issue S1

Biochemistry and Molecular Biology | [Free Access](#)

Biochemical Investigation into Cadmium-Induced Diminished Function of a Thermal Stable DNA Polymerase

Shanen Sherrer, Amber Douglass

First published: 14 May 2021

<https://doi.org/10.1096/fasebj.2021.35.S1.01876>

This work was financially supported by St. Mary's College of Maryland and NSF MRI grant #1919581.

Abstract

The environmental metal cadmium is a carcinogen that has been shown to increase the rate of mutations by inhibiting DNA mismatch repair, and to replace zinc ions within the active site of certain endonucleases. Here, the mutagenic property of cadmium was further explored with a model DNA polymerase, *Thermus aquaticus* DNA Polymerase I (Taq Pol I). Diminished efficiency of Taq Pol I was observed as a function of cadmium concentration. Using a series of polymerase chain reactions (PCR) and circular dichroism spectroscopic assays with full-length Taq Pol I, structural changes in the presence of low cadmium concentration was a significant factor in the observed change in enzyme efficiency. These structural changes provide new insights into the mutagenic property of cadmium.

© 2021 Federation of American Societies for Experimental Biology (FASEB)

About Wiley Online Library

[Privacy Policy](#)

[Terms of Use](#)

[Cookies](#)

[Accessibility](#)

[Publishing Policies](#)

Help & Support

[Contact Us](#)

[Training and Support](#)

[DMCA & Reporting Piracy](#)

Opportunities

[Subscription Agents](#)

[Advertisers & Corporate Partners](#)

Connect with Wiley

[The Wiley Network](#)

[Wiley Press Room](#)

Copyright © 1999-2021 John Wiley & Sons, Inc. All rights reserved

WILEY