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Abstract. Let X and Y be £-connected Jordan domains, £ € N, with rectifiable boundaries in the

onto

complex plane. We prove that any boundary homeomorphism ¢ : dX — dY admits a Sobolev

T onto T

homeomorphic extension /: X 2= Y in W1 (X, C). If instead X has s-hyperbolic growth with s >
p — 1, we show the existence of such an extension in the Sobolev class W!-? (X, C) for p € (1,2).
Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be
relaxed. We also consider the existence of W1-2-homeomorphic extensions with given boundary
data.

Keywords. Sobolev homeomorphisms, Sobolev extensions, Douglas condition

1. Introduction

Throughout this text X and Y are £-connected Jordan domains, £ = 1,2, ..., in the com-
plex plane C. Their boundaries dX and dY are thus disjoint unions of £ simple closed
curves or points. If £ = 1, these domains are simply connected and will just be called
Jordan domains. In the simply connected case, the Jordan—Schonflies theorem states that
every homeomorphism ¢ : X > Y admits a continuous extension /: X — Y which
takes X homeomorphically onto Y. In the first part of this paper we focus on a Sobolev
variant of the Jordan—Schonflies theorem. The most pressing demand for studying such
variants comes from the variational approach to geometric function theory [3, 19,33] and
nonlinear elasticity [2, 5, 8]. Both theories share the ideas associated to determining the
infimum of a given energy functional

Ex[h] = / E(x,h, Dh)dx (1.1)
X
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among orientation preserving homeomorphisms 7 : X 2> Y in the Sobolev space
WP (X, Y) with given boundary data ¢ : 9X > Y. We denote that class of mappings
by Hy” (X, Y). Naturally, a fundamental question is whether the class H? (X, Y) is
non-empty.

onto

Question 1.1. Under what conditions does a boundary homeomorphism ¢ : 0X — Y
admit a homeomorphic extension : X = Y of Sobolev class W!-? (X, C)?

A necessary condition is that ¢ is the Sobolev trace of some (possibly nonhomeo-
morphic) mapping in W2 (X, C). Hence to solve Question 1.1 one could first study the
following natural subquestion:

Question 1.2. Suppose that a homeomorphism ¢ : 3X — Y admits a W1:?-extension
to X. Does it then follow that ¢ also admits a homeomorphic W!-?-extension?

Our main results, Theorem 1.8 and its multiply connected variant (Theorem 1.11),
give an answer to these questions when p € [1, 2). The construction of such extensions
is important not only to ensure the well-posedness of the related variational questions,
but also for example due to the fact that various types of extensions were used to provide
approximation results for Sobolev homeomorphisms [16, 18]. We touch upon variational
topics in Section 7, where we provide an application of one of our results. Apart from
Theorem 1.11 and its proof (§6), the rest of the paper deals with the simply connected
case.

Let us start by considering the above questions in the well-studied setting of the
Dirichlet energy, corresponding to p = 2 above. The Radé [32], Kneser [26] and Cho-
quet [7] theorem asserts that if Y C R? is a convex domain then the harmonic extension
of a homeomorphism ¢: X — dY is a univalent map from X onto Y. Moreover, by a
theorem of Lewy [29], this univalent harmonic map has a nonvanishing Jacobian and is
therefore a real analytic diffeomorphism in X. However, such an extension is not guar-
anteed to have finite Dirichlet energy in X. The class of boundary functions which admit
a harmonic extension with finite Dirichlet energy was characterized by Douglas [9]. The
Douglas condition for a function ¢ : 9D = Y reads

Joo Lo

The mappings satisfying this condition are exactly the ones that admit an extension with
finite W'2-norm. Among these extensions is the harmonic extension of ¢, known to have
the smallest Dirichlet energy.

Note that the Dirichlet energy is also invariant with respect to a conformal change of
variables in the domain X. Therefore thanks to the Riemann Mapping Theorem, when
considering Question 1.1 in the case p = 2, we may assume that X = D without loss
of generality. Now, there is no problem to answer Question 1.1 when p = 2 and Y is
Lipschitz. Indeed, for any Lipschitz domain there exists a global bi-Lipschitz change of
variables ®: C — C for which ®(Y) is the unit disk. Since the finiteness of the Dirichlet
energy is preserved under a bi-Lipschitz change of variables in the target, we may reduce

_ 2
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Question 1.1 to the case when X =Y = DD, for which the Rad6—Kneser—Choquet theorem
and the Douglas condition provide an answer. In other words, if Y is Lipschitz then the
following are equivalent for a boundary homeomorphism ¢ : D — 9Y:

onto T7

(1) ¢ admits a W'-2-Sobolev homeomorphic extension 7: D = Y.
(2) ¢ admits W'-2-Sobolev extension to ID.
(3) ¢ satisfies the Douglas condition (1.2).

In the case when 1 < p < 2, the problem is not invariant under a conformal change of
variables in X. However, when X is the unit disk and Y is a convex domain, a complete
answer to Question 1.1 was provided by the following result of Verchota [38].

onto

Proposition 1.3. Let Y be a convex domain, and let ¢ : 0D — Y be any homeomor-
phism. Then the harmonic extension of ¢ lies in the Sobolev class W'P (D, C) for all
1<p<2

This result was further generalized in [15, 20, 24]. The case p > 2 will be discussed
in Subsection 2.3. Our main purpose is to provide a general study of Question 1.1 in the
case when 1 < p < 2.

Considering now the endpoint case p = oo, we find that Question 1.1 is equivalent
to the question of finding a homeomorphic Lipschitz map extending the given boundary
data ¢. In this case the Kirszbraun extension theorem [25] shows that a boundary map
@: 0D I 9Y admits a Lipschitz extension if and only if ¢ is a Lipschitz map itself.
When X is the unit disk, a positive answer to Question 1.2 is given by the following
recent result by Kovalev [28].

Theorem 1.4 (p = o0). Let ¢: 0D — C be a Lipschitz embedding. Then ¢ admits a
homeomorphic Lipschitz extension to the whole plane C.

Let us return to the case of the Dirichlet energy (see (1)-(3) above). The equiva-
lence of a W!2-Sobolev extension and a W!2-Sobolev homeomorphic extension for
non-Lipschitz targets is a more subtle question. In this perspective, a slightly more gen-
eral class of domains is the class of inner chordarc domains studied in geometric function
theory [17,31,35-37]. By definition [36], a Jordan domain Y with rectifiable boundary is
inner chordarc if there exists a constant C such that for every pair of points y;, y, € 0Y
one has |y; — y2| < C - Ay (y1, y2), where Ay (y1, y2) denotes the infimal length of curves
contained in Y with endpoints y; and y,. For example, an inner chordarc domain may
have inward cusps on the boundary, as opposed to Lipschitz domains. According to a
result of Viisild [36], the inner chordarc condition is equivalent to the requirement that
there exists a homeomorphism W: Y = D, C!-diffeomorphic in Y, such that the norms
of both the gradient matrices DW and (D W¥)~! are bounded from above.

Surprisingly, the following example shows that, unlike for Lipschitz targets, the
answer to Question 1.2 for p = 2 is in general negative when the target is only inner
chordarc.
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onto

Example 1.5. There is an inner chordarc domain Y and a homeomorphism ¢: 0D — Y
satisfying the Douglas condition (1.2) which does not admit a homeomorphic extension
h:D Y in WH2(D, Y).

In [4], as a part of studies of mappings with smallest mean distortion, it was proved
that for C!-smooth Y the Douglas condition (1.2) can be equivalently formulated in terms
of the inverse mapping ¢~ !: Y > 9D:

[, ] ogte™ @ =~ ol el < . 3

It was recently shown that for inner chordarc targets this condition is necessary and suffi-
cient for ¢ to admit a Wl’z-homeomorphic extension [27]. We extend this result both to
cover rectifiable targets and to give a global homeomorphic extension as follows.

onto

Theorem 1.6 (p = 2). Let Y be a Jordan domain with Y rectifiable. Every ¢ : 0D —
dY satisfying (1.3) admits a homeomorphic extension h: C — C of class WI’Z(C, C).

loc

Without the rectifiability of dY, Question 1.2 will in general have a negative answer
for all p < 2. This follows from the following example of Zhang [40].

onto

Example 1.7. There exists a Jordan domain Y and a homeomorphism ¢ : D — Y
which has a W'2-Sobolev extension to D but has no homeomorphic extension in the
class WHI(D), ©).

We now return to the case when 1 < p < 2. In this case it is natural to ask under
onto

which conditions on the domains X and Y, any homeomorphism ¢ : dX — 9dY admits
a W1-?_-Sobolev homeomorphic extension. Proposition 1.3 already implies that this is the
case for X = D and Y convex. Example 1.7, however, implies that this result does not
hold in general for nonrectifiable targets Y. A general characterization is provided by the
following theorem.

Theorem 1.8 (1 < p < 2). Let X and Y be Jordan domains in the plane with 0Y rectifi-

able. Let ¢ : 0X —> dY be a homeomorphism. Then there is a homeomorphic extension

onto

h: X 2% Y such that
(1) h e WhI(X, C), provided 9X is rectifiable, and
(2) h e WhP(X,C) for 1 < p < 2, provided X has s-hyperbolic growth with s > p — 1.

Definition 1.9. Let X be a domain in the plane. Choose a point xoy € X. We say that X
has s-hyperbolic growth, s € (0, 1), if

dist(xg, 0X)

1—s
forall x € X. 1.4
dist(x, 9X) ) orafix e 14

hx(xp,x) < C (
Here hx stands for the quasihyperbolic metric on X and dist(x, 0X) is the Euclidean
distance from x to the boundary. The constant C is allowed to depend on s, x¢, and the
domain X but not on the point x.
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It is easily verified that this definition does not depend on the choice of x(. Recall that
if Q is a domain, the quasihyperbolic metric g is defined by [13]

hg(x1,x2) = in [dx],  x1,x2 € Q, (L.5)

1
f -
yer/y dist(x, 9X)

where I" is the family of all rectifiable curves in €2 joining x; and x5.
Definition 1.9 is motivated by the following example. For s € (0, 1) we consider the
Jordan domain X whose boundary is given by the curve

I ={(x,y)eC: —1<x<1l,y=x|"}U{zeC:|z—i|=1,Im(z) > 1}.

0 L I I I L
-1 -0.5 0 0.5 1

Fig. 1. The Jordan domain Xj.

In particular, the boundary of X is locally Lipschitz except at the origin. Near the
origin the boundary of X behaves like the graph of the function |x|%. Then one can verify
that the boundary of X has 7-hyperbolic growth for every ¢ > 5. Note that the smaller the
number s, the sharper the cusp is.

The results of Theorem 1.8 are sharp, as described by the following result.

Theorem 1.10.

(1) There exists a Jordan domain X with nonrectifiable boundary and a homeomorphism
@: 0X — 9D such that ¢ does not admit a continuous extension to X in the Sobolev
class WH1(X, C).

(2) Forevery p € (1,2) there exists a Jordan domain X which has s-hyperbolic growth,
with p — 1 = s, and a homeomorphism ¢ : 0X — 9D such that ¢ does not admit a
continuous extension to X in the Sobolev class W' (X, C).
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To conclude, as promised earlier, we extend our main result to the case where the
domains are not simply connected. The following generalization of Theorem 1.8 holds.

Theorem 1.11. Let X and Y be multiply connected Jordan domains with dY rectifiable.
Let ¢ : X 25 9Y be a homeomorphism which maps the outer boundary component
of X to the outer boundary component of Y. Then there is a homeomorphic extension

h: X 25 Y such that
(1) h e WhI(X, C), provided 9X is rectifiable, and
(2) h e WhP(X,C) for 1 < p < 2, provided X has s-hyperbolic growth with s > p — 1.

2. Preliminaries

2.1. The Dirichlet problem

Let 2 be a bounded domain in the complex plane. A function u:  — R in the Sobolev

class WL7 (), 1 < p < oo, is called p-harmonic if

div |Vu|?~2Vu = 0. 2.1)

We call 2-harmonic functions simply harmonic.
There are two formulations of the Dirichlet boundary value problem for the p-har-
monic equation (2.1). We first consider the variational formulation.

Lemma 2.1. Let uo € WP (Q) be a given Dirichlet data. There exists precisely one
Sfunctionu € u, + we? (82) which minimizes the p-harmonic energy:

/ |Vul|? = inf{/ [Vw|?: w € uo —i—Wi’p(Q)}.
Q Q

Here Wo'? (£2) denotes the completion of compactly supported smooth functions in
with respect to the W7 (2) Sobolev norm. The variational formulation coincides with
the classical formulation of the Dirichlet problem.

Lemma 2.2. Let 2 C C be a bounded Jordan domain and u. € WLP(Q) N C(Q). Then
there exists a unique p-harmonic function u € W2 (Q) N C(Q) such that ulzq = uo|yq.

For the proofs of these facts we refer to [18].

2.2. The Rado—Kneser—Choquet Theorem

Lemma 2.3. Consider a Jordan domain X C C and a bounded convex domain Y C C.

Let h: 0X — dY be a homeomorphism and H : X — C its harmonic extension. Then H
is a C°-diffeomorphism of X onto Y.

For the proof of this lemma we refer to [11,21]. The following p-harmonic ana-
logue of the Rad6—Kneser—Choquet Theorem is due to Alessandrini and Sigalotti [1] (see
also [22]).
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Proposition 2.4. Let X be a Jordan domain in C, 1 < p < oo, andh =u +iv: X - C
a continuous mapping whose coordinate functions are p-harmonic. Suppose that Y is
onto

convex and h: 0X — 9Y is a homeomorphism. Then h is a diffeomorphism from X
onto'Y.

2.3. Sobolev homeomorphic extensions onto a Lipschitz target

Combining the results in this section allows us to easily solve Question 1.2 for convex
targets.

Proposition 2.5. Let X and Y be Jordan domains in the plane with Y convex, and let 1 <
p < 00. Suppose that ¢: 9X % 3Y is a homeomorphism. Then there exists a continuous
g: X = C in WhP(X, C) such that g(x) = ¢(x) on dX if and only if there exists a

homeomorphism h: X — Y in WP (X, C) such that h(x) = ¢(x) on 0X.

Proof. The “if” part is immediate. For the “only if” part we write g = U, + iV, €
WP (X, C) N (X, C) and consider the unique p-harmonic functions u and v which
coincide with u, = Re ¢ and v, = Im ¢ respectively on dX. First, these classical solu-
tions agree with the variational ones (see Lemmas 2.1 and 2.2). In particular, we have

/|Vu|P§/|Vuo|p and /|Vv|p§/|Vvo|”.
X X X X

Second, according to Proposition 2.4 the mapping 7 € W'-? (X, C) is a homeomorphism.
(]

Now, replacing the convex Y by a Lipschitz domain offers no challenge. Indeed, this
follows from a global bi-Lipschitz change of variables ®: C — C for which ®(Y) is
the unit disk. If the domain in Proposition 2.5 is the unit disk D, then the existence of a
finite p-harmonic extension can be characterized in terms of a Douglas type condition.
If 1 < p < 2, then such an extension exists for an arbitrary boundary homeomorphism
(Proposition 1.3) and if 2 < p < oo the extension exists if and only the boundary home-
omorphism ¢: dD > JY satisfies

Jin o

For the proof of this last fact we refer to [34, pp. 151-152].

P
|d&] |dn| < oo. (2.2)

(&) — o)
E—n

2.4. Carleson measures and the Hardy space HP

Roughly speaking, a Carleson measure on a domain G is a measure that is bounded from
above by the Hausdorff 1-measure on dG near the boundary of G. We will need the notion
of a Carleson measure only on the unit disk D.
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Definition 2.6. Let p be a Borel measure on D. Then u is a Carleson measure if there is
a constant C > 0 such that
n(Se(0)) = Ce

for every € > 0. Here
Sc@) ={re*: 1—e<r<1,0—c<a<0+e).

Carleson measures have many applications in harmonic analysis. A celebrated result
by L. Carleson [6] (see also [10, Theorem 9.3]) tells us that a Borel measure p on D is
a bounded Carleson measure if and only if the injective mapping from the Hardy space
H” (D) into the measurable space L, (D) is bounded.

Proposition 2.7. Let . be a Borel measure on the unit disk D. Let 0 < p < oo. Then
there exists a constant C > 0 such that

1/p
(/D|f(z)|p dli(z)) <C\flarm) forall f e H?(D)

if and only if i is a Carleson measure.

Recall that the Hardy space H? (D), 0 < p < 00, is the class of holomorphic functions
f on the unit disk satisfying

1 27 " 1/p
1l = sup (— /0 f(re )|Pde) < oo,

o<r<l1 2

Note that || - | g »(p) is @ norm when p > 1, but not when 0 < p < 1.

3. Sobolev integrability of the harmonic extension

At the end of this section we prove our main result in the simply connected case, The-
orem 1.8. The proof will be based on a suitable reduction of the target domain to the
unit disk, and the following auxiliary result which concerns the regularity of harmonic
extensions.

Theorem 3.1. Let X be a Jordan domain and ¢ : 0X — 0D an arbitrary homeomorphism.
Let h denote the harmonic extension of ¢ to X, which is a homeomorphism from X to D.
Then the following hold.

(1) If the boundary of X is rectifiable, then h € W1(X, C).
(2) If X has s-hyperbolic growth, then h € WP (X, C) for p < s + 1.

This theorem will be a direct corollary of the following theorem and the two proposi-
tions after it.
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Theorem 3.2. Let X be a Jordan domain, and denote by g: D — X a conformal map
onto X. Let 1 < p < 2. Suppose that

/ 2—p
sup &dz <M < oo. (3.1)

wedD JD Iw - Z|p
Then the harmonic extension h: X — D of any boundary homeomorphism ¢: 0X — 0D
lies in the Sobolev space WP (X, C), with the estimate

Allvor.rx,c) < M. (3.2)

Proposition 3.3. Let X be a Jordan domain with rectifiable boundary and let g: D — X
be conformal. Then condition (3.1) holds with p = 1.

Proposition 3.4. Let X be a Jordan domain which has s-hyperbolic growth with s € (0, 1)
and let g: D — X be conformal. Then condition (3.1) holds for all p > 1 with p — 1 < s.

Proof of Theorem 3.2. First, since X is a Jordan domain, according to the classical Cara-
théodory’s theorem the conformal mapping g: D — X extends continuously to a hom-
eomorphism from the unit circle onto 0X. Second, since a conformal change of variables
preserves harmonicity, the map H := ho g: D — D is a harmonic extension of the
boundary homeomorphism v := ¢ o g|sp.

We will now assume that H is smooth up to the boundary of D. The general result
will then follow by an approximation argument. Indeed, for each r < 1, we may take
the preimage of the disk B(0,r) under H, and letting v, : D — H~1(B(0, r)) be the
conformal map onto this preimage we may define H, := H o . Then H, is harmonic,
smooth up to the boundary of D, and will converge to H locally uniformly along with
its derivatives as r — 1. Hence the general result will follow once we obtain uniform
estimates for the Sobolev norm under the assumption of smoothness up to the boundary.

The harmonic extension H :=hog: D — D of { := ¢ o g|sp is given by the Poisson
integral formula [11],

1 _ 2
(hog)(z) = H(z) = —/BD =128 ) do.

27 |z — w|
Differentiating this, we find

2w it
W(O)) da) — / W(e ) l-eit d[ — _
0

p (z —w)? (z —eit)2 o z—elt

27 (it
e .
27Tl(]’l0g)Z=/ Mie”dt,
a
where we have used integration by parts to arrive at the last equality [20, p. 147]. The
change of variables formula now gives

/ oGP dZ = / I(h o 8):(2)|P1g/(2)>7 dz
X D

_ 1 2w Iﬂ/(e t) )
B (2ﬂ)1’/1n>

i
et dt
0 Z—elt

p
g’ ()>7P dz.
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We now apply Minkowski’s integral inequality to find that

(/D /027r Vi ”)ze”dt

1/p
o sz)
zZ —

27 ’ 2— 1/p 2
5/ Iw’(e”)l( Mdz) dt < M/ [/ (e'?)| dt = 27 M.
0 D 0

|z —e't|P

This gives the uniform bound ||A;|z»(x) < M. An analogous estimate for the L?-norm
of hz now proves the theorem. ]

Proof of Proposition 3.3. Since 0X is rectifiable, the derivative g’ of a conformal map
from D onto X lies in the Hardy space H'(D) by [10, Theorem 3.12]. By rotational
symmetry it is enough to verify condition (3.1) for ® = 1 and g: D — X an arbitrary
conformal map. By Proposition 2.7, it suffices to verify that the measure u(z) = is
a Carleson measure (see Definition 2.6), to obtain the estimate

12'@)]
/ dz < Clg'lmm).
D |1 —z]

_dz
= =]

which will imply that the proposition holds. Therefore, let us for each € define Se(0) =
{re’®: 1—e<r<1,0—e<a< 0+ e} Wethen estimate for small € that

d 2 2e 1
1(Se(0)) < u(B(1,2¢)) = / = / / —rdrda = 4ne.
B(1,2¢) |1 — 2| o Jo T

It is clear that for any other angles 6 the p-measure of S¢(6) is smaller than for 6 = 0.
Hence p is a Carleson measure and our proof is complete. ]

Proof of Proposition 3.4. Recall that g denotes the conformal map from D onto X. Since
X has s-hyperbolic growth, we may apply Definition 1.9 with xo = g(0) to find that

hx(g(0),g(z)) < C forall z € D. (3.3)

1 1—s
(Faem)
Since X is simply connected, the quasihyperbolic distance is comparable to the hyperbolic
distance px. By conformal invariance of the hyperbolic distance we find that

1
Cihx(2(0), g(2)) = px(g(0), g(2)) = pp(0,2) = log TR

Now by the Koebe }T—theorem we know that the expression dist(g(z), 0X) is comparable
to (1 — |z|)|g’(z)| with a universal constant. Combining these observations with (3.3)
leads to the estimate

1 1 1—s
log < C( ) ,
1—|z|? (1 —1zDlg’ ()]
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which we transform into
C

(1= |z log" =) Ay

1g'(2)] < (3.4)

Set 8 = (2— p)/(1 —s), so that 8 > 1 by assumption. We now apply the estimate (3.4)
to find that

g P / :
18" = 4, < - dz
D |1—z[ D\ (1 — |22 7|1 — 2|7 log? L
/ 2—p
+/ EACH (3.5)
ip [1—z[?

2

It is enough to prove that the quantity on the right hand side above is finite as then rota-
tional symmetry will imply that the estimate (3.1) holds for all @. The second term is
easily seen to be finite, as the integrand is bounded on %D. To estimate the first integral
we will cover the annulus D \ %]D by three sets defined by

S ={1+re%: r<3/4 37/4<6<5n/4},
Sy={(x.y)eD: —1/V2<y<1/V2.x <1 x=1-|yl},
S3 = {reiez 1/2<r<1,n/4<0 <7Tn/4}
(see Figure 2). Since the sets S1, 5> and S3 cover the annulus in question, it will be enough

to see that the first integral on the right hand side of (3.5) is finite when taken over each of
these sets. On S;, one may find by geometry that 1 — |z| > ¢|1 — z| for some constant c.

S3

Fig. 2. The sets S;,i = 1,2, 3.
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Hence we may apply polar coordinates around z = 1 to find that

1 5m/4 3/4 1
/ 1 dZ<C/ / ﬂldrd9<oo.
s (1—1z)2=7|1 — z|? log? 3n/4 Jo  rlogh &

On S3, the expression |1 — z| is bounded away from zero. Hence bounding this term and
the logarithm from below and changing to polar coordinates around the origin yields

1 Tr/4 r
/ 1 dz < C/ / —2_dr do < oo.
S3 (1_|Z|)2_‘D|1_Z|p10gﬁ 1—|z] /4 1/2 (1—7’) p

On S;, we change to polar coordinates around the origin. For each angle 0, we let Ry
denote the intersection of the ray with angle 6 starting from the origin and the set S,. On
each such ray, the expression |1 — z| is comparable to |8]. Since 1 — |z| < |1 — z|, we may
also replace 1 — |z| by |1 — z| inside the logarithm, finally giving
1 C
<
1 —z|P log

. zeRy. (3.6)

1017 10g \9|

IZ\
On each of the segments Ry for small enough 6, the modulus r = |z| ranges from a

certain distance p to 1. This distance p := p(0) is found by applying the sine theorem to
the triangle with vertices 0, 1 and p(6)e’?, giving us the equation

p(0) 1 _ 1

sin(r/4)  sin(r — /4 —0)  sin(w/4 +6)

From this one finds that the expression 1 — p(0) = W

length of the segment Ry, is comparable to |6|. Using this and (3.6) we now obtain

1 7'[/4
/ dsz/ / o drd6
s> (1 —|z)2=7|1 — z|? log? /4 |9|1’log a7 o (1= ) ?

1- \Z\

/4 _ p—1 /4
=c/ ! (1= p(6)) drd@fC/ ' i<

—n/a |07 logf g p—1 x/4 (0| log? 5

This finishes the proof. ]

, which is also the

Proof of Theorem 1.8. Since Y is a Jordan domain with rectifiable boundary, there exists
a constant speed parametrization y: dD — dY. Such a parametrization is then automat-
ically a Lipschitz embedding of 0D to C, and hence Theorem 1.4 implies that y has a
homeomorphic Lipschitz extension G : D — Y.

Let now ¢: 0X — 0Y be a given boundary homeomorphism. We define a boundary
homeomorphism ¢q: dX — 9D by setting go := y~! o ¢. Let hg denote the harmonic
extension of ¢o to X, so that by the RKC Theorem (Lemma 2.3) the composed map
h:=Gohy: X — Y gives a homeomorphic extension of ¢. If /1 lies in the Sobolev
space WP (X, C), then so does A, since the Sobolev integrability is preserved under
composition with a Lipschitz map. Hence Theorem 1.8 now follows from Theorem 3.1.

|



Sobolev homeomorphic extensions 4077

4. Sharpness of Theorem 1.8

In this section we prove Theorem 1.10. We handle the two claims of the theorem sepa-
rately.

Example (1). In this example we construct a Jordan domain X with nonrectifiable bound-
ary and a boundary map ¢ : dX — 9D which does not admit a continuous extension in
WB(X, C). The domain X will be the following “spiral” domain.

Let Ry, k = 1,2,..., be aset of disjoint rectangles in the plane with bottom sides on
the x-axis. Each rectangle has width wy such that ZZOZI wy < oo and the rectangles are
sufficiently close to each other so that the collection stays in a bounded set. The heights
hy satisfy limg o0 b = 0 and Y 7o | hx = oo.

We now join these rectangles into a spiral domain as in Figure 3, and add a small
portion of boundary to the bottom side of R;. The exact way these rectangles are joined
is not significant, but it is clear that it may be done in such a way as to produce a Jordan
domain X with nonrectifiable boundary, for any sequence of rectangles Ry as described
above.

|

Ry R3 Ry Ri

Fig. 3. The rectangles R}, joined into the spiral domain X.

Let us now define the boundary homeomorphism ¢. The map ¢ shall map the “end-
point" (i.e. the point on the x-axis to which the rectangles Ry converge) of the spiral
domain X to the point 1 € dD. Furthermore, we choose disjoint arcs A,i' on the unit circle

so that the endpoints of A; are e’ and e with
w/2>a;>P1>a> P>

and limg_, o, o = 0. We mirror the arcs A,‘: in the x-axis to produce another set of
arcs A, . The arcs are chosen in such a way that the minimal distance between A]j and



A. Koski, J. Onninen 4078

Ay is greater than a given sequence of numbers dj with limg_, oo di = 0. It is clear that
for any such sequence we can make a choice of arcs as described here.

We now define ¢ to map the left side of the rectangle Ry, to the arc A3, and the right
side to A; . On the rest of the boundary 0X we define ¢ in an arbitrary way so as to
produce a homeomorphism ¢ : dX — dD.

Let now H be a continuous W!-!-extension of ¢. Let I denote any horizontal line
segment with endpoints on the vertical sides of Ry. Then by the above construction, H
must map the segment I to a curve of length at least di, as this is the minimal distance
between A,‘: and A; . Hence we find that

hi
/ |DH|dzz/ dy dz = hydy.
Ry 0

Adding up, we obtain the estimate

/ |DH|dz = > hydy.
X k=1

We may now choose, for example, iy = 1/k and di = 1/log(1 + k) to make the above
sum diverge, showing that H cannot belong to W1 (X, C). This finishes the proof.

Example (2). Let 1 < p < 2. Here we construct a Jordan domain X whose boundary has
(p — 1)-hyperbolic growth and a boundary map ¢ : X — dD which does not admit a
continuous extension in the Sobolev class W!-? (X, C). In fact, we take the domain X
described after Definition 1.9 fors = p — 1.

The construction of the boundary map ¢ is as follows.

We set ¢(0) = 1. Furthermore, we choose two sequences of points p,‘: and p, belong-
ing to the graph I := {(x, |x|®): — 1 <x <1} as follows. The points p,j all have positive
x-coordinates, their y-coordinates are decreasing in k with limit zero and the difference
between the y-coordinates of p,j_l and p,'c" is €, = k72/10. We then let Py, be the reflec-
tion of p;" in the y-axis.

Similarly, we choose points a,j on the unit circle so that a,j' = ¢'% for a sequence of
angles 0 € (0, r/2) decreasing to zero. Letting a;_ be the reflection of a,j in the x-axis,
we choose the sequence in such a way that the line segment between a,j and a,_ has length
di = (log(100 + k))~'/P so that dy, is decreasing and limy_, oo dx = 0.

Let F,j denote the part of the graph I' between p,j_l and p,‘:. We define the map ¢
to map I';” to the smaller arc of the unit circle between a;_, and a; with constant speed.
We define I';” and ¢|r- similarly. Let now H denote any continuous WP _extension
of ¢ to X. By the above definition, any horizontal line segment with endpoints on I‘Ij
and I';” is mapped into a curve of length at least dx under H. Such a line segment is of

length at most the distance from p,':_l to p;_,» which is comparable to (Z_;’ik ej)l/ S If
Sk denotes the domain which is the union of all the horizontal line segments between 1",;"
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dp—1 di |dg+p

Fig. 4. The portions of height €; get mapped onto slices with side length dj,.

and I',, this gives the estimate

(s, IDH|dz)? o et dedy?  cdle

|DH|? dz > — > — :
I. S T T TE e  Ty

Now by our choice of ¢ = k72/10, we see that Z;’ik €; is comparable to 1/k, so by
adding up we obtain the estimate

o0 dp
|DH|P dz > ¢ § K (4.1)
/LJk Sk k=1 k

However, our choice of d; = (1og(100 + k))~'/7 ensures that the right hand side of (4.1)
diverges. It follows that H cannot lie in W!-? (X, C), which completes the proof.

5. Thecase p =2

In this section we address Theorem 1.6 as well as Examples 1.5 and 1.7.

Example 1.5. For this example, let first &, for any 7 € (0, 1] denote the conformal map

D, (z) = log’(1 ;Z)

defined on the unit disk and having target Y; := ®;(D). In fact, Y; is a domain with
smooth boundary apart from one point at which it has an outer cusp of degree 7/(1 + 1)
(i.e. it is bi-Lipschitz equivalent to the domain X /(; ) pictured in Figure 1).
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Since &, is conformal and maps the unit disk into a set of finite measure, it lies in
the Sobolev space W2(ID, C). However, it does not admit a homeomorphic extension to

the whole plane in the Sobolev class Wlloc2 (C, C). The reason is a modulus of continuity

estimate for any homeomorphism in \/\7110’C2 (C, C). Indeed, let w,(¢) denote the modulus

of continuity of g: C — C at a point z,

(1) = 58 = sup{|g(x1) — g(x2)|: x1,x2 € B(z,1)}.

If g is a homeomorphism in W.>%(C, C), then

loc

r 2
/ @z 1 < . (5.1)
o !

Proof of (5.1). Since g is a homeomorphism, we have

0osC g < o0sc
B(z,t) 0B(z,t)

According to Sobolev’s inequality on spheres, for almost every ¢ > 0 we obtain

0sC SC/ Dgl|.
BB(z,t)g 8B(z,t)| d

These together with Holder’s inequality imply

1/2
wz(t) = osc g < osc <C|t Dgl|? ,
=(0) Ben S = 0BG = ( /BB(z,t)| gl)

and therefore for almost every ¢ > 0 we have

2
©:()” _ ¢ / Dgl?.
t 3B(z,1)

where C is independent of z. Integrating this from 0 to r > 0 yields the claim (5.1). =

Now, since the map ®; for t < 1 does not satisfy the modulus of continuity esti-
mate (5.1) at the boundary point z = 1, it is not possible to extend @, even locally as a
W!2_homeomorphism around the point z = 1.

To address the exact claim of Example 1.5, we now define an embedding ¢: 0D — C
as follows. Fixing 7 € (0, 1], in the set {z € dD: Re(z) > 0} we let p(z) = ®.(z). We also
map the complementary set {z € 9D : Re(z) < 0} smoothly into the complement of Y-,
and in such a way that ¢(9D) becomes the boundary of a Jordan domain Y (see Figure 5).
It is now easy to see that ¢ satisfies the Douglas condition (1.2). Indeed, since ®; is in
the Sobolev space W!-2(ID, C), its restriction to the boundary must necessarily satisfy the
Douglas condition. Since ¢ agrees with this boundary map in a neighborhood of z = 1,
verifying the finiteness of the integral in (1.2) poses no difficulty in this neighborhood.
On the rest of dD we may choose ¢ to be locally Lipschitz, which shows that (1.2) is
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Fig. 5. The Jordan domains Y and Y.

necessarily satisfied for ¢. Hence we have found a map from d into the boundary of the
chordarc domain Y which admits a W!-2-extension to D but not a homeomorphic one.

Example 1.7. In [40], Zhang constructed an example of a Jordan domain, which we
shall denote by Y, such that the conformal map g: D — Y does not admit a Wb1-
homeomorphic extension to the whole plane. We shall not repeat this construction here,
but will instead briefly show how it relates to our questions.

The domain Y is constructed in such a way that there is a boundary arc I' C dY over
which one cannot extend the conformal map g even locally as a W!+!-homeomorphism.
The complementary part of the boundary, dY \ T', is piecewise linear. Hence we may
employ the same argument as in the previous example. We choose a Jordan domain Y in
the complement of Y whose boundary consists of the arc I" and, say, a piecewise linear
curve. We then define a boundary map ¢: 0D — Y so that it agrees with g in a neighbor-
hood of the set g~ !(I") and is locally Lipschitz everywhere else. With the same argument
as before, this boundary map must satisfy the Douglas condition (1.2). Hence this bound-
ary map admits a W' 2-extension to ID but not even a W'!-homeomorphic extension.
Naturally the boundary of the domain Y is quite ill-behaved, in particular nonrectifiable
(though its Hausdorff dimension is still 1).

Proof of Theorem 1.6. Let y: 0D — 0Y denote a constant speed parametrization of the
rectifiable curve dY. Let G: C — C be the homeomorphic Lipschitz extension of y given
by Theorem 1.4. Denoting f := ¢~ ! o y, we find by a change of variables that

[ logle™ @ o anf1agtion = [ [ foglr) = s =] dol.

Now the result of Astala, Iwaniec, Martin and Onninen [4, Theorems 11.4 and 9.1] shows
that the inverse map f~!: dD — dD satisfies the Douglas condition (1.2). Thus f~!
extends to a harmonic W'2-homeomorphism H; from D to D by the RKC Theorem
(Lemma 2.3). Letting & := G o Hj, we find that & lies in WL2(D, C) since G is Lip-
schitz. Moreover, the boundary values of / are equal to y o (¢! 0 y)~! = ¢, giving us a
homeomorphic extension of ¢ in WH2(D, C).

To further extend ¢ into the complement of I, assume first without loss of generality
that 0 € Y. We now let 7(z) = 1/Z denote the inversion with respect to the unit circle,
which is a diffeomorphism in C \ {0}. The map ¥ := 7 o ¢ o 7 is then a homeomorphism
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from 0D to d7(Y). Note that since 7 is the identity on 0D, we also have ¢ = 7 o ¢.
Since 7 is locally bi-Lipschitz in C \ {0}, there is L > 1 such that 7 is L-bi-Lipschitz in
a neighborhood of d7(Y). Hence we may estimate that

/ / llog [y~ @) — v~ ()| |dt| [d]
at(Y) Joz(Y)
- / / llog [~ (z(@)) — " (2(8))]| |dt| 0B
at(Y) Joaz(Y)
= [ [ logle™ @ — ¢~ il €@ 1 o) 0l e
Y JoY
<12 /3 ] /3 logly™ € — 9™ ] 1o ] < oo,

This shows that v satisfies condition (1.3), and hence the earlier part of the proof shows
that we may extend ¥ as a 'W!-2_homeomorphism / from I to the Jordan domain bounded
by d7(Y). Hence 7 o & o 7 is a homeomorphism from C \ D to C \ Y, equal to ¢ on the
boundary, and in W'2(U, C) for any bounded subset U C C \ D due to the bi-Lipschitz
bounds on 7 in C \ {0}. This concludes the proof. |

6. The multiply connected case: Proof of Theorem 1.11

In this section we consider multiply connected Jordan domains X and Y of the same
topological type. Any such domain can be equivalently obtained by removing from a
simply connected Jordan domain the same number, say 0 < £ < oo, of closed disjoint
topological disks or single points. Throughout what follows, we will assume that none of
the boundary components of X and Y are single points — this case will only be addressed
at the very end of the proof.

If £ = 1, the resulting doubly connected domain is conformally equivalent to a circu-
lar annulus A = {z € C: r < |z| < 1} with some 0 < r < 1. In fact, if £ > 1 then every
(€ 4 1)-connected Jordan domain can be mapped by a conformal mapping onto a circular
domain [14]. An (£ + 1)-connected circular domain consists of the domain bounded by
the boundary of the unit disk D and k other circles in the interior of D. This conformal
equivalence to circular domains will be used in certain parts of the proof. The confor-
mal mappings between multiply connected Jordan domains extend continuously up to the
boundaries.

The idea of the proof of Theorem 1.11 is simply to split the multiply connected
domains X and Y into simply connected parts and apply Theorem 1.8 in each of these
parts. Let us consider first the case where X and Y are doubly connected.

6.1. Doubly connected X and Y

Case 1: p = 1. Suppose that the boundary of X is rectifiable. We split X into two rectifi-
able simply connected domains as follows. Take a line L passing through any point in the
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bounded component of C \ X. Then there exist two open line segments /; and I, on L
that are contained in X and have endpoints on different components of the boundary of X.
These segments split the domain X into two Jordan domains X; and X, with rectifiable
boundaries.

For k = 1,2, let p; denote the endpoint of /i lying on the inner boundary of X and Py
the endpoint on the outer boundary. We let gx = ¢(pr) and Qr = ¢(Pr), where ¢ denotes
the given boundary map from the statement of Theorem 1.11. We would now simply like
to connect g to Qg by arectifiable curve y inside Y in such a way that y; and y, do not
intersect. It is quite obvious this can be done but we provide a proof regardless.

Let Y4 denote the Jordan domain bounded by the outer boundary of Y. Take a con-
formal map g4 : D — Y. Then g/, is in the Hardy space H ! since Y] is rectifiable,
and by [10, Theorem 3.13] we find that g maps the segment [0, g;l (Qp)] into a recti-
fiable curve in Y. Let y,:r denote the image of the segment [(1 — e)gjrl(Qk), gjrl(Qk)]
under g4 for a sufficiently small €. Then y,j is a rectifiable curve connecting Qy to an

interior point Q,': of Y if € is small enough. With a similar argument, possibly adding a
Mobius transformation to the argument to invert the order of the boundaries, one finds a
rectifiable curve y,~ connecting g to an interior point g, . For € small enough the four
curves constructed here do not intersect.

If I" denotes the union of these four curves, we may now use the path-connectedness
of the domain Y \ T to join the points QI" and g7 with a smooth simple curve inside Y
that does not intersect I'. By combining the curves V1+ and y; one obtains a rectifiable
simple curve y; connecting Q1 and ¢;. Using the fact that Y \ T is doubly connected,
we may now join Q;r and g5 with a smooth curve that does not intersect y; or I". This
yields a rectifiable simple curve y, connecting O, and g,. This proves the existence of
the curves y; with the desired properties. These curves split Y into two simply connected
Jordan domains Y; and Y,.

We may now extend the homeomorphism ¢ to map the boundary of Xy, to the bound-
ary of Y; homeomorphically. The exact parametrization which maps the segments [ to
the curves y; does not matter. The rest of the claim follows directly from the first part of
Theorem 1.8, giving us a homeomorphic extension of ¢ in the Sobolev class WI1(X, C),
as claimed.

Case 2: 1 < p < 2. Suppose that X has s-hyperbolic growth. Then we take an annulus A
centered at the origin such that there exists a conformal map g: A — X. By a result of
Gehring and Osgood [12], the quasihyperbolic metrics hx and /14 are comparable via the
conformal map g. This shows that for any fixed xo € A and all x € A we have

C
ha(xo,x) = Chx(g(x0).8(x)) < stz (). aX) = (6.1)

Let now A, denote the simply connected domain obtained by intersecting A and the
upper half-plane. We claim that the domain X := g(A ) has s-hyperbolic growth as
well.
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To prove this claim, fix xo € A4 and take an arbitrary x € A. Let d = dist(x, A ).
We aim to establish the inequality
C

) = Fite ). AKX ) ©2)

hA+ (XO,

Note that A is bi-Lipschitz equivalent to the unit disk, implying that /4 (xo, x) is
comparable to log(1/d). The boundary of A contains two line segments on the real
line; let us denote them by I; and I,. Note that we have the estimate

dist(g(x), 0X4) < dist(g(x), 0X). (6.3)

If it happened that d = dist(x, dA), meaning that the closest point to x on dA 4 is not
on Iy or I, then the hyperbolic distances /4 , (xo,x) and /14 (xo, x) are comparable and
by the inequalities (6.1) and (6.3) the inequality (6.2) holds. Hence it is enough to prove
(6.2) when d = dist(x, I; U I;). We may also assume that d is small. Due to the geometry
of the half-annulus A 4, the projection of x to the real line lies on either /; or /5, and the
vertical line segment L, between x and its projection lies in A4 and has length d. Letting
D denote the distance from x to dA 4 \ (I U 1), we see that D > d.
We may now reiterate the proof of (3.4) to find that

C
dist(z, dA) log 7= (dist(z, dA)~1)

lg'(2)] =

for z € A. We should mention that the simply connectedness assumption used in the proof
of (3.4) may be circumvented by using the equivalence of the quasihyperbolic metrics
under g instead of passing to the hyperbolic metric. Hence

. Cd
dist(g(0). 0% = [ 1g/@ldz| = —— .
Ly DlogT=(1/D)

From this we find that (6.2) is equivalent to

D' log(1/D)
dl—s ’

which is true since D > d. Hence (6.2) holds, and this implies that X has s-hyperbolic
growth by reversing the argument that gives (6.1).

We define X_ similarly. Hence we have split X into two simply connected domains
with s-hyperbolic growth. On the image side, we may split Y into two simply connected
domains with rectifiable boundary as in Case 1. Extending ¢ in an arbitrary homeomor-
phic way between the boundaries of these domains and applying part 2 of Theorem 1.8(2)
gives a homeomorphic extension of ¢ in W7 (X, C) whenever s > p — 1.

log(1/d) = C
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6.2. The general case

Case 3: p = 1. Assume that X and Y are £-connected Jordan domains with rectifiable
boundaries. By induction, we may assume that the result of Theorem 1.11 holds for
(€ — 1)-connected Jordan domains. Hence we are only required to split X and Y into
two domains with rectifiable boundary, one which is doubly connected and the other is
(€ — 1)-connected.

We hence describe how to ‘isolate’ a given inner boundary component X from an £-
connected Jordan domain X. Let Xy # Xo denote the outer boundary component of X.
Take a small neighborhood of X, inside X. Let yo be a piecewise linear Jordan curve
contained in this neighborhood and separating X from the other boundary components
of X. Let also y; be a piecewise linear Jordan curve inside X and in a small enough
neighborhood of Xy S0 that all the inner boundary components of X are inside y;. Take
Yo and yq on yg and y; respectively, and connect them with a piecewise linear curve a,
not intersecting any boundary components of X. Choose zy on y, close to yy and z; on
y1 close to y; so that we may connect zg and z; by a piecewise linear curve o, arbitrarily
close to ay but intersecting neither oy, nor any boundary components of X. Since the
region bounded by X,u.r and y; is doubly connected, by the construction in Case 1 we
may connect y; and z; to any two given points y, and z, on the boundary Xgyer via
nonintersecting rectifiable curves 8, and B, lying inside this region.

Let now I" denote the union of the curves 8,, B;, o, @, and the curve yé obtained
by taking y¢ and removing the part between yo and zo. By construction I' contains two
arbitrary points on X,uer and separates the domain X into a doubly connected domain
with inner boundary component X and an (n — 1)-connected Jordan domain. Since I" is
rectifiable, both of these domains are also rectifiable.

Applying the same construction for Y, we may separate the boundary component
@©(Xo) of Y by a rectifiable curve I'". Since the boundary points y, and z, above were
arbitrary, we may assume that I'” intersects the outer boundary of Y at the points ¢(y2)
and ¢(z;). Extending ¢ to a homeomorphism from I" onto I'” and applying the induction
assumptions now gives a homeomorphic extension in the class W (X, C).

Case 4: 1 < p < 2. We still have to deal with the case where X has s-hyperbolic growth
and is £-connected. By the same arguments as in the previous case, it will be enough
to split X into a doubly connected and an (£ — 1)-connected domain with s-hyperbolic
growth.

Since X is £-connected, there exists a domain €2 such that every boundary component
of Q is a circle and there is a conformal map g: Q2 — X. Let I' C Q2 be a piecewise linear
simple curve with both endpoints on the outer boundary of €2 such that I" separates one
of the inner boundary components of d$2 from the others, which implies that the curve I
splits €2 into a doubly connected set ; and an (£ — 1)-connected set $2,. We claim that
the domains X; = g(2;) and X, = g(2,) have s-hyperbolic growth.
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The proof of this claim is nearly identical to the arguments in Case 2, so we will
summarize it briefly. For X,, we aim to establish the inequality
C
x) < —
dist(g(x), 0X)1—s

hg, (xo, 6.4)
for fixed xo € Q7 and x € 2,. For this inequality, it is only essential to consider x close
to d€2,. If x is closer to the boundary of the original set d€2 than to I", then the hyperbolic
distance between xo and x in €2, is comparable to the distance inside the larger set 2.
Then the s-hyperbolic growth of 2 implies (6.4) as in Case 2. If x is closer to I" but a
fixed distance away from the boundary of €2, then the smoothness of g in compact subsets
of © implies the result. If x is closest to a line segment in I" which has its other endpoint
on 02, then we may employ a similar estimate to that in Case 2, using the bound for
|g’(z)] in terms of dist(z, d2), to conclude that (6.4) also holds here. This implies that X,
satisfies (6.4), and hence it has s-hyperbolic growth. The argument for X is the same.

After splitting X into two domains of smaller connectivity and s-hyperbolic growth,
we split the target Y accordingly into rectifiable parts using the argument from Case 3.
Applying induction on £ now proves the result in this case.

6.3. Punctured domains

We now address the case where X and Y are £-connected and where some of the inner
boundary components of X and Y may be single points. Let these points be xq, ..., xx
e Xand y;,...,yny €Y. Without loss of generality we may assume ¢(x;) = y; forall j.
Let X denote the (£ — N)-connected domain X U {x1,...,xn} and define Y similarly.

We now consider the boundary map ¢/, : X — BY and let i: X — Y denote the
Wh.p. -homeomorphic extension of this boundary map. If such a map satisfied h(x i) =y;
for all j then we would be done. If not, let U C Y be a smooth simply connected domain
large enough to contain all the points #(x1),...,h(xy) and y1,..., yn. Then consider
a diffeomorphic change of variables 7: U — U that is the identity map on the boundary
and sends the point i;(xj) to y; for every j. Now the map h :=t o ﬁ|X: X — Y is the
desired Sobolev homeomorphic extension of ¢.

This finishes the proof of Theorem 1.11.

7. Monotone Sobolev minimizers

The classical harmonic mapping problem deals with the question of whether there exists

a harmonic homeomorphism between two given domains. Of course, when the domains

are Jordan such a mapping problem is always solvable. Indeed, according to the Riemann

Mapping Theorem there is a conformal mapping /: X =% Y. Finding a harmonic hom-
onto

eomorphism which coincides with a given boundary homeomorphism ¢: dX — 0Y is a
more subtle question. If Y is convex, then there always exists a harmonic homeomorphism

onto

h: X 25 Y with 71(x) = ¢(x) on X by Lemma 2.3. For a nonconvex target Y, however,
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there always exists at least one boundary homeomorphism whose harmonic extension
takes points in X beyond Y. To find a deformation /2: X 2> Y which resembles harmonic
homeomorphisms Iwaniec and Onninen [23] applied the direct method of the calculus of
variations and considered minimizing sequences in J{;’z(X, Y). They called such mini-
mizers monotone Hopf-harmonics and proved the existence and uniqueness result in the
case when Y is a Lipschitz domain and the boundary data ¢ satisfies the Douglas condi-
tion. Note that by the Riemann Mapping Theorem one may always assume that X = D.
Theorem 1.6 allows one to go beyond the Lipschitz targets. Indeed, under the assumptions
of Theorem 1.6, the class H,*(D, Y) is non-empty. Furthermore, if ko € Hy? (D, Y),
then /i, satisfies the uniform modulus of continuity estimate

[p|Dhol?
log(lxlile)

for x1, x5 € D such that |[x; — x,| < 1. This follows by taking the global W -homeo-
morphic extension given by Theorem 1.6 and applying a standard local modulus of con-
tinuity estimate for W!-2-homeomorphisms [19, Corollary 7.5.1, p. 155]. Now, applying
the direct method of the calculus of variations allows us to find a minimizing sequence
in J{(})’z(ﬁ, Y) for the Dirichlet energy converges weakly in W2(ID, C) and uniformly

lho(x1) = ho(x2)|* < €

in . Being a uniform limit of homeomorphisms the limit mapping H : D % Y becomes
monotone. Indeed, the classical Youngs approximation theorem [39] asserts that a contin-
uous map between compact oriented topological 2-manifolds (surfaces) is monotone if
and only if it is a uniform limit of homeomorphisms. Monotonicity, the concept of Mor-
rey [30], simply means that for a continuous H : X — Y the preimage H ~!(ys) of a point
¥o € Y is a continuum in X. We have thus proved the following result.

Theorem 7.1. Let X and Y be Jordan domains and assume that Y is rectifiable. If

@: 0X = 0Y satisfies (1.3), then there exists a monotone Sobolev mapping H : X =Y
in Wh2(X, C) such that H coincides with ¢ on dX and

/|DH(x)|2dx= inf /|Dh(x)|2dx.
X

hexl2X)Y) /X
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