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Abstract

We show that a K-quasiregular w-curve from a Euclidean domain to a Euclidean space with respect to a covector  is locally
(1/K)(||oll/|w|,, )-Holder continuous. We also show that quasiregular curves enjoy higher integrability.
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1 Introduction

The first breakthrough in the theory of quasiregular map-
pings (or mappings of bounded distortion) is Reshetnyak’s
theorem on sharp Hoélder continuity: Let Q C R” be a
domain. A K-quasiregular mapping f : Q - R"withK > 1
is locally 1/K-Holder continuous, see Reshetnyak [44] and
also [45, Corollary II.1]. Such Holder continuity properties
of quasiconformal mappings in the plane were first estab-
lished by Morrey [35].

Recall that a mapping f : M — N between oriented
Riemannian n-manifolds is K-quasiregular if f belongs to
the Sobolev space Wlt’:(M, N) and satisfies the distortion
inequality
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IDfII" < KJ, (1.1)

almost everywhere in M, where || Df|| is the operator norm
and J; the Jacobian determinant of f.

In the last 20 years the studies of mappings of finite
distortion have emerged in Geometric Function Theory
(GFT) [2, 13, 20]. This theory arose from the need to
extend the ideas and applications of the classical theory
of quasiregular mappings to the degenerate elliptic setting
where the constant K in (1.1) is replaced by a finite func-
tion K : M — [0, o). There one finds concrete applications
in materials science, particularly nonlinear elasticity and
critical phase phenomena, and in the calculus of variations.
Some bounds on the distortion function K are needed to
obtain a viable theory. In the degenerate Euclidean setting,
continuity properties of mappings of finite distortion under
distortion bounds of exponential type were obtained in [18].
Sharp modulus of continuity estimates for such mappings
were given in [38], see also [28]. The paper [18], in addition
to starting a systematic studies of mappings of finite distor-
tion in GFT, it also began a naming scheme for a series of
papers, see e.g., [3, 5,6, 8, 10, 11, 14-17, 19, 21-34, 36, 37,
39, 41-43]. This paper follows such a scheme.

In this note we prove Holder continuity and higher inte-
grability of quasiregular curves. A mapping f : M - N
between Riemannian manifolds is a K-quasiregular w-
curve for K > 1 and an n-volume form w € Q"(N) if M is
oriented, n = dim M < dim NV, fbelongs to the Sobolev space
WM, N) and

(lolleHIDAI" < K * (@)
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almost everywhere in M, where ||w|| : N — [0, o0) is the
pointwise comass norm of the form w and % is the Hodge
star operator on M. Here, a form w € Q"(N) is an n-volume
form if @ is closed and non-vanishing, that is, do = 0 and
w, # 0 foreachy € N.

We refer to [40] for a discussion on the definition of qua-
siregular curves. We merely note here that quasiregular map-
pings are quasiregular curves and that holomorphic curves
are 1-quasiregular curves.

Our main theorem is the Holder regularity of a quasiregu-
lar w-curve in the case of the constant coefficient form w.
Note that, in the following statement, we identify n-covec-
tors in /\" R™ with constant coefficient n-volume forms in
R™.

Theorem 1.1 Let Q C R” be a domain, K > 1, and let
w € N\"R™ be an n-volume form. Then a K-quasiregular
w-curve f . Q — R™ is locally a-Holder continuous for
a = a(K,®) = (1/K)(loll/|ol,).

Here|w|, is the £-norm of the covector w; see Section 2.
For simple covectors, we recover the exponent 1/K, which
follows also from the local characterization of quasiregular
curves with respect to simple covectors, see [40]. We expect
that the Holder exponent a(K, @) is not sharp in general.
In fact, all examples of quasiregular curves we know are
1/K-Holder continuous.

Since a quasiregular curve is locally a quasiregular curve
with respect to a constant coefficient form by [40, Lemma
5.2], we obtain that quasiregular curves between Riemann-
ian manifolds are locally Holder continuous. We record this
observation as a corollary.

Corollary 1.2 Let M and N be Riemannian n and m-man-
ifolds, respectively, for n < m, and let € Q"(N) be an
n-volume form. Then each K-quasiregular o-curve M — N
is locally a(K’, w)-Hélder continuous for each K' > K.

Proof Let K" € (K,K') and let € > 0 be a constant for
which (1 +&)* < K"/K.Let x€M and let ¢ : U —» R”
and y : V - R™ be smooth (1 + £)-charts of M and N at x
and f{x), respectively, having the property that fU C V. Then
h=wofop™! : U — R™is a K"-quasiregular @-curve for
@ = (w~")*w. By [40, Lemma 5.2], for each x € M, h is a
K’-quasiregular @ -curve with respect to the covector @, in
a neighborhood of x. The claim follows now from Theo-
rem 1.1. O

In the proof of Theorem 1.1 we mimic the lines of rea-
soning of the original proofs of Reshetnyak’s theorem by
Morrey [35] and Reshetnyak [44]. For quasiregular w-curves
Q — R™ where w is a constant coefficient form or a covec-
tor w € /\" R™, we prove a decay estimate on the integrals

@ Springer

of xf*w of the quasiregular curve f over balls by establish-
ing a differential inequality for these integrals. This is done
by employing a suitable isoperimetric inequality. For this
reason, we recall the classical isoperimetric inequality for
Sobolev mappings in Section 3 and derive an w-isoperimet-
ric inequality in Section 4.

1.1 Higher integrability of quasiregular curves

Now we switch gears and consider another classical property
of quasiregular mappings. Quasiconformal and quasiregular
mappings f : Q - R", Q C R”, belong to a higher Sobolev
class Wllof (€), p > n, than initially assumed. The sharp expo-
nent p = p(n, K) is not known. A well-known conjecture
asserts that
KL

nk n-1

p(n,K) = —/——.
Kw1 —1

This value, if correct, would be sharp as confirmed by the
radial stretch mapping f(x) = |x|¥ Ii_l In a seminal work,

Astala [1] established the sharp exponent in the planar case
n = 2. There are more recent accounts on the higher integra-
bility results when n > 3, we refer here to the celebrated
paper of Gehring [9] for the quasiconformal case. In the
quasiregular case, we find that the discussion in Bojar-
ski—Iwaniec [4] has stood the test of time.

As Bojarski and Iwaniec write in [4, p.272], the higher
integrability of a K-quasiregular map f : M — N stems
from the double inequality

Jy < IDFII" < KJ; ae. inM

and (standard) harmonic analysis. For a K-quasiregular @
-curve f : M — N between Riemannian manifold the analo-
gous double inequality is

*f o < (lolleNHIDfII" < K(xf*w) a.e. in M.

The proof of the higher integrability of quasiregular map-
pings adapts almost synthetically for quasiregular curves.

Theorem 1.3 Let f : Q - R™ be a K-quasiregular
-curve, where w € /\" R™ is an n-volume form. Then
fe Wllo’f(Q, R™) for some p = p(n,K) > n.

As an application, we obtain the almost everywhere dif-
ferentiability of quasiregular curves. The proof of the fol-
lowing corollary of Theorem 1.3 is analogous to the proof
of Corollary 1.2 from Theorem 1.1 and we omit the details.

Corollary 1.4 A quasiregular curve between Riemannian
manifolds is almost everywhere differentiable.
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2 Notation

In what follows, (e, ... , ,,) denotes the standard orthonormal
basis of R” and (e!, ..., e™) its dual basis in (R”)*. The nth
exterior power of (R™)*is /" R™.

For each multi-index [I=(,...,i,), where
1 <i <+ <i, <nwedenotee! = et A Aen.Forn=m,
we also denote

Volg, = e' A - A €.
Note that, for n-covectors in R”, the Hodge star
* 1 \"R" > R, defined by

(*&volg, = ¢

for each ¢e /\" R", gives the identification
N'R = \'R" =R,

In what follows, we also use the Hodge star
* : N"'R" - (R")* to identify A""'R” and R". This
identification of spaces yields an identification of the adjoint
L* : R" = R"of alinear map L : R” — R" with the induced
map /\"_1 L: /\"_l R" — /\"_l R”.

2.1 Norms on forms

In what follows we use the following notations for inner prod-
ucts and norms of covectors and linear maps. For the exte-
rior power /\" R™, we set (-, -) to be the natural inner product
induced by the standard Euclidean inner product in R”, that is,
(¢!, e’) = &, for multi-indices I and J. The Euclidean norm
induced by this inner product is| - |

We also set an Z-norm | - |, in A" R" as follows. For
w=Y,ue € N\"R" we set

oy, = D ul.
1

Given a linear map L : V — W between inner product
spaces, the operator norm ||L|| of L is

LIl = sup{|L(v)| : v €V, |v] =1].

Finally, for each multi-index I=(,...,i,), let
m; : R" - R" be the corresponding projection
(Xps oo s %) = (5.5 ). Thenw = ¥, e’ is the covector

®= Z uym; (Volg,).

1

3 Classical isoperimetric inequality
for Sobolev maps

In this section we recall and prove the classical isoperi-
metric inequality for Sobolev mappings; see, for example,
Reshetnyak [45, Lemma II.1.2.] for a more detailed account.

Theorem 3.1 Let QCR" be a domain and
Br =B'(x,,R) C Qaball. Letalso f : Q — R"be a Sobolev
map in WIIO’Z(Q, R™). Then, for almost every r € (0,R), we
have

’ / Iy s<n"</w,,_1>‘1< / ||D”f||>’”,
B, 0B,

where w,_, is the (n — 1)-dimensional area of the unit sphere
slinR™.

3.1)

This integral form of the isoperimetric inequality stems
from the familiar geometric form of the isoperimetric
inequality

"o, U < |oU, (3.2)

where | U| stands for the volume of a domain U C R" and|oU |
is its (n — 1)-dimensional surface area. The constant w,,_,
is the (n — 1)-dimensional surface area of the unit sphere
s =09B"(0, 1).

To motivate the integral form of the inequality, we con-
sider first the case of diffeomorphisms. Let f : B, — Ubea
diffeomorphism of a ball B, = B"(x,,r) C R"onto U C R”",

then
|U| = /Jf(x) dx‘
Br

and
U] < / DGO
0B,

here D¥f(x) stands for the cofactor matrix of the differential
matrix Df{(x); recall that identification /\”_] R" =~ R" yields
the identification D*f(x) = A" ' Df(x).

Having these integral representations for the volume
and area, we obtain the integral form of the isoperimetric

inequality, namely
< ([ wrone) .
0B,

/ Jo(x) dx
Br

The same isoperimetric inequality holds for all mappings in
WIIO’Z(Q, R™). The proof is based on three tools: integration
by parts, local degree, and functions of bounded variation.

n—1

nwn—l

(3.3)

@ Springer
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3.1 Integration by parts

Let f : Q — R"be a mapping in Wllo‘:(Q, R™). Then the Jaco-
bian J; of f obeys the rule of integration by parts, that is,

/(pJf=/(pdf1/\---/\dﬁ1
Q Q

3.4
= —/ﬁdfl A ANdfy_  Ndo Adfi g A Adf,
Q

is valid for every test function ¢ € C8°(Q) and each index
i=1,...,n

For the surface area term, the integration by parts takes the
following form, which we record as a lemma.

Lemma 3.2 Let f : Q — R" be a mapping in the Sobolev
class Wllo’:(Q, R") andu € C(l)(IR", R™). Then
div ((wof)D*f) = ((divu)of)J; (3.5)

in the sense of distributions.

Proof Suppose first that u :
,0,u,(),0, ..., 0),

where u; € C(l)(R”) andi € {1,...,n}, and define
F=(,.... o1 uof  figs -
Let also ¢ € C(‘;"(Q). Then (3.4) gives

/(PJF
Q

= —/F,-dfl A ANdfy_  Ndo Adfi g A Adf,
Q

R"” — R"is the map

y(,...

L) P R R

=- /Q (U(F)D(x). Vo)) da.
Since
/Q PO () dx = /Q (div ) (F N, (o) dx
we have that (3.5) follows foru = (0, ...,0,4;,0,...,0). The
general case follows by the coordinate decomposition of u.

O

In particularly, if By = B"(x,,R) C £, then Lemma 3.2
gives that

/ (divae) (f(x0))Jp(x) dx‘

B

,

(3.6)
§||u||°o/ |D*f| forae. r € (0,R).
0B

r

@ Springer

Indeed, choose a mollifier ® € CP(B(0,1)) and let
®,(x) =j"®(x) and ¢; a convolution approxima-
tion of the characteristic function yg, , i/; that
is, @ =@ * yg, ,15, see [20, Formula (4.6)].
Then ¢; € C°(2) when j is sufficiently large and
sup{|Vg;(x)| : x € Q} <. According to (3.5) we have

/ (divi)(FOO),(X)e;(x)
BI

=|_ / | / (u(FCNDH (x), Voo, (x))
r—- JoB,

snuumj'/l/ |DPfI.
r—= 03,

Letting j — oo and applying the Lebesgue differentiation
theorem, we conclude the asserted estimate (3.6).

3.2 Local degree

Let B C R" be a ball and let g : B — R" be a continuous
mapping. For every y, € R" \ g(dB) the Brouwer degree
deg(g, B,y,) of g with respect to B at y, is a well-defined
integer defined as follows. Let Q C R" \ g(dB) be the y,
-component of R” \ g(dB) and let B = g~'(Q) N B. Let also
1 : B < Bbe the natural inclusion and let ¢, and ¢y, the gen-
erators of the compactly supported Alexander—Spanier coho-
mology groups H!(2;Z) and H(B;Z), respectively. We may
assume that c(, and ¢y are fixed so that the orientations of Q
and B given by c and c agree with the orientation defined
by an orientation class cg, of R". Then

deg(g, B,y,)cg = 1"(glp)"cq-

The Brouwer degree depends only on the boundary values
of g in the sense that, if g : B — R" is a continuous map
satisfying &|,5 = gl,5 thendeg(y,, g, B) = deg(y,, g, B). Fur-
thermore, if g € C'(B,R") N CO(E, R™) and Vis a connected
component of R” \ g(dB,) containing y,, then we have

deg(g. B.y,) = / PN/ (x) dx = / 8" (pvolg),
B B

where p € Cy(V) is a nonnegative continuous function sat-
isfying /v p(y) dy = 1. This last statement follows from the
identification of the compactly supported Alexander—Spanier
cohomology H”(;R) = H(-;Z) ® R with the compactly
supported de Rham cohomology H:;R,C(-).

3.3 Proof of Theorem 3.1

By approximating f, it is enough to prove (3.3) for smooth
mappings f : Q — R”". We recall that the classical change
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of variables formula for a continuous functionv : R” - R

states that

/ (vof)Jy = / v(y) deg(f, B, y) dy. (3.7
B Rr

Applying the identity (3.7) with v = divu and combining
this with (3.6) we obtain

/divu(y)deg(f,B,,y)dy‘S||M||oo/ |D*f|
n JB

,

for an arbitrary u € Cé(IR”,[R{”). Hence the function
y = deg(f, B,,y) has bounded variation and we have the
inequality

n—1

n

( | deg(f, B, y)| T dy)
Rn
<@ "‘\‘/con_l)l_jn / |D*f(x)] dx.
0B,

(3.8)

It is worth nothing that the use of the Sobolev inequal-
ity (3.8) comes as no surprise. Indeed, the Sobolev inequality

w1 L
noro, gl < 1Dgl(R")

for functions of bounded variation g : R" — R is equiva-
lent with the classical isoperimetric inequality (3.2). Here
|Dg|(R") stands for the total variation of the distributional
derivative Dg see e.g., Evans and Gariepy [7, Section 5.6]

Since the function y — deg(f, B,,y) is integer valued, we
further have that

| deg(f, B, )| < | deg(f, B,,y)| .

for each y € R" \ f(9B,). Thus

n

/ deg(f, B,,y) dy‘ <(mfw, )" ( / |Dﬁf|> o
R~ 0B,

T

Applying (3.7) again, this time with v = 1, we obtain the
desired inequality

/ AR "\l/co,,_o—l( / |D“f|>"’.
B, 0B,

This concludes the proof.

4 An @-isoperimetric inequality for Sobolev
maps

The proof of the Holder continuity of the quasiregular curves
is based on a variant of the classical isoperimetric inequality
for Sobolev maps adapted to n-volume forms.

Proposition 4.1 Let Q C R" be a domain, By = B(x,,R) C Q
a ball, and w € \"R™ an n-covector. Then a Sobolev
W(Q,R™) map f 1 Q — R™ satisfies

loc

/f*wﬁcnkolf </ |Dﬁf|> for a.e r € (0, R).
B, "\ Joa,

4.1
Herec, = (n"{/w,_, Y~ Lis the isoperimetric constant.

Proof Letw € /\" R™ be the covector

®= 2 u;pryvolg,.
T

For each multi-index I, let 4; : R" — R" be the linear map

1/n

(y1a~--syn)H(6|u[| yl""slulll/nyn)’

where the sign € € {+1}is chosen so that A7volg, = u;volg.
Letalsor; = Ajopr; : R™ - R"and f; = 7;of 1 Q = R"
Then

ffo= Zf*(ﬂ,opr,)*volw
I
= Z frryvolg, = Z 1 volg.—
1 1
Moreover,

Dz |l = | A" 7l = |5
I I I .

By the isoperimetric inequality for Sobolev mappings, we
have

e

- /B Z f*(rc;kvolw):z[: /B fvolg,
Z/B'_Jf, 5> (/@B D) dx)

»

for almost every r € (0, R), where ¢, > 0 is the isoperimetric
constant depending only on n.
Since

D*f; = N D(x;0f) = (A"~ Dry)of) - (N'' DY),

we have that

@ Springer
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n

( / 1D dx)
0B,

= < (Il A Dayllof) - | A DfII)
0B,

n

n—1 E
= </ luy | Il A Df||>
0B,
o)
= |M1|</ IIDf||>
0B,

for almost every r € (0, R). Thus (4.1) holds. O

5 Proof of the Holder continuity

Let f : Q - R™be a K-quasiregular w-curve with respect
to a covector o € /\" R™ and let B = B(x,,R) C Q be
a ball. Morrey’s ideas [35] form the basis for our proof
here. A crucial tool in establishing the sharp Holder
exponent is the isoperimetric inequality (3.3) which
together with distortion inequality, Hadamard’s inequal-
ity || D*f|| < |IDf|I""", and Holder’s inequality gives

/ ol DF I
Br

<K / fro < (n "-\l/wn_o'wwlf]K( / IID”fII>
B, 0B,

n

n—1
< “'\‘/_a),,_l)_1|a)|f]K< / IIDfII”“)
0B,

r n r |a)|f] n
<-lol, K [ D" < =—=K [ llol|lDf]l
n 0B, n ol 0B,

for almost every r € (0, R). Thus

ol
() := / DA < 2 / IDf|"
B, 0B,

— I ke
(0]

and therefore

n ol d d
Lioar< Liogo
K|w|f qr logr < g log ().

After integrating this estimate from r to R with respect the
variable r we obtain

@ Springer

2 ol
/ ||Df||"=<1><r>s(§)’< o)

n ol
)r / DA,

We record the outcome as a lemma.

Lemma 5.1 Ler f:Q— R"™ be a K-quasiregular
mapping and B(a,3R) C Q a ball. Then for each ball
B, = B(x,,r) C B(a,2R) we have

(|B|/|| fII">

1 el _

< Crfide

5.1)

where the constant C depends on n, K, R, and fB(a 3R) \|Df |

Now it is well-known that the hunted local Holder con-
tinuity follows for a Sobolev mapping whose differential
lies in the Morrey space (5.1). Our proof is based on the
iconic Sobolev met Poincaré chain argument [12].

Lemma5.2 LetB C R"be a ball and g : 2B — R a Sobolev
function in W'"P(2B) for 1 < p < . If for every ball
B, = B(x,,r) C 2B we have

1 ) dx)'l’
<|B,| /B )

< cre! O<a<l,

(5.2)

then g is Holder continuous in B with exponent a.

Proof Let x,y € B be Lebesgue points of g. Write
Bi(x)=B(x,27'lx—y|) for i€{0,1,2,...} and
8B = % /Bi(x) g- Then gz ) — g(x) as i goes to infinity.
The Poincaré inequality gives

1800 — g, (0|

< ) lgs () = g5, ]
i=0
- dx
20 1B (0] /,+1(x) lg(x) — 85, €3]
=€ - dx
2 B(x>| gy 800 8501
¢ 27k 1B Vo()IP dx ) .
2 y'(lBi(xn o V! >
Similarly,
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180 — &5, Let ¢ € C°(B) be a non-negative function satisfying
o 1 @| 1 = 1. Since the function *f*® is non-negative, we have
. 1 P 2
<C 27 x —y| (— [Vg(x)|? dx) that
;’ 1B J By
and / Q" f*w
B
185,(0) — 85,0 - / ofdr = / odf*e
| 1 B B
< - I E— V I3 dx . N L% n % n £
B B B

Combining these with the assumption (5.2) we have
1
0 =200 < ([ wawr ar)
2B, (x)

2@
i=0

The claim follows because the geometric series is conver-
gent. O

6 Higher integrability of quasiregular
curves

As in the quasiregular case (see e.g., [4]), the proof of the
higher integrability begins with a Caccioppoli inequality.
Since we use here another version of the inequality than
in [40], we recall here the standard argument.

Lemma 6.1 (Caccioppoli’s inequality). Let Q be a
domain, f . Q — R" be a K-quasiregular w-curve, where
o € Q"(R™) is an n-volume form with constant coefficients.
Then, for each cube B € Q and for each non-negative func-
tion ¢ € C°(B),

/(p”f*w
B
< n"lo|| K" / IVol"|[f(x) = f|" dx,
B

where

fB=—/f(x)dx.
B

Proof Lety, = f5 for simplicity. Since w is closed, it is exact
and we may fix an (n — 1)-form 7 € Q"~!(R™) for which
w = dr and 7, = 0. Then 7 is||@|-Lipschitz. More precisely,
we have that'||r||y < |lol|lly — y,| for each y € R™.

< /B Ve (I lonIDFI™

< nllol / VW) — v o™ IDF I d,
B

where ||7]|| is the pointwise comass norm of z. Thus, by
Holder’s inequality,

/B(pf*w

< n||w||< / Vol"[fe) -y,
B

1/n (n—1)/n
" dx) ( / rp”IIDfII”> .
B

Since fis a K-quasiregular w-curve, we have that

(n—=1)/n
||w||< / (p"ann")
B
(n=1)/n
< ||w||1/"< /B (p”f*w> .

Thus

1/n
(fere)
B
1/n
Snllwlll/"K("_”/"< / IVol"|[f(x) = y,]|" dx) .
B

O

The Poincaré inequality for Sobolev functions in WIL’:
now yields the following corollary.

Lemma 6.2 Let Q be a domain, f : Q — R"™ be a K-qua-
siregular w-curve, where w € Q"(R™) is an n-volume form
with constant coeffcients. Let B = B"(x,,r) C Q be a ball.
Then there exists a constant C = C(n, K) > 0 for which

1/n
( / IIDfII”>
!B
2/n
c )
<< < /B 1o/ ”) .

@ Springer
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Proof Letg € Cy’(B) be the standard cut-off function satis-
fying |1, = land |V¢| < 3/r. Then by the quasiregularity

and the Caccioppoli inequality, we have the estimate

ol / IDFI"
EB

S/ Kf*wSKn”IIwIIK”_Ig/lf(X)—fBI" dx.
1p rJe

2

Thus, by the Poincaré inequality, we have the estimate

/ IDfI”
EB
1/n
([ a)
r /n B
Cn,K) < .\
SW;UBWm—(ﬂ)Bl dx)

n 2/n
C(n, K)
< 7 1|7/2
< ot ;(/Bquln dx)

2/n

C(n,K) /2
< 7 .
<= < /B DA )

here we used the fact that

f_fBz(fl_(fl)B"”’fn_(f;l)B)' O

1/n

The higher integrability of the quasiregular w-curves with
respect to constant coefficient n-volume forms now follow
with the standard reverse Holder argument. Before the state-
ment, we recall that, as in the quasiregular case, the in Lem-
mas 6.1 and 6.2 , the claims hold for a cube Q C Q in place
of the ball B.

We record the higher integrability of a quasiregular curve
— with respect to a covector — as follows.

Proposition 6.3 Let f : Q - R" be a K-quasiregular w
-curve for o € /\" R™. Then there exists p =pn,K) > n
and C = C(n,K,p) > 1 having the property that, for each
cube Q C 20 C Q, holds

( /Q IIDfII”>1/pSC< /Q ||Df||">l/p.

Proof Let Q' = Q'(x,r) C Q be a subcube. Then, by
Lemma 6.2, we have that
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1/n
- [ worie
¢
1/n 1/n
1
(=) ([ e
|5Q| 59

1\ conr) 2n
n, .
1 /|1/n (/ ”Df” /2>
To1) 1017\ e
/n

2
C(n, K)(— / IIDfII"/2>
Q/

Let now u = || Df||"/> € L*(Q). Then, by Gehring’s lemma
(see e.g., [4, Theorem 4.2]), there exists t > 2 and C, > 1

for which
12
/ u' <C < / u2>
%Q/ ’

for each subcube Q' c Q. Thus |Df|| € L’(Q) for
p=m/2>n. O

1/t
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