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Abstract
We show that a K-quasiregular �-curve from a Euclidean domain to a Euclidean space with respect to a covector � is locally 
(1∕K)(‖�‖∕���

�
1

)-Hölder continuous. We also show that quasiregular curves enjoy higher integrability.
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1  Introduction

The first breakthrough in the theory of quasiregular map-
pings (or mappings of bounded distortion) is Reshetnyak’s 
theorem on sharp Hölder continuity: Let Ω ⊂ ℝ

n be a 
domain. A K-quasiregular mapping f ∶ Ω → ℝ

n with K ≥ 1 
is locally 1/K-Hölder continuous, see Reshetnyak [44] and 
also [45, Corollary II.1]. Such Hölder continuity properties 
of quasiconformal mappings in the plane were first estab-
lished by Morrey [35].

Recall that a mapping f ∶ M → N  between oriented 
Riemannian n-manifolds is K-quasiregular if f belongs to 
the Sobolev space W1,n

loc
(M,N) and satisfies the distortion 

inequality

almost everywhere in M, where ‖Df‖ is the operator norm 
and Jf  the Jacobian determinant of f.

In the last 20 years the studies of mappings of finite 
distortion have emerged in Geometric Function Theory 
(GFT) [2, 13, 20]. This theory arose from the need to 
extend the ideas and applications of the classical theory 
of quasiregular mappings to the degenerate elliptic setting 
where the constant K in (1.1) is replaced by a finite func-
tion K ∶ M → [0,∞) . There one finds concrete applications 
in materials science, particularly nonlinear elasticity and 
critical phase phenomena, and in the calculus of variations. 
Some bounds on the distortion function K are needed to 
obtain a viable theory. In the degenerate Euclidean setting, 
continuity properties of mappings of finite distortion under 
distortion bounds of exponential type were obtained in [18]. 
Sharp modulus of continuity estimates for such mappings 
were given in [38], see also [28]. The paper [18], in addition 
to starting a systematic studies of mappings of finite distor-
tion in GFT, it also began a naming scheme for a series of 
papers, see e.g., [3, 5, 6, 8, 10, 11, 14–17, 19, 21–34, 36, 37, 
39, 41–43]. This paper follows such a scheme.

In this note we prove Hölder continuity and higher inte-
grability of quasiregular curves. A mapping f ∶ M → N 
between Riemannian manifolds is a K-quasiregular �-
curve for K ≥ 1 and an n-volume form � ∈ Ωn(N) if M is 
oriented, n = dimM ≤ dimN , f belongs to the Sobolev space 
W

1,n

loc
(M,N) and

(1.1)‖Df‖n ≤ KJf

(‖𝜔‖◦f )‖Df‖n ≤ K ⋆ (f ∗𝜔)
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almost everywhere in M, where ‖�‖ ∶ N → [0,∞) is the 
pointwise comass norm of the form � and ⋆ is the Hodge 
star operator on M. Here, a form � ∈ Ωn(N) is an n-volume 
form if � is closed and non-vanishing, that is, d� = 0 and 
�y ≠ 0 for each y ∈ N.

We refer to [40] for a discussion on the definition of qua-
siregular curves. We merely note here that quasiregular map-
pings are quasiregular curves and that holomorphic curves 
are 1-quasiregular curves.

Our main theorem is the Hölder regularity of a quasiregu-
lar �-curve in the case of the constant coefficient form � . 
Note that, in the following statement, we identify n-covec-
tors in 

⋀n
ℝ

m with constant coefficient n-volume forms in 
ℝ

m.

Theorem  1.1  Let Ω ⊂ ℝ
n be a domain, K ≥ 1 , and let 

� ∈
⋀n

ℝ
m be an n-volume form. Then a K-quasiregular 

�-curve f ∶ Ω → ℝ
m is locally �-Hölder continuous for 

� = �(K,�) = (1∕K)(‖�‖∕���
�1
).

Here |�|
�1

 is the �1-norm of the covector � ; see Section 2. 
For simple covectors, we recover the exponent 1/K, which 
follows also from the local characterization of quasiregular 
curves with respect to simple covectors, see [40]. We expect 
that the Hölder exponent �(K,�) is not sharp in general. 
In fact, all examples of quasiregular curves we know are 
1/K-Hölder continuous.

Since a quasiregular curve is locally a quasiregular curve 
with respect to a constant coefficient form by [40, Lemma 
5.2], we obtain that quasiregular curves between Riemann-
ian manifolds are locally Hölder continuous. We record this 
observation as a corollary.

Corollary 1.2  Let M and N be Riemannian n and m-man-
ifolds, respectively, for n ≤ m , and let � ∈ Ωn(N) be an 
n-volume form. Then each K-quasiregular �-curve M → N 
is locally �(K�,�)-Hölder continuous for each K′

> K.

Proof  Let K�� ∈ (K,K�) and let 𝜀 > 0 be a constant for 
which (1 + 𝜀)4n < K��∕K  . Let x ∈ M and let � ∶ U → ℝ

n 
and � ∶ V → ℝ

m be smooth (1 + �)-charts of M and N at x 
and f(x), respectively, having the property that fU ⊂ V . Then 
h = �◦f◦�−1 ∶ �U → ℝ

m is a K′′-quasiregular �̃-curve for 
�̃ = (�−1)∗� . By [40, Lemma 5.2], for each x ∈ M , h is a 
K′-quasiregular �̃x-curve with respect to the covector �̃x in 
a neighborhood of x. The claim follows now from Theo-
rem 1.1. 	� ◻

In the proof of Theorem 1.1 we mimic the lines of rea-
soning of the original proofs of Reshetnyak’s theorem by 
Morrey [35] and Reshetnyak [44]. For quasiregular �-curves 
Ω → ℝ

m , where � is a constant coefficient form or a covec-
tor � ∈

⋀n
ℝ

m , we prove a decay estimate on the integrals 

of ⋆f ∗𝜔 of the quasiregular curve f over balls by establish-
ing a differential inequality for these integrals. This is done 
by employing a suitable isoperimetric inequality. For this 
reason, we recall the classical isoperimetric inequality for 
Sobolev mappings in Section 3 and derive an �-isoperimet-
ric inequality in Section 4.

1.1 � Higher integrability of quasiregular curves

Now we switch gears and consider another classical property 
of quasiregular mappings. Quasiconformal and quasiregular 
mappings f ∶ Ω → ℝ

n , Ω ⊂ ℝ
n , belong to a higher Sobolev 

class W1,p

loc
(Ω) , p > n , than initially assumed. The sharp expo-

nent p = p(n,K) is not known. A well-known conjecture 
asserts that

This value, if correct, would be sharp as confirmed by the 
radial stretch mapping f (x) = |x|

1

K
x

|x|
 . In a seminal work, 

Astala [1] established the sharp exponent in the planar case 
n = 2 . There are more recent accounts on the higher integra-
bility results when n ≥ 3 , we refer here to the celebrated 
paper of Gehring [9] for the quasiconformal case. In the 
quasiregular case, we find that the discussion in Bojar-
ski–Iwaniec [4] has stood the test of time.

As Bojarski and Iwaniec write in [4, p.272], the higher 
integrability of a K-quasiregular map f ∶ M → N  stems 
from the double inequality

and (standard) harmonic analysis. For a K-quasiregular �
-curve f ∶ M → N between Riemannian manifold the analo-
gous double inequality is

The proof of the higher integrability of quasiregular map-
pings adapts almost synthetically for quasiregular curves.

Theorem  1.3  Let f ∶ Ω → ℝ
m be a K-quasiregular �

-curve, where � ∈
⋀n

ℝ
m is an n-volume form. Then 

f ∈ W
1,p

loc
(Ω,ℝn) for some p = p(n,K) > n.

As an application, we obtain the almost everywhere dif-
ferentiability of quasiregular curves. The proof of the fol-
lowing corollary of Theorem 1.3 is analogous to the proof 
of Corollary 1.2 from Theorem 1.1 and we omit the details.

Corollary 1.4  A quasiregular curve between Riemannian 
manifolds is almost everywhere differentiable.

p(n,K) =
nK

1

n−1

K
1

n−1 − 1
.

Jf ≤ ‖Df‖n ≤ KJf a.e. in M

⋆f ∗𝜔 ≤ (‖𝜔‖◦f )‖Df‖n ≤ K(⋆f ∗𝜔) a.e. inM.
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2 � Notation

In what follows, (e1,… , em) denotes the standard orthonormal 
basis of ℝm and (e1,… , em) its dual basis in (ℝn)∗ . The nth 
exterior power of (ℝm)∗ is 

⋀n
ℝ

m.
For  each  mul t i - index  I = (i1,… , in) ,  where 

1 ≤ i1 < ⋯ < in ≤ n , we denote eI = ei1 ∧⋯ ∧ ein . For n = m , 
we also denote

Note that, for n-covectors in ℝn , the Hodge star 
⋆ ∶

⋀n
ℝ

n
→ ℝ , defined by

for  each  � ∈
⋀n

ℝ
n  ,  g ives  the  ident i f ica t ion 

⋀n
ℝ

n ≅
⋀0

ℝ
n = ℝ.

In what follows, we also use the Hodge star 
⋆ ∶

⋀n−1
ℝ

n
→ (ℝn)∗ to identify 

⋀n−1
ℝ

n and ℝn . This 
identification of spaces yields an identification of the adjoint 
L♯ ∶ ℝ

n
→ ℝ

n of a linear map L ∶ ℝ
n
→ ℝ

n with the induced 
map 

⋀n−1
L ∶

⋀n−1
ℝ

n
→

⋀n−1
ℝ

n.

2.1 � Norms on forms

In what follows we use the following notations for inner prod-
ucts and norms of covectors and linear maps. For the exte-
rior power 

⋀n
ℝ

m , we set ⟨⋅, ⋅⟩ to be the natural inner product 
induced by the standard Euclidean inner product in ℝn , that is, 
⟨eI , eJ⟩ = �IJ for multi-indices I and J. The Euclidean norm 
induced by this inner product is | ⋅ |.

We also set an �1-norm | ⋅ |
𝓁1

 in 
⋀n

ℝ
n as follows. For 

� =
∑

I uIe
I ∈

⋀n
ℝ

m , we set

Given a linear map L ∶ V → W  between inner product 
spaces, the operator norm ‖L‖ of L is

Finally, for each multi-index I = (i1,… , in) ,  let 
�I ∶ ℝ

m
→ ℝ

n  be  the cor responding project ion 
(x1,… , xm) ↦ (xi1 ,… , xin ) . Then � =

∑
I uIe

I is the covector

vol
ℝn = e1 ∧⋯ ∧ en.

(⋆𝜉)vol
ℝn = 𝜉

|�|
�1

=
∑

I

|uI|.

‖L‖ = sup{�L(v)� ∶ v ∈ V , �v� = 1}.

� =
∑

I

uI�
∗
I
(vol

ℝn ).

3 � Classical isoperimetric inequality 
for Sobolev maps

In this section we recall and prove the classical isoperi-
metric inequality for Sobolev mappings; see, for example, 
Reshetnyak [45, Lemma II.1.2.] for a more detailed account.

Theorem  3.1   Le t  Ω ⊂ ℝ
n  be  a  domain  and 

BR = Bn(x
◦
,R) ⊂ Ω a ball. Let also f ∶ Ω → ℝ

n be a Sobolev 
map in W1,n

loc
(Ω,ℝn) . Then, for almost every r ∈ (0,R) , we 

have

where �n−1 is the (n − 1)-dimensional area of the unit sphere 
�
n−1 in ℝn.

This integral form of the isoperimetric inequality stems 
from the familiar geometric form of the isoperimetric 
inequality

where |U| stands for the volume of a domain U ⊂ ℝ
n and |�U| 

is its (n − 1)-dimensional surface area. The constant �n−1 
is the (n − 1)-dimensional surface area of the unit sphere 
�
n−1 = �Bn(0, 1).

To motivate the integral form of the inequality, we con-
sider first the case of diffeomorphisms. Let f ∶ Br → U be a 
diffeomorphism of a ball Br = Bn(x

◦
, r) ⊂ ℝ

n onto U ⊂ ℝ
n , 

then

and

here D♯f (x) stands for the cofactor matrix of the differential 
matrix Df(x); recall that identification 

⋀n−1
ℝ

n ≅ ℝ
n yields 

the identification D♯f (x) = ∧n−1Df (x).
Having these integral representations for the volume 

and area, we obtain the integral form of the isoperimetric 
inequality, namely

The same isoperimetric inequality holds for all mappings in 
W

1,n

loc
(Ω,ℝn) . The proof is based on three tools: integration 

by parts, local degree, and functions of bounded variation.

(3.1)
�
�
�
�
�
�Br

Jf

�
�
�
�
�

≤ (n n−1
√
𝜔n−1)

−1

�

�
𝜕Br

‖D♯f‖

� n

n−1

,

(3.2)nn−1�n−1|U|n−1 ≤ |�U|n,

|U| =
|
|
|
|
|
∫Br

Jf (x) dx
|
|
|
|
|

�𝜕U� ≤ �
𝜕Br

‖D♯f (x)‖ dx;

(3.3)n𝜔n−1

�
�
�
�
�
�Br

Jf (x) dx
�
�
�
�
�

n−1

≤
�

�
𝜕Br

‖D♯f (x)‖ dx

�n

.
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3.1 � Integration by parts

Let f ∶ Ω → ℝ
n be a mapping in W1,n

loc
(Ω,ℝn) . Then the Jaco-

bian Jf  of f obeys the rule of integration by parts, that is,

is valid for every test function � ∈ C∞
0
(Ω) and each index 

i = 1,… , n.
For the surface area term, the integration by parts takes the 

following form, which we record as a lemma.

Lemma 3.2  Let f ∶ Ω → ℝ
n be a mapping in the Sobolev 

class W1,n

loc
(Ω,ℝn) and u ∈ C1

0
(ℝn,ℝn) . Then

in the sense of distributions.

Proof  Suppose first that u ∶ ℝ
n
→ ℝ

n is the map

where ui ∈ C1
0
(ℝn) and i ∈ {1,… , n} , and define

Let also � ∈ C∞
0
(Ω) . Then (3.4) gives

Since

we have that (3.5) follows for u = (0,… , 0, ui, 0,… , 0) . The 
general case follows by the coordinate decomposition of u. 	
� ◻

In particularly, if BR = Bn(x
◦
,R) ⊂ Ω , then Lemma 3.2 

gives that

(3.4)
∫Ω

�Jf = ∫Ω

�df1 ∧⋯ ∧ dfn

= −∫Ω

fidf1 ∧⋯ ∧ dfn−1 ∧ d� ∧ dfi+1 ∧⋯ ∧ dfn

(3.5)div
(
(u◦f )D♯f

)
=
(
( div u)◦f

)
Jf

y ↦ (0,… , 0, ui(y), 0,… , 0),

F = (f1,… , fi−1, u◦f , fi+1,… , fn) ∶ ℝ
n
→ ℝ

n.

∫Ω

𝜑JF

= −∫Ω

Fidf1 ∧⋯ ∧ dfn−1 ∧ d𝜑 ∧ dfi+1 ∧⋯ ∧ dfn

= −∫Ω

⟨u(f (x))D♯f (x),∇𝜑(x)⟩ dx.

∫Ω

�(x)JF(x) dx = ∫Ω

( div u)(f (x))Jf (x)�(x) dx

(3.6)

�
�
�
�
�
�Br

�
divu

��
f (x)

�
Jf (x) dx

�
�
�
�
�

≤ ‖u‖∞ �
𝜕Br

�D♯f � for a.e. r ∈ (0,R).

Indeed, choose a mollifier Φ ∈ C∞
0
(B(0, 1)) and let 

Φj(x) = jnΦ(jx) and �j  a convolution approxima-
tion of the characteristic function �B(x

◦
,r−1∕j) ; that 

is,  �j = Φj ∗ �B(x
◦
,r−1∕j) ,  see [20, Formula (4.6)]. 

Then �j ∈ C∞
0
(Ω) when j is sufficiently large and 

sup{|∇�j(x)| ∶ x ∈ Ω} ≤ j . According to (3.5) we have

Letting j → ∞ and applying the Lebesgue differentiation 
theorem, we conclude the asserted estimate (3.6).

3.2 � Local degree

Let B ⊂ ℝ
n be a ball and let g ∶ B → ℝ

n be a continuous 
mapping. For every y

◦
∈ ℝ

n ⧵ g(�B) the Brouwer degree 
deg(g,B, y

◦
) of g with respect to B at y

◦
 is a well-defined 

integer defined as follows. Let Ω ⊂ ℝ
n ⧵ g(𝜕B) be the y

◦

-component of ℝn ⧵ g(�B) and let B̃ = g−1(Ω) ∩ B . Let also 
𝜄 ∶ B̃ ↪ B be the natural inclusion and let cΩ and cB the gen-
erators of the compactly supported Alexander–Spanier coho-
mology groups Hn

c
(Ω;ℤ) and Hn

c
(B;ℤ) , respectively. We may 

assume that cΩ and cB are fixed so that the orientations of Ω 
and B given by cΩ and cB agree with the orientation defined 
by an orientation class c

ℝn of ℝn . Then

The Brouwer degree depends only on the boundary values 
of g in the sense that, if g̃ ∶ B → ℝ

n is a continuous map 
satisfying g̃|

𝜕B = g|
𝜕B , then deg(y

◦
, g,B) = deg(y

◦
, g,B) . Fur-

thermore, if g ∈ C1(B,ℝn) ∩ C0(B,ℝn) and V is a connected 
component of ℝn ⧵ g(�Br) containing y

◦
 , then we have

where � ∈ C0(V) is a nonnegative continuous function sat-
isfying ∫

V
�(y) dy = 1 . This last statement follows from the 

identification of the compactly supported Alexander–Spanier 
cohomology Hn

c
(⋅;ℝ) = H∗

c
(⋅;ℤ)⊗ℝ with the compactly 

supported de Rham cohomology H∗
dR,c

(⋅).

3.3 � Proof of Theorem 3.1

By approximating f, it is enough to prove (3.3) for smooth 
mappings f ∶ Ω → ℝ

n . We recall that the classical change 

�
�
�
�
�
�Br

( div u)(f (x))Jf (x)𝜑j(x)
�
�
�
�
�

=

�
�
�
�
�
�

−�
r

r−
1

j

�
𝜕Br

⟨u(f (x))D♯f (x),∇𝜑j(x)⟩

�
�
�
�
�
�

≤ ‖u‖∞ j�
r

r−
1

j

�
𝜕Br

�D♯f �.

deg(g,B, y
◦
)cB = 𝜄

∗(g|B̃)
∗cΩ.

deg(g,B, y
◦
) = ∫B

�(g(x))Jg(x) dx = ∫B

g∗(�vol
ℝn ),
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of variables formula for a continuous function v ∶ ℝ
n
→ ℝ 

states that

Applying the identity (3.7) with v = div u and combining 
this with (3.6) we obtain

for an arbitrary u ∈ C1
0
(ℝn,ℝn) . Hence the function 

y ↦ deg(f ,Br, y) has bounded variation and we have the 
inequality

It is worth nothing that the use of the Sobolev inequal-
ity (3.8) comes as no surprise. Indeed, the Sobolev inequality

for functions of bounded variation g ∶ ℝ
n
→ ℝ is equiva-

lent with the classical isoperimetric inequality (3.2). Here 
|Dg|(ℝn) stands for the total variation of the distributional 
derivative Dg see e.g., Evans and Gariepy [7, Section 5.6]

Since the function y ↦ deg(f ,Br, y) is integer valued, we 
further have that

for each y ∈ ℝ
n ⧵ f (�Br) . Thus

Applying (3.7) again, this time with v ≡ 1 , we obtain the 
desired inequality

This concludes the proof.

(3.7)∫B

(v◦f )Jf = ∫
ℝn

v(y) deg(f ,B, y) dy.

�
�
�
��ℝn

div u(y) deg(f ,Br, y) dy
�
�
�
�
≤ ‖u‖∞ �

𝜕Br

�D♯f �

(3.8)

�

�
ℝn

� deg(f ,Br, y)�
n

n−1 dy

� n−1

n

≤ (n n−1
√
𝜔n−1)

n

1−n �
𝜕Br

�D♯f (x)� dx .

n
n−1

n �

1

n

n−1
‖g‖ n

n−1

≤ �Dg�(ℝn)

| deg(f ,Br, y)| ≤ | deg(f ,Br, y)|
n

n−1 .

�
�
�
��ℝn

deg(f ,Br, y) dy
�
�
�
�
≤ (n n−1

√
𝜔n−1)

−1

�

�
𝜕Br

�D♯f �

� n

n−1

.

�
�
�
�
�
�Br

Jf

�
�
�
�
�

≤ (n n−1
√
𝜔n−1)

−1

�

�
𝜕Br

�D♯f �

� n

n−1

.

4 � An !‑isoperimetric inequality for Sobolev 
maps

The proof of the Hölder continuity of the quasiregular curves 
is based on a variant of the classical isoperimetric inequality 
for Sobolev maps adapted to n-volume forms.

Proposition 4.1  Let Ω ⊂ ℝ
n be a domain, BR = B(x

◦
,R) ⊂ Ω 

a ball, and � ∈
⋀n

ℝ
m an n-covector. Then a Sobolev 

W
1,n

loc
(Ω,ℝm) map f ∶ Ω → ℝ

m satisfies

Here cn = (n n−1
√
�n−1)

−1 is the isoperimetric constant.

Proof  Let � ∈
⋀n

ℝ
m be the covector

For each multi-index I, let �I ∶ ℝ
n
→ ℝ

n be the linear map

where the sign � ∈ {±1} is chosen so that �∗
I
vol

ℝn = uIvolℝn.
Let also �I = �I◦prI ∶ ℝ

m
→ ℝ

n and fI = �I◦f ∶ Ω → ℝ
n . 

Then

Moreover,

By the isoperimetric inequality for Sobolev mappings, we 
have

for almost every r ∈ (0,R) , where cn > 0 is the isoperimetric 
constant depending only on n.

Since

we have that

(4.1)
�Br

f ∗𝜔 ≤ cn|𝜔|�1

(

�
𝜕Br

|D♯f |

) n

n−1

for a.e r ∈ (0,R).

� =
∑

I

uIpr
∗
I
vol

ℝn .

(y1,… , yn) ↦ (�|uI|
1∕ny1,… , |uI|

1∕nyn),

f ∗� =
∑

I

f ∗(�I◦prI)
∗vol

ℝn

=
∑

I

f ∗�∗
I
vol

ℝn =
∑

I

f ∗
I
vol

ℝn−

‖D♯

𝜋I‖ = ‖ ∧n−1
𝜋I‖ = �uI�

n−1

n .

�Br

f ∗𝜔

= �Br

∑

I

f ∗(𝜋∗
I
vol

ℝn ) =
∑

I
�Br

f ∗
I
vol

ℝn

=
∑

I
�Br

JfI ≤ cn

∑

I

(

�
𝜕Br

|D♯fI| dx

) n

n−1

D♯fI = ∧n−1D(𝜋I◦f ) = ((∧n−1D𝜋I)◦f ) ⋅ (∧
n−1Df ),
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for almost every r ∈ (0,R) . Thus (4.1) holds. 	�  ◻

5 � Proof of the Hölder continuity

Let f ∶ Ω → ℝ
m be a K-quasiregular �-curve with respect 

to a covector � ∈
⋀n

ℝ
m and let BR = B(x

◦
,R) ⊂ Ω be 

a ball. Morrey’s ideas [35] form the basis for our proof 
here. A crucial tool in establishing the sharp Hölder 
exponent is the isoperimetric inequality  (3.3) which 
together with distortion inequality, Hadamard’s inequal-
ity ‖D♯f‖ ≤ ‖Df‖n−1 , and Hölder’s inequality gives

for almost every r ∈ (0,R) . Thus

and therefore

After integrating this estimate from r to R with respect the 
variable r we obtain

�

∫
𝜕Br

‖D♯fI‖ dx

� n

n−1

=

�

∫
𝜕Br

(‖ ∧n−1 D𝜋I‖◦f ) ⋅ ‖ ∧
n−1 Df‖

� n

n−1

=

�

∫
𝜕Br

�uI�
n−1

n ‖ ∧n−1 Df‖

� n

n−1

= �uI�

�

∫
𝜕Br

‖D♯f‖

� n

n−1

�Br

‖𝜔‖‖Df‖n

≤ K �Br

f ∗𝜔 ≤ (n n−1
√
𝜔n−1)

−1�𝜔�
�1
K

�

�
𝜕Br

‖D♯f‖

� n

n−1

≤ (n n−1
√
𝜔n−1)

−1�𝜔�
�1
K

�

�
𝜕Br

‖Df‖n−1
� n

n−1

≤ r

n
�𝜔�

�1
K �

𝜕Br

‖Df‖n ≤ r

n

�𝜔�
�1

‖𝜔‖
K �

𝜕Br

‖𝜔‖‖Df‖n

Φ(r) ∶= �Br

‖Df‖n ≤ r

n

���
�1

‖�‖
K �

�Br

‖Df‖n

=
r

n

���
�1

‖�‖
KΦ�(r)

n

K

‖�‖

���
�1

d

dr
log r ≤ d

dr
logΦ(r).

We record the outcome as a lemma.

Lemma 5.1  Let f ∶ Ω → ℝ
m be a K-quasiregular 

mapping and B(a, 3R) ⊂ Ω a ball. Then for each ball 
Br = B(x

◦
, r) ⊂ B(a, 2R) we have

where the constant C depends on n, K, R, and ∫
B(a,3R)

‖Df‖n.

Now it is well-known that the hunted local Hölder con-
tinuity follows for a Sobolev mapping whose differential 
lies in the Morrey space (5.1). Our proof is based on the 
iconic Sobolev met Poincaré chain argument [12].

Lemma 5.2  Let 𝔹 ⊂ ℝ
n be a ball and g ∶ 2𝔹 → ℝ a Sobolev 

function in W1,p(2�) for 1 ≤ p < ∞ . If for every ball 
Br = B(x

◦
, r) ⊂ 2� we have

then g is Hölder continuous in � with exponent �.

Proof  Let x, y ∈ � be Lebesgue points of g. Write 
Bi(x) = B(x, 2−i|x − y|)  f o r  i ∈ {0, 1, 2,…}  a n d 
gBi(x)

=
1

Bi(x)
∫
Bi(x)

g . Then gBi(x)
→ g(x) as i goes to infinity. 

The Poincaré inequality gives

Similarly,

�Br

‖Df‖n = Φ(r) ≤ �
r

R

� n

K

‖�‖

����1 Φ(R)

=
�
r

R

� n

K

‖�‖

����1 �BR

‖Df‖n.

(5.1)

�
1

�Br� �Br

‖Df‖n
� 1

n

≤ Cr
1

K

‖�‖

����1

−1
,

(5.2)

(
1

|Br| �Br

|g(x)|p dx

) 1

p

≤ Cr𝛼−1 0 < 𝛼 ≤ 1,

|g(x) − gB0
(x)|

≤
∞∑

i=0

|gBi
(x) − gBi+1

(x)|

≤
∞∑

i=0

1

|Bi+1(x)| �Bi+1(x)

|g(x) − gBi
(x)| dx

≤ C

∞∑

i=0

1

|Bi(x)| �Bi(x)

|g(x) − gBi
(x)| dx

≤ C

∞∑

i=0

2−i|x − y|

(
1

|Bi(x)| �Bi(x)

|∇g(x)|p dx

) 1

p

.
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and

Combining these with the assumption (5.2) we have

The claim follows because the geometric series is conver-
gent. 	�  ◻

6 � Higher integrability of quasiregular 
curves

As in the quasiregular case (see e.g., [4]), the proof of the 
higher integrability begins with a Caccioppoli inequality. 
Since we use here another version of the inequality than 
in [40], we recall here the standard argument.

Lemma 6.1  (Caccioppoli’s inequality). Let Ω be a 
domain, f ∶ Ω → ℝ

m be a K-quasiregular �-curve, where 
� ∈ Ωn(ℝm) is an n-volume form with constant coefficients. 
Then, for each cube B ⋐ Ω and for each non-negative func-
tion � ∈ C∞

0
(B),

where

Proof  Let y
◦
= fB for simplicity. Since � is closed, it is exact 

and we may fix an (n − 1)-form � ∈ Ωn−1(ℝm) for which 
� = d� and �y

◦
= 0 . Then � is ‖�‖-Lipschitz. More precisely, 

we have that ‖�‖y ≤ ‖�‖�y − y
◦
� for each y ∈ ℝ

m.

|g(y) − gB0
(y)|

≤ C

∞∑

i=0

2−i|x − y|

(
1

|Bi(y)| �Bi(y)

|∇g(x)|p dx

) 1

p

|gB0
(x) − gB0

(y)|

≤ C|x − y|

(
1

|2B0(x)| �2B0(x)

|∇g(x)|p dx

) 1

p

.

|g(x) − g(y)| ≤ C|x − y|�
(

�2B0(x)

|∇g(x)|p dx

) 1

p

∞∑

i=0

(2−i)� .

�B

�
nf ∗�

≤ nn‖�‖Kn−1 �B

�∇��n��f (x) − fB
�
�
n
dx,

fB = −∫B

f (x) dx.

Let � ∈ C∞
0
(B) be a non-negative function satisfying 

�| 1

2
B
≡ 1 . Since the function ⋆f ∗𝜔 is non-negative, we have 

that

where ‖�‖ is the pointwise comass norm of � . Thus, by 
Hölder’s inequality,

Since f is a K-quasiregular �-curve, we have that

Thus

	�  ◻

The Poincaré inequality for Sobolev functions in W1,n

loc
 

now yields the following corollary.

Lemma 6.2  Let Ω be a domain, f ∶ Ω → ℝ
m be a K-qua-

siregular �-curve, where � ∈ Ωn(ℝm) is an n-volume form 
with constant coeffcients. Let B = Bn(x

◦
, r) ⊂ Ω be a ball. 

Then there exists a constant C = C(n,K) > 0 for which

�B

�
nf ∗�

= �B

�
nf ∗d� = �B

�
ndf ∗�

= �B

d(�nf ∗�) − �B

d�n ∧ f ∗� = −�B

d�n ∧ f ∗�

≤ �B

�∇�n�(‖�‖◦f )‖Df‖n−1

≤ n‖�‖�B

�∇�(x)���f (x) − y
◦
�
��

n−1‖Df (x)‖n−1 dx,

�B

�f ∗�

≤ n‖�‖

�

�B

�∇��n��f (x) − y
◦
�
�
n
dx

�1∕n�

�B

�
n‖Df‖n

�(n−1)∕n

.

‖�‖

�

�B

�
n‖Df‖n

�(n−1)∕n

≤ ‖�‖1∕n
�

�B

�
nf ∗�

�(n−1)∕n

.

�

�B

�f ∗�

�1∕n

≤ n‖�‖1∕nK(n−1)∕n

�

�B

�∇��n��f (x) − y
◦
�
�
n
dx

�1∕n

.

�

� 1

2
B

‖Df‖n

�1∕n

≤ C

r1∕n

�

�B

‖Df‖n∕2
�2∕n

.
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Proof  Let � ∈ C∞
0
(B) be the standard cut-off function satis-

fying �| 1

2
B
≡ 1 and |∇�| ≤ 3∕r . Then by the quasiregularity 

and the Caccioppoli inequality, we have the estimate

Thus, by the Poincaré inequality, we have the estimate

h e r e  w e  u s e d  t h e  f a c t  t h a t 
f − fB =

(
f1 − (f1)B,… , fn − (fn)B

)
 . 	� ◻

The higher integrability of the quasiregular �-curves with 
respect to constant coefficient n-volume forms now follow 
with the standard reverse Hölder argument. Before the state-
ment, we recall that, as in the quasiregular case, the in Lem-
mas 6.1 and 6.2 , the claims hold for a cube Q ⊂ Ω in place 
of the ball B.

We record the higher integrability of a quasiregular curve 
– with respect to a covector – as follows.

Proposition 6.3  Let f ∶ Ω → ℝ
m be a K-quasiregular �

-curve for � ∈
⋀n

ℝ
m . Then there exists p = p(n,K) > n 

and C = C(n,K, p) ≥ 1 having the property that, for each 
cube Q ⊂ 2Q ⊂ Ω , holds

Proof  Let Q� = Q�(x, r) ⊂ Q be a subcube. Then, by 
Lemma 6.2, we have that

‖�‖� 1

2
B

‖Df‖n

≤ � 1

2
B

Kf ∗� ≤ Knn‖�‖Kn−1 3

r �B

�f (x) − fB�
n dx.

�

� 1

2
B

‖Df‖n

�1∕n

≤ C(n,K)

r1∕n

�

�B

�f (x) − fB�
n dx

�1∕n

≤ C(n,K)

r1∕n

n�

i=1

�

�B

�fi(x) − (fi)B�
n dx

�1∕n

≤ C(n,K)

r1∕n

n�

i=1

�

�B

‖Dfi‖
n∕2 dx

�2∕n

≤ C(n,K)

r1∕n

�

�B

‖Df‖n∕2
�2∕n

;

�

�Q

‖Df‖p
�1∕p

≤ C

�

�Q

‖Df‖n
�1∕p

.

Let now u = ‖Df‖n∕2 ∈ L2(Q) . Then, by Gehring’s lemma 
(see e.g., [4, Theorem 4.2]), there exists t > 2 and Ct > 1 
for which

for each subcube Q′
⊂ Q . Thus ‖Df‖ ∈ Lp(Q) for 

p = tn∕2 > n . 	�  ◻
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