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ABSTRACT: Disinfection is one of the most critical processes for
municipal wastewater treatment. However, traditional chemical
dosing approaches do not consider how changes in water quality
and process operation can alter disinfection performance. This
work aims to develop novel disinfection models for precise
prediction of peracetic acid (PAA) performance that considers
real-time changes in water quality. Artificial and recurrent neural
networks (ANN and RNN, respectively) are trained to predict
PAA at various locations throughout the disinfection basin, CT (a
function of the active concentration and contact time), and pre-
and postdisinfection Escherichia coli using online and laboratory
data. An ANN is found to predict PAA concentrations at an error
rate comparable to that of an online analyzer. Additionally, an
ANN can predict CT more accurately than a conventional first-principles method both with and without an online analyzer. An
ANN with a lagged response variable can predict E. coli in a fraction of the time of an RNN, but with a slightly increased error. The
integration of the models developed in this work into existing monitoring and control systems could provide treatment facilities with
more robust and dynamic disinfection control without the need for costly analyzers.
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1. INTRODUCTION

Municipal wastewater treatment plants (WWTPs) are critical
in preventing the spread of waterborne disease caused by
pathogenic organisms. As such, WWTPs have weekly and
monthly permit limits on the maximum allowable concen-
tration of Escherichia coli (E. coli), an indicator microorganism
for fecal contamination, discharged to the environment. The
primary method of destroying or inactivating pathogenic
microorganisms for secondary treated municipal wastewater is
chorine-based disinfection (e.g., chlorine, chloramine, and
chlorine dioxide) due to chlorine’s widespread availability, low
cost, effectiveness against bacteria and viruses, and acceptance
among regulatory agencies. However, chlorine-based disinfec-
tants have a high propensity to react with residual organic
matter and form disinfection byproducts (DBPs), many of
which are potent carcinogens.1,2 Peracetic acid (PAA,
CH3CO3H) is a chemical disinfectant that can easily be
utilized in most WWTPs, and it produces DBPs that are less
toxic than those of chlorine-based disinfectants.3,4 PAA is
widely used in the food, beverage, cosmetic, pharmaceutical,
and agriculture industries5,6 and is capable of achieving the
pathogen inactivation required to meet discharge permit limits
in WWTPs.7,8 However, while the disinfection mechanism for
commercial PAA is similar to those of other oxidizing agents,

quantifying the impacts of disinfection performance is still not
fully understood at full scale.9

Hypothesized mechanisms of PAA disinfection include the
release of “active” oxygen10 or hydroxyl radicals,11 protein
denaturing,12 and dislocating or rupturing cell walls.13 Related
to the method of E. coli inactivation with PAA, viable but
nonculturable E. coli have been detected in WWTP effluent
disinfected with PAA,14 potentially overestimating the
measured effluent E. coli and underestimating the calculated
log inactivation. The substantial variation in the modeling of E.
coli inactivation by PAA could potentially be explained by the
lack of a complete understanding of the disinfection
mechanism and measurement bias.6,14−17 Therefore, models
of PAA disinfection performance should consider the effects of
changing water quality at full-scale WWTPs on the active PAA
concentration and E. coli inactivation.
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An additional component of modeling PAA concentration as
a function of time is the substantial decline in concentration
that occurs when PAA is initially dosed into a water matrix
with oxidative demand [i.e., chemical oxygen demand
(COD)]. Haas and Finch16 summarized demand and first-
order decay PAA kinetics in eq 1:

C t C D( ) ( )e kt
o= − −

(1)

where C(t) (milligrams per liter) is the residual concentration
of PAA at time t, Co (milligrams per liter) is the initial applied
PAA dose, D (milligrams per liter) is the initial oxidative PAA
consumption, k (inverse minutes) is the first-order decay
constant, and t (minutes) is the length of time the water is in
contact with PAA. Equation 1 is used in this work to model
PAA concentration as a function of time after first-order decay
kinetics are verified. The literature reports a wide range of
demand (D) and decay (k) values for various secondary
treated wastewaters.8,15,18,19 The diversity of model parameter
values implies that disinfection performance varies widely with
water quality. Consequently, the assumption of static demand
and decay model parameters could result in erroneous
calculated PAA concentrations if the true demand and decay
values change over time.
The potency of chemical disinfection is a function of the

active concentration of the disinfectant [C(t)] and the time the
disinfectant is in contact with the water (t), measured by CT.
CT is a concept that measures disinfection dose relative to the
time the disinfectant has to react. In traditional CT calculations
for which the C(t) function cannot be explicitly defined, the
final concentration at time t is multiplied by t. However, this is
a very conservative approach as it underestimates the actual
active concentration of the chemical and thereby also
underestimates CT. When C(t) can be defined, CT is
calculated by integrating eq 1 with respect to t, where t is
interpreted as the hydraulic retention time (HRT) from the
beginning to the end of the disinfection basin. Traditional
chlorine-based disinfection processes frequently use CT
control for design and validation purposes because of the
well-established and predictable relationships among C(t), CT,
and pathogen inactivation. However, the relationship between
PAA dose and pathogen activation of PAA is not nearly as well-
understood.8 Manoli et al.17 proposed a novel CT-based
dosing strategy for PAA derived from first principles. However,
multiple fitted model parameters varied with each batch,
further illustrating that a first-order model with constant model
parameters may not fully describe PAA demand and decay
kinetics in a real, constantly changing water matrix. Temper-
ature, pH (>9; pKa = 8.2), total suspended solids (TSS), and
biochemical oxygen demand (BOD) have been shown to
impact PAA decay and E. coli inactivation,9,14,19−21 but precise
relationships have not yet been established such that the effect
of changing water quality can be used as a predictor in a C(t)
model.
To incorporate information about real-time water quality

and to better understand disinfection kinetics, nontraditional
modeling approaches such as machine learning methods can be
used. A particularly powerful nonlinear, data-driven modeling
approach is an artificial neural network (ANN). ANNs map the
relationship between predictor (i.e., input) and response (i.e.,
output) variables using linear combinations of multiple
nonlinear functions (i.e., activation functions) arranged in
layers. The ANN model is fit by iteratively adjusting the linear
(e.g., bias) and nonlinear (e.g., weights) function parameters

internal to the ANN to minimize the training error. This is in
contrast to mechanistic models that use complex formulations
connected in simple (e.g., linear) ways. Additionally,
mechanistic models are not constrained by the range of the
training data. Data-driven modeling, such as an ANN, does not
require knowledge of the underlying mechanisms driving
changes in the response. Rather, data-driven modeling
replicates patterns from a training data set, and conclusions
or predictions based on the models are thus constrained to the
range of features within that data set. In this work, two types of
machine learning models are used to predict features in water
quality data: ANNs and recurrent neural networks (RNNs).
RNNs are a special case of ANNs that handle time dependency
in data, which is a frequently observed property of water
quality and treatment data,22,23 but have not yet been explored
for disinfection performance prediction. Additional details
about the structure and training of neural networks can be
found in textbooks and the academic literature.24−26

ANN modeling of chlorine dosing and residuals has been
widely explored for drinking water27 and wastewater treat-
ment,28 as well as other popular disinfection methods. Lin et
al.29 used an ANN to predict effluent total coliforms in a
bench-scale ultraviolet (UV) disinfection system (combined
with a linear model of UV dose and log inactivation), but they
measured only the performance of the models on the training
data set. Yu et al.30 used five ANNs in a control scheme for a
bench-scale chlorination−dechlorination system. Total coli-
form goals were achieved for a variety of reuse scenarios (E.
coli was not measured), but the model was not able to fully
describe the variation in residual chlorine. Carvajal et al.31

investigated the relationship among dose, time, pH, turbidity,
and viral log inactivation on a bench-scale batch chlorination
system for secondary treated wastewater using a Bayesian belief
network; they seeded water with viruses and measured log
inactivation to train Bayesian multilayer perceptron models to
predict the required CT, one for each type of virus. The
difficulty in predicting log inactivation arises when the
predisinfection pathogen concentration is unknown and the
kinetics of the disinfectant are difficult to model, as in the case
of PAA and E. coli in WWTPs.
Despite the growing adoption of PAA systems, ANNs have

not been widely applied to PAA modeling. Wei et al.32 were
able to replicate a computational fluid dynamics-based PAA
disinfection model (i.e., a chemically reactive, time-dependent,
three-dimensional turbulent flow model) for a conventional
five-pass disinfection basin using physical mixing and chemical
decay kinetic parameters as ANN model inputs. While Wei et
al. demonstrated that an ANN could simulate turbulent flow,
the model requires an existing calibrated computational fluid
dynamics model to train the ANN. Second, their model does
not consider real-time water quality or the inactivation of E.
coli, each of which is explored here.
Given the difficulty in modeling CT and E. coli removal for

full-scale PAA disinfection processes, the ability to predict real-
time disinfection performance could improve the precision
with which PAA is dosed and could reduce the number of
unexpected permit exceedances of E. coli for municipal
WWTPs due to more accurate monitoring. The objective of
this work is to model full-scale PAA disinfection performance
to predict PAA concentration, CT, predisinfection E. coli
concentration, and postdisinfection E. coli concentration using
machine learning models. Furthermore, this work identifies the
environmental and operational conditions that are most
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strongly linked to PAA disinfection performance from the
ANN models using a variable selection process.
Methods includes a description of a full-scale PAA

disinfection process at a large WWTP, the online instrumenta-
tion and laboratory data collected during two PAA sampling
campaigns in 2018 and 2019 by the WWTP, and the ANN and
RNN structures used to predict PAA and E. coli pre- and
postdisinfection. Modeling results and implications for real-

time control are included in Results and Discussion,
concluding with remarks on the potential for online PAA
and E. coli monitoring using machine learning at full-scale
WWTPs.

2. METHODS
2.1. Metro Wastewater Reclamation Facility. The

Robert W. Hite Treatment Facility (RWHTF) in Denver,

Figure 1. Process flow diagram of the PAA disinfection system at the RWHTF. Triangles indicate PAA samples taken at various locations in 2018
and/or 2019. Circles indicate E. coli sampling locations. The sample locations are named for the approximate HRT during peak flow from the PAA
dosing location to the sampling location (e.g., “1 min”).

Table 1. Process Variables Used to Train ANN and RNN Models for PAA, CT, and E. colia

location type variable short average location type variable sample type

S O influent flow rate 15 min S L sludge volume index (SVI)b grab
S O gravity thickener effluent flow rates2 15 min S L volatile suspended solids 24 h FC
S O basins in service2 24 h S, SE L alkalinity2 24 h FC
S O aerated solid retention time (ASRT) 24 h S, SE L BOD2 24 h FC
S O TSS 60 min SE L BOD (carbonaceous)2 24 h FC
S O ammonia2 60 min S, SE L COD2 24 h FC
S O nitrite2 60 min S, SE L total phosphorus2 24 h FC
S O nitrate2 60 min S,SE L total Kjeldahl nitrogen2 24 h FC
S O phosphate2 60 min SE L TSS2 24 h FC
S O DO 60 min S, SE L o-phosphorus2 24 h FC
S O pH 60 min SE L total inorganic nitrogen2 24 h FC
S O clarifier blanket depth 15 min SE L total nitrogen2 24 h FC
S O waste-activated sludge flow rate2 24 h SE L nitrate + nitrite2 24 h FC
S O return activated sludge (RAS) as a percent of influent flow 15 min D L predisinfection E. coli grab
S, SE, D O flow rateb 15 min D L postdisinfection E. coli grab
D O hydraulic retention timeb 15 min D L PAA grab
D O PAA flow rate 15 min
D O chemical oxygen demand (total) 5 min
D O chemical oxygen demand (soluble) 5 min
D O UV transmittance (UVT) 5 min
S, SE, D O TSSb 5 min
D O air temperature 60 min

aOnline sensor data (type code O, left columns) require averaging for some ANN and RNN configurations tested, and the “short-term” average is
listed here (short average). Offline data (lab, type code L, right columns) are collected using either 24 h flow composites (24 h FC) or grab samples
(sample type). Features include operational variables and water quality measurements from the main biological treatment process (secondary,
location code S); water quality measurements as the treated water enters the disinfection basin (secondary effluent, location code SE), or
operational variables that directly affect the dose of PAA (disinfection, location code D). Superscript numbers indicate process variables that are
available for only the 2018 (1) or 2019 (2) data sets. bMultiple sampling locations for the same feature.
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CO, is owned and operated by the Metro Wastewater
Reclamation District. The RWHTF treats both municipal
and industrial wastewater for the Denver metro area and is
rated for 220 million gallons per day (MGD). Secondary
treated effluent is mixed with disinfectant using static mixers,
flows through a three-pass serpentine contact basin prior to
being quenched with sodium metabisulfite, and discharges to
the South Platte River. In January 2018, the disinfection
process at the RWHTF was changed from chloramination to
PAA disinfection,33 but the facility has since experienced
challenges in both the monitoring and the optimization of the
PAA dose. Due to the high unit cost of PAA, this has resulted
in substantially higher than anticipated operating costs for
disinfection to achieve the facility’s effluent E. coli limit, which
is 126 colony-forming units (cfu) per 100 mL for a 30-day
geometric mean and 252 cfu/100 mL for a 7-day geometric
mean. To better understand PAA disinfection kinetics, E. coli
and PAA samples were taken throughout the disinfection basin
in 2018 and 2019 at the locations denoted in Figure 1.
2.2. Data. Two PAA sampling campaigns, one in 2018 and

one in 2019, were used in this work. From October 2 through
October 15, 2018, three daily grab samples of secondary
treated wastewater were collected (1) immediately down-
stream of the PAA dosing location (“1 min”) and (2) halfway
through the disinfection basin (“Half”), totaling 168 sampling
events. A second sampling campaign was conducted in 2019
for four sampling locations: (1) immediately downstream of
the PAA dosing location (“1 min”), (2) at the end of the first
pass (“10 min”), (3) at the end of the second pass (“20 min”),
and (4) at the end of the disinfection basin (“30 min”)
(totaling 66 sampling events). The 2019 sampling events
occurred in the morning, at noon, and in the early afternoon
for select weekdays between June 24 and August 1, 2019. PAA
was measured at the RWHTF using Standard Method 4500.34

For each sampling event, linear and first-order PAA
concentration models were fit as a function of the HRT to
the sampling location. Because the 2018 sampling events
contain only two sampling locations, the 2019 data set was
used to determine the order of the decay model for PAA
concentration. From the fitted C(t) model for each sampling
event, the “actual CT” was calculated for each event by
integrating eq 1. The actual CT was used as a response (i.e.,
output) for a set of neural network models and as a predictor
(i.e., input) for the E. coli neural network models.
The inputs to the PAA concentration, CT, and E. coli models

include online and offline process variables listed in Table 1.
Online data included nutrients (ChemScan UV-6101,
Waukesha, WI; s::can spectro::lyser and nitro::lyser, Vienna,
Austria; Endress+Hauser ISEmax CAS40D, Reinach, BL,
Switzerland), TSS (Cerlic ITX, Atlanta, GA), pH, and
dissolved oxygen (DO) sensor measurements within and at
the end (i.e., effluent) of the secondary treatment process. The
frequency of collection ranged from multiple observations per
minute (e.g., flows) to 10 min (e.g., nitrogen species). In 2018,
an ultraviolet−visual spectrum instrument (YSI CarboVis,
Yellow Springs, OH) recorded COD, UVT (UV trans-
mittance), and TSS at the influent of the disinfection basin
every 5 min. However, due to difficulty in calibrating the
instrument, the raw measured voltage was used as input to the
ANN. An online PAA analyzer (ChemScan Mini) was installed
in 2019 immediately downstream of the 1 min sample location.
The PAA analyzer data were not used to build the ANN and
RNN models; instead, they were used to externally evaluate

and compare the performance of a costly, conventional CT
calculation approach to the CT predicted by an ANN.
Given the wide range of data collection frequencies and

delays inherent in laboratory methods, the process of data
blending is the set of steps taken to organize and synthesize
data such that they can be used to train machine learning
models. To determine the data blending approach that best
represents the water quality at the time of the PAA sampling
events, online data were averaged using three different time
horizons. Instantaneous data included only the last recorded
observation (no averaging). Short-term average data were
averaged over a time horizon estimated by RWHTF engineers
both to approximate the HRT and to account for sensor noise.
For example, a noisy sensor immediately upstream of the basin
required a 5 min average to approximate the true value in the
presence of high variability. Sensors present in the secondary
treatment system were averaged for 60 min to account for
HRT and to capture the variation in water quality. These time
frames primarily range from 5 to 60 min and are listed in Table
1 under the short average column. The 24 h average data were
averaged over a 24 h time horizon. If a sample was not taken
within the averaging period, the last measured value was
carried forward as the present value.
There are multiple complexities associated with selecting

offline data at the time of the PAA sampling events, especially
considering that the model is designed to simulate real-time
prediction. For example, there are multiple PAA sampling
events per day in 2019 but only one 24 h flow composite (24 h
FC). The 24 h FC samples collect individual water quality
samples over a 24 h period where the volume of each sample is
proportional to the flow at the sampling location. Given the
sparsity of the data (24 h between observations) and the
unknown relationship between each observation, no inter-
polation is used in these cases to match minute-level time
stamps exactly.
The final consideration for data blending is specific to the E.

coli model development, specifically the comparison of the
ANN and RNN. E. coli measurements require at least 42 h to
collect, process, and upload the result at the RWHTF, and this
is a common turnaround time for E. coli measured using
Standard Method 9223-B.35 Thus, the “most recent” E. coli
observation when simulating real-time control is the E. coli
measurement almost 2 days prior. For the neural network
models that include E. coli concentrations as predictors
(discussed in the next section), the E. coli observations lagged
by 42 h to account for the lab processing delay.

2.3. Neural Network Prediction. Two types of neural
networks were tested: ANNs and RNNs. The simplest and
most common neural network used in this work is a
feedforward ANN, which uses a single hidden layer to connect
the input and output layers. Feedforward ANNs are also
unidirectional and thus do not consider the order of
observation. RNNs have internal memory nodes that train
based on a sequence of observations rather than assuming each
observation is independent of the others. However, RNNs are
more efficient at discovering short-term dependencies than
long-term. Long short-term memory (LSTM) nodes are one
example of an RNN that selectively retains the optimum
number of historical observations to avoid the problem of poor
trend detection for longer training windows.36,37 Given the
highly autocorrelated nature of microbial inactivation, we used
an LSTM RNN to improve E. coli inactivation predictions over
mechanistic or ANN modeling.
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The neural network models evaluated in this work are listed
in Table 2 and were constructed in R using the Keras API for

TensorFlow.38,39 We often use the term predictor to refer to
input variables and response to refer to the output variable for
a neural network model. Three thousand training epochs were
used to fit each ANN and RNN model by minimizing mean
square error. Each model contained an input layer with a node
for each input variable using the softsign activation function
(eq 2), a hidden layer with 3 times the number of nodes as the
input layer using the softsign activation function, and an output
layer with a single node and a linear activation function.

x x xsoftsign( ) /( 1)= | | + (2)

Fewer nodes in the hidden layer were explored with similar
results, but the most complex architecture with the lowest
testing error is presented here. The complexity that allows
RNNs to retain information about the sequence of
observations requires substantially more computational time
and resources. For example, the ANN that we trained on the
data from the 2018 sampling campaign includes 52 input
variables, 156 nodes in the hidden layer, and one node in the
output layer. This equates to 8425 weights and biases to
estimate. For the analogous RNN, there are 130416
parameters. Thus, we tested an ANN that includes the last
known measurement of E. coli as a predictor, termed “ANN-
lagged” in Table 2, to attempt to account for the
autocorrelation exhibited in E. coli measurements and to test
if such an ANN can approximate the performance of an RNN
with fewer fitting parameters in less time.
To build each model, data are blended from the data sources

identified in Table 1 using the methods discussed in the
previous subsection. Training data were prepared by min−max
normalization scaling prior to model fitting and prediction and
used to rescale the model’s prediction. Data were separated
into training and testing sets (Table 2, testing), including
“leave one out” (LOO) for an ANN and a 90% training/10%
testing split (90/10) for an RNN. Neither PAA concentrations
throughout the disinfection basin nor CT is strongly correlated
over time; thus, the order of the observations in the training
data set for these responses is irrelevant. The LOO approach
takes advantage of this independence to train an ANN on all
but a single observation and test on the held-out observation.
In this way, the number of ANNs built for each trial was equal

to the number of observations in a data set. This was especially
advantageous as it maximizes the “small” training data sets
used in this work, relative to most machine learning
applications in the literature. Additional training−testing
variations were tested (e.g., 40%, 60%, 80%, and 90% training
split), but the model error was found to be minimized by
maximizing the number of training observations. RNN training
observations are sequential and cannot be reordered as in
LOO. Therefore, an RNN is trained on the first 90% of each
data set and tested on the remaining 10% using a rolling
window approach in which the number of observations in the
training window is constant, and older observations are
removed as the window “rolls” forward in time and includes
new observations. The testing root-mean-square error (RMSE)
from each iteration of model training and testing is calculated,
and the process is repeated for a total of 10 iterations. The
reported predictions are an average of the 10 trials for each
model configuration.

2.4. Neural Network Variable Selection. ANNs are
“black box” systems, meaning that the internal model
parameters do not directly represent the impact of an
individual predictor variable on the response. To determine
which predictor variables have the strongest impact on PAA
disinfection prediction, we conducted a forward variable
selection experiment to train and test ANNs.40,41 We used
combinations of predictor variables and tested them
sequentially to find the ANN model with the fewest predictors
that minimizes the RMSE. Due to the number of iterations and
to avoid overfitting, the number of training epochs for this
experiment was reduced to 250. The procedures for variable
selection of CT and E. coli ANN are as follows:

1. Train and test ANN using v input variables where v = 1
to initiate the variable selection procedure. Calculate the
mean RMSE of three train−test trials when v = 1. Repeat
for each of the original ANN input variables, resulting in
p mean RMSE values.

2. Identify the input variable with the lowest mean RMSE
in step 1. This is considered the most influential
predictor.

3. For the next iteration of variable selection (v = v + 1),
create a list of predictors by combining all combinations
of the most influential predictor with the remaining
predictors, resulting in a p − (v − 1) list of variable
combinations.

4. Train and test the ANN using the combinations of
predictors identified in step 3, and calculate the mean
RMSE of three train−test trials. Identify the variable
combination with the lowest mean RMSE as the most
influent set of predictors.

5. Continue to iterate (v = 3, 4, ...) steps 3 and 4 until the
lowest mean RMSE using v predictors is greater than the
lowest mean RMSE from a model with v − 1 predictors;
the optimum set of predictor variables results from
iteration v − 1.

3. RESULTS AND DISCUSSION
3.1. ANN for Prediction of PAA Concentration. ANNs

were used to predict PAA concentrations at each sampling
location using online and offline process data. Three training
data sets were compared for each location: instantaneous,
short-term, or 24 h average. To compare ANN model
performance among the three averaging horizons, testing

Table 2. Summary of Neural Network Models Built to
Predict PAA Disinfection Performance in Simulated Real
Timea

response
neural
network data blending testing

PAA
concentration

ANN instant, short-term average,
24 h average

leave one
out

CT ANN instant leave one
out

predisinfection
E. coli

ANN-lagged,
RNN

instant, short-term average,
24 h average

90/10

postdisinfection
E. coli

ANN-lagged,
RNN

instant, short-term average,
24 h average

90/10

aThe type of neural network tested depends on the response variable.
For each neural network, multiple predictor data sets are used that
differ in the length of time over which the variables are averaged. Each
neural network set and each predictor set are trained and tested 10
times using either leave one out or a 90/10 split.
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RMSE for each PAA sampling location and averaging horizon
are plotted in Figure 2. Each box plot represents a set of 10

testing RMSEs, one RMSE for each train−test iteration of an
ANN model given random initialization. Overall, the PAA
concentration was most accurately predicted when instanta-
neous data were used, and the difference is most profound by
the third pass of the disinfection basin. This suggests that the
instantaneous values are better for prediction than other types
of averaging for representing water quality conditions,
especially at distances farthest from the dosing site.
For the first sampling location downstream of PAA dosing

(“1 min”), the use of real-time or averaged data did not
substantially change the prediction error. This would suggest
that the water quality and operational variables that vary over
the length of the averaging period are not substantial
contributors to PAA demand (D); these could include ASRT
and laboratory measurements listed in Table 1 (e.g., alkalinity,
BOD, COD, phosphorus species, and nitrogen species).
However, the first sampling location in 2019 also exhibited
the largest training variability, likely due to the largest range of
PAA concentrations relative to the other sampling times and
locations. The impact of training data selection is most
important for predicting the PAA concentrations near the end
of the disinfection basin (20 and 30 min, which are the end of
the second and third passes, respectively).
As the sampling location moves downstream, the error

declines (e.g., “2018 Half” or “2019 10 min”, along the second
pass of the serpentine reactor). By the third pass (e.g., “2019
20 min” or “2019 30 min”), the error is similar to that of the “1
min” locations. This is most likely reflective of the increased
degree of mixing due to non-ideal flow conditions. As is shown
in ref 32, ANNs are capable of capturing the effect of flow
dynamics on the ANN model response. A second important
difference between the model accuracy at the “1 min” location
compared to the downstream locations is the more prominent
difference in RMSE among instantaneous, short-term, and 24 h
averages. This could indicate that changes of an online process
variable (Table 1) are not noise but instead are important
controlling parameters that impact PAA decay.
ANNs are found to predict PAA concentrations throughout

a full-scale disinfection basin within the range of 0.14−0.19
mg/L based on the standard error (SE) for the best model fit

of each sampling location. This is approximately twice the SE
of a standard PAA online analyzer (0.07 mg/L SE for the PAA
analyzer at the RWHTF) but is still a reasonable approx-
imation for some applications. The benefit of an online
analyzer is to respond to water quality changes in nearly real
time; however, the next section illustrates that (i) the use of an
online analyzer may not improve the precision with which PAA
is dosed as substantially as previously assumed and (ii) the use
of an ANN to predict CT is a better alternative for dose
control.

3.2. ANN for Prediction of CT. From each sampling event
in 2019, zero-order (i.e., linear) and first-order (i.e.,
exponential) decay models were fit to PAA concentrations as
a function of HRT to determine if the decay kinetics were truly
first-order, as is described in the majority of the literature, or
are zero-order, as reported by Santoro et al.42 For all HRTs,
the R2 of the zero-order model was significantly less than the
R2 of the first-order model (one-sided Wilcoxon signed-rank
test p value = 0.009; median zero-order R2 = 0.973; median
first-order R2 = 0.983). When the HRT was >45 min, the
difference in model fit between zero- and first-order models
became more significant with a smaller p value (p value = 8.1 ×
10−5; median zero-order R2 = 0.927; median first-order R2 =
0.993). While PAA decay at short HRTs (<45 min) may
appear to be approximated by zero-order decay, the true
function is likely first-order exponential decay, and thus, CT
can be calculated using eq 1.
By integration of eq 1, the actual CT was calculated for each

sampling event. In Figure 3, the dashed black line represents

C(t) and was fit to the PAA concentration at each sampling
location (where there are two observations per sampling event
in 2018 and four observations per event in 2019). The shaded
gray area under the curve sums to CT and is labeled as “actual
CT” in the top right of each plot. Compared to the actual PAA
disinfection kinetics, the average ANN prediction using
instantaneous data is plotted in red in Figure 3. C(t) fit to
the ANN-predicted concentrations is plotted as the dashed red
line. The area under the predicted PAA concentration model
fit equals the “predicted CT” listed in the top right corner.
Real-time CT was calculated by ANN predictions of PAA

concentrations at designated sampling locations followed by a
first-order kinetic model fit. No significant difference from zero
was found between the median difference in actual and
predicted CT for all sampling events (the two-sided paired

Figure 2. RMSE of ANN model predictions for three training data
sets (each with a different averaging horizon) at each PAA sampling
location shown in Figure 1.

Figure 3. Observed (black) and average predicted (red) CT from the
2019 sampling campaign. The black dots are the actual sampled PAA
concentrations; the black dashed line is the first-order model fit to the
actual sampled observations, and the gray area beneath the black
curve is the actual CT. The red dots represent the average of 10 ANN
model predictions of PAA concentrations at four sampling locations,
trained on instantaneous process data. The red dashed line is the first-
order model fit to the predicted observations.
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Wilcoxon signed-rank test fails to find a significant difference; p
= 0.41). A simpler approach was also tested in which CT was
directly predicted by an ANN (same set of predictors as PAA
concentration ANN models). Comparatively, the direct
prediction approach predicted CT with almost equal accuracy
as the PAA concentration approach (Figure 4) (the two-sided
paired Wilcoxon signed-rank test fails to find a significant
difference in median CT; p value = 0.61).

In conventional CT dose control, the decay parameter (k in
eq 1) and the demand parameter (D in eq 1) are assumed to
be constant, an artifact of chlorine-based CT dosing wherein
such an assumption is valid. If an online analyzer is available
and the HRT to the analyzer is known, then D can be
calculated assuming a constant k. The impact of these
assumptions on conventionally calculated CT relative to actual
CT for PAA disinfection is illustrated in Figure 5. Our real-
time ANN CT prediction is also plotted for comparison. The
2018 data set (left panel of Figure 5) replicates the constant D
and k control strategy. The 2019 data set (right panel of Figure
5) replicates a constant k control strategy because an online
analyzer was installed prior to the sampling campaign for that
purpose. The top two rows of Figure 5 show the actual k and D
parameters as black triangles. The red dashed line is the mean
parameter value and illustrates the parameter being held
constant. For the 2019 trial, the D parameter was calculated by
solving for the initial concentration term in C(t) given the
concentration at the analyzer (known t), initial dose, and mean
k.
There is substantial variation around the mean k and D for

both the 2018 and 2019 data sets (Figure 5). A slightly larger
error for the 2019 k RMSE relative to 2018 is expected, given
the smaller sample size over a longer period of time. However,
the increased error in D with the addition of the PAA analyzer
is surprising. The use of a mean parameter value is not a true
real-time simulation; thus, it is important to note the increased
error in the conventional D calculation between 2018 and 2019
is not necessarily indicative of a poor analyzer. Rather, the
analyzer can reasonably approximate the mean D when the
true mean is unknown, as in a real-time scenario. The observed
error (as RMSE) between the conventional CT and actual CT
is higher in 2018 than in 2019, most likely due to the
significantly larger range of CT values observed in 2018.
However, the RMSE for all CT predictions is still relatively low
(6.94 mg/L from Figure 4b). As a general consequence of the
static parameter assumptions, the conventional CT consis-

tently over- or underestimated the actual CT, depending on
whether the actual D was above or below the conventional
value. For all cases, ANN CT prediction was more a more
accurate approximation of actual CT compared to conven-
tional CT (RMSEpredicted < RMSEconventional for 2018 and 2019).
CT control is considered a more precise disinfectant dosing

strategy than concentration-based control because of the
increased microbial inactivation observed when t increases at
the same initial PAA concentration. However, CT control
requires knowledge of how the PAA concentration changes as
a function of time to construct a model. In conventional CT
control, this would require approximations of PAA kinetics,
which have a large error, or the installation of multiple
analyzers to fit eq 1 in real time, which is cost-prohibitive.
From Figure 5, approximations of D and/or k cannot

accurately estimate the true behavior of PAA in secondary
treated wastewater. The use of an ANN-predicted CT in a
cascade control strategy could substantially reduce the amount
of excess PAA dosed. For example, in 2019 CT was frequently
underpredicted using an online analyzer. The control system
assumes a CT set point by the conventional CT even though
the actual CT is substantially above the set point, meaning
excess PAA is dosed. If the ANN-predicted CT is used in this
case, the error between the calculated CT in the set point
control loop and the actual CT would be smaller. Considering
the percent difference in the RMSE, the ANN-predicted CT is
46% more accurate than the conventional CT and 25% more
accurate compared to the conventional CT with an analyzer.
Thus, PAA dose could have been decreased, thereby reducing
chemical costs.

Figure 4. Accuracy of the prediction of CT from a first-order model
integration of (a) ANN-predicted PAA concentrations and (b) ANN-
predicted CT from the same set of predictor variables. No significant
difference was found between the median CT of the model
approaches. Figure 5. Actual decay (k) (top row), demand (D) (middle row), and

CT (bottom row) are calculated for each sampling event in 2018 (left
column) and 2019 (right column) (black triangles). Two common
disinfection control methods (static k and D; static k and variable D
calculated from an online analyzer) are simulated and labeled
“conventional” (red lines and dots). The ANN CT prediction (blue
squares) has a lower prediction error (RMSEpredicted) compared to
conventional CT (RMSEconventional).
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3.3. CT ANN Variable Selection. ANNs used to predict
CT were also constructed using forward variable selection: one
predictor at a time is used to predict CT using an ANN, the
predictor with the lowest testing error is selected as the most
influential model input, and the ANN is retrained using the
most influential predictor and one of the remaining model
predictors at a time. The sequential addition of process
variables allows the error of the ANN models to be compared,
and the set of process variables that produces the lowest RMSE
is considered to be the most influential or important set of
model predictors. For CT, six process variables were identified
that sequentially produced lower RMSEs of the variable
selection set of ANN. However, possibly due to the smaller
number of training epochs to avoid overfitting in this set of
ANN experiments, the lowest RMSE for six iterations of
variable selection (7.67) is slightly higher than the ANN CT
prediction with all predictors (RMSE of 6.95 for 2018 and
2019). The variables selected for the CT ANN model for each
step are plotted as a function of the average ANN testing error
in Figure 6.

Predictors are selected on the basis of the minimum RMSE
for a set of predictor combinations. In this case (Figure 6), the
addition of secondary (2°) effluent flow increased the testing
RMSE on the seventh iteration of model building. Thus, only
variables used up to and including the sixth iteration are
selected as highly influential in predicting CT. It is expected
that HRT is included in the model, as it was used to calculate
the values of CT used for training and testing (eq 1). The
inclusion of temperature is also expected, as most chemical
disinfectants are more effective at higher temperatures due to
speciation. The most surprising predictor variables selected for
the CT ANN describe the properties of the sludge in the
secondary (2°) treatment basins. The concentration of solids
(TSS), the age of the solids (aerobic solid retention time or
ASRT), and the settleability of the solids (sludge volume index
or SVI) have been understood for decades to impact final
water quality variables such as TSS and BOD. Excess TSS and
BOD in the final treated water could consume active PAA,
thereby accelerating PAA decay and preventing full dis-
infection. While the relationship of TSS or BOD with PAA
decay has been identified in the literature,9,14,19−21 this is the
first time that it has been synergistically and quantifiably
included in a model of CT.
3.4. ANN and RNN Prediction of E. coli Inactivation.

To compare conventional E. coli inactivation models to full-
scale PAA disinfection performance, traditional microbial

inactivation models from the literature were fit to the log
inactivation observed in this work. Multiple models were fit,
including linear, exponential, power, double-exponential,43

Chick−Watson,16 and Holm model,16 and the results are
plotted in Figure S5. However, these mechanistic model results
demonstrated low R2 (<0.38) and high RMSE (>2 log). There
are two possible sources of error that contribute to the poor
model fit, including (1) measurement error and (2) variation
in E. coli inactivation by PAA that is not solely described by
CT.
The calculation for log inactivation is dependent on the

predisinfection and postdisinfection concentrations of E. coli.
When the predisinfection E. coli concentration is low, log
removal appears to be a poor indicator of disinfection
performance as the postdisinfection E. coli concentration
does not change significantly relative to the predisinfection E.
coli concentration. This concept is explored in Figure 7, where

predisinfection E. coli, log inactivation, and CT are plotted to
better understand the relationship between PAA dose and E.
coli concentration. Despite a large range of actual CT (20−60
mg L−1 min−1), there is a small range of log removal (2.0−2.5).
This is counter to the conventional understanding of
disinfection performance that correlates a CT value to a
desired log removal. In this case, log removal is more sensitive
to a high predisinfection E. coli concentration than to a low
postdisinfection E. coli concentration. This may be due to the
measurement bias discussed in the introduction that prevents
the lowest E. coli concentrations from being accurately
measured (see Introduction). Given that the variation in log
removal is influenced more by the predisinfection E. coli
concentration than CT, increasing the applied PAA dose when
the predisinfection E. coli concentration is low may not
substantially increase log removal. Thus, we suggest evaluating
the performance of PAA disinfection systems by the
postdisinfection E. coli concentration as opposed to the log
removal metric. Next, we continue the E. coli exploration by
predicting pre- and postdisinfection E. coli concentrations
using an ANN and an RNN to capture the complex dynamics
of E. coli inactivation.
Predisinfection and postdisinfection E. coli concentrations

are highly correlated over time (see Figure S4); however, it is
impractical to obtain a measurement of E. coli for a water

Figure 6. Forward variable selection for a CT ANN. The number of
iterations is equal to the number of inputs for the ANN model, and
iterations of more than one include all preceding predictors in the
ANN model.

Figure 7. Plots of PAA CT, E. coli log removal, and predisinfection E.
coli concentration for sampling events (diamonds) with a linear plane
to model predisinfection E. coli concentration as a function of CT and
log removal.
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quality sample in <24 h, and results are often not available until
approximately 42 h after the sample is taken (on average at the
RWHTF). Therefore, the E. coli ANN and RNN models
included a lagged E. coli predictor to address autocorrelation.
To simulate real-time prediction, the lag was 42 h. The E. coli
concentrations were also log10-transformed prior to normal-
ization and training to improve performance.
The distributions of RMSE for ANN and RNN predictions

(based on 10 iterations of randomly initiated sets of
hyperparameters for model training and testing per observa-
tion) of predisinfection and postdisinfection E. coli concen-
trations using instantaneous, short-term averaged, and 24 h
averaged process data are shown in Figure 8. For comparison,

the ANN predisinfection E. coli model averages 4.9 s to train
and test an observation whereas the RNN model averages 10.4
min per observation; in other words, training and testing the
ANN is 127 times faster than the RNN. The prediction errors
are compared to the error of a model that uses the previously
known value, the E. coli measurement 42 h prior (i.e.,
persistence). Only the RNN model trained on instantaneous
data can predict predisinfection E. coli concentration better
than persistence. Therefore, it is suspected that predisinfection
E. coli ANN prediction accuracy depends on (1) the most
recently measured E. coli and (2) water quality variables in the
model that have a data collection frequency of ≥24 h. A
previous study showed that ammonia, orthophosphate, and
TSS concentrations were significantly correlated with E. coli
removal in WWTPs.44 Therefore, predisinfection E. coli
concentrations could be more heavily influenced by the
performance of nutrient removal processes. More work is
needed to identify additional WWTP features that impact E.
coli removal upstream of the disinfection process.
ANN predictions of postdisinfection E. coli are more

accurate than persistence, but the lowest mean error is the
RNN using short-term averaged data. Upon inclusion of a
lagged response variable, the accuracy of the postdisinfection E.
coli ANN models was comparable to those of the instantaneous
and 24 h average RNN models. This could save a substantial
amount of time and make the prediction framework possible
for real-time control, as RNNs require hours to train and test

whereas ANNs take minutes. In the case of both CT and E.
coli, the real-time model update frequencies are 24 and 42 h,
respectively. Therefore, the additional hour required to build
an RNN as opposed to an ANN may be worth the delay if the
prediction is used for process monitoring.
For implementation of a real-time E. coli prediction in

process control, we suggest that the optimum postdisinfection
E. coli concentration model be selected as opposed to a log
inactivation model or predisinfection E. coli. The ability to
predict the predisinfection E. coli concentration is only valuable
when there is a definitive relationship between dose and
inactivation. Dose could be more effectively controlled if the
postdisinfection E. coli concentration is accurately predicted,
and the dose could then be increased or decreased relative to
an E. coli set point. A factor of safety accounting for the RMSE
would accommodate model error. For example, the best
performing postdisinfection E. coli model used an RNN and
instantaneous process data for 0.13 log. To maintain 126 cfu/
100 mL, a conservative postdisinfection E. coli set point would
be 93 cfu/100 mL [=10log(126)−0.13].

3.5. E. coli ANN Variable Selection. The ANN models
used to predict pre- and postdisinfection E. coli concentrations
were used for the feedforward variable selection (Figure 9),

similar to CT variable selection discussed in section 3.3. The
predisinfection E. coli concentration is most heavily influenced
by the operating conditions of the 2° treatment process
immediately upstream of disinfection. The most influential
model predictor was the recirculated activated sludge (RAS)
flow as a percentage of the influent flow to the secondary
treatment system. This recirculation rate is an important
control parameter for nutrient removal and is increased or
decreased to achieve the desired nitrogen and phosphorus
removal. The RAS flow is related to the average sludge age of
the secondary treatment system, as flow that is not removed
from the secondary process for solids treatment to limit the
ASRT is returned as the RAS. Similar to CT, the properties of
the biologically active solids in the secondary process and the
performance of carbon and nitrogen removal [e.g., COD,
BOD, and total nitrogen (TN)] appear to play an important
role in pre- and postdisinfection E. coli concentration.

4. CONCLUSION
This work illustrates the potential of machine learning to
model the near real-time PAA disinfection performance of a

Figure 8. Box plots of RMSE for log10-transformed predisinfection
(top) and postdisinfection (bottom) E. coli model predictions. The
red line is the average RMSE of persistence, i.e., the E. coli
concentration 42 h prior.

Figure 9. Forward variable selection for E. coli ANN. The number of
iterations is equal to the number of inputs for the ANN model, and
iterations greater than one include all preceding predictors. Predictors
are selected on the basis of the minimum RMSE, and model selection
stops when the minimum RMSE is higher than that of the previous
iteration.
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full-scale WWTP with considerations for water quality and
operational changes. We have shown that the full-scale
disinfection performance of PAA for secondary wastewater
effluent at the RWHTF is not accurately described using
traditional and batch literature models for PAA concentration,
CT, and E. coli removal, and that a machine learning modeling
approach could supplement costly analyzers in process control.
Further study of the integration of model predictions with
existing process control strategies is needed to fully test the
real-world applicability of the models developed here. Given
the ability of machine learning methods to map predictors to
response variables in process engineering, ANNs and RNNs
can predict the CT (using PAA concentration as a function of
time and integrated over the HRT) and E. coli concentrations
using online and laboratory data at a full-scale WWTP.
The wide ranges of demand (D) and decay (k) kinetic

parameters observed for PAA at RWHTF suggest that both are
directly related to changing water quality, and static values
should not be assumed for either when designing a CT-based
control strategy. A suitable, more reliable, and less expensive
alternative to analyzer-based CT control is the use of an ANN
to predict CT using a mixture of online and lab process data.
While the secondary treatment data used in this study do
capture information about water quality that measurably
changes CT, the variables included in the training data do
not fully describe the variation in predisinfection E. coli
concentration. This error is propagated to the postdisinfection
E. coli concentration, although the accuracy of the RNN does
improve over the former.
The time required to train and test a neural network is

proportional to the number of parameters in ANNs and RNNs
and governs how quickly new laboratory observations can be
incorporated into control systems. If the prediction is used in
the control, ANNs may be preferential due to their comparable
error rates, reduced complexity, and consistency, but the
application may require an accuracy that only a more complex
network, like an RNN, can achieve. For example, if an RNN is
used to predict pre- and postdisinfection E. coli concentrations,
then deviation from the predictions could provide WWTP
operations with indications of process upsets or inefficiencies.
For direct control, an ANN could be used to accurately predict
real-time CT. By adjusting PAA dosing to achieve a target CT,
a WWTP may be able to prevent overdosing with a costly
disinfectant without a comparably costly analyzer.
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