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Abstract. We developed a tutor for imperative programming in C++. It covers 

algorithm formulation, program design and coding – all three stages involved in 

writing a program to solve a problem. The design of the tutor is epistemic, i.e., 

true to real-life programming practice. The student works through all the three 

stages of programming in interleaved fashion, and within the context of a single 

code canvas. The student has the sole agency to compose the program and write 

the code. The tutor uses goals and plans as prompts to scaffold the student 

through the programming process designed by an expert. It provides drill-down 

immediate feedback at the abstract, concrete and bottom-out levels at each step. 

So, by the end of the session, the student is guaranteed to write the complete 

and correct program for a given problem. We used model-based architecture to 

implement the tutor because of the ease with which it facilitates adding prob-

lems to the tutor. In a preliminary study, we found that practicing with the tutor 

helped students solve problems with fewer erroneous actions and less time.    

Keywords: Programming Tutor, Imperative Programming, Model-Based Ar-

chitecture. 

Introduction. Numerous tutors have been developed to help students learn to write 

code in high-level languages [15,16,17] such as LISP [5], Haskell [27] and Prolog 

[21], imperative languages such as Pascal [6], Java [24, 25, 26] and C# [23], and 

scripting languages such as Python [22, 28]. We built a tutor for imperative program-

ming in the popular language C++ for use by introductory programming students.  

When learning to program, students need explicit instruction on formulating the al-

gorithm [14]. Several flowchart-based programming environments have been devel-

oped to help improve the algorithm formulation skills of students (e.g., [1, 2, 13, 19, 

20, 29]). ProPL [8] uses natural language to help students write pseudocode.   

Several systems have been reported that integrate all three stages of programming, 

viz., algorithm formulation, program design and coding, including LISP Tutor for 

LISP [5] and PROUST [6], BRIDGE [7] and GPCEditor [9] for Pascal and Guided-

Planning and Assisted-Coding tutor [10,11] and J-Latte [25] for Java. Typically, these 

tutors deal with algorithm formulation in terms of goals and plans - the student identi-

fies goals (what should be done next) and plans (how it should be done), before writ-

ing code for the plans.  
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LISP Tutor for LISP [5] and PROUST for Pascal [6] use goals and plans to diag-

nose the code written by the student. Instead, we use goals and plans as prompts to 

scaffold the problem-solving process of the student. BRIDGE [7] uses a visual inter-

mediate language to represent the algorithm, whereas J-Latte [25] uses a visual repre-

sentation. Instead, we use pseudocode as comments, which naturally belong in a pro-

gram. Guided-planning and assisted coding tutor [11] provides feedback on demand 

during coding. It places each line of code in the program instead of asking the student 

to do so. In contrast, we provide immediate feedback, which has been shown to be 

more efficient for programming instruction [12]. In addition, we make placing each 

new statement in its correct location in the program the responsibility of the student. 

Goal-Plan-Code Editor (GPCEditor) [9] translates the plans of students into code. 

Instead, we have the student write the code.   

Epistemic Design. Our design of the tutor is epistemic, i.e., true to real-life problem-

solving and programing practice because of the following design choices: 

Actions. The tutor facilitates three operations: selecting, locating and coding. In se-

lecting operation, the student selects the appropriate step in the algorithm (e.g., which 

input to process next) that is translated into pseudocode in the program. The student 

also uses selecting operation for program design, e.g., to identify the type of control 

construct to use for a step in the algorithm. The student uses locating operation to 

compose the program, i.e., the location in the program where the next step in the algo-

rithm should be coded. Thereafter, the student proceeds to write code for the step. The 

tutor does not use affordances such as drag-and-drop tiles (e.g., [25]) or flowcharts 

(e.g., [1, 2, 13, 19, 20, 29]) or intermediate languages [7] to design the algorithm – 

affordances not found in real-life programming environments.  

Agency. The student is responsible for identifying the location of each step in the 

algorithm and program – it is not automatically determined by the tutor for the student 

(e.g., [11]). When coding, the student is expected to enter the frame [18] of each con-

trol construct by hand – it is not provided to the student (e.g., [25]).  

Temporal Order. Trying to end algorithm design stage before going to coding (e.g., 

[7]) forces the novice programmer to either design based on assumptions about the 

code (e.g., assumptions about the control statement that will be used in a section) or 

code based on decisions taken too far in advance for the novice to properly appreciate 

(e.g., why statements must appear in a certain order in the program). In real life, pro-

grammers go back and forth between algorithm design and coding: each informing 

the other. In our tutor, the student goes through algorithm design, program design and 

coding steps in an interleaved fashion for each step.   

Code Canvas. In the tutor, the student takes all the actions in the context of a single 

code canvas. The algorithm as pseudocode is embedded as comments within the pro-

gram. So, the novice can conceptually connect each step in the algorithm with the 

corresponding statement(s) in the program.   

Scaffolding. The tutor uses goals and plans as prompts to scaffold the student through 

algorithm formulation and program design instead of using them to diagnose the stu-
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dent’s program (e.g., [5, 6]). Every time the student selects an incorrect step in the 

algorithm or an incorrect choice for program design, the tutor provides immediate 

drill-down feedback that steers the student towards the correct step/choice. So, the 

student gets the opportunity to practice the process of problem-solving and program-

ming as designed by an expert every time the student works with the tutor.  

Reified Steps. During coding, the tutor provides feedback at the level of statements 

and expressions. When control statements such as if-else and while loop are 

involved, the tutor uses a script to step the student through the various components of 

the control statement, e.g., frame, initialization, condition, body and update for 

while loop. Such reification of steps not only makes diagnosing and providing feed-

back more tractable, it also trains the student to use a pedagogically effective algo-

rithm to compose each control statement in terms of its components. 

Non-deterministic. The tutor admits equivalent answers. For example, the student can 

select any equivalent data type for a variable (short, int, or long), can locate 

inputs in any order in the program and write a commutative expression in any order. 

This design acknowledges the fact that a program can be written in a multitude of 

ways for a problem.    

Model Based Architecture. A problem is represented using a problem specification 

and a reference solution template. A problem specification is an annotated problem 

statement wherein, input and output data elements are identified, and other attributes 

are specified such as the expected data type for the input/output data, preferred name, 

etc. The reference solution template is a complete solution (i.e., program) written in 

BNF notation, with meta-variables for variable names (e.g., <V1>), data types (e.g., 

<T1>), and other program elements.   

The tutor model, user interface and domain model of the tutor are all problem-

independent. The tutor model includes scripts for the steps in the problem-solving 

process. For example, the script for input data object is: 1) Locate where the data will 

be input; 2) Declare the variable and 3) Input the variable. Each step in the above 

script may itself generate additional scripts. A declarative representation is used for 

these scripts so that they can be swapped to test various problem-solving processes 

with the same tutor. The user interface of the tutor translates each atomic step in the 

script into one of the following three user inputs: 

1. Select from a drop-down menu of options. A built-in feedback server for each 

select action encodes drill-down feedback at abstract, concrete and bottom-out 

levels for each incorrect menu option selected by the student. 

2. Locate in code by clicking in it. If the student correctly locates a statement, the 

tutor inserts pseudocode as a comment at that location and presents a dialog box 

for the student to enter the code. If the location is incorrect, the tutor provides 

drill-down feedback to steer the student towards the correct location. 

3. Write the code for the next statement or expression. The domain model (de-

scribed next) provides drill-down explanation for incorrect code.   

The tutor determines the correctness of select actions by comparing them with the 

annotations in the problem statement. It determines the correctness of locate and code 

actions by comparing them with the reference solution provided for the problem, 
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The Domain Model is a model of the programming domain built using Model-

Based Reasoning principles [4]: each programming construct is modeled as a compo-

nent with a text representation and behavior [3]. The tutor uses the Domain Model to 

build a model of the student’s solution, called the Program Model. The Program 

Model is used to generate the text representation of the student’s program. It is also 

used to provide feedback for coding and locating actions. Each component in the 

Program Model is associated with a bug library relevant to that programming con-

struct. The component generates drill-down feedback for coding errors by using the 

bug library to diagnose the error in the student’s code. Each component is also associ-

ated with a catalog of program transformations. It uses this catalog to approve seman-

tically equivalent code alternatives (e.g., count++ is equivalent to count += 1). 

This ability of the Program Model to provide drill-down feedback for locating and 

coding actions is a significant advantage of using model-based reasoning instead of 

some of the other AI techniques used for modeling the domain in programming tutors 

such as rule-based (e.g., [5]) and constraint-based (e.g., [25]) reasoning: the drill-

down feedback need not be individually specified for each problem added to the tutor. 

So, adding a new problem takes minimal effort – only the problem specification and 

reference solution template need to be specified for each new problem.     

Whether it is select, locate or code action, the student cannot proceed to the next 

step in the algorithm until the student answers that step correctly and completely. So, 

by the end of the session, the student is guaranteed to have written the correct pro-

gram for a given problem. For each action, the tutor provides immediate drill-down 

feedback at abstract, concrete and bottom-out levels, thereby ensuring that the student 

is never stranded at a dead-end. Given this design, the proficiency of a student is 

measured not in terms of the correctness of the final program, but in terms of the 

number of actions needed by the student to arrive at the correct program: the more 

actions the student takes, the less proficient the student. 

The tutor is not a novel intervention for introductory programming as much as a 

technological facilitator of a pedagogy well understood to help introductory students 

learn programming – the pedagogy of practice. The more programs a student writes, 

the better the student becomes at the process of problem-solving and programming. 

The role the tutor plays is of a facilitator – it provides one-on-one scaffolding and 

feedback throughout the process of programming. The alternative to using the tutor in 

an introductory programming class would be to assign multiple programming projects 

on each topic, which is untenable because of the workload it entails for the instructor, 

not to mention the reluctance of students to engage in such labor, especially without 

the one-on-one feedback facilitated by the tutor. Given this, we evaluated the tutor to 

see whether the benefits of practice would accrue to students who use it. Preliminary 

results show that practicing with the tutor indeed helped students solve subsequent 

problems with fewer erroneous actions and in less time. 
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