
An Epistemic Model-Based Tutor for Imperative

Programming

Amruth N. Kumar [0000-1111-2222-3333]

Ramapo College of New Jersey, Mahwah NJ 07430, USA

amruth@ramapo.edu

Abstract. We developed a tutor for imperative programming in C++. It covers

algorithm formulation, program design and coding – all three stages involved in

writing a program to solve a problem. The design of the tutor is epistemic, i.e.,

true to real-life programming practice. The student works through all the three

stages of programming in interleaved fashion, and within the context of a single

code canvas. The student has the sole agency to compose the program and write

the code. The tutor uses goals and plans as prompts to scaffold the student

through the programming process designed by an expert. It provides drill-down

immediate feedback at the abstract, concrete and bottom-out levels at each step.

So, by the end of the session, the student is guaranteed to write the complete

and correct program for a given problem. We used model-based architecture to

implement the tutor because of the ease with which it facilitates adding prob-

lems to the tutor. In a preliminary study, we found that practicing with the tutor

helped students solve problems with fewer erroneous actions and less time.

Keywords: Programming Tutor, Imperative Programming, Model-Based Ar-

chitecture.

Introduction. Numerous tutors have been developed to help students learn to write

code in high-level languages [15,16,17] such as LISP [5], Haskell [27] and Prolog

[21], imperative languages such as Pascal [6], Java [24, 25, 26] and C# [23], and

scripting languages such as Python [22, 28]. We built a tutor for imperative program-

ming in the popular language C++ for use by introductory programming students.

When learning to program, students need explicit instruction on formulating the al-

gorithm [14]. Several flowchart-based programming environments have been devel-

oped to help improve the algorithm formulation skills of students (e.g., [1, 2, 13, 19,

20, 29]). ProPL [8] uses natural language to help students write pseudocode.

Several systems have been reported that integrate all three stages of programming,

viz., algorithm formulation, program design and coding, including LISP Tutor for

LISP [5] and PROUST [6], BRIDGE [7] and GPCEditor [9] for Pascal and Guided-

Planning and Assisted-Coding tutor [10,11] and J-Latte [25] for Java. Typically, these

tutors deal with algorithm formulation in terms of goals and plans - the student identi-

fies goals (what should be done next) and plans (how it should be done), before writ-

ing code for the plans.

2

LISP Tutor for LISP [5] and PROUST for Pascal [6] use goals and plans to diag-

nose the code written by the student. Instead, we use goals and plans as prompts to

scaffold the problem-solving process of the student. BRIDGE [7] uses a visual inter-

mediate language to represent the algorithm, whereas J-Latte [25] uses a visual repre-

sentation. Instead, we use pseudocode as comments, which naturally belong in a pro-

gram. Guided-planning and assisted coding tutor [11] provides feedback on demand

during coding. It places each line of code in the program instead of asking the student

to do so. In contrast, we provide immediate feedback, which has been shown to be

more efficient for programming instruction [12]. In addition, we make placing each

new statement in its correct location in the program the responsibility of the student.

Goal-Plan-Code Editor (GPCEditor) [9] translates the plans of students into code.

Instead, we have the student write the code.

Epistemic Design. Our design of the tutor is epistemic, i.e., true to real-life problem-

solving and programing practice because of the following design choices:

Actions. The tutor facilitates three operations: selecting, locating and coding. In se-

lecting operation, the student selects the appropriate step in the algorithm (e.g., which

input to process next) that is translated into pseudocode in the program. The student

also uses selecting operation for program design, e.g., to identify the type of control

construct to use for a step in the algorithm. The student uses locating operation to

compose the program, i.e., the location in the program where the next step in the algo-

rithm should be coded. Thereafter, the student proceeds to write code for the step. The

tutor does not use affordances such as drag-and-drop tiles (e.g., [25]) or flowcharts

(e.g., [1, 2, 13, 19, 20, 29]) or intermediate languages [7] to design the algorithm –

affordances not found in real-life programming environments.

Agency. The student is responsible for identifying the location of each step in the

algorithm and program – it is not automatically determined by the tutor for the student

(e.g., [11]). When coding, the student is expected to enter the frame [18] of each con-

trol construct by hand – it is not provided to the student (e.g., [25]).

Temporal Order. Trying to end algorithm design stage before going to coding (e.g.,

[7]) forces the novice programmer to either design based on assumptions about the

code (e.g., assumptions about the control statement that will be used in a section) or

code based on decisions taken too far in advance for the novice to properly appreciate

(e.g., why statements must appear in a certain order in the program). In real life, pro-

grammers go back and forth between algorithm design and coding: each informing

the other. In our tutor, the student goes through algorithm design, program design and

coding steps in an interleaved fashion for each step.

Code Canvas. In the tutor, the student takes all the actions in the context of a single

code canvas. The algorithm as pseudocode is embedded as comments within the pro-

gram. So, the novice can conceptually connect each step in the algorithm with the

corresponding statement(s) in the program.

Scaffolding. The tutor uses goals and plans as prompts to scaffold the student through

algorithm formulation and program design instead of using them to diagnose the stu-

3

dent’s program (e.g., [5, 6]). Every time the student selects an incorrect step in the

algorithm or an incorrect choice for program design, the tutor provides immediate

drill-down feedback that steers the student towards the correct step/choice. So, the

student gets the opportunity to practice the process of problem-solving and program-

ming as designed by an expert every time the student works with the tutor.

Reified Steps. During coding, the tutor provides feedback at the level of statements

and expressions. When control statements such as if-else and while loop are

involved, the tutor uses a script to step the student through the various components of

the control statement, e.g., frame, initialization, condition, body and update for

while loop. Such reification of steps not only makes diagnosing and providing feed-

back more tractable, it also trains the student to use a pedagogically effective algo-

rithm to compose each control statement in terms of its components.

Non-deterministic. The tutor admits equivalent answers. For example, the student can

select any equivalent data type for a variable (short, int, or long), can locate

inputs in any order in the program and write a commutative expression in any order.

This design acknowledges the fact that a program can be written in a multitude of

ways for a problem.

Model Based Architecture. A problem is represented using a problem specification

and a reference solution template. A problem specification is an annotated problem

statement wherein, input and output data elements are identified, and other attributes

are specified such as the expected data type for the input/output data, preferred name,

etc. The reference solution template is a complete solution (i.e., program) written in

BNF notation, with meta-variables for variable names (e.g., <V1>), data types (e.g.,

<T1>), and other program elements.

The tutor model, user interface and domain model of the tutor are all problem-

independent. The tutor model includes scripts for the steps in the problem-solving

process. For example, the script for input data object is: 1) Locate where the data will

be input; 2) Declare the variable and 3) Input the variable. Each step in the above

script may itself generate additional scripts. A declarative representation is used for

these scripts so that they can be swapped to test various problem-solving processes

with the same tutor. The user interface of the tutor translates each atomic step in the

script into one of the following three user inputs:

1. Select from a drop-down menu of options. A built-in feedback server for each

select action encodes drill-down feedback at abstract, concrete and bottom-out

levels for each incorrect menu option selected by the student.

2. Locate in code by clicking in it. If the student correctly locates a statement, the

tutor inserts pseudocode as a comment at that location and presents a dialog box

for the student to enter the code. If the location is incorrect, the tutor provides

drill-down feedback to steer the student towards the correct location.

3. Write the code for the next statement or expression. The domain model (de-

scribed next) provides drill-down explanation for incorrect code.

The tutor determines the correctness of select actions by comparing them with the

annotations in the problem statement. It determines the correctness of locate and code

actions by comparing them with the reference solution provided for the problem,

4

The Domain Model is a model of the programming domain built using Model-

Based Reasoning principles [4]: each programming construct is modeled as a compo-

nent with a text representation and behavior [3]. The tutor uses the Domain Model to

build a model of the student’s solution, called the Program Model. The Program

Model is used to generate the text representation of the student’s program. It is also

used to provide feedback for coding and locating actions. Each component in the

Program Model is associated with a bug library relevant to that programming con-

struct. The component generates drill-down feedback for coding errors by using the

bug library to diagnose the error in the student’s code. Each component is also associ-

ated with a catalog of program transformations. It uses this catalog to approve seman-

tically equivalent code alternatives (e.g., count++ is equivalent to count += 1).

This ability of the Program Model to provide drill-down feedback for locating and

coding actions is a significant advantage of using model-based reasoning instead of

some of the other AI techniques used for modeling the domain in programming tutors

such as rule-based (e.g., [5]) and constraint-based (e.g., [25]) reasoning: the drill-

down feedback need not be individually specified for each problem added to the tutor.

So, adding a new problem takes minimal effort – only the problem specification and

reference solution template need to be specified for each new problem.

Whether it is select, locate or code action, the student cannot proceed to the next

step in the algorithm until the student answers that step correctly and completely. So,

by the end of the session, the student is guaranteed to have written the correct pro-

gram for a given problem. For each action, the tutor provides immediate drill-down

feedback at abstract, concrete and bottom-out levels, thereby ensuring that the student

is never stranded at a dead-end. Given this design, the proficiency of a student is

measured not in terms of the correctness of the final program, but in terms of the

number of actions needed by the student to arrive at the correct program: the more

actions the student takes, the less proficient the student.

The tutor is not a novel intervention for introductory programming as much as a

technological facilitator of a pedagogy well understood to help introductory students

learn programming – the pedagogy of practice. The more programs a student writes,

the better the student becomes at the process of problem-solving and programming.

The role the tutor plays is of a facilitator – it provides one-on-one scaffolding and

feedback throughout the process of programming. The alternative to using the tutor in

an introductory programming class would be to assign multiple programming projects

on each topic, which is untenable because of the workload it entails for the instructor,

not to mention the reluctance of students to engage in such labor, especially without

the one-on-one feedback facilitated by the tutor. Given this, we evaluated the tutor to

see whether the benefits of practice would accrue to students who use it. Preliminary

results show that practicing with the tutor indeed helped students solve subsequent

problems with fewer erroneous actions and in less time.

Acknowledgments. Partial support for this work was provided by the National Sci-

ence Foundation under grant DUE-1432190.

5

References

1. Gomes, A., Mendes, A. J.: SICAS: Interactive system for algorithm development and sim-

ulation. In: Computers and Education - Towards an Interconnected Society, pp. 159-166

(2001)

2. Carlisle, M., Wilson, T., Humphries, J. and Hadfield, S. (2005) ‘RAPTOR: a visual pro-

gramming environment for teaching algorithmic problem solving, ACM SIGCSE Bulletin,

CM, New York, NY, USA, Vol. 37, No. 1, pp.176–180.

3. Kumar, A.N. Model-Based Reasoning for Domain Modeling in a Web-Based Intelligent

Tutoring System to Help Students Learn to Debug C++ Programs, Intelligent Tutoring

Systems (ITS 2002), Biarritz, France, June 2002, 792-801.

4. Davis, R.: Diagnostic Reasoning Based on Structure and Behavior. Artificial Intelligence,

24 (1984) 347-410.

5. Reiser, B., Anderson, J., & Farrell, R. (1985). Dynamic Student Modelling in an Intelligent

Tutor for Lisp Programming. Proceedings of the Ninth International Joint Conference on

Artificial Intelligence, pp. 8-14.

6. Johnson, W. L. (1986). Intention-Based Diagnosis of Errors in Novice Programs. Morgan

Kaufman, Palo Alto, CA

7. Bonar, J. and Cunningham, R. (1988) BRIDGE: Tutoring the programming process, in In-

telligent tutoring systems: Lessons learned. J. Psotka, L. Massey, S. Mutter (Eds.), Law-

rence Erlbaum Associates, Hillsdale, NJ.

8. Chad Lane and Kurt VanLehn. (2005). Teaching the tacit knowledge of programming to

novices with natural language tutoring. Computer Science Education. 15 (3). 183-201.

9. Guzdial, M., Hohmann, L., Konneman, M., Walton, C., & Soloway, E. (1998). Supporting

programming and learning-to-program with an integrated CAD and scaffolding work-

bench. Interactive Learning Environments, 6 (1&2), 143{179.

10. Wei Jin. 2008. Pre-programming analysis tutors help students learn basic programming

concepts. In Proceedings of the 39th SIGCSE technical symposium on Computer science

education (SIGCSE ’08). Association for Computing Machinery, New York, NY, USA,

276–280.

11. Jin W., Corbett A., Lloyd W., Baumstark L., Rolka C. (2014) Evaluation of Guided-

Planning and Assisted-Coding with Task Relevant Dynamic Hinting. In: Trausan-Matu S.,

Boyer K.E., Crosby M., Panourgia K. (eds) Intelligent Tutoring Systems. ITS 2014. Lec-

ture Notes in Computer Science, Vol. 8474. Springer

12. Valerie Barr and Deborah Trytten. 2016. Using Turing’s craft Codelab to support CS1 stu-

dents as they learn to program. ACM Inroads 7, 2 (May 2016), 67–75

13. Minjie Hu, Michael Winikoff, and Stephen Cranefield. 2013. A process for novice pro-

gramming using goals and plans. In Proceedings of the Fifteenth Australasian Computing

Education Conference - Volume 136 (ACE '13). Australian Computer Society, Inc., AUS,

3–12.

14. Soloway, E. Learning to program = Learning to construct mechanisms and explanations.

Communications of the ACM. 29 (9). Sep 1986. 850-858

15. Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent tutoring

systems for programming education: a systematic review. In Proceedings of the 20th Aus-

tralasian Computing Education Conference (ACE '18). Association for Computing Ma-

chinery, New York, NY, USA, 53–62. DOI:https://doi.org/10.1145/3160489.3160492

16. Hieke Keuning, Johan Jeuring, and Bastiaan Heeren, A Systematic Literature Review of

Automated Feedback Generation for Programming Exercises. ACM Transactions on

Computing Education, 19(1), 2018.

6

17. Nguyen-Thinh Le, Sven Strickroth, Sebastian Gross, and Niels Pinkwart. 2013. A review

of AI-supported tutoring approaches for learning programming. In Advanced Computa-

tional Methods for Knowledge Engineering. Springer, 267–279.

18. Thomas W. Price, Neil C.C. Brown, Dragan Lipovac, Tiffany Barnes, and Michael

Kölling. 2016. Evaluation of a Frame-based Programming Editor. In Proceedings of the

2016 ACM Conference on International Computing Education Research (ICER '16). Asso-

ciation for Computing Machinery, New York, NY, USA, 33–42.

DOI:https://doi.org/10.1145/2960310.2960319

19. D. Hooshyar, R.B. Ahmad, M. Yousefi, F.D. Yusop & S.-J. Horng. (2015) A flowchart-

based intelligent tutoring system for improving problem-solving skills of novice program-

mers. Journal of Computer Assisted Learning. 31(4): 345-361. doi: 10.1111/jcal.12099

20. Scott, A., Watkins, M. and McPhee, D. (2008) ‘E-learning for novice programmers – a dy-

namic visualization and problem solving tool’, 3rd Int. Conf. Information and Communi-

cation Technologies: From Theory to Applications, ICTTA, 7–11 April, Damascus, Syria,

pp.1–6.

21. Gegg-Harrison T. S.: Exploiting Program Schemata in a Prolog Tutoring System. Phd

Thesis, Duke University, Durham, North Carolina 27708-0129, (1993)

22. Dinesha Weragama and Jim Reye. 2014. Analysing student programs in the PHP intelli-

gent tutoring system. Int. J. Artific. Intell. Edu. 24, 2 (2014), 162–188.

23. Budi Hartanto and Jim Reye. 2013. CSTutor: An intelligent tutoring system that supports

natural learning. In Proceedings of the Conference on Computer Science Education Inno-

vation and Technology. 19–26.

24. Edward Sykes. 2010. Design, development and evaluation of the java intelligent tutoring

system. Technology, Instruction, Cognition and Learning 8, 1 (2010), 25–65.

25. Jay Holland, Antonija Mitrovic, and Brent Martin. 2009. J-LATTE: A constraint-based tu-

tor for Java. In Proceedings of the Conference on Computers in Education. 142–146.

26. Sebastian Gross and Niels Pinkwart. 2015. Towards an integrative learning environment

for java programming. In Proceedings of the IEEE Conference on Advanced Learning

Technologies. 24–28.

27. Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L Thomas van Binsbergen. 2016. Ask-

Elle: an adaptable programming tutor for Haskell giving automated feedback. International

Journal of Artificial Intelligence in Education (2016), 1–36.

28. Peter Brusilovsky1, Lauri Malmi, Roya Hosseini, Julio Guerra, Teemu Sirkiä and Kerttu

Pollari-Malmi. (2018) An integrated practice system for learning programming in Python:

design and evaluation. Research and Practice in Technology Enhanced Learning. 13:18

https://doi.org/10.1186/s41039-018-0085-9

29. Chen, S. and Morris, S. (2005) ‘Iconic programming for flowcharts, Java, Turing, ETC’,

Conference on Innovation and Teaching Computer Science Education (ITiCSE), Caparica,

Portugal, ACM, pp.104–107.

https://doi.org/10.1186/s41039-018-0085-9

