
A Simple, Language-Independent Approach to Identifying
Potentially At-Risk Introductory Programming Students

Brett A. Becker
University College Dublin

Ireland
brett.becker@ucd.ie

Catherine Mooney
University College Dublin

Ireland
catherine.mooney@ucd.ie

Amruth N. Kumar
Ramapo College of New Jersey

USA
amruth@ramapo.edu

Seán Russell
University College Dublin

Ireland
sean.russell@ucd.ie

ABSTRACT
For decades computing educators have been trying to identify and
predict at-risk students, particularly early in the first programming
course. These efforts range from the analyzing demographic data
that pre-exists undergraduate entrance to using instruments such as
concept inventories, to the analysis of data arising during education.
Such efforts have had varying degrees of success, have not seen
widespread adoption, and have left room for improvement.

We analyse results from a two-year study with several hundred
students in the first year of programming, comprising majors and
non-majors. We find evidence supporting a hypothesis that engage-
ment with extra credit assessment provides an effective method of
differentiating students who are not at risk from those who may be.
Further, this method can be used to predict risk early in the semes-
ter, as any engagement – not necessarily completion – is enough to
make this differentiation. Additionally, we show that this approach
is not dependent on any one programming language. In fact, the
extra credit opportunities need not even involve programming. Our
results may be of interest to educators, as well as researchers who
may want to replicate these results in other settings.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; CS1.

KEYWORDS
CS1; CS 1; CS-1; programming; introductory programming; intro-
duction to programming; novice programming; extra credit

ACM Reference Format:
Brett A. Becker, Catherine Mooney, Amruth N. Kumar, and Seán Russell.
2021. A Simple, Language-Independent Approach to Identifying Potentially
At-Risk Introductory Programming Students. In Australasian Computing
Education Conference (ACE ’21), February 2–4, 2021, Virtual, SA, Australia.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3441636.3442318

ACE ’21, February 2–4, 2021, Virtual, SA, Australia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8976-1/21/02.
https://doi.org/10.1145/3441636.3442318

1 INTRODUCTION
In this study we present evidence supporting the hypothesis that
engagement with extra credit opportunities can differentiate be-
tween not-at-risk students and those that may be at-risk, with high
accuracy. Further, this method can predict which students are not at
risk, or may be at risk, as the extra credit opportunities can be given
at any time during a course. This approach has several advantages:

• Easy to implement – the approach only measures engage-
ment with extra credit opportunities. These need not even
be marked. Simply attempting an extra credit opportunity is
enough to be effective.

• Language independent – the approach can be applied regard-
less of the language(s) utilised in the course.

• Flexible as to time – the approach can be applied at any point
during a course.

• Can be used where there is a lack of historical data – the
approach can be applied in the first semesters of university
where prior performance data such as GPAs are not available.

We say language-independent for two reasons. First, when extra
credit opportunities involve programming tasks, the extra credit
is in the language of instruction. But, our approach does not dic-
tate the language of instruction or of extra credit. In other words,
any language can be used. Second, we also experiment with non-
programming extra credit. This is truly language-independent as
there is no programming language involved at all.

We define extra credit to be optional, low-stakes assessment for
which the points awarded are not included in the ‘regular’ 100% of
the points that make up the final course grades. Put another way,
it is always possible for a student to achieve 100% without taking
part in any extra credit assessments. In practice, in the rare cases
that completion of extra credit opportunities results in a grade over
100%, a student’s grade is capped at 100%.

Predicting student performance [10, 41, 48] and in particular
identifying students in difficulty early [29, 39] has been a goal of
many computing education researchers. Much of this focus stems
from a perception that failure rates in introductory programming
are too high, with multiple studies citing average failure rates of
approximately 33% in introductory programming courses [6, 47].
While acknowledged as high, others would note that failure rates
are not alarmingly high, andwould seem to have changed little since
much work was focused on the problem [47]. However, very recent

168

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3441636.3442318
https://doi.org/10.1145/3441636.3442318
https://creativecommons.org/licenses/by/4.0/


ACE ’21, February 2–4, 2021, Virtual, SA, Australia Brett A. Becker, Catherine Mooney, Amruth N. Kumar, and Seán Russell

work convincingly demonstrates that computer science failure rates
are not notably higher than other STEM disciplines [43]. Regardless,
the ability to differentiate between at-risk and not-at-risk students is
still an attractive goal as all students could conceivably benefit from
distributing classroom resources to different students as required,
most efficiently. Doing so as early as possible could help these
students not only with their current class, but with subsequent
classes and potentially prevent them from withdrawing.

Further, recent trends in many institutions include greater enroll-
ments in computing [9] often leading to larger classes, and reduced
staff to student ratios. This often translates to a greater workload
for staff and less time per individual student. Unfortunately, many
proposed methods for predicting student performance require an
investment of time and effort on the part of the instructor, the stu-
dents, or both. This presents a barrier that may deter many from
implementing these methods.

In this paper we present the results of a study into the uptake
of extra credit assignments by 433 students over the course of
two years, to differentiate between students who have a very high
likelihood of doing well and those who may be at-risk of failing.
We describe our students and context further in Section 3.

1.1 Research Questions
Our research questions are:

RQ1 Can voluntary, low-stakes extra credit opportunities be used
to differentiate between not-at-risk and potentially at-risk
students in an introductory programming course?

RQ2 Will extra credit as a performance differentiator apply to
both women and men similarly?

RQ3 Does the nature of voluntary, low-stakes extra credit oppor-
tunities (i.e., programming vs. non-programming exercises)
affect the ability to differentiate between not-at-risk and
potentially at-risk students?

2 RELATED WORK
This study mainly concerns two topics, predicting novice program-
mer performance and the effects of extra credit activities and op-
tional exercises. The first has been a focus of many researchers in
computing education, while the second has seen little attention,
even outside computing education compared to the large volume
of assessment literature. This is set in the context that exactly what
is expected of introductory programming students is often not
stated explicitly [4, 32], and that despite many years of study and
debate, some significant issues in teaching programming remain
unresolved and probably unresolvable [34]. This leaves educators
in a position where exploring their own context to find what works
for them is important, and greatly beneficial if what works for them
might in turn work for others.

2.1 Predicting Programming Performance
There is a very long history of interest in the topic of predicting
novice programmer performance [42, 46]. The period 2010-present
has seen a dramatic increase in activity, captured well in a large
systematic review [18]. Predicting performance is a common ques-
tion that practitioners have for researchers [13]. Early instances

in introductory programming typically involved the use of stan-
dardised tests such as the IBM Programmer Aptitude Test and were
sometimes aimed at reducing a perceived waste of training time in
educating students unsuited to computer programming [20].

Various assessments and tests have been developed to assess
CS1 performance including FCS1 [45] and SCS1 [37]. Although not
designed to be predictive, these or similar instruments could possi-
bly be used for that purpose. However, these approaches generally
have several costs and drawbacks against their use as predictors.
They must be explicitly administered, can be lengthy and time con-
suming, and are not language independent [15]. Bockmon et al. [8]
highlighted the lack of valid and reliable cognitive instruments for
predicting student performance. In particular, they highlighted the
problems with SCS1 being a lack of formal validation and the time
required for students to complete it.

As development tools improved, student behaviour could be
captured using specially created programming environments or
through the addition of plugins to existing integrated development
environments. Predictions of student performance could now be
made based on how students programmed, rather than the final
result of their work. Watson et al. compared a number of predictors,
both based on tests and programming behavior, and found that
programming behavior based predictors typically outperformed
those based on tests [48]. Other approaches for predicting perfor-
mance while learning is happening include the use of analytics
and micro-analytics from virtual learning environments [3] and
interaction data such as keystroke analytics [11, 28].

Kuehn et al. developed an expert system for predicting student
performance in introductory programming [21]. The expert system
used as inputs, data relating to student’s attitudes and behavior
with regard to their studies and produced an estimated grade. The
data was gathered using a single survey containing a number of
questions which were grouped to capture factors that the authors
believed would contribute to student success.

Other studies have noted that a large factor in performance is
motivation. Students with good intrinsic motivation had less diffi-
culty completing courses than students with poor motivation [1].
Others have suggested that as students’ scores in assessments had
an effect on motivation, the use of extra-credit activities itself can
help keep motivation high by facilitating increases in grades [30].

In [40] Quille & Bergin detail the 13-year evolution of a model
called PreSS (Predict Student Success) which aims to predict student
success early in CS1. The PreSS model is based on a naïve Bayes
classifier that uses three factors to predict student success a few
hours into CS1: programming self-efficacy, mathematical ability
and the number of hours per week a student plays computer games.
A revalidation study looked at the performance of PreSS across
11 institutions, and found an accuracy of ∼70%, and sensitivity of
∼80% for detecting students at risk of failing or dropping out, while
also looking at new factors for the model. The model is a real-time
prediction system with a web interface that only takes about five
minutes to administer.

Alternatives such as performance in games or other complex
tasks have been suggested. Lorenzen and Chang tested students on
their ability to reason about solutions to situations in the Master-
Mind© board game [31]. Students were encouraged to practice and
participate by being given extra credit in the course for doing well.

169



A Simple, Language-Independent Approach to Identifying Potentially At-Risk Introductory Programming Students ACE ’21, February 2–4, 2021, Virtual, SA, Australia

A moderate correlation was found between students’ grades and
their performance in the activity. The authors noted that there was
difficulty assessing students’ performance.

2.2 Extra Credit and Optional Exercises
Work involving extra credit opportunities is much more scarce than
that attempting to predict performance and is often from psychol-
ogy studies, using psychology students. Researchers reported that
extra credit activities had at least some positive effect or correlation
with performance, attendance, and other factors. However, there is
evidence that it is not (or, was not in 1993) a common practice [35].
Some studies reported positive effects (discussed below), along with
some concerns. Harrison et al. [17] show gender and class-size bias
that could benefit some students more than others. Hardy [16] (also
providing positive results discussed below) advanced the position
that instructors should reevaluate the amount of time and effort it
takes instructors to assign, assess, and record such activity, which
should be weighed carefully against the benefits it confers.

Harrison et al. [17] found in a sample of 508 students in sev-
eral non-introductory psychology college courses, that those with
existing higher grades were more likely to complete extra credit
assignments than those with lower grades. They also found that
female students were more likely than male students to complete
extra credit assignments. This supported findings by Hardy [16]
who also found that only “better” students completed extra credit.

Several authors have found offering extra credit to be benefi-
cial. Padilla-Walker [36] found that extra credit performance was
a strong predictor of exam score, above and beyond gender, col-
lege GPA, and ACT scores. Wilder et al. [49] found that the use of
random extra credit quizzes increased student attendance by 10%.
Dominguez et al. [14] found that students completing optional (but
not for credit) review exercises improved academic performance.

However, extra credit assessment can also raise some issues, for
instance in terms of equity, depending on the context and details
of how it is applied. Pynes presented seven arguments against
extra credit [38], however most of these only apply to very specific
circumstances such as offering extra credit only to certain students,
or as ameans to compensate for failing or not submitting some other
mandatorywork. Our use of extra credit carefully adhered to several
principles in order tomitigate the issues raised by Pynes that applied
to our context: all students had equal opportunities to complete the
extra credit; the marks were in addition to regular assessed work (so,
students could still get full marks without the extra credit); marks
were capped at 100% in the case that a students’ total score exceeded
that; and the potential gainwas small –worth considerably less than
any other mandatory assignment – to prevent students focusing on
a ‘reward’ at the expense of ‘risk’, such as prioritizing extra work
over required work.

3 APPROACH
In our study, data was collected from first year introductory pro-
gramming classes over four semesters between September 2017
and June 2020. Although the first and second semesters of the year-
long introductory programming sequence are administratively and
logistically separate, they are both mandatory, form a two-course

sequence, and together form our university’s equivalent of the
course that is traditionally referred to as CS1 [5, 19, 34].

Each year, students are separated into two sections based on
their major. Students majoring in software engineering (SE) are
placed in one section and students majoring in internet of things
engineering (IOTE) or electronic and information engineering (EIE)
are placed in another. We consider SE majors to be “CS majors”.
This degree is delivered by Computer Science faculty and conforms
to ACM/IEEE joint curriculum for Computer Science. The IOTE and
EIEmajors are delivered by engineering faculty, but do feature some
mandatory computing courses delivered by computing faculty, such
as those we discuss in this study.

The courses are delivered by one of two lecturers depending
on the section and the semester. However, lecturers are consistent
from one year to the next. The breakdown of students is shown
in Table 1. Groups 1 and 3 are a mix of IOTE and EIE students,
while groups 2 and 4 are SE students. There were 433 students in
total (∼25% identifying as women, and ∼75% as men). We do not
report on non-binary gender identification due to low numbers and
anonymity.

Table 1: Participant groups. N is number of students (total
433). XC Type is Extra Credit type: programming, or non-
programming.

Group Acad. Year Lecturer Semester N XC Type

1 2017/18 A 2 122 Prog
2 2018/19 B 1 91 Prog
3 2018/19 A 2 131 Prog
4 2019/20 B 1 89 Non-Prog

All the groups were given the opportunity to engage with extra
credit opportunities during these courses. The extra credit work and
the associated points that students could receive were discussed
with students during a lecture early in the semester and on the
learning management system. Students were informed that extra
credit was completely optional and could only have a positive (or
neutral) effect on their final grade. There was no class time set
aside for completion of the work. Students were also given more
traditional mandatory programming assignments to complete every
week, and a traditional, written, summative exam at the end of each
semester.

For groups 1-3, eight thematically appropriate problets and ep-
plets were made available as extra credit as described in Section 3.1.
These were made available at the start of the semester and students
had until the end of the semester to complete them. Final grades
were determined through a traditional weighted combination of
mandatory coursework (programming assignments) and a paper
final exam. For groups 1 and 3 the coursework / final exam split
was 40% / 60%, while for group 2 it was 30% / 70%.

For group 4, studentswere asked to complete a non-programming
assignment as described in Section 3.2. Mandatory programming
assignments completed over the semester determined 20% of the
students’ final grade, with the remaining 80% determined by two
terminal exams, one a supervised live programming exam and the
other a traditional written exam.

170



ACE ’21, February 2–4, 2021, Virtual, SA, Australia Brett A. Becker, Catherine Mooney, Amruth N. Kumar, and Seán Russell

3.1 Programming Extra Credit Assessments
For “programming” extra credit assessments, we used problets
(problets.org) and epplets (epplets.org) software tutoring suites.
Problets are problem-solving tutors on code-tracing concepts and
epplets are based on Parsons puzzles. Both can be used by students
in their own time to supplement their classroom instruction, but
neither is designed to replace traditional programming assignments.

Problems presented in problets include evaluating expressions,
debugging programs, tracing program behaviour, and predicting
program state [22]. The tutors grade the student’s answer and
provide feedback explaining the correct solution. They adapt to
student needs, presenting problems on only the concepts that the
system determines needs reinforcement. The tutors are set up for
mastery learning [33, 50]. They have a large, built-in resource of un-
identical problems on each concept and present problems on each
concept until the student demonstrates mastery of it. Evaluations
have shown that the step-by-step explanation provided by the tutors
helps students learn code-tracing concepts [23, 24] and practicing
with problets helps students learn to write code [25, 26].

Epplets present Parsons puzzles [27] in which students are pre-
sented a description of a problem along with a ’scrambled’ program
to implement it. The program statements must be rearranged into
their correct order and all other statements eliminated. Students
cannot progress until they have correctly reassembled the complete
program, but are given feedback on each incorrect attempt.

Once a tutor is completed, it presents a confirmation code to
the student. Information detailing the tutor attempted, number of
problems solved as well as date and time of completion are encoded
into this confirmation code. At the end of the course, students were
asked to submit a single text file containing the confirmation codes
for the tutors that they had completed. These codes were then
verified using the decoder provided with the tutor suite to verify
that the students had indeed completed the work.

For groups 1, 2 and 3, an extra 0.5% credit was awarded to stu-
dents for each of the tutors completed, allowing for a maximum
extra credit of 4%. This was awarded regardless of the performance
of the student on the tutors, which were designed to keep present-
ing problems until the student had demonstrated understanding of
each of the included learning outcomes.

It is important to note that problets and epplets do not require
students to write programs. They only involve answering program-
ming questions, tracing code, Parsons problems, etc. They address
application and analysis in Bloom’s taxonomy [7], as compared
to synthesis targeted by typical programming projects. Typically,
students spent 30-90 seconds per problet problem and 4-5 minutes
per epplet puzzle.

3.2 Non-Programming Extra Credit
Assessments

For “non-programming” extra credit assignments, students were
assigned an essay on an influential figure in computing. In order
to take part in the extra credit assignment, students were required
to make a request through the learning management system. In
response to this request, the student was assigned a computing
figure. It was originally planned that each student would receive

a unique figure, however the level of uptake required that some
students received the same ones.

The typical format of the assignment required the achievements
of the figure to be discussed highlighting their greatest contribu-
tions and if applicable, to discuss something that was named after
them. This required that students perform independent research
outside of the course notes and textbook. Non-programming as-
signments targeted knowledge in Bloom’s taxonomy [7].

Students in group 4 were awarded between 2% and 5% extra
credit depending on the quality of the essay submitted. Of the 47
students that requested a topic for the extra credit assignment, 45
students submitted essays.

3.3 Extra Credit Engagement
For the purposes of this research, we discern between those that
engaged with extra credit opportunities and those that did not.
Engagement counted as any attempt at any extra credit opportunity.
No differentiation was made between students in groups 1, 2, and 3
who completed a single problet or epplet and those who completed
all of the available problets and epplets. Students from group 4 were
deemed to have engaged if they had completed the essay.

4 RESULTS & DISCUSSION
In these results, final course grades do not take into account the
0-5 extra credit points available to students, except in the last fig-
ure. This decision was taken to fairly compare the performance
of students who did and did not engage in extra credit, without
increasing the gap between them (if there is any) due to the extra
credit points students may have been awarded (if they did engage
with extra credit). All statistical significance tests areWelsh’s t-tests
(two-tail), α = 0.05. We use Cohen’s d to report effect size. Our
interpretations are: small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8)
and large (d ≥ 0.8) [12, pp25-26]. We report Cohen’s d and t-test
results even when not significant for completeness and to allow for
replications. We do not correct for multiple tests as this study is
restricted to a small number of planned comparisons as outlined
in [2]. Further, this work is exploratory, and our goal is to look for
promising leads that can be followed up in subsequent studies, not
to present definitive, generalizable findings [44].

4.1 Baselines: Grades and Gender
Figure 1 shows all 433 students (groups 1-4). Group 4 had the option
of doing non-programming extra credit and are seen on the left
side. Groups 1-3 who had programming extra credit options are
combined on the right side. This does not include the extra credit
points themselves and therefore illustrates one baseline, showing
that the distribution of final grades between the group with non-
programming extra credit available to them (N = 89,M = 67, SD =
20), and the three groups that had programming extra credit avail-
able to them (N = 344,M = 64, SD = 21), are not significantly
different t(143.17) = 1.13,p = 0.26 (Cohen’s d = 0.13).

Figure 2 shows that women have a significantly higher mean
final grade (N = 109,M = 70, SD = 17) compared to men (N =
324,M = 63, SD = 22), t(238.14) = −3.47,p < 0.001 with Cohen’s
d = 0.34 (small). This provides another baseline.

171



A Simple, Language-Independent Approach to Identifying Potentially At-Risk Introductory Programming Students ACE ’21, February 2–4, 2021, Virtual, SA, Australia

Figure 1: Final grades vs extra credit type available (pro-
gramming (P) / non-programming (NP)) for all 433 students.

Figure 2: Final grades vs gender for all 433 students.

4.2 RQ1: Extra Credit as a Differentiator
Figure 3 shows that students who engaged in extra credit have
higher mean final grades (N = 117,M = 76, SD = 14) than those
that did not engage in any extra credit (N = 316,M = 60, SD = 21),
t(306.66) = −8.58,p < 0.001. A Cohen’s d of 0.78 indicates a (very
high) medium effect size. It is notable that only two of 117 students
that attempted extra credit received failing grades just below 40
(before including the extra credit points).

Figure 3: Final grades vs extra credit engagement (No / Yes).

RQ1 was: Can voluntary, low-stakes extra credit opportunities
be used to differentiate between not-at-risk and potentially at-risk
students in an introductory programming course? This evidence
supports answering this question in the affirmative. We discuss
more evidence for this later in this section.

These results also support Hardy [16] and Harrison et al. [17]
who found that a minority of students completed extra credit op-
portunities. Harrison et al. found 39%. Our figure is 27%. Harrison
et al. also found higher grades for these students, although their
difference in means was 3 points, compared to 16 in our results.

4.3 RQ2: Gender
Figure 4 shows that women who attempted extra credit had higher
mean grades (N = 41,M = 78, SD = 15) compared to women
who did not attempt extra credit (N = 68,M = 65, SD = 16),
t(90.94) = −4.19,p < 0.001. A Cohen’s d of 0.81 indicates a large
effect size. Similarly, men who attempted extra credit had higher
mean grades (N = 76,M = 75, SD = 14) compared to men who did
not (N = 248,M = 59, SD = 22), t(198.30) = −7.21,p < 0.001. A
Cohen’s d of 0.75 indicates a (high) medium effect size.

Figure 4: Final grades vs gender broken down by extra credit
engagement (No / Yes).

RQ2 was:Will extra credit as a performance differentiator apply
to both women and men similarly? Our results show that women
and men who engaged with extra credit achieved statistically sig-
nificantly higher mean final grades (16 points higher for men and
13 for women).

4.4 RQ3: Nature of Extra Credit
Figure 5 shows that in the semester where non-programming extra
credit was offered (exclusively) those who attempted it had a higher
mean final grade (N = 45,M = 72, SD = 18) compared to those
who did not attempt extra credit (N = 44,M = 61, SD = 21),
t(84.43) = −2.58,p = 0.012. A Cohen’s d of 0.54 indicates a medium
effect size.

Similarly, in the three semesters when programming extra credit
was offered (exclusively) those who attempted it had a higher mean
final grade (N = 72,M = 78, SD = 11) compared to those who did
not attempt extra credit (N = 272,M = 60, SD = 21), t(219.45) =
−9.63,p < 0.001. A Cohen’s d of 0.91 indicates a large effect size.

172



ACE ’21, February 2–4, 2021, Virtual, SA, Australia Brett A. Becker, Catherine Mooney, Amruth N. Kumar, and Seán Russell

Figure 5: Final grades vs extra credit type (programming (P)
/ non-programming (NP)), broken down by extra credit en-
gagement (No / Yes).

The mean increase in scores was 18 for programming extra credit
groups and 11 for the non-programming extra credit group.

Figure 6 shows that students who did not engage in extra credit
but had non-programming extra credit available to them (group 4)
(N = 44,M = 61, SD = 21) did not have a statistically significant
difference in their final grade distribution compared to those in
groups 1-3 that did not engage in extra credit but had program-
ming extra credit available to them (N = 272,M = 60, SD = 21),
t(58.90) = 0.33,p = 0.742 (Cohen’s d = 0.05). However, for stu-
dents that did engage in extra credit opportunities, those that had
programming extra credit available to them (groups 1-3) had a
significantly higher mean final grade (N = 72,M = 78, SD = 11)
than those that had non-programming extra credit opportunities
available (N = 45,M = 71, SD = 18), t(66.28) = −2.10,p < 0.040.
A Cohen’s d of 0.44 indicates a (high) small effect size.

Figure 6: Final grades vs extra credit engagement (No / Yes)
broken down extra credit type (programming (P) / non-
programming (NP)).

RQ3 was: Does the nature of voluntary, low-stakes extra credit
opportunities (programming vs. non-programming exercises) affect
the ability to differentiate between not-at-risk and potentially at-risk
students? Figures 5 and 6 show that students who engage with either

type of extra credit have higher mean final grades. Further, those
that engaged with programming extra credit had higher final grades
than those that engaged with non-programming extra credit. These
results show that the nature of the extra credit opportunities are
both positive, but different, with programming extra credit being
correlated with higher grades than non-programming extra credit.

Figure 7 shows the range of final grades including extra credit
(worth ≤ 5 points). All the students that did not pass the course
(final grade < 40) did not attempt extra credit. All the students who
attempted extra credit passed the course and those that attempted
programming extra credit passed by at least 10 points (final grade
> 50). Means are shown by black lines. Interestingly, once extra
credit points were factored in, the two students that did attempt
extra credit but would have been below the passing grade without
extra credit points did pass in the end, because of the extra credit.

Finally, all extra credit opportunities were made available early
in the semester. Later, we could use this data not just to differentiate
between students but to confidently predict which students might
be at risk. For many students, we could predict as early as week
3 of a 16-week semester. However, we did not analyze our timing
data, and can’t definitively state how early we could make these
predictions in general. This will be our first order of future work.

5 LIMITATIONS & CONSIDERATIONS
Although we found a correlation between engaging with extra
credit opportunities and academic performance, this does not imply
causation. In fact, it has been claimed that the students who "need"
extra credit most are the ones who are unlikely to take advantage
of the opportunity [17]. However, this differentiation (identifying
likely not-at risk vs. more likely at risk) is what we use extra credit
engagement to achieve. In other words, it is possible that the fact
that weaker students tend to not engage in extra credit is where
the power of this approach as a differentiator lies.

Our result showing that programming extra credit is correlated
with higher final grades than non-programming extra credit is
not necessarily robust. Non-programming extra credit was offered
in only one semester, by one lecturer. Therefore we may also be
observing differences in the lecturer, course content, or other envi-
ronmental variables. Other factors include a general fear or dislike
of “more programming” or a higher interest in non-programming
activities, perceived time commitments required for completion,
and a perceived cost/reward ratio. Nonetheless, for other compar-
isons, our results seem to generalize across semesters, lecturers, and
majors, lending credit to the possibility they would generalize to
other courses and institutions. Differences in assessment between
groups, whether represented by different grading styles between
lecturers or changes in assessment type or component breakdown
of the course seem to have had no discernible effect on the efficacy
of extra credit as a predictor of performance. However, replication
of these results in other contexts is required to verify this.

6 CONTRIBUTIONS & MOVING FORWARD
Our contribution is a mechanism of administering extra credit as-
sessment which is effective in differentiating between students with
a negligible risk of failing, and those with a much higher chance of
being at risk. The mechanism has the following advantages:

173



A Simple, Language-Independent Approach to Identifying Potentially At-Risk Introductory Programming Students ACE ’21, February 2–4, 2021, Virtual, SA, Australia

Figure 7: Range of final grades for students who attempted extra credit (programming and non-programming) vs those that
did not attempt extra credit. Grades here include the extra credit points. Means are indicated by black lines.

• Easy to implement
• Language independent
• Flexible as to timing within the semester
• Useful where there is a lack of other data such as prior GPAs

Our supporting findings are:

(1) Students’ willingness to attempt extra credit assignments
was a low-cost and reliable performance differentiator in the
introductory programming course. We did not even consider
how well they did on the extra credit assignments, only that
they had attempted them.

(2) The extra credit assignments do not have to involve pro-
gramming. In the two options we considered, one involved
solving programming problems (problets and epplets) and
the other involved writing an essay on a famous computing
figure. Neither involved actual programming for students.
This further supports that it is not what students do for extra
credit as much as whether they attempt extra credit that
predicts their chances of success in the course.

(3) Students who engaged with programming exercises had sig-
nificantly higher final grades than those engaging with non-
programming essays. Although engaging in either type of
extra credit was associated with higher final grades, some
extra credit activities seem to correlate with student success
more than others. The choice of activity likely requires a bal-
ance in learning value versus student motivation: how much
students might learn from an extra credit activity versus how
motivated they may feel in attempting the activity.

(4) Although men showed a larger gain (3 points) in final grade
when attempting extra credit, our baseline showed that
women had final grades 8 points higher than men regardless
of engagement with extra credit. Thus the mean final grade
for women was higher than that of men. We conclude that
gender has an effect, but that it likely transcends more than
what we measured in this research.

(5) Our results are supported by (and support) other work in
extra credit assessment, specifically that weaker students
engage in extra credit less than stronger students, and that
this engagement correlates with higher performance.

One way that this work could be directly applied is assigning
a single small-stakes, low-impact, easy to administer extra credit
assessment early in the semester. Our results support the hypothesis
that efforts to identify at-risk students should be concentrated on
those that do not attempt this assessment. One line of future work

is to see if making such assessments ‘regular credit’, not ‘extra
credit’ – and just being very low-stakes – is enough to differentiate
between those not at risk and those who potentially are.

Other future work could focus on multi-institutional studies to
explore the robustness of this data and more fine-grained analy-
sis of timing data to see how early this technique can be used to
predict students that may be at risk. We believe that this work is
of interest not only to introductory programming instructors, but
also instructors teaching other computing courses.

ACKNOWLEDGMENTS
Partial support for this work was provided by the National Science
Foundation under grants DUE-0817187, DUE-1432190 and DUE-
1502564.

REFERENCES
[1] Raad A. Alturki. 2016. Measuring and Improving Student Performance in an

Introductory Programming Course. Informatics in Education 15, 2 (2016), 183–204.
https://eric.ed.gov/?id=EJ1117149

[2] Richard A. Armstrong. 2014. When to Use the Bonferroni Correction. Ophthalmic
and Physiological Optics 34, 5 (2014), 502–508.

[3] David Azcona and Kevin Casey. 2015. Micro-analytics for Student Performance
Prediction. Int. J. Comput. Sci. Softw. Eng. 4, 8 (2015), 218–223.

[4] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal
About Our Expectations of Introductory Programming Students?. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 1011–1017.
https://doi.org/10.1145/3287324.3287485

[5] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review of
the Evolution of Introductory Programming Education Research. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 338–344. https:
//doi.org/10.1145/3287324.3287432

[6] Jens Bennedsen and Michael E Caspersen. 2007. Failure Rates in Introductory
Programming. SIGCSE Bull. 39, 2 (jun 2007), 32–36. https://doi.org/10.1145/
1272848.1272879

[7] B.S. Bloom, Engelhart M.D., E.J. Furst, W.H. Hill, and D.R. Krathwohl. 1956.
Taxonomy of Educational Objectives: Handbook I: Cognitive Domain. Longmans
Group.

[8] Ryan Bockmon, Stephen Cooper, Jonathan Gratch, and Mohsen Dorodchi. 2019.
(Re)Validating Cognitive Introductory Computing Instruments. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 552–557. https:
//doi.org/10.1145/3287324.3287372

[9] Tracy Camp, Stu Zweben, Ellen Walker, and Lecia Barker. 2015. Booming En-
rollments: Good Times?. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 80–81.
https://doi.org/10.1145/2676723.2677333

[10] C K Capstick, J D Gordon, and A Salvadori. 1975. Predicting Performance by
University Students in Introductory Computing Courses. SIGCSE Bull. 7, 3 (sep
1975), 21–29. https://doi.org/10.1145/382216.382483

[11] Kevin Casey. 2017. Using Keystroke Analytics to Improve Pass-fail Classifiers.
Journal of Learning Analytics 4, 2 (2017), 189–211.

174

https://eric.ed.gov/?id=EJ1117149
https://doi.org/10.1145/3287324.3287485
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/3287324.3287372
https://doi.org/10.1145/3287324.3287372
https://doi.org/10.1145/2676723.2677333
https://doi.org/10.1145/382216.382483


ACE ’21, February 2–4, 2021, Virtual, SA, Australia Brett A. Becker, Catherine Mooney, Amruth N. Kumar, and Seán Russell

[12] Jacob Cohen. 1988. Stastical Power Analysis for the Behavioral Sciences (second
ed.). Lawrence Erlbaum Associates.

[13] Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Ba-
naszkiewicz. 2019. Research This! Questions That Computing Educators Most
Want Computing Education Researchers to Answer. In Proceedings of the 2019
ACM Conference on International Computing Education Research (ICER ’19). As-
sociation for Computing Machinery, New York, NY, USA, 259–267. https:
//doi.org/10.1145/3291279.3339402

[14] César Domínguez, Arturo Jaime, Jónathan Heras, and Francisco José García-
Izquierdo. 2019. The Effects of Adding Non-Compulsory Exercises to an Online
Learning Tool on Student Performance and Code Copying. ACM Trans. Comput.
Educ. 19, 3 (jan 2019). https://doi.org/10.1145/3264507

[15] Mark Guzdial. 2019. We Should Stop Saying Language Independent. We Don’t
Know How To Do That. http://bit.ly/WSSSLI

[16] Marjorie S Hardy. 2002. Extra Credit: Gifts for the Gifted? Teaching of Psychology
29, 3 (2002), 233.

[17] Marissa A Harrison, Denise G Meister, and Amy J Lefevre. 2011. Which Students
Complete Extra-Credit Work? College Student Journal 45, 3 (2011), 550–555.

[18] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting Academic Performance: A Systematic Literature Review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018 Companion). ACM, New
York, NY, USA, 175–199. https://doi.org/10.1145/3293881.3295783

[19] Matthew Hertz. 2010. What Do "CS1" and "CS2" Mean? Investigating Differences
in the Early Courses. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (SIGCSE ’10). Association for Computing Machinery,
New York, NY, USA, 199–203. https://doi.org/10.1145/1734263.1734335

[20] Aaron Katz and William W Helme. 1962. Prediction of Success in Automatic Data
Processing Programming Course. Technical Report. Army Personnel Research
Office Washington DC.

[21] Michael Kuehn, Jared Estad, Jeremy Straub, Thomas Stokke, and Scott Kerlin.
2017. An Expert System for the Prediction of Student Performance in an Initial
Computer Science Course. In 2017 IEEE International Conference on Electro Infor-
mation Technology (EIT). IEEE, 1–6. https://doi.org/10.1109/EIT.2017.8053321

[22] Amruth N Kumar. 2003. Learning Programming by Solving Problems. In Informat-
ics Curricula and Teaching Methods: IFIP TC3 / WG3.2 Conference on Informatics
Curricula, Teaching Methods and Best Practice (ICTEM 2002) July 10–12, 2002,
Florianópolis, SC, Brazil, Lillian Cassel and Ricardo A Reis (Eds.). Springer US,
Boston, MA, 29–39. https://doi.org/10.1007/978-0-387-35619-8_4

[23] Amruth N Kumar. 2005. Results from the Evaluation of the Effectiveness of an
Online Tutor on Expression Evaluation. SIGCSE Bull. 37, 1 (feb 2005), 216–220.
https://doi.org/10.1145/1047124.1047422

[24] Amruth N Kumar. 2006. Explanation of Step-by-step Execution as Feedback
for Problems on Program Analysis, and its Generation in Model-based Problem-
solving Tutors. Technology, Instruction, Cognition and Learning (TICL) Journal 4,
1 (2006), 65–107.

[25] Amruth N. Kumar. 2013. A Study of the Influence of Code-Tracing Problems on
Code-Writing Skills. In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’13). Association for Comput-
ing Machinery, New York, NY, USA, 183–188. https://doi.org/10.1145/2462476.
2462507

[26] Amruth N. Kumar. 2015. Solving Code-Tracing Problems and Its Effect on Code-
Writing Skills Pertaining to Program Semantics. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’15). Association for Computing Machinery, New York, NY, USA, 314–319. https:
//doi.org/10.1145/2729094.2742587

[27] Amruth N Kumar. 2019. Helping Students Solve Parsons Puzzles Better. In
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’19). Association for Computing Machinery, New York,
NY, USA, 65–70. https://doi.org/10.1145/3304221.3319735

[28] Juho Leinonen, Krista Longi, Arto Klami, and Arto Vihavainen. 2016. Automatic
Inference of Programming Performance and Experience from Typing Patterns. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(SIGCSE ’16). Association for ComputingMachinery, New York, NY, USA, 132–137.
https://doi.org/10.1145/2839509.2844612

[29] Soohyun Nam Liao, Daniel Zingaro, Michael A Laurenzano, William G Griswold,
and Leo Porter. 2016. Lightweight, Early Identification of At-Risk CS1 Students.
In Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). ACM, New York, NY, USA, 123–131. https://doi.org/10.1145/
2960310.2960315

[30] Ed Lindoo. 2018. Back to the Basics in an Effort to Improve Student Retention
in Intro to Programming Classes. J. Comput. Sci. Coll. 34, 2 (dec 2018), 72–79.
https://dl.acm.org/doi/10.5555/3282588.3282599

[31] Torben Lorenzen and Hang-Ling Chang. 2006. MasterMind: A Predictor of
Computer Programming Aptitude. SIGCSE Bull. 38, 2 (jun 2006), 69–71. https:
//doi.org/10.1145/1138403.1138436

[32] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education

(ITiCSE ’16). Association for Computing Machinery, New York, NY, USA, 284–289.
https://doi.org/10.1145/2899415.2899432

[33] Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’17). Association for Computing
Machinery, New York, NY, USA, 388. https://doi.org/10.1145/3059009.3081327

[34] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education (ITiCSE 2018
Companion). Association for Computing Machinery, New York, NY, USA, 55–106.
https://doi.org/10.1145/3293881.3295779

[35] John C Norcross, Heather S Dooley, and John F Stevenson. 1993. Faculty Use and
Justification of Extra Credit: No Middle Ground? Teaching of Psychology 20, 4
(1993), 240–242. https://doi.org/10.1207/s15328023top2004_13

[36] Laura M Padilla-Walker. 2006. The Impact of Daily Extra Credit Quizzes on Exam
Performance. Teaching of Psychology 33, 4 (2006), 236–239. https://doi.org/10.
1207/s15328023top3304_4

[37] Miranda C Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Val-
idation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). Association for Computing Machinery, New York, NY, USA,
93–101. https://doi.org/10.1145/2960310.2960316

[38] Christopher A Pynes. 2014. Seven Arguments Against Extra Credit. Teaching
Philosophy 37, 2 (2014), 191–214.

[39] Keith Quille and Susan Bergin. 2018. Programming: Predicting Student Success
Early in CS1. a Re-Validation and Replication Study. In Proceedings of the 23rd
Annual ACM Conference on Innovation and Technology in Computer Science Edu-
cation (ITiCSE 2018). Association for Computing Machinery, New York, NY, USA,
15–20. https://doi.org/10.1145/3197091.3197101

[40] Keith Quille and Susan Bergin. 2019. CS1: How Will They Do? How Can We
Help? A Decade of Research and Practice. Computer Science Education 29, 2-3
(2019), 254–282. https://doi.org/10.1080/08993408.2019.1612679

[41] Keith Quille, S Bergin, and Aidan Mooney. 2015. Programming: Factors That In-
fluence Success Revisited and Expanded. In International Conference on Engaging
Pedagogy (ICEP), 3rd and 4th December, College of Computing Technology, Dublin,
Ireland, Vol. 10. 1047344–1047480.

[42] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004.
Interacting Factors That Predict Success and Failure in a CS1 Course. In Working
Group Reports from ITiCSE on Innovation and Technology in Computer Science
Education (ITiCSE-WGR ’04). Association for Computing Machinery, New York,
NY, USA, 101–104. https://doi.org/10.1145/1044550.1041669

[43] Simon, Andrew Luxton-Reilly, Vangel V Ajanovski, Eric Fouh, Christabel Gon-
salvez, Juho Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. 2019.
Pass Rates in Introductory Programming and in Other STEM Disciplines. In Pro-
ceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education (ITiCSE-WGR ’19). Association for Computing Machinery, New
York, NY, USA, 53–71. https://doi.org/10.1145/3344429.3372502

[44] David L Streiner and Geoffrey R Norman. 2011. Correction for Multiple Testing:
Is There a Resolution? Chest 140, 1 (2011), 16–18.

[45] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A Language Independent
Assessment of CS1 Knowledge. In Proceedings of the 42nd ACM Technical Sympo-
sium on Computer Science Education (SIGCSE ’11). Association for Computing Ma-
chinery, New York, NY, USA, 111–116. https://doi.org/10.1145/1953163.1953200

[46] Philip R Ventura Jr. 2005. Identifying Predictors of Success for an Objects-First
CS1. (2005).

[47] Christopher Watson and Frederick W B Li. 2014. Failure Rates in Introductory
Programming Revisited. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education (ITiCSE ’14). ACM, New York, NY, USA,
39–44. https://doi.org/10.1145/2591708.2591749

[48] Christopher Watson, Frederick W B Li, and Jamie L Godwin. 2014. No Tests
Required: Comparing Traditional and Dynamic Predictors of Programming
Success. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14). ACM, New York, NY, USA, 469–474. https:
//doi.org/10.1145/2538862.2538930

[49] David A Wilder, William A Flood, and Wibecke Stromsnes. 2001. The Use
of Random Extra Credit Quizzes to Increase Student Attendance. Journal of
Instructional Psychology 28, 2 (2001), 117–120.

[50] Daniel Zingaro, Michelle Craig, Leo Porter, Brett A. Becker, Yingjun Cao, Phill
Conrad, Diana Cukierman, Arto Hellas, Dastyni Loksa, and Neena Thota. 2018.
Achievement Goals in CS1: Replication and Extension. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
Association for Computing Machinery, New York, NY, USA, 687–692. https:
//doi.org/10.1145/3159450.3159452

175

https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/3264507
http://bit.ly/WSSSLI
https://doi.org/10.1145/3293881.3295783
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1109/EIT.2017.8053321
https://doi.org/10.1007/978-0-387-35619-8_4
https://doi.org/10.1145/1047124.1047422
https://doi.org/10.1145/2462476.2462507
https://doi.org/10.1145/2462476.2462507
https://doi.org/10.1145/2729094.2742587
https://doi.org/10.1145/2729094.2742587
https://doi.org/10.1145/3304221.3319735
https://doi.org/10.1145/2839509.2844612
https://doi.org/10.1145/2960310.2960315
https://doi.org/10.1145/2960310.2960315
https://dl.acm.org/doi/10.5555/3282588.3282599
https://doi.org/10.1145/1138403.1138436
https://doi.org/10.1145/1138403.1138436
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3059009.3081327
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1207/s15328023top2004_13
https://doi.org/10.1207/s15328023top3304_4
https://doi.org/10.1207/s15328023top3304_4
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/3197091.3197101
https://doi.org/10.1080/08993408.2019.1612679
https://doi.org/10.1145/1044550.1041669
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1145/3159450.3159452
https://doi.org/10.1145/3159450.3159452

	Abstract
	1 Introduction
	1.1 Research Questions

	2 Related Work
	2.1 Predicting Programming Performance
	2.2 Extra Credit and Optional Exercises

	3 Approach
	3.1 Programming Extra Credit Assessments
	3.2 Non-Programming Extra Credit Assessments
	3.3 Extra Credit Engagement

	4 Results & Discussion
	4.1 Baselines: Grades and Gender
	4.2 RQ1: Extra Credit as a Differentiator
	4.3 RQ2: Gender
	4.4 RQ3: Nature of Extra Credit

	5 Limitations & Considerations
	6 Contributions & Moving Forward
	Acknowledgments
	References



