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Abstract. Novel view video synthesis aims to synthesize novel view-
points videos given input captures of a human performance taken from
multiple reference viewpoints and over consecutive time steps. Despite
great advances in model-free novel view synthesis, existing methods
present three limitations when applied to complex and time-varying
human performance. First, these methods (and related datasets) mainly
consider simple and symmetric objects. Second, they do not enforce
explicit consistency across generated views. Third, they focus on static
and non-moving objects. The fine-grained details of a human subject
can therefore suffer from inconsistencies when synthesized across differ-
ent viewpoints or time steps. To tackle these challenges, we introduce a
human-specific framework that employs a learned 3D-aware representa-
tion. Specifically, we first introduce a novel siamese network that employs
a gating layer for better reconstruction of the latent volumetric repre-
sentation and, consequently, final visual results. Moreover, features from
consecutive time steps are shared inside the network to improve tempo-
ral consistency. Second, we introduce a novel loss to explicitly enforce
consistency across generated views both in space and in time. Third, we
present the Multi-View Human Action (MVHA) dataset, consisting of
near 1200 synthetic human performance captured from 54 viewpoints.
Experiments on the MVHA, Pose-Varying Human Model and ShapeNet
datasets show that our method outperforms the state-of-the-art baselines
both in view generation quality and spatio-temporal consistency.
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Fig. 1. Our method combines a siamese network architecture and rotational-temporal
supervision for higher quality novel view video generation of human performance. Com-
pared to Olszewski et al. [18], ours generate higher quality and more consistent results
across views (left-right) and time steps (top-down). Model used for training with an
unseen animation sequence, 4 input views.

1 Introduction

Novel View Synthesis (NVS) aims to synthesize new views of an object given dif-
ferent known viewpoints. Recently, a number of learning-based approaches have
enabled the view synthesis by direct image or video generation without explicit
3D reconstruction or supervision [18,25]. Applying high-quality, accurate novel
view synthesis to human action performance videos has a variety of applica-
tions in the area of AR/VR, telepresense, volumetric videos, and so on. Existing
approaches present three shortcomings when applied to the human novel view
video synthesis task. First, they focus on objects with simple shapes and strong
symmetry, and perform quite poorly on deformable and asymmetric shapes like
the human body. Second, current NVS methods do not enforce explicit consis-
tency between different generated viewpoints, which does not guarantee consis-
tency among generated views (Fig. 1, left). Third, current NVS methods focus on
static objects, while human motion cannot be modeled by simple rigid transfor-
mations of existing (latent) volumetric representations. Dynamic articulations of
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body parts, like limbs and heads, can therefore suffer from significant inconsis-
tencies when synthesizing novel views over time (Fig. 1, left). Moreover, existing
NVS datasets are either not designed for the human NVS task [1], are too limited
to support learning-based approaches [8], or are not publicly available [6,18]. In
this paper, we therefore focus on synthesizing a temporally and spatially con-
sistent novel view video of a human performance captured over time from fixed
viewpoints. In particular, we present a novel end-to-end trainable video NVS net-
work, combined with effective rotational and temporal consistency supervisions,
and a synthetic dataset to further support research in this domain.

Contributions. Our model is based on recent NVS methods using latent volu-
metric representations that can be rendered by a learnable decoder [6,18,25]. It
consists of a pair of siamese encoder-decoder networks, each receiving the input
RGB video frames of the human performance captured from multiple viewpoints
from two consecutive time steps. The temporal features of the inputs are shared
between the two networks in order to enhance the novel view reconstruction
video quality and temporal consistency. We also present a novel volume gating
layer to improve the latent volumetric representation by adaptively attending on
the valid volume points only when filling in missing parts during the novel view
reconstruction. Moreover, we explicitly enforce rotational and temporal consis-
tency across generated views to provide superior reconstruction performance,
and demonstrate the effectiveness of this approach in capturing the complexity
of human motion across different viewpoints and time steps. It is worth noting
that the proposed rotational consistency supervision is applicable to image-level
synthesis and non-human objects as well. Indeed, our approach evaluated on the
ShapeNet [1] cars and chairs categories achieves state-of-the-art performance.
Finally, we collect and publicly release the synthetic Multi-View Human Action
(MVHA) dataset, composed of 30 different 3D human models animated with 40
different Mocap sequences, captured from 54 different viewpoints. Results on our
MVHA, ShapeNet [1] and Pose-Varying Human Model (PVHM) [37] datasets
confirm both quantitatively and qualitatively the superior performance of the
proposed approach compared to start-of-the-art baselines for the NVS task.

The remainder of this paper is structured as follows. Section 2 presents related
works, while Sect. 3 presents the network architecture, volume gating convolu-
tions, temporal feature augmentation, and the MVHA dataset. Section 4 reports
quantitative and qualitative results, while Sect. 5 concludes the paper.

2 Related Work

In this section, we review prior works in the areas of 2D-based novel view synthe-
sis, 3D-based novel view synthesis, and existing datasets available for the human
NVS task.

2D-Based Novel View Synthesis. Tatarchenko et al. and Yang et al. propose
to synthesize novel views by regressing the pixel colors of the target view directly
from the input image using a Convolutional Neural Network (CNN) [28,35].
Instead of starting from an empty state, pixel-flow based approaches leverage
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pixel-flow to generate high-quality, sharp results [19,27,36]. These works usually
use flow prediction to directly sample input pixels to reconstruct the output view.
Zhou et al. suggest moving pixels from an input to a target view leveraging
bilinear sampling kernels [9,36]. The approach by Park et al. achieves high-
quality results by moving only the pixels that can be seen in the novel view, and
by hallucinating the empty parts using a completion network [19]. Park et al.
also take advantage of the symmetry of objects from ShapeNet [1] by producing
a symmetry-aware visibility map [19]. Our human novel view synthesis task
cannot fully take advantage of this approach since humans can present highly
asymmetric poses. Sun et al. further improve these results by aggregating an
arbitrary number of input images [27]. Eslami et al. use a latent representation
that can aggregate multiple input views, which shows good results on synthetic
geometric scenes [3]. Unlike the previous NVS works that move or regress pixels,
Shysheya et al. regress texture coordinates corresponding to a pre-defined texture
map [24].

3D-Based Novel View Synthesis. Works embedding implicit spatial consis-
tency in the NVS task using explicit or latent volumetric representations have
shown promising reconstruction results. Several recent methods reconstruct an
explicit occupancy volume from a single image, and render it using traditional
rendering techniques [2,5,10,22,29,32–34]. Methods leveraging signed-distance-
field-encoded volumes [20,23], or RGBα-encoded volumes [12] have achieved
excellent quality while overcoming the memory limitations of voxel-based rep-
resentations. Saito et al. predict the continuous inside/outside probability of
a clothed human, and also infer an RGB value at given 3D positions of the
surface geometry, resulting in a successful recovery of intricate details of gar-
ments [23]. We do not compare to these methods [20,23] as they require ground
truth geometry for the supervision [20,23], and as Lombardi et al. does not
support generalization to unseen subjects [12]. Rather than generating explicit
occupancy volumes, several methods generate latent volumetric representations
that can be rendered by a learnable decoder [10,15,16,18,22,25,26]. Sitzmann
et al. introduce a persistent 3D feature embedding to address the inconsistency
between views synthesized by generative networks, which can occur due to a lack
of 3D understanding [25,26]. Olszewski et al. generate a latent volumetric rep-
resentation that allows 3D transformations and a combination of different input
view images [18]. Moreover, their network does not require any 3D supervision
and produces state-of-the-art results for the NVS task on ShapeNet. The main
difference between our work and those by Sitzmann et al. [25,26] is that we
strengthen the spatial consistency by introducing explicit rotational consistency
supervision, and by also introducing implicit and explicit temporal consistency
to better cope with the human novel view video synthesis task, while Sitzmann
et al. do not consider temporal aspect.

Datasets for Human Novel View Synthesis. The Human3.6M dataset pro-
vides 3.6 million human poses and corresponding images from 4 calibrated cam-
eras [8]. Collecting these datasets requires complex setup with multiple cameras,
which is expensive and time-consuming. To address this limitation, synthetic
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methods have been proposed. The SURREAL dataset provides a large number
of images generated with SMPL body shapes and synthetic textures, together
with body masks, optical flow and depth [13,31]. The Pose-Varying Human
Model (PVHM) dataset provides RGB images, depth maps, and optical flows of
22 models [37]. The 3DPeople dataset contains 80 3D models of dressed humans
performing 70 different motions, captured from 4 different camera viewpoint [21].
Many of the existing learning-based NVS works are built using the ShapeNet
dataset [1], which provides 54 reference viewpoints. In contrast, most of the
aforementioned human datasets only provide data from relatively few reference
viewpoints, preventing existing NVS approaches to be directly applied to the
human NVS tasks. The MVHA synthetic dataset we collect contains 30 3D
models animated with 40 Mocap sequences each rendered from 54 viewpoints.
Compared to the PVHM dataset, we provide much more diverse outfits (e.g.,
short/long sleeve, pants, and skirts, different types of hats and glasses, etc.),
complex motion sequences, and higher resolution images.

3 Proposed Method

3.1 Problem Definition

A human performance captured from view k, out of K available views, consists
of T consecutive RGB frames Ik

1:T := {Ik
1 , Ik

2 , ..., Ik
T }. Given a set of input Ik

1:T

with k = 1, . . . , K, our goal is to directly synthesize a novel view video Îq
1:T so

that: 1) given time step t, views generated across different query viewpoints q
are consistent among each other and 2) given query q, temporally consecutive
frames are consistent among each other. We simplify the problem of optimizing
p(Îq

1:T |Ik
1:T ) by factorizing the conditional distribution to a product form:

p(Îq
1:T |Ik

1:T ) =
T∏

t=1

p(Îq
t |Ik

t , Ik
t−1). (1)

In our experiments, we sample two consecutive frames for each network feed-
forward. During training, we augment the supervision signal using the symme-
try between time steps t and t − 1 by learning p(Îq

t , Îq
t−1|Ik

t , Ik
t−1). The volume

used in our paper is centered on the target object and its axis is aligned with
the camera coordinate. Perspective effects caused by pinhole camera projection
and camera intrinsic parameters are approximately learned by the encoder and
decoder networks, rather than handled explicitly.

3.2 Network Architecture

Inspired by 3D structure-aware view synthesis pipelines [10,17,18,22,25], input
pixels Ik

τ (with τ = t, t − 1) are transformed from 2D-to-3D and then 3D-to-2D
throughout the layers to be mapped onto the target view pixels Iq

τ . An overview
of the proposed architecture design is given in Fig. 2. Our model is a two-tower
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Fig. 2. Our network is a two-tower siamese network consisting of four blocks: encoder,
volume completion, temporal augmentation, and decoder.

siamese network consisting of four blocks: encoder, volume completion, temporal
augmentation, and decoder. For each tower, the encoder E takes Ik

τ as input,
and generates a volumetric representation Zk

τ of Ik
τ through a series of 2D-conv,

reshape and 3D-conv layers. The 3D representation is then transformed to a
target view Zk→q

τ via trilinear resampling. Multiple input views can be used
by adding the representation over all k, Zq

τ =
∑

k Zk→q
τ . These 3D features

are fed into the proposed volume completion and are reshaped along the depth
axis to become 2D features Uq

τ . Uq
τ then become U ′q

τ after going through the
proposed temporal augmentation. The decoder D generates the output image
Iq
τ starting from U ′q

τ . The siamese network is coupled with two input-output
pairs from consecutive time steps as Iq

t , Iq
t−1 = f(Ik

t , Ik
t−1), and the two towers

are connected at the temporal fusion module.

Gated Volume Completion. The volumetric representation is initialized with
the visible volume points generated from the source views Ik

τ (with τ = t, t − 1).
The remaining unseen volume points should be hallucinated so as to generate
plausible target views when rendered by the decoder. Our volume completion
module consists of a series of 3D convolutions to inpaint the missing volume
points. In vanilla 3D convolutional layers, all feature points are treated as the
same valid ones, which is appropriate for tasks with complete inputs such as
3D object detection. In the presence of empty voxels in our completion prob-
lem, however, it is ambiguous whether current locations belong to the fore-
ground voxels that should be hallucinated, or to the background that must
remain unchanged. Vanilla 3D convolutions apply the same filters on all seen
and unseen foreground, background and mixed voxels/features, leading to visual
artifacts such as color discrepancy, blurriness and omission of shape details when
synthesized to a target view by the decoder (Fig. 1).

To address this problem, we propose the volume gating convolutions to
improve the latent volumetric representation computed by the network. The
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volume gating convolution learns a dynamic feature gating mechanism for each
spatial location, e.g., foreground or background voxels, seen or unseen voxels.
Together, the gating operation can properly handle the uncertainty of voxel occu-
pancy. Such explicit decoupling of the foreground object is also necessary to deal
with real images with arbitrary background, which should remain unchanged in
any possible target views. Specifically, we consider the formulation where the
input 3D features are firstly used to compute gating values gk→q ∈ R

H×W×D

(with H, W , and D being the width, height, and depth of the latent volumetric
representation). By construction, however, the employed 3D volume is memory
inefficient, i.e., O(n3) w.r.t. the resolution, which is another limitation in creating
the voxel-wise gating values [25]. Thus, we propose that full 3D gating may be
conveniently approximated by decomposing it into 2D spatial gatings, i.e., O(n2),
along three canonical directions, i.e., gHW k→q ∈ R

H×W×1, gHDk→q ∈ R
H×1×D,

and gWDk→q ∈ R
1×W×D. It is worth noting that the gates depend only on input

and query viewpoints k and q, and not on the timestep τ .
To obtain the 2D gating values, we first average-pool the input volume fea-

tures Zk→q
τ along one spatial dimension (we will omit the superscript k → q

for the remaining of this paragraph for ease of notation). For example, ZHW
τ ∈

R
C×H×W×1 is obtained by average-pooling along the depth axis. We then apply

average-pooling and max-pooling operations along the channel axis and concate-
nate them to generate an efficient feature descriptor FHW

τ ∈ R
H×W×2. The 2D

gating is generated by applying a 5 × 5 convolution on the concatenated fea-
ture as gHW = σ(w(FHW

τ )) ∈ R
H×W×1. gHD and gWD are computed similarly

and each of them achieves canonical-view volume carving. The full 3D gating
is a geometrical mean of the three 2D gating values with shape broadcasting
as g = (gHW � gHD � gWD)1/3 ∈ R

H×W×D, which encodes where in HWD
volume space to emphasize or suppress. The final output is a multiplication of
the learned feature and gating value Z ′k→q

τ = Zk→q
τ � gk→q, where g is copied

along the channel axis. Our proposed volume gating is memory-efficient, easy to
implement and performs significantly better at correcting color discrepancy and
missing shape details in the generated views (see Sect. 4).

Temporal Feature Augmentation. Up to the completion of the 3D features,
our siamese network treats human performance at each time step separately,
producing Z ′q

t−1 and Z ′q
t from each tower independently. These 3D features are

then reshaped along the depth dimension to become frontal-view 2D features
Uq

t−1 and Uq
t with respect to the query viewpoint. At this point, we propose a

temporal feature augmentation module to leverage complementary information
between t − 1 and t. First, this approach allows us to improve the per-frame
quality synthesis, since consecutive time steps might reveal more visible pixels
of the same model and, therefore, leads to better occlusion handling. Second,
temporal coherency is greatly improved as the generation of the final output is
conditioned on both consecutive time steps.

Given the projected 2D features Uq
t−1 and Uq

t , our temporal augmentation
module learns the flow warping to align Uq

t−1 onto Uq
t . The flow submodule

receives an initial optical flow φinit
t→t−1 computed by FlowNet2 [7], and refine it
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for more accurate deep feature flow. The warped feature Ûq
t−1 is then multi-

plied with a non-occlusion mask Mt→t−1 calculated from the warping error as
e−α‖It−Wt→t−1(It−1)‖2

2 , and then element-wise summed with the current features
as U ′q

t = Uq
t +Mt→t−1 ·Ûq

t−1. The above operations are designed to be performed
in a temporally bi-directional manner, i.e., from t − 1 to t and vice versa. Once
U ′q

t−1 and U ′q
t are obtained, they are fed into the decoders to generate the two

consecutive frames of the query viewpoint Îq
t−1 and Îq

t .

3.3 Rotational and Temporal Supervision

Our goal is to generate novel view videos of a human performance that is con-
sistent across query viewpoints and time steps, which cannot be guaranteed by
simply providing multiple input viewpoints at each time step. To this end, we
design a loss function that can explicitly enforce both rotational and temporal
consistency in the generated views. It is worth noting that, during training, our
network generates additional target views in addition to the query viewpoint q
that are used to enforce rotational consistency. At testing time instead, only the
query viewpoint is generated.

Query Loss. We first calculate the reconstruction loss on the individual query
view (e.g., between Iq

τ and Îq
τ ) as follows:

Lquery = λRLR + λP LP + λSLS + λALA (2)

where LR denotes the L1 reconstruction loss, LP is the L2 loss in the feature
space of the VGG-19 network, LS is the SSIM loss, LA is the adversarial loss
calculated using the discriminator architecture from Tulyakov et al. [30].

Rotational Consistency Loss. To improve consistency, we let the network
generate two additional target views l ∈ La immediately adjacent to the query
view. These additional views help the network to synthesize complex shapes, by
providing additional information during the training process of the target view
q on the actual shape of the human subject, and are generated from the same
volumetric representation Zk

τ . Similarly as for the query viewpoint, we compute
the reconstruction loss Lrot1 for each additional adjacent view (e.g., between I l

τ

and Î l
τ ) in the same way as in Eq. 2 (excluding term LP in this case).

Next, to minimize inconsistencies between synthesized views, we consider
the warping error between the query view and the adjacent views. We compute
Wl→q, the function warping an image according to the backward flow between the
ground-truth images Iq

τ and I l
τ computed by FlowNet2 [7]. Next, we compute

Ml→q, the binary occlusion mask between the I l
τ and Wl→q(Iq

τ ) as Ml→q =
e−α‖Il

τ −Wl→q(I
q
τ )‖2

2 [11]. We use a bi-linear sampling layer to warp images and
set α = 50 (with pixel range between [0, 1]) [9]. We apply this occlusion mask to
both Î l

τ (the additional generated view) and the warped generated query view
Wl→q(Îq

τ ), and compute the warping loss as follows:
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Lrot2 =
∥
∥
∥Ml→q ∗ (Îl

τ − Wl→q(Î
q
τ ))

∥
∥
∥
1

(3)

The final rotational loss is given by:

Lrot =
1

|La|
∑

l∈La

Lrot1 + λRLrot2 (4)

Temporal Consistency Loss. The temporal loss is calculated as the sum of
the bi-directional warping errors (e.g., from t − 1 → t and t → t − 1) between the
generated query images Îq

t−1 and Îq
t . First, we calculate Wt→t−1, the function

warping the ground-truth image Iq
t−1 towards Iq

t , computed by FlowNet2 [7].
Next, we calculate the binary occlusion mask Mt→t−1, and apply it to the
generated view at time t, Îq

t , and the warped generated view at time t − 1,
Wt→t−1(Î

q
t−1). We repeat the same calculation for the warping error t → t − 1

and compute the final temporal loss as follows:

Ltemp =
∥
∥
∥Mt→t−1 ∗ (Îq

t − Wt→t−1(Î
q
t−1))

∥
∥
∥
1

+
∥
∥
∥Mt−1→t ∗ (Îq

t−1 − Wt−1→t(Î
q
t ))

∥
∥
∥
1

(5)

Overall Loss. The overall training loss Ltot is given by:

LTotal =
1

|{t, t − 1}| (
∑

τ∈{t,t−1}
(λqueryLquery + λrotLrot) + λtempLtemp), (6)

where t − 1 and t are the two consecutive time steps. The weights λquery,
λrot, λtemp are set to 2, 1, 1, respectively.

3.4 Multi-View Human Action (MVHA) Dataset

In order to support the development of learning-based NVS solutions that are
applicable to human performance, we introduce the Multi-View Human Action
(MVHA) dataset. Compared with previous similar datasets that only provide
4 captured viewpoints [8], ours provide 54 different viewpoints for each unique
model (18 azimuths and 3 elevations). Moreover, our dataset is not composed
of static captures, but of synthetic human subjects moving in extremely diverse
modality. The detailed description and samples of the MVHA dataset can be
found in the supplementary material.

Body and Clothing Models. We generate fully textured meshes for 30 human
characters using Adobe Fuse [4]. The distribution of the subjects’ physical char-
acteristics covers a broad spectrum of body shapes, skin tones, outfits and hair
geometry. Each subject is dressed in a different outfit including a variety of
garments, combining tight and loose clothes.
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Table 1. Quantitative results (with 4 input views) on the MVHA dataset for the
ablation study (1a) and comparison with TBN approach [18] under different testing
scenarios (1b). Arrows indicate the direction of improvement for the metric under
consideration.

Mocap Sequences. We gather 40 realistic motion sequences from Adobe Mix-
amo [14]. These sequences include human movements with different complexity,
from relatively static body motions (e.g., standing) to very complex and dynamic
motion patterns (e.g., break-dance or punching).

Camera, Lights and Background. A 3D rendering software is used to apply
different Mocap animation sequences to the 30 3D models. The illumination is
composed of an ambient light plus a directional light source. We use a projective
camera with 512 × 512 pixel resolution. The distance to the subject is fixed to
ensure the whole body is in view at all times. Every sequence is rendered from 54
camera views, 18 azimuths at 20-degree intervals and 3 elevations at 10-degree
intervals. For every rendered view and time step, we provide the final RGB image
and associated binary segmentation mask. Custom background can be added by
taking advantage of the released segmentation masks.

4 Experiments

In this section, we present the results in terms of view generation quality,
and rotational and temporal consistency. We present quantitative and qual-
itative results on our MVHA dataset, as well as the PVHM and ShapeNet
datasets [1,37]. To evaluate the view generation quality, we use the L1 and
SSIM scores between the generated and ground truth views. The consistencies
between adjacent generated views and between consecutive time steps are eval-
uated using the Rotational Loss (RL), Eq. 4, and Temporal Loss (TL), Eq. 5,
respectively. Unless otherwise stated, all results are reported for models not used
during training. The details on the dataset splits, training process, additional
results and video results are available in the supplementary material.

4.1 Results on the MVHA Dataset

In this section, we present the performance of the proposed approach for the
MVHA dataset. Note that we used 18 azimuths with a fixed elevation throughout
the experiments. We investigate the ablative impact of the proposed rotational
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Fig. 3. Ablation study (left: fixed time step, varying query viewpoint; right: fixed
query viewpoint, varying time step). Rotational and temporal supervision remarkably
improve quality and consistency of the novel view synthesis, both across query view-
points (left) and time steps (right). Model seen during training, unseen pose, 4 input
views.

and temporal supervisions, the generalization ability of our method to unseen
models and poses, and provide a visual analysis of the learned volume gating.

Ablation Study. The ablation study investigates the impact of the proposed
Rotational Consistency (RC) and Temporal Consistency (TC) on the novel view
synthesis quality, both quantitatively (Table 1a) and qualitatively (Fig. 3). Both
methods improve the baseline performance and significantly reduce the rota-
tional (Table 1a, rows 1–2) and temporal (Table 1a, rows 1–3) warping errors
in the final results. Visual results confirm the gains brought by the proposed
supervisions (Fig. 3). In addition, we find that rotational and temporal super-
visions have a complementary contribution to the per-frame generation quality,
each improving the baseline. With both RC and TC together, we achieve the
best performances overall, across all metrics (Table 1a, row 4).

Visualization of Learned Volume Gating. As presented in Sect. 3.2, we
allow the network to learn the volumetric mask g automatically. Memory-
intensive 3D gating operations are decomposed into three 2D gatings along the
depth, height and width axes of the latent volumetric representation. We visu-
alize these learned gating values gHW , gWD and gHD in Fig. 5. We observe the
gating masks have different values at each spatial location, especially based on
whether the current location is on the foreground or not. More interestingly, the
three gating masks attend to the foreground shape captured at each correspond-
ing canonical view. This also implies that our learned volumetric representation
is indeed aware of 3D structure, and consequently, the learned volume gating
layer can achieve soft volume carving.

4.2 Results on PVHM and ShapeNet Datasets

We compare our view generation quality with diverse well-known NVS meth-
ods [6,18,19,28,36,37]. We first compare the performance of these methods
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Fig. 4. Our method generates high-quality visual results in case of models unseen
during training, both for seen poses (a) and unseen poses (b) (4 input views).

Table 2. Quantitative results on the PVHM dataset [37], for our method and several
baseline methods.

Method MSE↓ SSIM↑
Tatarchenko et al. [28] 96.83 .9488

Zhou et al. [36] 131.6 .9527

Park et al. [19] 85.35 .9519

Zhu et al. [37] 72.86 .9670

Huang et al. [6] 89.44 .9301

Olszewski et al. [18] 70.34 .9695

Ours 61.68 .9807

on the PVHM dataset [37], to show that our approach can produce superior
results on a different dataset with similar characteristics as the one we collected
(Table 2). We use the Mean Squared Error (MSE) and Structural Similarity
Index (SSIM) to quantitatively compare the different approaches, as done by
Zhu et al. [37]. Our method produces the best results overall, for both metrics
(Table 2). We also show a qualitative comparison with some of the most recent
human-specific methods [6,18,37] in Fig. 6. Zhu et al. [37] show artifacts on the
face region, due to the failure of transferring pixels from visible parts. Huang
et al. [6] cannot successfully recover the whole body shape. Olszewski et al. [18]
show incomplete reconstruction of the arm and noticeable color alterations. Our
method is able to reconstruct fine-grained details, including limbs and wrin-
kles, with higher fidelity with respect to the original colors. Both qualitative
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Fig. 5. Example visualization of the gate volumes, for three views and two models of
the MVHA dataset.

Fig. 6. Qualitative results on the PVHM dataset, for our approach and different base-
lines [6,18,37]. Our approach results in overall superior performance.

Table 3. Quantitative results on the ShapeNet dataset [1], for our method and several
baseline methods (4 input views), on both car and chair categories. We additionally
report the rotational loss for our approach and Olszewski et al. [18].

Views Methods Car Chair

L1 ↓ SSIM↑ RL↓ L1 ↓ SSIM↑ RL↓
4 Tatarchenko et al. [28] .112 .890 – .192 .900 –

Zhou et al. [36] .081 .924 – .165 .891 –

Sun et al. [27] .062 .946 – .111 .925 –

Olszewski et al. [18] .059 .946 .076 .107 .939 .073

Ours .051 .960 .059 .087 .958 .061

and quantitative results confirm that our approach results in better novel view
synthesis reconstruction for human subjects (Fig. 4).

We finally demonstrate that the proposed method can generalize as well for
static, inanimate objects such as ‘cars’ and ‘chairs’. In this case, we compare
our method to four baselines from recent literature [18,27,28,36]. Table 3 and
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Fig. 7. Qualitative results on the ShapeNet dataset [1], for an example car and chair
model (4 input views). Our approach outperforms TBN [18] both in terms of generation
quality and consistency across generated views.

Fig. 7 report quantitative and qualitative results, respectively. Together with the
L1 and SSIM metric, we also report the rotational loss for ours and Olszewski
et al. [18]. For all metrics, for both the car and chair categories, we outperform
all baselines by a consistent margin (Table 3). Figure 7 visually confirms that
the quality of the generated views is highly improved with our approach, and
that we can keep a high degree of consistency across adjacent generated views.

5 Conclusion

In this paper, we propose a novel siamese network architecture employing vol-
ume gating convolutions and temporal feature augmentation to tackle the prob-
lem of novel view video synthesis of human performance. We also introduce
explicit rotational and temporal supervision to guarantee high-quality recon-
structions and consistency across the generated views. To support future research
in this domain, we collect the Multi-View Human Action (MVHA) dataset, com-
posed of near 1200 synthetic, animated human performance captured from 54
viewpoints. Quantitative and qualitative results on our MVHA, PVHM, and
ShapeNet datasets confirm the gains brought by the proposed approach com-
pared to state-of-the-art baselines.
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