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Abstract— Robot prosthetic hands intend to replicate one’s
lost abilities through intuitive control. So far, control methods
that rely heavily on the human input such as Electromyographic
(EMG) and Electroneurographic (ENG) signals have been pre-
dominantly studied. However, these methods face issues such as
lack of robustness resulting in abandonment of this technology
by the users. There is a need for a paradigm shift in the robot
prosthetic hand control methods. With this regard, we propose
an end-to-end learning of control policy for a robot prosthetic
hand through reinforcement learning. Imitation learning has
been fostered to help with the sparse reward setting in the
hard-to-explore state-space of the problem. The results in
simulation show the feasibility of successfully learning an end-
to-end policy for grasping objects by robot prosthetic hands,
potentially increasing robustness for grasp control of future
robot prosthetic hands.

I. INTRODUCTION

There are about 1.6 million people in the United States
alone with at least one limb amputation, from whom about
500 thousand suffer major or minor upper extremity ampu-
tation. This number is expected to reach double its amount
by 2050 [1]. Creating prostheses to retrieve part of the lost
ability for amputees has been a research topic for a long
time in the human history. Functionality, intuitiveness and
ease of use, as well as robustness are three major factors
that drive the research in this field. State-of-the-art human-
in-the-loop control methods rely heavily on human input,
such as EMG and ENG signals, and infer human intent
by pattern recognition techniques. However, the proposed
solutions have rarely penetrated into the market, and even the
older EMG-based controllers such as on-off methods have
a high rejection rate, as statistics show [2], [3]. There is a
need for a new paradigm of control, in which robot has more
autonomy and human is less relied on. This work proposes
a reinforcement learning (RL) with imitation learning (IL)
framework for learning to grasp objects without relying on
EMG signals.

The motivation for the proposed method is specialized
environments in which we can have access to signals other
than just the EMG signal, e.g. camera vision and hand
tracking information. These environments can be built, for
example, for work cells specialized for amputees in factories
or amputees’ homes. Our purpose is to provide a solution

*This work was supported by NSF under the award number 1544895,
1928654, 1935337 and 1944453.

LElectrical and Computer Engineering Department,
Northeastern University, Boston, MA 02115, USA
{sharif.mo,deniz,tpadir}@northeastern.edu

2Khoury College of Computer Sciences, Northeastern University, Boston,
MA 02115, USA c.amato@northeastern.edu

978-1-7281-5907-2/20/$31.00 ©2020 IEEE

‘EXPERT'
a

Se

~

(s,a,r5’)

ROBOT

~———

( é ﬂ
TL, >
>
SIMULATED
TRANSPORT = ENVIRONMENT "

TRAJECTORY H
. =)

(s,a,r5’)

2 @ﬂﬁ !

Y

J

Y3ddng
1no110Y
Y3ddng
143dx3

S

|
g
gos)

‘ AGENT '] <

TRAINER

SAMPLE

Fig. 1: The training loop of our RL problem. Expert and
agent transitions are stored in expert and rollout buffers,
respectively. For training, a mixture of samples from both
buffers is used.

that does not need EMG information processing and that
can provide faster and more reliable interaction with the
environment by an amputee. For this, the amputee does not
need to wear a new prosthetic in the specialized environment,
but the myoelectric hand that the amputee already uses can
switch to our controller once located in the specialized place.

EMG is the main human signal which is relied on for
controlling robot prosthetic hands. The main issue with
EMG controllers is lack of robustness in real life. Lack
of robustness is mainly attributed to the deterministic or
stochastic variations between the ideal lab settings and real-
life conditions, such as electrode number or shift [4], change
of skin-electrode impedance over time, muscle fatigue [5],
crosstalk effect [6], and stump posture change [7]. Frequent
calibrations is a practical solution for the lack of robustness
issue for commercial products, although reported as a source
of user inconvenience [8]. EMG-based control also puts
excessive mental and physical burden on the amputee to
run the hand. Over-emphasizing an EMG pattern to be
distinguished as a certain grasp or to maintain a grasp
causes early fatiguing of wearers of myoelectric hands [9].
Moreover, users of prosthetic hands with EMG-based control
need intense training sessions which is considered as another
issue for EMG-based methods [10].

To solve the above issues, it has been suggested to include



Fig. 2: Four frames of the trained policy performing a successful grasp.

signals besides EMG into the inference loop [11] in a hybrid
way. Integration of EMG with gaze information [12], RGB
camera [13], and inertial measurement units (IMUs) [14]
have already shown improvements in the overall control
process. There are also works which do not rely on EMG
processing for control at all. Kim et al. [15] used egocentric
cameras to control a wearable exo-glove using deep neural
networks for quadriplegic subjects grasping an object. A
particle-filter-based method is proposed in [16] to detect
human intention for grasp based on hand trajectory alone.
Ficuciello et al. [17] controls a robot hand in synergy space
for grasping an object using IL and then RL to improve the
results.

RL is a method to learn from interaction with environment
in real world or in simulation. RL enables learning from
data to deal with complexity of robot environments, without
actually coding for every possible case. Recent applications
of RL has demonstrated promising results in robot control
such as robot manipulation [18], [19] and dexterous ma-
nipulation [20]-[22]. Among the drawbacks of RL-based
methods are data-inefficiency, unstable training process, and
exploration with little or no intelligence. There have been
efforts to address these drawbacks by methods such as
imitation learning [21] and maximum entropy reinforcement
learning [23], [24].

Our work presented here introduces an RL-based shared-
autonomy framework to control a robot prosthetic hand,
using only the human hand trajectory as the input. Imitation
learning (IL) is used to guide the exploration of the robot in
the state space. It should be noted that this work is different
from [17], in which IL and RL are used to initialize and
refine synergy coefficients of a prosthetic hand and then
use a controller to reach those values without considering
the environment dynamics along the user hand transport
trajectory. In our approach, we use RL to find an end-
to-end controller that controls the hand actuators directly
from the measurements with regards to the environment
dynamics. By end-to-end learning, we mean learning actuator
commands directly from measured system states. Thus, the
main contributions of this work are: (1) formulating the
problem of robot prosthetic hand control as an RL problem,
and (2) introducing an IL-guided RL framework to learn to
control a robot prosthetic hand in an end-to-end manner in
simulation.

II. METHODOLOGY
A. Problem Statement

Consider a person with a transradial (below-elbow) ampu-
tation using a robot prosthetic hand to grasp an object from a
table top. The hand has 5 fingers, with 1 degree of actuation
each (5-DOF overall); however, for the sake of simplicity, we
reduce the action space to the first synergy of the hand when
all fingers are coupled to move equally, i.e. R'. Assume the
system measures the states in real-time, which are the robot
joint positions and velocities as well as robot and object
6D pose and velocity in the space, i.e. R*® (see Table.l).
We are interested in calculating the robot joint trajectories
to pick the object when the prosthetic hand controlled by
the human approaches the object along a rectilinear hand
transport trajectory. We have tested other variants as state
observations as indicated in Table.III.

The robot prosthetic hand grasping problem is different
from classic robot manipulation and grasping problem. In the
latter, the robot controls both hand transport and grasping;
however, in the former, the robot has no control over hand
transport but only the grasping. Here, we assume we know
a priori that the user intent is to grasp the object. Then,
the robot’s goal is to perform a successful grasp. We define
a successful grasp as a practical measure when the object
height is increased over a specified threshold. The hand
transport trajectory can be arbitrary; however, we assume a
rectilinear hand transport trajectory within the scope of this
study. The simultaneous contribution and collaboration of the
human and robot to the final goal, in a sense, categorizes the
problem as a shared-control problem.

In order to demonstrate the feasibility of our approach,
we focus on one grasp type, a cylindrical grasp, in which
all finger actuators are controlled by only one variable,
v € [—1,1], which is a normalized velocity command
to all finger actuators. The object is also limited to one
object type and size, i.e. a cylinder. A successful grasp is
rewarded sparsely +1, which encourages the agent to achieve
a successful grasp as fast as possible. Reward will be 0
otherwise. Different measurement sets are used as states in
this paper (Table III). The Oy measurement set is used unless
otherwise specified. The definitions of the measurement sub-
elements are presented in Table I.

B. Reinforcement learning problem

Consider an agent (i.e. robot) in an environment that
measures, at each time instant ¢, a state variable s; € S
and performs an action a; € A which can influence the
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TABLE I: Definition of measurement

Measurement  Size  Definition

position 25 Vector of all hand joint positions (11), hand pose (7), and object pose (7)
velocity 23 Vector of all hand joint velocities (11), hand velocity (6), and object velocity (6)
Trel 3 Relative position vector between the object and the hand

[|7ret ]| 1 Relative hand/object distance

1 Pret, |l 1 The norm of 2d projection of 7 on table top

closure (h) 1 A measure of hand flexion status, h = 0 for fully open, h = 1 for fully closed.

environment state, and accordingly receive a bounded reward
signal 7 : & X A = [Fmin, T"max]- This setting is formalized
by a Markov-Decision Process (MDP) (S, A, p,r), where
p:SxAxS — [0,00) is the state transition function
giving the distribution of the next state s;y; given current
state s; and action a;. The action space A is a continuous
space.

If the agent chooses its actions according to a stochastic
policy m(als) : & x A — [0,00), our goal is to find the
optimal policy 7*, which maximizes return (i.e the expected
sum of rewards) J(w) = ZZ;O E, [re(st, at)], where T
is the final time instant and E, indicates expectation with
respect to distribution of the visited states/actions under
policy 7. For infinite horizon T" — oo, a discount factor
v € [0,1) is multiplied by the reward function, to ensure
finite summation. We do not show the discount factor in the
following formulations for the sake of simplicity. Starting
from an arbitrary state s and following policy m, the expected
return would be defined as the state-value function, V (s) =

f;g E, [rt+x|st = s]. This function evaluates the value
of a policy from a given state, i.e. the reward expected to
be achieved from that state given that policy. The action-
value function, the expected return from state s, doing an
action a, and then following policy 7 is then defined as

A Tt
Q(s,a) 23, o Ex [regrlse = s,a, = al.

In RL, the policy is learned through interaction with
the environment. When the agent receives some rewards
based on its current policy, the question arises whether to
stay with the current policy to collect more rewards, or to
deviate from it to explore more of the uncharted environment
and to achieve an overall better policy. This is known as
the exploration vs. exploitation dilemma [25]. In maximum
entropy RL [23], this issue is addressed by maximizing the
entropy of the policy function alongside the environment
rewards, using the new objective function:

T
J(m) = Eaxlr(se,ar) + oH(n(]s1))]
t=0

A

where H (p(X)) = E[—log (p(X))] is the entropy func-
tion and « is the temperature parameter which weighs the
importance of the entropy term with respect to the reward
function. The result of this objective function is a policy
that explores the environment more broadly, learns multi-
modal behaviors, and learns faster [24]. We use Soft Actor-
Critic (SAC), which is an actor-critic method solving the
maximum entropy objective in an off-policy setting [24]. As
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an off-policy method, SAC uses a replay buffer D to store
all transition tuples (s¢, 7, at, S¢4+1) to be sampled later for
stochastic gradient updates. For the rest of the paper we do
not show « in equations since it can be scaled into reward
function by scaling it appropriately [24].

SAC is an actor-critic method and it keeps track of both
state-/action- value function (critic) and policy (actor). SAC
is based on a soft policy iteration method and includes two
steps: policy evaluations, i.e. calculating the state-/action-
value functions for a given policy, and policy improvements,
i.e. updating the policy so that the value functions increase.
We assume that V(s), Q(s,a), and m(als) are represented
by neural networks parameterized by 1, 6, and ¢. These
parameters will be updated by stochastic gradients by back-
propagating through the respective loss functions. In the
policy evaluation step, the state-value function parameters
are updated by using the squared residual error

() 5 (Veso-

- Esth

Eq,~r, [Qo(st,ar) —log mg(as)] )2] Y]

Also, the action-value function is updated by minimizing
the soft Bellman residual

1 . 2
Jq(0) = E(s,,a0)~D {2 (QG(Staat) - Q(Staat)) } , (2
where

Q(se,ar) = r(se, ar) + ’YES,,HNp[VJ,(SHl)]- 3)

Here, V; is a soft average of Vi, which uses the update
rule ¢ « (1 — 7)1 + 79, where T € [0, 1] (we refer to 7 as
the Polyak coefficient.)

In the policy improvement step, the policy is pushed
towards the exponentiation of the action-value function,
which is then projected into a tractable policy space by using
Kullback-Leibler divergence, resulting in the following loss

) o

exp(Qo(st; -))

Jx(¢) = Es,np [DKL (%(-lSt) Zo(s)
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Fig. 3: Our problem is hard to explore. If the fingers are too
flexed near the object, they will hit the object. If they are too
open, they would not have the opportunity to close in time
due to limited actuation speed of robot hands.

where Zy is the partition function which normalizes the
action-value function, and is intractable to compute. How-
ever, it is independent from policy parameters and thus has
no effect on the gradient.

C. Imitation learning

Due to the sparsity of rewards in this problem, it is very
unlikely for the agent to discover the rewards by random
exploration methods, e.g. e-greedy [25]. Our problem is an
instance of Keylock MDP where a sequence of actions are
needed to reach a far rewarding state [26]. For instance, in the
simplified state-space shown in Fig. 3 with the hand closure
and distance as states, the hand should be open at least at
the size of the object so it does not hit the object when
approaching. Moreover, the hand should not be completely
open, so that it does not have enough time to grasp the
object when its time to (due to limited actuator speed). This
means that only certain paths in the state-space will reach the
desired state, making the exploration problem hard. With this
regard, we use guided exploration through imitation learning
(IL) to explore the rewarding states more readily. As the
demonstrator, we use a scripted demonstrator with oracle
access (i.e. access to all needed underlying states) that stores
the generated transitions in an expert replay buffer D’. A
constant demo-use ratio 5 € [0,1] determines the ratio of
samples in the mini-batch to sample from the rollout buffer
D and expert replay D’, respectively. See Algorithm 1 for
the complete algorithm. For a diagram of the overall process
refer to Fig. 1.

This approach is known as Dataset Aggregation (DAG-
GER) method [26]. In DAGGER it is suggested to anneal
the demo-use ratio 3, whereas in our case we found it
unnecessary in practice.
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Algorithm 1: Integration of Soft Actor-Critic [24] with
imitation learning. 7 indicates the demonstrator policy.
M 1is the minibatch size. 3 is the ratio of demo transitions
in the batch. Stochastic gradients on a sampled mini-
batch B with respect to 1, , and ¢ are shown as \V s
VB, and VB, respectively. Learning rates for ¢, 6, and ¢
parameters are shown using Ay, Ag, and A, respectively.

Initialize parameter vectors v, 1/3, 0, ¢.
foreach iteration do

foreach environment step do

ar ~ Tg(ar|st)

St+1 ~ p(St+1(st, ar)

D<«+DuU {(5t7 Gy, T(St, at), st—l—l)}
end

foreach environment step do

ay ~ ﬁ(at|5t)

Se+1 ~ p(St+1(se, ar)

D/ < DI U {(St, ag, T(St, at)7 St+1)}
end

foreach gradient step do

Be,i ~ D' foric {L ) LﬂMJ}
B,.,~D forie{l,---,M— |BM]}
B+ B, UB.

Y = A VI (¢)

0« 60— \gVE Jo(0)

dz — ¢ - AWY§JW(¢)

(R O e L )

end

end

D. Scripted expert

As the expert in the IL, we use a scripted controller which
loosely resembles human aperture control behavior [27].
The demonstrator is a two-phase proportional (P) controller
which gets hand closure & and normalized relative hand-
object distance d (with respect to initial distance) as inputs
and generates joint velocities as output.

{

where K is the controller gain, hopen and Agjoseq are the
targets for the hand closure in the first and second phases,
respectively, and d, is the critical normalized relative hand-
object distance to switch controller phase. This controller
first tries opening the hand up to some closure, then starts
closing the hand when the distance is smaller than a thresh-
old, so the object can be grasped. This controller will guide
the exploration of the RL problem to the rewarding states
through IL, thus making the agent to learn useful policies.

K (hopen — h)

C(h,d
( ) K(hclosed - h)

&)

E. Hand transport model

As stated before, in the robot prosthetic hand control
problem, the human is responsible for robot hand transport,



while robot only controls the fingers/wrist. We use a human-
based model to provide hand transport trajectories to the
environment (simulated transport trajectory blocks in Fig. 1).
In order to provide realistic trajectories for hand transport
model, we use one of the classic hand transport models in
the literature provided by Hoff and Arbib [27]. They provide
an optimal controller based on time-to-arrive of hand D, i.e.
the time remaining until the hand reaches the object. The
cost function for this optimal control is the integral of the
hand jerk over the overall hand transport duration 7":

[ ()

where x is the hand displacement coordinate in 1D as a
function of time. Flash and Hogan [28] have shown that
transport components in higher dimensions are decoupled,
i.e. the same controller can be applied to all displacement
components. By assuming zero velocity and acceleration,
both initially and at the end, the open-loop non-stationary
controller fulfilling Eq. 6 in 1D is:

A3z

dt3 ©

' 0 1 0 0

X = 0 0 1 X + 0 U
—60/D® —36/D? —9/D 60/D3

where X = [z,#&,%] is the vector of hand displacement,

velocity, and acceleration in 1D, D = T —1 is the remaining
time to the goal, and w is the control input, here the reference
value for z. Because lim;_,7 D = 0 which leads to division
by zero near the final time, we regularize D by D = T —t+6
where § > 0 ensures D > 0. This will deviate the trajectory
slightly from the minimum jerk trajectory, however.

F. Implementation

For implementation purposes, we used Google Deep-
mind’s dm_control [29], which is a wrapper for MuJoCo
[30], to simulate the environment. A new hand model
was designed based on MuJoCo HAPTIX [31]. The neural
network architectures were selected as the original paper
[24]. PyTorch [32] was used for implementation of the
neural network policy and (action-) value functions. For
implementation of the SAC method, Digideep package [33]
was used. The initial position of the hand in cylindrical frame
(r,0) was uniformly sampled from r € [20cm,45¢m] and
0 € [r/14,7/7]. The hand transport trajectory was set to a
piecewise rectilinear motion; one piece from the initial point
to the object grasp point, and the second piece going upwards
for another 20cm in the direction of +z. Each piece was
generated by a minimum-jerk motion model as was described
in II-E. A +1 reward was given at each time instant where the
object height was above a 15¢m threshold. The simulation
was terminated without a penalty if the object height dropped
by 0.5cm. We found that penalties make learning even harder
due to their adverse effect on exploration; the agent will try
to avoid danger zones by keeping the fingers always open.
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TABLE II: Hyperparameters used for training

Hyperparameter Value
SAC

Learning rate (Ag, Av, Ar) 3e-4
Replay buffer size (|D| = |D’|) le6
Mini-batch size (M) 128
Polyak coefficient (7) 0.01
Epoch size 1000 frames
Discount factor () 0.99
Demo-use ratio (3) 0.3
Expert

Controller gain (K)

Critical distance (CZC) 0.8
Hand open target (hopen = 0.8) 0.8
Hand closed target (hcjoseq = 0.8) 0.2
Transport Model

Motion duration (7°) 6sec

IIT. RESULTS

In this section we try to investigate the effectiveness of
our RL + IL approach to solve the problem. Fig. 4a the
learning graph for the original RL problem with and without
IL. Fig. 4b shows the sensitivity of our method to the beta
hyperparameter that we introduced. In Fig. 4c we try to see
the effect of different measurement sets (as introduced in
Table. III) on the results.

In Fig. 4, every epoch equals 1000 frames of simulation
steps. The test graphs were generated by averaging rewards
of rolling out the trained policy in the environment for 10
episodes every 10 epochs. During training, actions were
sampled from the policy distribution whereas during tests
the mean of action distribution was used. The results are
smoothed by a moving average of window-size 15. Different
hyperparameters were tested and the best was used for all
simulations unless explicitly mentioned (see Table II). Four
frames of a successful grasp selected from the trained policy
using RL + IL is demonstrated in Fig. 2.

TABLE III: Specification of feature sets Oy ...Os
Set Name
Feature Op Oq Oo O3 Oy Os
position (25 x 1) v v v
velocity (23 x 1) v v
Trel (3 X 1) 4 v v
(| e v 4
”Frel,wy” v 4 4
closure (h) v v v

IV. DISCUSSION

This paper presents an end-to-end RL framework to learn
grasping policy for robot prosthetic hands. As shown in
Fig. 4a, our RL + IL approach can learn a grasping policy
which is always successful (43 is the highest possible sum of
rewards in an episode). Without IL, it is shown that no useful
policies are learned at all (the constant zero line in Fig. 4a).
The reason is arguably the sparse rewards in our problem
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setting and the fact that the rewarding states are hard to
explore, rendering random exploration methods ineffective.

The end-to-end nature of our methods entails learning
actuator commands directly from the input states. End-to-
end methods can learn feedback controllers that can react to
environment changes or perturbations in real-time, a feature
which is missing from other non-EMG control methods [13],
[14].

The effect of introducing the S hyperparameter on the
robustness of our RL + IL approach is investigated in
Fig. 4b. The results show that our approach is robust to
this hyperparameter as long as 0 < 8 < 1. The § = 1 is
indicative of the pure IL solution which cannot learn anything
due to lack of interaction with the environment.

The role of the input feature sets on training was also
studied in Fig. 4c. While testing all combinations of the
feature sets is tedious, the point of this part is to highlight the
importance of some feature inputs to successfully learning
the optimal policy. It is shown that the combination of
position and velocity is enough to learn the grasping policy.
Interestingly, the agent cannot learn a useful policy from Os,
which is the same input feature to the scripted expert. While
this is an interesting finding, more investigations are required
to state whether it is a weakness of the RL method used,
as there are other influential factors like the neural network
architecture. It is also shown that velocity has an important
role in achieving a high performance (O; vs. Os). This can
be due to the partial observability and violation of Markov
assumption when position is the only input state.

Most RL methods are known for poor statistical efficiency.
Low iterations for convergence matters more when there are
humans involved in the training loop, as is the case for shared
control problems. In our settings, thanks to the combination
of SAC method with the IL, the convergence happens in
about 500 episodes, which conservatively is about 3 hours
in real world settings, given 7" = 6 sec duration for each
episode.

There are several advantages for not relying on EMG
signals for controlling the robot prosthetic hand. The time
and effort needed for training the user would be reduced.
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Also, due to independence from the highly variable EMG
signals, the learned policy is easier to transfer to other users.
Furthermore, the user does not need to be involved, physi-
cally or mentally, in generating the EMG signals and making
them distinguishable for the pattern recognition models [9],
[34]. Altogether, independence from EMG signal processing
may potentially increase the usage time of the prosthetic hand
due to increased robustness, and thus reduce the rejection rate
of the robot prosthetic hands.

In this paper, we investigated a single grasping scenario in
simulation with a constant object shape, size, and position.
In order to capture object variabilities in real world, it is
important to have input modalities, like RGB cameras, that
can capture the associated information. Training the agent
using camera input should be done as a future work. Constant
environment dynamics, fixed robot geometry, and no noise in
state readings can also cause discrepancy between simulation
and real world and are considered as other limitations of the
current simulation. As a future work, domain randomization
will be used to address the real-world variations from the
ideal case.

Another drawback of our approach is not using EMG
or other notions of human intent in the control process.
This compromises the applicability and responsiveness of
our approach to activities of daily life where spontaneous
intent inference is required usually outside of a pre-specified
context. Furthermore, in this work, we studied only grasping
but not releasing of objects. While EMG-based methods
offer reliable solutions for releasing objects since only one
gesture needs to be detected, task-related information can
still be leveraged to perform the task. For instance, if the
task is moving objects from a table into a bucket, then
by using the hand trajectory, the robot can know when the
object should be released if the position of bucket is known
a priori. Overall, our approach is applicable to organized
environments where task pre-knowledge together with hand
trajectory serve as sufficient information to infer human
intent. For more sophisticated scenarios, hybrid models can
be created where one uses EMG for high-level inference and
task and trajectory data for low-level robot control.



V. CONCLUSION

In this work, an RL-based framework is offered to learn
end-to-end policies for controlling robot prosthetic hands for
grasping. This work is proposed in response for a need to
change of paradigm in controlling robot prosthetic hands
due to shortage of current control methods. As opposed to
the state-of-the-art EMG-based control methods for robot
prosthetic hands, our method does not rely on EMG at all,
which can lead to potentially more robust controllers with
less training. However, this work only offers a feasibility
study for the proposed RL-based end-to-end method in a
simulated environment, which has yet to be applied to real
life in future works.
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