- 1 Title: Inorganic N addition replaces N supplied to switchgrass (Panicum virgatum) by
- 2 arbuscular mycorrhizal fungi
- 3 Laura C. Jach-Smith^{1,2} and Randall D. Jackson^{1,2,3}
- ¹Nelson Institute for Environmental Studies, University of Wisconsin-Madison, 550 North Park
- 5 St. Madison, WI 53706, USA; ²DOE-Great Lakes Bioenergy Research Center, 1552 University
- 6 Ave., Madison, WI 53726, USA; ³Department of Agronomy, University of Wisconsin-Madison,
- 7 1575 Linden Dr. Madison, WI 53706, USA
- 8 Author for correspondence:
- 9 Laura C. Jach-Smith
- 10 Tel: 1-414-731-5992
- 11 Email: lcsmith4@wisc.edu

Abstract

- Arbuscular mycorrhizal fungi (AMF) provide many benefits in agroecosystems including 13 improved soil tilth, carbon sequestration, and water and nutrient transfer to plants. AMF are 14 known to affect plant nitrogen (N) dynamics and transfer N to plants, but there have been few 15 studies addressing whether the amount of N transferred to plants by AMF is agronomically 16 relevant. We used $\delta^{15}N$ natural abundance methods and $\delta^{15}N$ mass balance equations to estimate 17 the amount of plant N derived from AMF transfer in perennial grasses managed for bioenergy 18 production under different N addition treatments (0, 56 and 196 kg N ha⁻¹). Differentiation of 19 δ^{15} N among plant, soil N, and AMF pools was higher than anticipated leading to calculations of 20 34 to 55% of plant N transferred by AMF in the treatments receiving no N addition to 6 to 22% 21 of plant N transferred to plants in high-N addition treatments. AMF extra-radical hyphae biomass 22 was significantly reduced in the high-N (196 kg N ha⁻¹) addition treatments, which was 23 negatively correlated to enriched plant δ^{15} N. Our results suggest that N addition decreases AMF 24 N transfer to plants. When N was limiting to plant growth, AMF supplied agronomically 25 significant amounts of plant N, and a higher proportion of overall plant N. Because 26 differentiation between N pools was greater than expected, stable isotope measurements can be 27 used to estimate N transfer to AMF plant hosts. 28 **Key words:** AMF; ¹⁵N; isotopic abundance; perennial grasses; nitrogen transfer; nitrogen 29
- supply; extraradical mycelium; bioenergy crops; grasslands

Introduction

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Arbuscular mycorrhizal fungi (AMF) have many beneficial qualities that can make our agricultural systems more sustainable (Gianinazzi et al. 2010), such as improving crop yields, increasing nutrient uptake efficiency, and reducing nutrient leaching (De Vries and Bardgett 2012, Hodge and Storer 2014, Bender and van der Heijden 2015). AMF play an important role in mineral scavenging and uptake by plants, but so far most research has demonstrated the role of AMF in plant phosphorus (P) rather than nitrogen (N) nutrition (Smith and Read 2008, Veresoglou et al. 2012). Similar to the balance of trade established for P uptake and transfer, AMF supply N to host plants in direct response to the carbon (C) supply provided from the host plant (Johnson et al. 2010, Fellbaum et al. 2012). Although it is established that AMF transfer N to plant hosts, it has not yet been determined if the amount of N uptake and subsequent transfer to plants is agronomically relevant (Smith and Smith 2011)(i.e. replacing the need for some or all of N fertilizer). Especially lacking is evidence that AMF N-transfer to plants occurs in situ (Hodge and Storer 2014) because most AMF studies are done in microcosms or greenhouses under highly controlled conditions. Understanding more about the contribution of AMF to N cycling will help determine if it is feasible to manage for beneficial mycorrhizal communities in agricultural systems. Despite their inherent nutrient-conserving capabilities (Robertson et al. 2011), perennial C4 grasses managed for bioenergy typically are amended with N fertilizer with the intent of increasing biomass production (U.S. Department of Energy 2011). However, yield responses to N addition from fertilizer have been variable and idiosyncratic (Parrish and Fike 2005, Wullschleger et al. 2010, Jarchow and Liebman 2012, Jach-Smith and Jackson 2015). Given the negative consequences of excess N in the environment (Robertson and Vitousek 2009), finding ways to reduce or eliminate N addition is desirable.

Perennial warm-season grasses commonly form symbiotic relationships with AMF (Treseder and Cross 2006, Miller et al. 2012) but N enrichment tends to reduce AMF abundance (Johnson et al. 2003, Treseder 2004, Staddon et al. 2004). Nutrient limitation, and particularly N limitation, can be a driving factor of whether AMF benefit their plant host (Johnson et al. 2003, 2010, Köhl et al. 2014). Therefore, altering soil N availability may have direct consequences on AMF abundance and AMF-mediated N transfer to host plants (Johansen et al. 1994, van Diepen et al. 2010, Schroeder-Moreno et al. 2011). One consequence could be a trade-off effect where crops use fertilizer-N when available, or make use of AMF associations to supply the needed N nutrition in circumstances of N limitation.

Natural abundance isotope measurements can be useful for evaluating plant N sources without disturbing N cycling within the plant-soil system because they rely on stable isotope fractionation patterns that occur naturally with N transformations in the soil or exchanges between mycorrhizae and plants (Dawson et al. 2002). Studies that employ $\delta^{15}N$ natural abundance measures have produced mechanistic confirmation of N cycling processes in plant-mycorrhizal associations (Hobbie et al. 2000, Averill and Finzi 2011). Mycorrhizae transfer ¹⁵N-depleted forms of N to plants, because biochemical reactions occurring within the fungus separate N into ¹⁵N-enriched or ¹⁵N-depleted pools, with the depleted pool being transferred to plants and the enriched pool remaining in the fungal biomass (Hobbie and Högberg 2012). This process enables use of the ¹⁵N/¹⁴N composition of the plant, fungus, and soil N pools to estimate the proportion of plant N that is transferred or supplied by AMF.

AMF assimilate N as nitrate, ammonium, or amino acids (Hodge et al. 2010) and transport N within the hyphae as arginine, which is four nitrogen atoms per molecule, thereby transferring a more concentrated form of N from extra- to intra-radical hyphae. The hyphae then

transfers the N to the plant cell as ammonium, transferring only nitrogen without carbon to the host (Govindarajulu et al. 2005). These N transformation steps cause fractionation of ¹⁵Nenriched and ¹⁵N-depleted pools as described above. As demonstrated by Hobbie and Colparert (2003), the presence of high AMF extra-radical hyphal biomass was related to the $\delta^{15}N$ of the plant biomass since the $\delta^{15}N$ of plants is related to the amount of N supplied by mycorrhizae (15N-depleted, assuming there is significant fractionation upon transfer of N molecules). While the fractionation makes it useful to determine whether N is transferred by mycorrhizae, we are not able to determine the source or form of N before fractionation occurs because of the multiple N transformations within the hyphae (Emmerton et al. 2001). Hobbie and Hobbie (2006) found that mycorrhizae contributed 61 to 86% of aboveground plant N in vegetation of the arctic tundra. These plants are primarily ecto-mycorrhizal, grow in extremely N-limited conditions, and ecto-mycorrhizal species are known to have significant soil organic matter-degrading capabilities that theoretically would expose the mycorrhizae to additional N sources. Therefore, we expect comparative estimates of AMF contributions to plants in in temperate grasslands to be significantly less than that found by Hobbie and Hobbie (2006).

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

There is little research on $\delta^{15}N$ distribution in AMF and their plant hosts (Ouimette et al. 2012), as few studies use AMF in isotopic analyses, especially with regard to N cycling and budgeting. There is currently little reference data on ^{15}N partitioning in AMF and their plant hosts (Courty et al. 2015), although there are some examples demonstrating evidence of N availability and AMF affecting plant $\delta^{15}N$. Craine et al. (2012) showed that foliar $\delta^{15}N$ values in the tallgrass prairie were typically associated to soil N availability, with high foliar $\delta^{15}N$ relating to high soil N availability. This trend was observed across many ecosystems and soil types (Craine et al. 2009). In an experiment comparing non-mycorrhizal versus AMF-inoculated grey

alder, aboveground plant tissues were 1% depleted in $\delta^{15}N$ compared to non-mycorrhizal plants (Schweiger 2016), demonstrating that AMF are fractionating and transferring depleted $\delta^{15}N$ to plants.

Our objectives were to 1) provide quantitative, mechanistic evidence for the role of AMF in *Panicum virgatum L*. (switchgrass) N-supply and 2) determine whether AMF are capable of supplying agronomically relevant amounts of N to perennial grasses being harvested for bioenergy. We sampled plant tissue, AMF mycelium, and the available N pool for δ^{15} N, searching for patterns indicative of N transfer from AMF to plants. We also estimated the proportion of plant N transferred by AMF using the model and mass balance equations proposed by Hobbie and Hobbie (2006). We hypothesized that AMF would transfer a higher proportion of plant N under conditions of lower soil N, with a decreasing proportion of plant N supplied by AMF under conditions of higher soil N (Figure 1). We also hypothesized that the δ^{15} N of switchgrass biomass would be negatively correlated with hyphal biomass reflecting greater transfer of N to the plant with higher AMF abundance.

Methods

Site description and experimental design

We used a manipulative experiment to modify soil N levels to examine δ^{15} N pools and estimate AMF N-transfer to plants. We chose established plots of switchgrass at two agricultural research stations where we modified soil N using three levels of N fertilizer (0, 56, and 196 kg N ha⁻¹). Sites were the Arlington Agricultural Research Center (ARL) in Arlington, WI (silt loam Mollisols) and the W.K. Kellogg Biological Station (KBS) in Michigan in Hickory Corners, MI (sandy Alfisols). Switchgrass was established in 2008 at both sites; however, the fertilizer

treatments first began at KBS in 2009, whereas the ARL plots were first treated with fertilizer beginning 2013. Therefore, KBS switchgrass had a five-year legacy of fertilization, and ARL had none when we began sampling in 2013 and ended sampling in 2014 for this experiment. Plots were arrayed in a randomized complete block design, with three blocks at each site. Fertilizer was broadcast on the soil surface annually in spring as ammonium-nitrate granules at ARL and as granular or liquid urea ammonium nitrate at KBS. Because there is extensive evidence of hyphal networks sharing resources belowground between individual plants (Fischer Walter et al. 1996, Leake et al. 2004, Pringle 2009, van der Heijden and Horton 2009), we inserted physical barriers between N fertilizer treatment plots to insure plot independence. Barriers were made of aluminum sheet metal (0.08-cm thick × 50-cm deep, Badger Diversified Metal) and installed May 2013. Trenches were dug with a Vermeer RT-100 trencher to cut a 60-cm deep × 10-cm wide trench along plot borders. Aluminum sheets were installed and trenches refilled with original soil to stabilize the aluminum sheets, which remained intact for the duration of the study.

Sampling $\delta^{15}N$ pools

Aboveground plant biomass. Semi-permanent sampling stations were located at each field site for each year of the study (2013 and 2014). Sampling locations were 0.5-m² quadrats evenly spaced within each N-addition plot. Three quadrats were placed in each plot, making 27 experimental units at KBS and ARL.

Aboveground plant biomass was clipped from quadrats at peak standing biomass, when plants reached their peak growth for the season at anthesis, but before the plants began to senesce and recycle nutrients belowground (typically around mid-August in southern WI, but timing varies from year to year). Biomass samples were almost exclusively switchgrass, therefore, no

species sorting was done and all plant biomass assumed to be switchgrass. Biomass was dried to a constant weight at 65 °C before dry weights were recorded. Dried biomass samples were finely ground using a Wiley Mill to pass a 1-mm mesh screen, then pulverized using stainless steel balls in 2-ml micro-centrifuge tubes. AMF hyphae biomass. In 2014, in-growth hyphal bags ($\sim 10 \times 2.5$ cm) were inserted in the ground in early spring, extracted about three months later at plant maturity, and frozen until further processing. Three in-growth hyphal bags were placed in the surface 10 cm of soil in each quadrat, which were composited to one sample per quadrat. In-growth hyphal bags were constructed of 50-um nylon mesh, allowing fungal hyphae to grow through the mesh, but restrict root growth. Mesh bags were filled with 100 g of ashed sand (#30-70, pure silica sand from Ogleby Norton Industrial Sands) to minimize the growth of saprotrophic fungi (Wallander et al. 2001). Extraction of hyphae from these bags loosely followed methods described by van Diepen et al. (2010). In-growth hyphal bags were cut open, inspected for root contamination (cores with visible root infiltration were discarded), and dumped into a beaker of tap water making a composite sample of three bags per quadrat. By flotation and agitation, hyphae were separated from the sand and the hyphae/water mixture and decanted over a 50-µm nylon mesh filter. Sand was again mixed with water, agitated and decanted; these steps were repeated until the water ran clear. The sample on the mesh filter was then further cleaned and inspected in a petri dish viewed under a dissecting microscope to remove grains of sand and debris. Subsets of samples were also checked under a compound microscope to evaluate percentage of saprotrophic versus AMF hyphae using a grid-intersect method. All samples contained >95% AMF hyphae upon visual inspection (based on absence of cell septa in fungal hyphae), therefore all hyphal biomass extracted from cores were considered to be AMF. Cleaned hyphae samples were frozen in petri

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

dishes and freeze-dried to a constant weight. Samples were weighed and then placed in a 2-ml microcentrifuge tube for pulverization and subsequent analysis for δ^{15} N. To account for soil contamination in the hyphae samples, we corrected for the soil $\delta^{15}N$ contributing to the proportion of the sample that was soil, similar to Nave et al., 2013, using the C:N ratio of the siltclay fraction of the soil from each site. We assumed soil contamination was from the silt-clay fraction of soil given that it had to pass through a 50-µm nylon mesh. A measure of total extraradical AMF hyphae biomass was calculated as grams hyphal biomass per gram sand. Available N pool. To assess the plant- and microbially-available soil N pool, we used two different measurements: the δ^{15} N of buried cellulose filters and the δ^{15} N of plants growing near our plots from the Brassicaceae family, which are known not to form AMF symbioses (Rillig, 2004). The buried cellulose acts as an integrator of plant-available N under field conditions because the cellulose is a readily-available C source for microbes, who colonize the cellulose and assimilate any available N from the surrounding soil (Hendricks et al. 2004, 2006, Nave et al. 2013). This technique eliminates the challenges associated with extracting and analyzing the δ^{15} N signature of N pools from the soil, and further, allows for the δ^{15} N_{available nitrogen} pool to be an integration of all microbially-available N forms in the soil, as well as an integration of the time that the cellulose is left buried in the soil (Hobbie and Högberg 2012). We buried Whatman #4 filter papers, which were first encased in 50-µm nylon mesh to limit soil contamination. The filters were deployed by making a slit in the surface 10 cm of soil with a soil knife, inserting the filter paper, and closing the slit with a soil knife to ensure good soil-paper contact. Filters were buried in June or July and extracted four to six weeks later. Cellulose filters were removed from the nylon mesh bags, ground, and subsampled for δ^{15} N analysis. To account for soil contamination on the filters, a separate subsample was ashed at 475 °C and percent organic

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

versus inorganic material calculated using loss-on-ignition. Based on the inorganic and organic proportions of the sample, we adjusted the final cellulose δ^{15} N value with site silt-clay fraction soil δ^{15} N.

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Plants from the Brassicaceae family were also used as an integrated measure of plantavailable N. Since plants of the Brassicaceae family are known not to associate with mycorrhizae (Rillig 2004), the δ^{15} N signature of the plants should be a direct measure of the δ^{15} N from the plant-available N pool, assuming little or no fractionation on uptake (Marshall et al. 2007). Plant tissue was sampled from naturally growing Brassica sp. in July 2013 within meters of the sampling quadrat when possible. However, sometimes the brassica plants were ~10 m from experimental quadrats, therefore we calculated a site and treatment mean for brassica δ^{15} N. We report the $\delta^{15}N_{available\ nitrogen}$ from the 2014 cellulose in Table 2, but we also considered an alternative scenario for the mass balance equations where we calculated $\delta^{15}N_{available\ nitrogen}$ from the 2013 and 2014 cellulose site means, and adjusted this value by the brassica δ^{15} N difference. The δ^{15} N_{available nitrogen} from the cellulose and the brassica plants should be the same pool of N, but the brassica site mean was on average 1.1% lower than the site δ^{15} N_{available nitrogen} measured by the cellulose. Hence, we applied a -1.1% correction to the 2013 and 2014 cellulose δ^{15} N site and treatment means to obtain an alternative $\delta^{15}N_{available\ nitrogen}$ estimate for the mass balance calculations.

All samples were dried, ground, and analyzed on a PDZ-Europa model 20-20 isotope ratio mass spectrometer with a PDZ-Europa ANCA-GSL elemental analyzer at the University of Wisconsin-Madison. δ^{15} N abundances were reported as parts per mille (‰), which is $(R_{\text{sample}}/R_{\text{standard}}-1)1000$, where R is the 15 N/ 14 N ratio of the sample to the reference standard

215 (atmospheric N_2). As a reference, the ammonium-nitrate fertilizer used at ARL and KBS had a 216 $\delta^{15}N$ of -0.17‰ (± 0.01 S.E.).

Mass balance equations to estimate AMF N transfer to plants

To estimate plant N supplied by AMF, we used the δ^{15} N mass balance approach, as proposed by the model developed by Hobbie and Hobbie (2008, 2006). This method relies on using the δ^{15} N natural abundance signatures of the aboveground plant tissue (δ^{15} N_{plant}), fungal tissue (δ^{15} N_{fungi}) which we derived from the hyphal biomass, and the available nitrogen (δ^{15} N_{available nitrogen}) pools using the following equations:

223 1)
$$\delta^{15}$$
N_{available nitrogen} = $(1-T) \times \delta^{15}$ N_{fungi} + $T \times \delta^{15}$ N_{transfer}

224 2)
$$\delta^{15}N_{plant} = f \times \delta^{15}N_{transfer} + (1-f) \times \delta^{15}N_{available nitrogen}$$

3)
$$\Delta_{\rm f} = \delta^{15} N_{\rm available\ nitrogen} - \delta^{15} N_{\rm transfer}$$

where the following unknowns are calculated or defined as:

 δ^{15} N_{transfer} = 15 N signature of N transferred from AMF to plant host

T = fraction of fungally-assimilated N transferred to plant host

f = proportion of plant N derived from fungal transfer

 Δ_f = fractionation against ¹⁵N during transfer from AMF to plant host

This series of three equations assumes that at least one of the four unknowns is specified. We calculated solutions to these equations for three different scenarios to understand the sensitivity of the overall N transfer estimates to the unknown fractionation value. A literature value of 2‰ was chosen as the starting discrimination factor by AMF upon N transfer to plants (Δ_f) (Craine et al. 2015) for calculating scenario 1. Since the mass balance equations produced solutions that were outside the range of biologically meaningful interpretations (i.e., over 100%

plant N supplied), we considered alternative scenarios of 4% (scenario 2) and 8% (scenario 3).

While $\Delta_f > 2\%$ for AMF transfer to plants is higher than indicated by Craine et al. (2015), values as high as 11% have been reported for ectomycorrhizae (Hobbie and Hobbie 2006).

Estimating plant and soil N and P

Soil inorganic N (as NO₃⁻ and NH₄⁺) and available P (as PO₄³⁻) were measured from 2-M KCl extracts of fresh soils (Robertson et al. 1999) sampled from plots in 2014. A composite of five soil cores (2.5 cm diameter × 10 cm deep) were sampled from each plot at three timepoints: early (June), mid (July) and late (August/September). Samples were transported on ice and stored at 4 °C until soil processing and extraction, which occurred within 48 h of field collection. Extracts were frozen at -20 °C until analysis on a Flow Solution 3100 segmented flow injection analyzer (OI Analytical, College Station, TX). Total inorganic N was calculated as the sum of nitrate and ammonium. Both total inorganic N and inorganic P (as PO₄³⁻) were calculated for the surface 10 cm of soil.

Dried plant tissue samples were homogenized and subsampled for both total N and P analysis. To determine total N concentration tissue samples were combusted on an elemental analyzer (CE Elantech EA1112, Lakewood, NJ). To determine total P concentration we followed a dry ashing method (Schulte et al. 1987). Plant tissue N:P ratios are reported as the total N concentration divided by the total P concentration. Nutrient limitations for plant growth play a key role in mycorrhizal N uptake and responses to N enrichment (Johnson et al. 2003, 2010, van der Heijden et al. 2006). We determined limiting nutrients using plant N:P ratios, where N limitation is indicated by a N:P ratio < 14, P limitation is indicated by a N:P ratio > 16, and colimitation is indicated by a N:P ratio between 14 and 16 (Koerselman and Meuleman 1996).

Data analysis

We used an analysis of variance test and conducted mean comparisons using the R package *Ismeans* (Lenth 2015), with significance determined at $p \le 0.05$ and adjusted for multiple comparisons using the Tukey method. We used these methods for comparing N addition effects on the plant and soil N, P, and plant N:P ratios, as well as the differences between δ^{15} N pools (aboveground plant biomass, fungal tissue, and available N). We also used this method to evaluate the effect of extra-radical hyphae biomass on aboveground plant δ^{15} N for the combined ARL and KBS sites across both years. We used R version 3.2.3 (R Core Team 2015) for all statistical analyses.

Results

Soil and plant N and P composition

Total inorganic N levels in soil were significantly affected by N addition treatment at ARL and KBS: the high-N addition treatment (196 kg N ha⁻¹) was significantly greater than the lower N addition treatments (p < 0.001 and p < 0.01, respectively for ARL and KBS) (Table 1). Total orthophosphate P (PO₄⁻²) levels did not differ between N addition treatments at either ARL or KBS (p > 0.05 for both sites) (Table 1).

Plant tissue N:P ratio, an indication of plant N or P limitation, showed that all sites and N addition treatments had N limitation rather than P limitation (Koerselman and Meuleman 1996), as all N:P values were < 14 (Table 1). The high-N addition treatments at both ARL and KBS were the closest treatments to achieve either no- or co-limitation (N:P ratios of 14), but still were well under the threshold N:P value of 14 indicating that even high levels of N addition do not completely alleviate N limitation in these soils (Koerselman and Meuleman, 1996). However, no

yield advantage was achieved with this high level of fertilization at ARL (Jach-Smith and Jackson 2018) which would indicate that plants were not N limited at the ARL site. Plant aboveground biomass and total N content was reported in Jach-Smith and Jackson (2018), where a yield gain was achieved only at KBS with the N addition treatments. N content increased with N application rate, but this is assumed to be N luxury consumption (an increase in plant N concentration that is not used for growth) since there was no yield gain.

$\delta^{15}N$ composition of plant tissue, AMF hyphae, and available N pools

The $\delta^{15}N_{plant}$ values spanned a high range within ARL and KBS with increasingly greater values with the N addition treatments (Table 2). The high-N addition treatment (196 kg N ha⁻¹) increased $\delta^{15}N_{plant}$ by 1.4% (± 0.7 S.E.) and 3.0% (± 0.4 S.E.) at ARL and KBS, respectively. The trend of greater $\delta^{15}N$ values with higher N addition was also apparent for the available N pool ($\delta^{15}N_{available\ nitrogen}$) and most dramatic in the fungal hyphae ($\delta^{15}N_{fungi}$), where $\delta^{15}N_{fungi}$ at KBS increased by 6.7% (± 0.6 S.E.) with the high-N addition treatment.

A useful comparison of $\delta^{15}N$ values is between pools, which gives insight into N uptake and N transfer pathways from the soil to AMF and plants. We expected $\delta^{15}N_{plant}$ to be significantly depleted, and the $\delta^{15}N_{fungi}$ to be enriched relative to the other pools if AMF were transferring N resources to the plant (Figure 1). There were significant differences between $\delta^{15}N_{plant}$ and $\delta^{15}N_{available\ nitrogen}$ pools in the 0 and 56 kg N ha⁻¹ addition treatments and between the $\delta^{15}N_{plant}$ and $\delta^{15}N_{fungi}$ pools in the 56 and 196 kg N ha⁻¹ addition treatments (Table 2).

Mass balance equation solutions

The first set of solutions calculated using scenario 1 (using a Δ_f value of 2‰) produced some T and f values that represented biologically impossible situations (Table 3), because these numbers should fall between 0 and 100%. Solutions from scenario 2 (Δ_f value of 4‰), produced more meaningful values for f, however some T values calculated were still negative. Solutions from scenario 3 (a Δ_f value of 8‰) produced all f values and most T values within or closer to the constraints of biological possibility (0 to 100%). We considered scenario 2 most likely because a 4‰ fractionation is more plausible than 8‰ in scenario 3, when taking into account previous studies, as described above. Using results from scenarios 1 and 2, we estimated the proportion of plant N supplied by AMF (f) (values taken from scenario 1 and scenario 2, respectively) was in the range of 55 to 100% of plant N in 0-N addition treatments at ARL and 34 to 68% plant N at KBS. In contrast, high-N addition treatments showed 6 to 12% of plant N was supplied by AMF at ARL and 22 to 44% at KBS.

Extra-radical hyphae biomass

Plant $\delta^{15}N_{plant}$ at ARL and KBS was negatively correlated to the AMF extra-radical hyphal biomass as measured by the in-growth hyphal cores (Figure 2). There appeared to be some separation between the highest N addition treatment (196 kg N ha⁻¹) and the others (0- and 56 kg N ha⁻¹)), indicating that the relationship between hyphal biomass and $\delta^{15}N_{plant}$ may only persist under high N availability conditions.

Discussion

AMF appeared to be supplying an agronomically significant amount of N to switchgrass, indicating that AMF may be transferring enough N to substitute for fertilizer N amendments in

some environments. Despite the uncertainty of the AMF fractionation value, results from our mass balance equations indicated that AMF were contributing agronomically meaningful amounts of N. Mass balance equations showed consistent patterns of AMF N-transfer to switchgrass.

Because AMF do not have the same SOM-degrading capabilities as other mycorrhizal species, and AMF are typically adapted to ecosystems that have higher rates of N cycling (i.e. grasslands rather than heathlands)(Hobbie and Högberg 2012), it has been assumed that AMF may not play a significant role in plant N nutrition. Hobbie and Hobbie (2006) found that mycorrhizae contributed 61 to 86% of aboveground plant N in the arctic tundra, which is comparable to the rates of N transfer we estimated in our unfertilized treatments. It was less clear why the hyphae were less enriched than expected in the 0-N addition treatments at ARL and KBS, and more enriched than expected in the 196-N addition treatments.

AMF hyphae biomass was negatively correlated to $\delta^{15}N_{plant}$, a trend also demonstrated by Hobbie and Colpaert (2003) in a study conducted under greenhouse conditions. We demonstrated this relationship under field conditions providing strong support for our hypothesis that increased abundance and functioning of AMF results in depleted $\delta^{15}N$ in aboveground plant tissues. In addition to the negative correlation we demonstrated here, the 196-N addition treatment at ARL and KBS had significantly less hyphae biomass when compared to the 0-N and 56-N addition treatments (Jach-Smith and Jackson 2018).

Assumptions and how they might affect interpretations

Our results support the assumption that there is *at least* a 2‰ fractionation of N in AMF transfer to plants, and our field evidence suggests it is closer to 4‰. Data from field studies have consistently demonstrated a depleted δ^{15} N signature of the plant host compared to the available

soil N pool (Hobbie and Hobbie 2008, Craine et al. 2015). It is plausible that there is some amount of fractionation from hyphae-to-plant transfer because of the arginine to ammonium transformation from hyphae to plant transfer (Govindarajulu et al. 2005). Assuming there is at least some fractionation upon transfer, our models and calculations should have been appropriate. Contrarily, our data would become more difficult to interpret if, hypothetically, there was no fractionation of N on transfer to plants. Scenarios 2 and 3, which considered higher fractionation values of 4‰ and 8‰, respectively, produced solutions to the mass balance equations that seem to be the closest to biologically plausible.

Hobbie and Hobbie (2006) assumed minimal fractionation results from uptake via plant roots, which assumed low N availability in the soil, or that N uptake closely matches N supply. This is often the case because N demand by plants is typically greater than N supply in natural systems (Marshall et al. 2007). As confirmed by numerous field and laboratory studies, there is no fractionation of N via root or hyphae uptake from the soil, as long as the system is N-limited (Hobbie and Hobbie 2006, Hobbie and Högberg 2012). If, hypothetically, our systems were not N-limited, plant roots would likely preferentially use the lighter ¹⁴N isotope, which would accumulate in the soil. In that case, plant δ^{15} N would not be enriched irrespective of AMF N-transfer. Also, it is worth noting that the N-addition treatments produced biomass with greater N content overall (Jach-Smith and Jackson 2018), suggesting that the δ^{15} N in the biomass was a smaller portion of the overall plant N pool resulting in a dilution effect that we did not capture.

Other considerations for using $\delta^{15}N$ natural abundance in AMF systems

Using stable isotopes to estimate N transfer to plants is an important method, and our study shows great promise for helping to sort out plant-AMF symbioses. However, these methods make many assumptions that call for careful consideration in future studies. Relative to

 $\delta^{15}N_{plant}$, the $\delta^{15}N_{available\ N}$ pools were more enriched than expected. Using the 2013 and 2014 $\delta^{15}N_{available\ N}$ mean, and adjusting with brassica $\delta^{15}N$, lowered the 2014 $\delta^{15}N_{available\ N}$ pools into a more reasonable range. The cellulose filters and the brassica should both be reflecting the same soil $\delta^{15}N$ pool, but it seems that the brassica may be more representative of the plant and hyphae N source than the cellulose filters. Organic N sources typically have lower $\delta^{15}N$ than bulk soil and inorganic N sources (Yano et al. 2009) and mycorrhizal fungi are known to use organic N sources (Talbot and Treseder 2010). Plants and AMF may have used organic N sources more than the microbial community that fed on the cellulose filters, which would explain why our measurements of $\delta^{15}N_{available\ N}$ were higher than expected, relative to the other $\delta^{15}N$ pools. Future studies should consider improved methods for estimating the available N pool, especially considering that the plants, AMF, and microbial communities may be using different N sources with differing $\delta^{15}N$ signatures.

Symbiotic N-fixation might have affected δ^{15} N signatures. Switchgrass associative N fixation (ANF) in the rhizosphere and roots was estimated to be as much as 92% of unfertilized switchgrass N demand (Roley et al., in press). If ANF were responsible for a significant amount of plant N in our systems, plant δ^{15} N would be depleted relative to the δ^{15} N_{available N} pools because fixed atmospheric N has a δ^{15} N near 0‰. However, only the nodules where fixation takes place typically have depleted δ^{15} N, thus overall plant δ^{15} N is generally not affected by N-fixation (Craine et al. 2009, 2015). Roley et al. (in press) found that the majority of N was fixed in the soil (not directly in the plant) post-senescence, perhaps when the microbial community had a boost of carbon exudates from the senescing switchgrass plants. AMF hyphae are known to help retain N pools and prevent N leaching (De Vries and Bardgett 2012), therefore the increased

extra-radical hyphae we found in the low-N addition treatments may play a primary role in immobilizing and retaining N fixed from ANF.

Our measured $\delta^{15}N_{fungi}$ pools were lower than expected in the unfertilized treatments and higher than expected in the high-N addition treatments. The similarity of the $\delta^{15}N_{plant}$ and $\delta^{15}N_{availablleN}$ in the 196-N addition treatments suggested that there was little fungal N transfer occurring, but why was the fungal tissue so enriched? Given the high N availability in the 196-N addition treatment, the AMF may have been luxury-consuming N, in particular, the more easily accessible mineralized N pools from the fertilizer. Although fertilizer N has a low $\delta^{15}N$, excess fertilizer N likely has been subjected to N transformations that cause N losses, such as nitrification and denitrification, which would leave the remaining soil N pool more enriched in $\delta^{15}N$.

Our results may have been influenced by our use of fungal mycelium rather than reproductive structures for measuring our $\delta^{15}N_{fungi}$ pools. Zeller *et al.* (2007) found that their mycelium sample (n=1) had a $\delta^{15}N$ much lower than the sporophore stipes and gills of an ectomycorrhizal fungus. Others have used spores and fungal fruiting bodies for measuring $\delta^{15}N$ of fungal tissue but there may be some isotopic fractionation during the formation of a fruiting body (Hobbie et al. 2012, Courty et al. 2015), hence studies that have used sporocarps or spores for isotopic analysis, rather than fungal mycelium, may see more enrichment. Some have used plant roots as a proxy for AMF tissue (Stackpoole et al. 2008), but samples are diluted and influenced by the plant root $\delta^{15}N$. AMF biomass makes up a relatively small portion of mass compared to root tissue (Ouimette et al. 2012), consequently, using root tissue as a proxy for AMF tissue may not be very reflective of AMF $\delta^{15}N$ values, especially when looking for discrimination on the order of 2‰. Yet another factor to consider is that hyphae may have been

contaminated with organic compounds, as was the suspected case in an experiment using different methods to measure $\delta^{13}C$ of AMF tissues (hyphae, spores and biomarker FA C16:1u5) (Walder et al. 2013). We corrected our hyphae samples for soil contamination, but did not consider any other organic or biological contaminants. More data is needed on $\delta^{15}N$ partitioning within the AMF fungus to determine if using spores or mycelium is appropriate for measuring $\delta^{15}N$ patterns to interpret N cycling and transfer to plant hosts.

Conclusions

Our study provided estimates of plant N derived from AMF transfer *in situ*. Given the assumed small 15 N fractionation during AMF N-transfer to plants when compared to ectomycorrhizal systems, it is unprecedented that we were able to find differentiation between the AMF, plant, and available N pools. Using stable isotope measurements to estimate N transfer to plants has not been used in AMF systems, however, our study demonstrated that this can be a useful method and differentiation between pools is possible, and indeed, greater than expected. This work highlights the need for more research to determine AMF fractionation values under more controlled conditions, to converge on values that are more precise for AMF-derived N in plant hosts. Experiments could corroborate this study by using 15 N as a tracer instead of relying on the high variability of natural abundance δ^{15} N.

Our results suggested that AMF supplied agronomically significant amounts of plant N, and a higher proportion of plant N when N was limiting. Assessing natural abundance of δ^{15} N can be a useful method for studying AMF function in perennial grass agroecosystems because there was more discrimination among 15 N pools than anticipated. Our results provided consistent evidence that N fertilizer addition reduces AMF N-transfer to plants. If AMF play a significant role in providing N nutrition to perennial grasses, there will undoubtedly be more questions

about how AMF diversity and composition affect AMF functioning and how these community effects relate to plant N uptake. Future research should consider how we might manipulate and promote the soil microbial community to increase AMF abundance and function. The reduction of AMF N-transfer under high N addition indicated that AMF symbioses may be a primary reason why perennial grasses require very little, if any, N addition when AMF symbioses are functioning.

Acknowledgments

This work was funded by the DOE-Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). Michael R. Miller and Yuriko Yano provided provided assistance and thoughtful comments that greatly improved the experiment and manuscript. We thank Harry Read, Jimmy Sustachek, Yong Wei Soon, Casey Menick, Sarah

Lee, Drea Miller, Zoe Anderson, Brittany Faust, James Tesmer, Natalie Eisner, Gregg Sanford,

Gary Oates and others for field and lab assistance.

Literature Cited

- 453 Averill, C., and A. Finzi. 2011. Increasing plant use of organic nitrogen with elevation is
- reflected in nitrogen uptake rates and ecosystem delta15N. Ecology 92:883–891.
- Bender, S. F., and M. G. A. van der Heijden. 2015. Soil biota enhance agricultural sustainability
- by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of
- 457 Applied Ecology 52:228–239.
- 458 Courty, P.-E., P. Doubková, S. Calabrese, H. Niemann, M. F. Lehmann, M. Vosátka, and M.-A.
- Selosse. 2015. Species-dependent partitioning of C and N stable isotopes between
- arbuscular mycorrhizal fungi and their C3 and C4 hosts. Soil Biology and Biochemistry
- 461 82:52–61.
- 462 Craine, J. M., E. N. J. Brookshire, M. D. Cramer, N. J. Hasselquist, K. Koba, E. Marin-Spiotta,
- and L. Wang. 2015. Ecological interpretations of nitrogen isotope ratios of terrestrial plants
- and soils. Plant and Soil 396:1–26.
- 465 Craine, J. M., A. J. Elmore, M. P. M. Aidar, M. Bustamante, T. E. Dawson, E. A. Hobbie, A.
- Kahmen, M. C. Mack, K. K. Mclauchlan, A. Michelsen, G. B. Nardoto, and L. H. Pardo.
- 467 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate,
- mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist
- 469 183:980–992.
- 470 Craine, J. M., E. G. Towne, T. W. Ocheltree, and J. B. Nippert. 2012. Community traitscape of
- foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant and Soil
- 472 356:395–403.
- Dawson, T. E., S. Mambelli, A. H. Plamboeck, P. H. Templer, and K. P. Tu. 2002. Stable
- 474 Isotopes in Plant Ecology. Annual Review of Ecology and Systematics 33:507–559.
- van Diepen, L. T. A., E. A. Lilleskov, K. S. Pregitzer, and R. M. Miller. 2010. Simulated

- Nitrogen Deposition Causes a Decline of Intra- and Extraradical Abundance of Arbuscular
- 477 Mycorrhizal Fungi and Changes in Microbial Community Structure in Northern Hardwood
- 478 Forests. Ecosystems 13:683–695.
- Emmerton, K. S., T. V. Callaghan, H. E. Jones, J. R. Leake, a. Michelsen, and D. J. Read. 2001.
- 480 Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytologist
- 481 151:503–511.
- Fellbaum, C. R., E. W. Gachomo, Y. Beesetty, S. Choudhari, G. D. Strahan, and P. E. Pfeffer.
- 483 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular
- mycorrhizal symbiosis. Proceedings of the National Academy of Sciences 109:2666–2671.
- Fischer Walter, L. E., D. C. Hartnett, B. A. D. Hetrick, and A. P. Schwab. 1996. Interspecific
- nutrient transfer in a tallgrass prairie plant community. American Journal of Botany
- 487 83:180–184.
- 488 Gianinazzi, S., A. Gollotte, M.-N. Binet, D. van Tuinen, D. Redecker, and D. Wipf. 2010.
- Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza
- 490 20:519–530.
- Govindarajulu, M., P. E. Pfeffer, H. Jin, J. Abubaker, D. D. Douds, J. W. Allen, H. Bücking, P. J.
- Lammers, and Y. Shachar-Hill. 2005. Nitrogen transfer in the arbuscular mycorrhizal
- 493 symbiosis. Nature 435:819–823.
- van der Heijden, M. G. A., and T. R. Horton. 2009. Socialism in soil? The importance of
- 495 mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology
- 496 97:1139–1150.
- van der Heijden, M. G. A., R. Streitwolf-Engel, R. Riedl, S. Siegrist, A. Neudecker, K. Ineichen,
- T. Boller, A. Wiemken, and I. R. Sanders. 2006. The mycorrhizal contribution to plant

- productivity, plant nutrition and soil structure in experimental grassland. New Phytologist
- 500 172:739–752.
- Hendricks, J. J., R. J. Mitchell, K. M. Green, T. L. Crocker, and J. G. Yarbrough. 2004.
- Assessing the Nitrogen-15 concentration of plant-available soil nitrogen. Communications
- in Soil Science and Plant Analysis 35:1207–1217.
- Hendricks, J. J., R. J. Mitchell, K. a Kuehn, S. D. Pecot, and S. E. Sims. 2006. Measuring
- external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters.
- The New Phytologist 171:179–86.
- Hobbie, E. A., and J. V. Colpaert. 2003. Nitrogen availability and colonization by mycorrhizal
- fungi correlate with nitrogen isotope patterns in plants. New Phytologist 157:115–126.
- Hobbie, E. A., and J. E. Hobbie. 2008. Natural abundance of N-15 in nitrogen-limited forests and
- tundra can estimate nitrogen cycling through mycorrhizal fungi: A review. Ecosystems
- 511 11:815–830.
- Hobbie, E. A., and P. Högberg. 2012. Nitrogen isotopes link mycorrhizal fungi and plants to
- 513 nitrogen dynamics. The New Phytologist 196:367–382.
- Hobbie, E. A., S. A. Macko, and M. Williams. 2000. Correlations between foliar δ15 N and
- 515 nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–
- 516 283.
- Hobbie, E. A., F. S. Sánchez, and P. T. Rygiewicz. 2012. Controls of isotopic patterns in
- saprotrophic and ectomycorrhizal fungi. Soil Biology and Biochemistry 48:60–68.
- Hobbie, J. E., and E. A. Hobbie. 2006. 15N in Symbiotic Fungi and Plants Estimates Nitrogen
- and Carbon Flux Rates in Arctic Tundra. Ecology 87:816–822.
- Hodge, A., T. Helgason, and A. H. Fitter. 2010. Nutritional ecology of arbuscular mycorrhizal

- fungi. Fungal Ecology 3:267–273.
- Hodge, A., and K. Storer. 2014. Arbuscular mycorrhiza and nitrogen: Implications for individual
- plants through to ecosystems. Plant and Soil 386:1–19.
- Jach-Smith, L. C., and R. D. Jackson. 2015. Nitrogen conservation decreases with fertilizer
- addition in two perennial grass cropping systems for bioenergy. Agriculture, Ecosystems
- 527 and Environment 204:62–71.
- Jach-Smith, L. C., and R. D. Jackson. 2018. N addition undermines N supplied by arbuscular
- mycorrhizal fungi to native perennial grasses. Soil Biology and Biochemistry 116:148–157.
- Jarchow, M. E., and M. Liebman. 2012. Tradeoffs in Biomass and Nutrient Allocation in Prairies
- and Corn Managed for Bioenergy Production. Crop Science 52:1330–1342.
- Johansen, A., I. Jakobsen, and E. S. Jensen. 1994. Hyphal N transport by a vesicular-arbuscular
- mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant and Soil
- 534 160:1–9.
- Johnson, N. C., D. L. Rowland, L. Corkidi, L. Egerton-Warburton, and E. B. Allen. 2003.
- Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands.
- 537 Ecology 84:1895–1908.
- Johnson, N. C., G. W. T. Wilson, M. a Bowker, J. a Wilson, and R. M. Miller. 2010. Resource
- limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the
- National Academy of Sciences 107:2093–2098.
- Koerselman, W., and A. Meuleman. 1996. The vegetation N: P ratio: a new tool to detect the
- nature of nutrient limitation. Journal of Applied Ecology 33:1441–1450.
- Köhl, L., F. Oehl, and M. G. A. van der Heijden. 2014. Agricultural practices indirectly
- influence plant productivity and ecosystem services through effects on soil biota. Ecological

- 545 Applications 24:1842–1853.
- Leake, J., D. Johnson, D. Donnelly, G. Muckle, L. Boddy, and D. Read. 2004. Networks of
- power and influence: the role of mycorrhizal mycelium in controlling plant communities
- and agroecosystem functioning. Canadian Journal of Botany 82:1016–1045.
- Lenth, R. V. 2015. Ismeans: Least-squares means. http://cran.r-project.org/package=Ismeans.
- Marshall, J. D., J. R. Brooks, and K. Lajtha. 2007. Sources of variation in the stable isotopic
- composition of plants. Pages 22–60 Stable Isotopes in Ecology and Environmental Science.
- second. Blackwell Publishing, Malden, MA.
- Miller, R. M., G. W. T. Wilson, and N. C. Johnson. 2012. Arbuscular Mycorrhizae and
- Grassland Ecosystems. Pages 59–84 Biocomplexity of Plant-Fungal Interactions. John
- Wiley & Sons, LTD.
- Nave, L. E., K. J. Nadelhoffer, J. M. Moine, L. T. a. Diepen, J. K. Cooch, and N. J. Dyke. 2013.
- Nitrogen Uptake by Trees and Mycorrhizal Fungi in a Successional Northern Temperate
- Forest: Insights from Multiple Isotopic Methods. Ecosystems 16:590–603.
- Ouimette, A., D. Guo, E. Hobbie, and J. Gu. 2012. Insights into root growth, function, and
- mycorrhizal abundance from chemical and isotopic data across root orders. Plant and Soil
- 561 367:313–326.
- Parrish, D. J., and J. H. Fike. 2005. The biology and agronomy of switchgrass for biofuels.
- 563 Critical Reviews in Plant Sciences 24:423–459.
- Pringle, A. 2009. Quick guide Mycorrhizal networks. Current Biology 19:838–839.
- R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for
- Statistical Computing, Vienna, Austria. http://www.r-project.org.
- Rillig, M. C. 2004. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters

- 568 7:740–754.
- Robertson, G. P., D. C. Coleman, C. S. Bledsoe, and P. Sollins. 1999. Standard Soil Methods for
- Long-Term Ecological Research . Oxford University Press, Inc., New York.
- Robertson, G. P., S. K. Hamilton, S. J. Del Grosso, and W. J. Parton. 2011. The biogeochemistry
- of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecological
- 573 Applications 21:1055–1067.
- Robertson, G. P., and P. M. Vitousek. 2009. Nitrogen in Agriculture: Balancing the Cost of an
- Essential Resource. Annual Review of Environment and Resources 34:97–125.
- Roley, S. S., D. S. Duncan, D. Liang, A. Garoutte, R. D. Jackson, J. M. Tiedje, and G. P.
- Robertson. (n.d.). Associative nitrogen fixation (ANF) across a nitrogen input gradient.
- 578 PLoS ONE.
- 579 Schroeder-Moreno, M. S., T. L. Greaver, S. Wang, S. Hu, and T. W. Rufty. 2011. Mycorrhizal-
- mediated nitrogen acquisition in switchgrass under elevated temperatures and N
- enrichment. GCB Bioenergy 4:266–276.
- Schulte, E., J. Peters, and P. Hodgson. 1987. Minerals in feed, forage and manure samples: dry
- ashing method. Page Wisconsin Procedures for Soil Testing, Plant Analysis and Feed &
- Forage Analysis. No. 6, Soi.
- Schweiger, P. F. 2016. Nitrogen isotope fractionation during N uptake via arbuscular
- mycorrhizal and ectomycorrhizal fungi into grey alder. Journal of Plant Physiology 205:84–
- 587 92.
- 588 Smith, S. E., and D. Read. 2008. Mycorrhizal Symbiosis. Third Edit. Academic Press, London,
- 589 UK.
- 590 Smith, S. E., and F. A. Smith. 2011. Roles of arbuscular mycorrhizas in plant nutrition and

- growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology
- 592 62:227–250.
- 593 Stackpoole, S., B. Workmaster, R. Jackson, and K. Kosola. 2008. Nitrogen conservation
- strategies of cranberry plants and ericoid mycorrhizal fungi in an agroecosystem. Soil
- Biology and Biochemistry 40:2736–2742.
- 596 Staddon, P. L., I. Jakobsen, and H. Blum. 2004. Nitrogen input mediates the effect of free-air
- 597 CO2 enrichment on mycorrhizal fungal abundance. Global Change Biology 10:1678–1688.
- Talbot, J. M., and K. K. Treseder. 2010. Controls over mycorrhizal uptake of organic nitrogen.
- 599 Pedobiologia 53:169–179.
- Treseder, K. K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and
- atmospheric CO2 in field studies. New Phytologist 164:347–355.
- Treseder, K. K., and A. Cross. 2006. Global Distributions of Arbuscular Mycorrhizal Fungi.
- 603 Ecosystems 9:305–316.
- 604 U.S. Department of Energy. 2011. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy
- and Bioproducts Industry. Page Renewable Energy. Oak Ridge National Laboratory, Oak
- Ridge, TN.
- Veresoglou, S. D., B. Chen, and M. C. Rillig. 2012. Arbuscular mycorrhiza and soil nitrogen
- 608 cycling. Soil Biology and Biochemistry 46:53–62.
- De Vries, F. T., and R. D. Bardgett. 2012. Plant microbial linkages and ecosystem nitrogen
- retention: lessons for sustainable agriculture. Frontiers in Ecology and the Environment
- 611 10:425–432.
- Walder, F., H. Niemann, M. F. Lehmann, T. Boller, A. Wiemken, and P. E. Courty. 2013.
- Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants

614	using carbon isotope ratios (δ 13C). Soil Biology and Biochemistry 58:341–344.
615	Wallander, H., L. O. Nilsson, D. Hagerberg, and E. Bååth. 2001. Estimation of the biomass and
616	seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New
617	Phytologist 151:753–760.
618	Wullschleger, S. D., E. B. Davis, M. E. Borsuk, C. A. Gunderson, and L. R. Lynd. 2010.
619	Biomass Production in Switchgrass across the United States: Database Description and
620	Determinants of Yield. Agronomy Journal 102:1158-1168.
621	Yano, Y., G. R. Shaver, A. E. Giblin, and E. B. Rastetter. 2009. Depleted 15N in hydrolysable-N
622	of arctic soils and its implication for mycorrhizal fungi-plant interaction. Biogeochemistry
623	97:183–194.
624	Zeller, B., C. Brechet, J. Maurice, and F. Le Tacon. 2007. 13C and 15N isotopic fractionation in
625	trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Annals of
626	Forest Science 64:419–429.
627	
628	

Table 1. Mean soil inorganic N and available P and plant tissue N:P ratio for *Panicum virgatum*. Data are means with 1 standard error of the mean in parenthesis. Means with different letters within a column indicate significant differences between N addition treatments within a site (ARL and KBS) at p < 0.05.

			Plant	
	N addition	Total inorganic N	Available P	
Site	(kg N ha ⁻¹ yr ⁻¹)	(kg N ha ⁻¹)	(kg PO ₄ ⁻² ha ⁻¹)	<u>N:P</u>
ARL	0	$9.8 (3.0)^{b}$	3.34 (0.44)	5.4 (0.5)
	56	34.4 (9.7) ^b	2.48 (0.27)	5.5 (0.2)
	196	$114 (27)^{a}$	3.08 (0.3)	7.1 (0.8)
KBS	0	$8.3 (0.5)^{b}$	1.29 (0.09)	$5.9 (0.4)^{b}$
	56	$10.7 (1.3)^{b}$	1.28 (0.04)	$6.0 (0.3)^{b}$
	196	77.2 (27) ^a	1.67 (0.19)	$10.3 (0.1)^{a}$

Table 2. Mean $\delta^{15}N$ of the aboveground plant (*Panicum virgatum*), available soil N pool, and AMF hyphae. Data are means with 1 standard error in parentheses. Means with different letters within a row indicate significant differences between $\delta^{15}N$ pools at p < 0.05.

Site	N addition	Aboveground plant	Available N	AMF hyphae
	(kg N ha ⁻¹ yr ⁻¹)	δ ¹⁵ N ‰	δ^{15} N ‰	δ^{15} N ‰
ARL	0	$0.8 (0.5)^{a}$	4.1 (0.4) ^b	2.3 (0.4) ^a
	56	$0.5(0.2)^{a}$	$3.0(0.6)^{b}$	$2.0 (0.2)^{b}$
	196	2.2 (0.2) ^a	$3.7 (0.3)^{b}$	$4.5 (0.3)^{b}$
KBS	0	$1.0(0.1)^{a}$	$3.0(0.7)^{b}$	$2.3 (0.4)^{ab}$
	56	$1.9(0.1)^{a}$	$4.1 (0.4)^{b}$	$3.5 (0.3)^{b}$
	196	$4.0(0.3)^{a}$	$5.9(0.8)^{a}$	9.0 (0.2) ^b

Table 3. Solutions to mass balance equations (scenarios 1 through 3), for Arlington (ARL) and Kellogg Biological Research Station (KBS) sites. Each scenario solves the mass balance equations assuming different, but possible AMF fractionation values (Δ). Numbers in parentheses are 1 standard error of the mean.

		N addition				
Scenarios	Site	(kg N ha-1yr-1)	Δ (%o)	δ ¹⁵ Ntransfer ‰	T (%)	f (%)
Scenario 1	ARL	0	2	1.0	-228 (131)	111 (27)
		56	2	-0.1	-7 (16)	72 (11)
		196	2	0.4	48 (4)	12 (12)
	KBS	0	2	0.4	-31 (19)	68 (7)
		56	2	1.0	10 (10)	57 (5)
		196	2	2.9	67 (1)	44 (13)
Scenario 2	ARL	0	4	-1.0	-32 (16)	55 (13)
		56	4	-2.1	0 (6)	36 (5)
		196	4	-1.6	33 (4)	6.0 (6)
	KBS	0	4	-1.6	-9 (8)	34 (3)
		56	4	-1.0	8 (6)	29 (2)
		196	4	0.9	50 (1)	22 (7)
Scenario 3	ARL	0	8	-5.0	-12 (-5)	28 (11)
		56	8	-6.1	1 (0.2)	18 (6)
		196	8	-5.6	20 (7)	3 (1)
	KBS	0	8	-5.6	-3 (-0.9)	17 (6)
		56	8	-5.0	5 (2)	14 (5)
		196	8	-3.1	34 (11)	11 (4)

Notes: Scenario 1 assumed an AMF fractionation value Δ of 2‰, as determined by literature values. Scenarios 2 and 3 used a higher AMF fractionation value Δ of 4‰ and 8‰, respectively, to explore hypothetical scenarios in which the AMF fractionation value for switchgrass is greater than previously thought, which brings T (%) (percentage of fungally-assimilated N transferred to plant host) and

f(%) (proportion of plant N derived from fungal transfer) solutions into more biologically-relevant ranges (ie., f(%) cannot be more than 100%).

Figure legends

Figure 1. Hypothetical scenarios for how plants obtain N, where T is the fraction of fungally-assimilated N transferred to plant hosts and f is the proportion of plant N derived from fungal transfer. Arrows illustrate the path of N uptake and resulting δ^{15} N pools. In the hypothetical low N environment (unfertilized or low native soil N), plants receive 50% of N via mycorrhizal transfer. This results in depleted $\delta^{15}N$ value in the aboveground plant biomass (a) relative to the enriched $\delta^{15}N$ value in mycorrhizal hyphae (b). This is the result of AMF hyphae taking up available soil N where the fractionation on transfer to the plant results in the heavier ¹⁵N isotope remaining in the hyphae (c), and the lighter isotope is transferred to the plant and becomes incorporated into aboveground plant tissue with no further fractionation. In the hypothetical high N environment (fertilized or high native soil N), plants receive 25% of N via mycorrhizal transfer. This results in moderately depleted $\delta^{15}N$ value in aboveground plant biomass (d) relative to a slightly enriched δ^{15} N value in mycorrhizal hyphae (e) and available soil N pool (f). For reference, *Brassica* sp., which form no AMF associations, receive no N via AMF transfer so the aboveground plant N of Brassica sp. (g) reflects the δ^{15} N value of the available soil N δ^{15} N pool (h), assuming negligible fractionation of $\delta^{15}N$ with direct plant root uptake. The thickness of arrows represents the amount of N supplied via mycorrhizal transfer (dashed arrows) or plant N uptake via roots (solid arrows).

Figure 2. AMF extra-radical hyphae biomass (log [µg hyphae g sand $^{-1}$]) is regressed with δ^{15} N ‰ of aboveground plant biomass at ARL and KBS. Each data point represents one plot, with colors in the legend indicating N fertilizer treatment (kg N ha $^{-1}$ yr $^{-1}$).

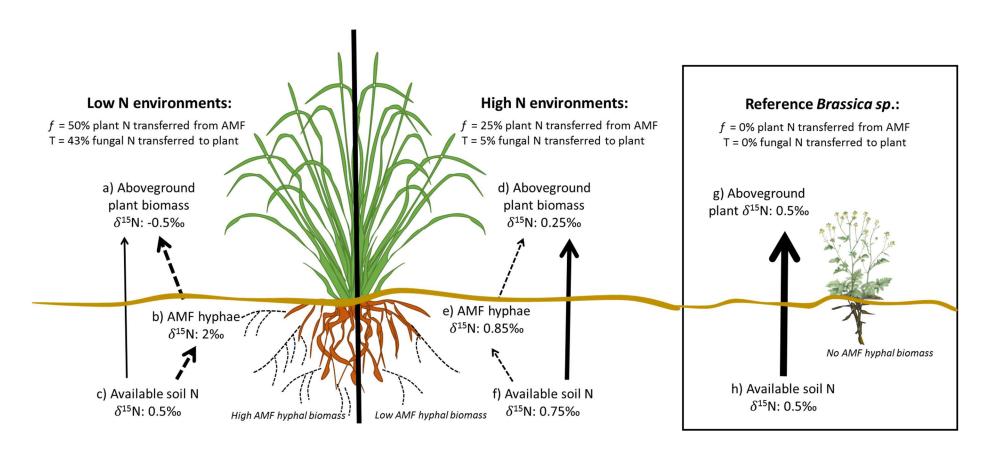


Figure 1.

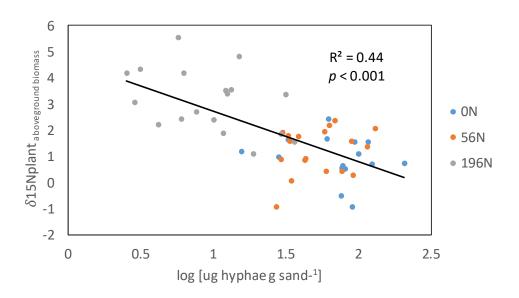


Figure 2.