ECOLOGY LETTERS

Ecology Letters, (2019) 22: 506-517

doi: 10.1111/ele.13210

LETTER

Global photosynthetic capacity is optimized to the
environment

Nicholas G. Smith,"2*

Trevor F. Keenan,*3

I. Colin Prentice,*>%” Han Wang,’
lan J. Wright,® Ulo Niinemets,®
Kristine Y. Crous,®

Tomas F. Domingues, '°

Rossella Guerrieri,'""?

F. Yoko Ishida,'® Jens Kattge,'*'>
Eric L. Kruger,'®

Vincent Maire,"”

Abstract

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco car-
boxylation rate (Femax), to simulate carbon assimilation and typically rely on empirical estimates,
including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new
theory, based on biochemical coordination and co-optimization of carboxylation and water costs
for photosynthesis, suggests that optimal V..« can be predicted from climate alone, irrespective
of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a
global, field-measured V. n.x dataset for C3 plants. Soil fertility indices explained substantially less
variation (32%). These results indicate that environmentally regulated biophysical constraints and
light availability are the first-order drivers of global photosynthetic capacity. Through acclimation
and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential
resource use for growth and reproduction. Our theory offers a robust strategy for dynamically
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predicting photosynthetic capacity in ESMs.
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INTRODUCTION

Ecosystem and Earth system models are highly sensitive to
the representation of photosynthetic processes (Rogers
et al. 2017a). In the majority of these models, C; photo-
synthesis is simulated using well-established biochemical
theory (Farquhar et al. 1980). The applicability of the the-
ory relies on knowledge of photosynthetic capacity, which
varies both among species and over time and space, in
response to environmental conditions (Ali ez al. 2015;
Smith & Dukes 2018).

Photosynthetic capacity is also known to correlate with leaf
nitrogen (N) across plant types as a result of the N used to
build photosynthetic machinery (Walker et al. 2014). Many
global models use these empirical relationships to predict the
maximum rate of Rubisco carboxylation (Vemax; wmol
m > s '), a primary determinant of photosynthetic capacity
(Rogers 2014). This approach inherently assumes that varia-
tion in Vimax 18 driven by variation in N allocated to leaves,
which is itself prescribed or calculated from N availability in
soils. This leads to a positive relationship between V. and
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soil N availability. This approach was shown to perform well
in a comparison of several model formulations (Walker et al.
2017). However, there are several important limitations to the
N-supply approach for predicting V... First, observed rela-
tionships between field-measured V...« and leaf N per leaf
area (N,) are often only weak (e.g. r* = 0.3; Niinemets et al.
2009). Second, an increase in Vin.x per leaf N, at lower soil
N availability (Ainsworth & Rogers 2007; Kattge et al. 2009;
Maire et al. 2012) suggests that high V.,.x can be achieved
under low soil N. Third, the N-supply approach is necessarily
empirical, yet it is only with mechanistic models that we stand
to reliably predict responses to future, novel conditions.

Photosynthetic coordination theory provides an approach
to predict dynamic responses of photosynthetic capacity to
environmental constraints. Originally proposed by Von Caem-
merer & Farquhar (1981) and further developed by Chen
et al. (1993), Maire et al. (2012) and Wang et al. (2017¢c), it
states that photosynthesis tends to be equally limited by elec-
tron transport and carboxylation under average environmen-
tal conditions. Notably, while this implicitly assumes dynamic
nutrient partitioning within leaves, it does not assume any
nutrient availability constraint on carboxylation rates, electron
transport rates or the partitioning of nitrogen between the
two. While this response may be possible under any given
amount of N availability, here, we present a ‘strong’ form of
the coordination theory, which assumes that plants are able to
acquire the N necessary to build leaves that can photosynthe-
size at the fastest possible rate given light availability and bio-
physical constraints, for example, through increased
belowground allocation (Drake et al. 2011; Terrer et al.
2016). This is quite different, in formulation and conse-
quences, from other interpretations that focus on the parti-
tioning of a fixed amount of N to Vipnax versus Juax (e.g. Ali
et al. 2016).

In this study, we tested a theoretical framework for predict-
ing Vemax from first principles at the global scale. Building on
work from Dong et al. (2017), Wang et al. (2017b) and Toga-
shi et al. (2018b), our approach works by combining photo-
synthetic coordination theory with ‘least-cost’ theory for
understanding investments in carboxylation and water trans-
port capacities for photosynthesis (Wright ez al. 2003; Prentice
et al. 2014). The least-cost hypothesis posits that these invest-
ments are co-optimized in relation to environmental properties
such that a given photosynthetic rate is achieved at the lowest
total cost (i.e. respiration). From this principle, one can pre-
dict the optimal CO, drawdown during photosynthesis (i.e.
intercellular to atmospheric CO, or C;:C,) as a function of
site temperature, vapour pressure deficit and atmospheric
pressure (Prentice et al. 2014; Wang et al. 2017c). By drawing
together the least-cost and coordination theory, an important
step forward is possible: as outlined in the Methods, Vnax
can in theory be predicted as a function of light availability
(), temperature (7), vapour pressure deficit (D) and atmo-
spheric pressure (as indexed by elevation, z).

Here, we test this proposition, using a dataset of 3672 val-
ues of Vemax from 201 sites from across the globe. First, we
tested our quantitative predictions for individual effects of 7,
T, D and z on V . and compared model-predicted Vepax to
observed Vi nax values. Second, we examined the sensitivity of

our Vemax predictions to 7, 7, D and z as well as leaf traits
not included in the model, namely leaf nitrogen per leaf area
(N,) and leaf mass per area (LM A). Finally, we used six soil
indices to explore the relative influence of soil N and water
supply and environmental constraints on V,.x. Using these
data, we indirectly tested the proposition that leaf N concen-
trations more strongly reflect ‘demand’ for N (the need to
support a given Venax, itself optimized to climate) rather than
‘supply’ of N (from the soil).

MATERIALS AND METHODS
Observational V., dataset

An observational dataset of Vi ,.x values was built by com-
bining independent data reported to be from top canopy, nat-
ural vegetation from Bahar ef al. (2017), Carswell et al.
(2000), De Kauwe et al. (2016), Domingues et al. (2010,
2015), Ellsworth & Crous (2016), Keenan & Niinemets (2016),
Maire et al. (2015), Meir et al. (2002), Niinemets et al. (2015),
Rogers et al. (2017b), Serbin et al. (2015), Smith & Dukes
(2017a), Tarvainen et al. (2013), Togashi et al. (2018a,b), the
TRY plant trait database (Kattge et al. 2011), Wang et al.
(2017a) and Wohlfahrt et al. (1999) (Figure S1 and S2). Vemax
values in the dataset were derived from either net photosyn-
thesis (A, to intercellular CO, (Cy; 56% of the total dataset)
curves or from point measurements of A, and C; using the
one-point method (44%; method presented in De Kauwe
et al. (2016); see discussion of the limitations of this method
in the Supplementary Information). The dataset includes lati-
tude, longitude and leaf temperature at the time of measure-
ment for each point and, for a subset of the data, leaf
nitrogen content per unit leaf area (N,; gN m2; 57% of the
dataset) and leaf mass per unit leaf area (LMA; g m~%; 60%
of the dataset). Latitude and longitude were used to extract
effective growing season mean temperature (7,; °C), atmo-
spheric vapour pressure deficit (Dy; Pa) and incoming photo-
synthetically active radiation (I,; pmol m ™2 s~') for each site
from monthly, 1901-2015, 0.5° resolution data provided by
the Climatic Research Unit (CRU TS3.24.01) (Harris et al.
2014). Growing season was operationally defined as months
with mean temperatures greater than 0 °C. The elevation (z;
m) at each site at 0.5° resolution was obtained from the
WFDEI meteorological forcing dataset (Weedon et al. 2014).
The ratio of actual evapotranspiration to equilibrium evapo-
transpiration (Priestley-Taylor coefficient, o), which represents
the plant-available surface moisture, was calculated at each
0.5° resolution site using the SPLASH model run at a
monthly timescale (Davis er al. 2017). Soil cation exchange
capacity (CEC; cmol, kg™"), soil pH, soil C:N ratio, soil silt
content (%) and soil clay content (%) at 0-40 cm depth were
extracted from 1 km global data provided by ISRIC SoilGrids
database (www.soilgrids.org). These soil data were available
for 97% of the total dataset.

Theoretical model of Vi yax

The theoretical model of V.« was developed from the theory
presented by Wang et al. (2017¢) and Dong et al. (2017) by
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combining the coordination theory of photosynthesis (Maire
et al. 2012) with the least-cost hypothesis (Wright et al.
2003; Prentice et al. 2014). The combination of the two theo-
ries is done by calculating an optimal intercellular CO, con-
centration under average environmental conditions (C%),
which is then used to calculate optimal V., under the
same conditions (V7,,..). These calculations were made using
light, temperature, vapour pressure deficit, elevation and
atmospheric CO, as inputs. We first present the formulations
for calculating the C} values used in the optimal V[, pre-
diction following Prentice ef al. (2014). We then describe
how we use coordination theory to predict optimal V. .
(equation 20 below).

Optimal C; calculation

The optimal intercellular CO, concentration under average
environmental conditions (C’; Pa) was calculated using a theo-
retical derivation of the optimal ratio (y) of C; to atmospheric
CO, partial pressure (C,; Pa), based on least-cost theory from
Prentice et al. (2014):

_r Sy &
X‘Cﬁ(l cu>a+¢17g M)
where
K+T
t= /P en @

where £ defines the sensitivity of y to D, and is related to the
carbon cost of water (Medlyn ef al. 2011; Prentice et al.

2014), T'* (Pa) is the CO, compensation point in the absence
of mitochondrial respiration, and K (Pa) is as follows:

-k (1+2) 5

where K. (Pa) and K, (Pa) are Michaelis—Menten coeffi-
cients of Rubisco activity for CO, and O,, respectively,
and O; (Pa) is the intercellular O, concentration. A consid-
eration of O, concentrations is included to account for
declines in carboxylation that occur as a result of Rubisco
oxygenation. Values of K and I'* are temperature depen-
dent and were calculated using the equations and parame-
ters of Bernacchi et al. (2001) using 7,. The term P
(unitless) in equation 2 is the ratio (b/a) of dimensionless
cost factors describing the carbon cost of maintaining pho-
tosynthetic proteins to support assimilation at a given rate
under normal daytime conditions (b) and the carbon cost
of maintaining a transpiration stream to support assimila-
tion at the same rate (a) (Prentice et al. 2014). We used a
constant [, estimated as 146, calculated under standard
conditions (T, =25 °C, D, =1kPa, z=0) from yx values
derived from leaf stable carbon isotope data (Cornwell
2017) and equations 1 and 2, as in Wang et al. (2017c).n*
is the viscosity of water relative to its value at 25 °C, cal-
culated using temperature and elevation as in Huber ef al.
(2009). In cases where C, was unknown, we used the year
of measurement to estimate C, from global estimates used
by the NASA GISS model, which utilizes a combination of
measurements and modelling techniques to estimate a glo-
bal average C, (https://data.giss.nasa.gov/modelforce/gh-
gases/Fig 1A.ext.txt).
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Figure 1 Sensitivity of the theoretical model to environmental drivers. Sensitivity of the theoretical maximum rate of Rubisco carboxylation (V7

1
Dq (kPa) z (km)

black,

max >

solid lines) and ratio of intercellular to atmospheric CO, concentration (y, grey dotted lines, panels f, g and h) to the main environmental parameters
within the model: growing season mean for irradiance (/,, panels a and e), air temperature (7, panels b and f) and vapour pressure deficit (D,, panels ¢

and g), as well as elevation (z, panels d and h). In panels a, b, ¢ and d,

cmax

values were mean centred to aid in comparison across environmental

parameters. In panels e, f, g and h, values were mean centred and scaled (divided by the standard deviation) to aid comparison of V. and y sensitivities.

cmax

Sensitivity analyses were done while keeping all other environmental variables at standard levels: 7, = 800 umol m2s T,=25°C, Dy=1kPa, z=0

km. Note: y is insensitive to /,, and as such, no dashed grey line was plotted,
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Optimal V. calculation

We calculated the optimal maximum rate of Rubisco carboxy-
lation under average environmental conditions (V7 ) by
assuming that, optimally, plants will coordinate the allocation
of resources to photosynthesis such that under typical envi-
ronmental conditions:

A= Aj (4)

where 4. (umol m~2 s ') is the photosynthetic rate limited by

the maximum rate of Rubisco carboxylation (Vemax; pHmol
—2 1

m s )

Ae = Vemaxine (5)
where
o
.= 6
M=o K (6)

where C(Pa), I'* (Pa) and K (Pa) are calculated as in the pre-
vious section.

Aj (umol m 2 s') is the photosynthetic rate limited by the
electron transport rate for the regeneration of ribulose-1,5.-
bisphosphate (RuBP; J; pmol m 2 s~ '):

4= (g)m )

where
-1

J is a saturating function of irradiance, converging on Jy.x
(umol m~2 s~ ') at high levels:

0‘]2 - ((P1+ Jmax)J+ (PIJmax =0 (9)

where 7 is the incident photosynthetically active photon flux
density (umol m~2 s~ '), 0 (unitless) is the curvature of the
light response curve, and ¢ is the realized quantum yield of
photosynthetic electron transport (mol mol™') (Farquhar &
Wong 1984). We adopted a value of ¢ of 0.257 mol mol ™',
which yielded a slope between the measured and predicted
Vinax Values near 1. This ¢ value is within the range of
values observed by independent, leaf-level studies (0.26 in
soya bean (June 2005), 0.23 in soya bean (Harley et al.
1985), 0.28 in Eucalyptus pauciflora (Kirschbaum & Far-
quhar 1987), and 0.26 in a seven-species analysis (Ehleringer
& Bjorkman 1977)). The curvature term, 0, is related to the
distribution of light intensity relative to the distribution of
photosynthetic capacity, assumed to be 0.85, consistent with
observations (June 2005). Eqn 9 can be substituted into
eqn 7 to yield

4 — my @I+ Jmax £ \/((/)]+ Jmax)2 — 401 max 10
I (Z) 20 (10)

from which the smaller root is used to derive 4;.

To derive optimal Ji,,x, we assumed that 4; changes in pro-
portion to Jpax, as proposed by Farquhar (1989). As such, we
took the derivative of 4; (Eqn 10) with respect to J,, and
equated this to ¢:

04;

¢ a'°]1'l'121X ( )
¢ is then given by
o (m) 0 (P1+ Jmax - \/((PI+ Jmax)2 - 49(P1Jmax
T \4) 0 20
(12)
which simplifies to
m 0 2
=1l - I+ Jmax)” — 4001 max 1
o= g (1= g V0T P = 40010, (13)
which can be solved as
4 max — 2 1
c:% R ] b¢ (14)
V(@I + T} = 4001
Equation 14 can be rearranged to:
Jmax = (le (15)
where
1

For the calculation of @, ¢ was assumed to be non-varying
and derived as 0.053 under standard conditions (see Supple-
mentary Information). We then inserted the solution for J,.x
into eqn 10 and solved for A;:

_ olmw”

4= (17)

where

o' =14+w—\/(1+o) —40w (18)

Finally, eqns 5 and 17 were used to replace 4. and A4;j in
equation 4 and solve for an intermediate rate of V.., Which
we term chax*:

—or(M™) (™
Vemax™ = (Pl(mc) (89) (19)

Equation 19 incorporates the temperature response of m
and m.. However, Vin.y itself (i.e. the saturation point of the
Michaelis—Menten curve) is also sensitive to temperature. As
such, we used a formulation from Kattge & Knorr (2007) to
incorporate this temperature response, which yielded
vV or predicted Vim.x acclimated to varying environ-

cmax|pred] o
mental conditions):

( ) 1 To(AS)—Hy
Ha(Tg-To) | 4 e~ Rlo
_ *\a RTgTo
V::max[pred] - (chax )e ¢ Tg(AS)—Hy (20)
1 _j’_ e RTg

where Hy is the deactivation energy (200 000 J mol™"), H, is
the activation energy (71,513 J mol™'), R is the universal gas
constant (8.314 Jmol ' K™!), AS is an entropy term
(J mol™' K7h, T, is the growing season temperature in K,

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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and T, is the optimum temperature in K, assumed to be the
temperature at which Vemax is operating. T, was estimated
based on its relationship to growth temperature (Kattge &
Knorr 2007):

T, = 177.884 + 0.44T, (21)

AS was calculated based on a linear relationship with 7, from
Kattge & Knorr (2007), with a slope of —1.07 J mol~' K™!
and intercept of 668.39 J mol ' K~ ' (Kattge & Knorr 2007).
In addition to C}, the resulting theoretical prediction of opti-
mal Venax (Eq. 20) requires only two free parameters: 6 (unit-
less), the curvature of the light response curve, and ¢, the
quantum yield of photosynthetic electron transport (mol mol ™).

Model-data comparison

To perform the model-data comparison, we standardized each
observed Vemax value (Venaximeas)) to its Ty (i€. cmax obs) using
temperature response formulatlons from Kattge & Knorr
(2007):

Tmeas (AS)—Hy
Ha(Tg—Tmeas) | + € RTmeas
V::max[obs] - chax[meas]e M fnees To(AS)—Hy (22)
1 + e RTg

where T, 1S the leaf temperature at which the measurement
was taken (K), Vemaximeas) 1S the measured Ven,y, and AS was
calculated as in eqn. 20 from 7, following Kattge & Knorr
(2007). Next, we used the theoretical model described above
to predict Vemax values at the 7, for each observation (i.e.
). We then aggregated the predicted and V.

cmax|obs] cmax|[obs]

values by latitude and longitude at a resolution of 0.5 °C to
match the climatological data. Finally, we used Model II
Reduced Major Axis slope-fitting (R package ‘lmodel2’
(Legendre 2014)) to compare predicted and observed rates of
Vimax at cach site. To examine the ability of our model to
simulate the ratio of Ji ;. to Vi .. (Jl./Vinax)s WE Tan a simi-
lar comparison of predicted and observed J, . /Vi.. .. at each
of the 90 sites where dex[obs] data were available. Note, that
due to the similarity between Eqns. 20 and 22 necessarily
applied to predicted and observed data for comparison, we
explored the potential for a spurious correlation between
modelled and observed data due to a common element
(Chayes 1971) (Supplementary Information). Additionally,
because some V.« values in the observational dataset were
derived using the one-point method (method presented in De
Kauwe et al. 2016), we ran a similar model-data comparison
as above using only data derived using A4,..-C; curves (Supple-
mentary Information).

Following direct comparison, we calculated the model bias
(B) in V., predictions at each site as

d
cmax[pred]

v
: cmax|[obs] + 100 (23)

cmax[obs]

B=

We then explored B as a function of the primary environ-
mental drivers in the model, Ty, /,, D, and z, as well as sec-
ondary environmental variables soil cation exchange capacity,
soil pH, soil C:N ratio, soil silt content, soil clay content, a
soil water content index (o), leaf mass per area (LMA) and
leaf nitrogen content (N,) using multiple linear regression. A

single regression model was first fit using the four primary dri-
vers. Following this, a second model was fit that included the
four primary drivers and each of the six soil variables, which
were available for 193 of 201 sites (97%).

Two additional models were fit that included all primary
drivers and one of LMA or N,, which were available for 112
(56%) and 98 (49%) of 201 sites, respectively. All analyses
were performed in R version 3.5.0.

As a further examination of the influence of soil variables
on chax fobs]> W€ fit three separate models using the 193 sites
for which soil data were available. The first model, similar to
above, only included V’cmlx fpred)- The second model only
included the six soil variables: soil cation exchange capacity,
soil pH, soil C:N ratio, soil silt content, soil clay content and
o. The third model included both V’Cmax fpred] and all six soil
variables. The three models were compared using Akaike
information criteria (AIC). We also performed a similar com-
parison using leaf N, values for the 98 sites that had N, data.
For comparisons of models with and without soil variables,
each model was fit using only the 193 sites where soil data
were available. Similarly, for comparisons of models with and
without N,, each model was fit using only the 98 sites where
N, data were available. This ensured that model comparisons
were done using identical datasets. For all models, we visually
examined residual plots following model fitting to ensure that
necessary assumptions for model comparisons were met (Zuur
et al. 2009). We also calculated the variance inflation factor
(VIF) for each model predictor to assess the degree of
collinearity. In all cases, VIF values were less than 5 and, in
the case of all discussed significant predictors (i.e. P < 0.05),
values were less than 3, indicating that collinearity did not
have a large impact on our interpretations (Zuur et al. 2009).

Comparison to CANTRIP database

To examine the potential influence of canopy position on our
model-data comparison, we examined a subset of the
chax[obg]values in the dataset (CANTRIP) (Keenan & Niine-
mets 2016) that were standardized to top of the canopy light
values (Q;,, = 40 mol m~2 d"). These values were determined
using individual canopy scaling relationships, which were
applied to 109 individual plant canopies (Niinemets et al.
2015). Separate model-data comparisons, as described above,
were performed for the full dataset without the CANTRIP data
and with only the CANTRIP data. We used Student’s #-test to
examine whether the difference between modelled and observed
data differed between the non-CANTRIP and the CANTRIP
data. Both the CANTRIP and non-CANTRIP datasets were
normally distributed and had similar standard deviations.

RESULTS

Predicted response of optimal V/__ to environmental drivers

cmax

In response to increased light availability, our model predicted

a positive, linear response of optimal V. . . (e V. .). This

effect was driven by increases in electron transport under
increased light, which led to a necessary increase in V7, fo

carboxylation rate-limited photosynthesis to match electron

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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transport rate-limited photosynthesis. Similarly, our model
predicted a nonlinear increase in V[, with temperature
(Fig. 1). This was the result of an increase in electron trans-
port with temperature as well as an increased affinity of
Rubisco for O,, which also caused an increase in . As a
consequence, the predicted ratio of J, . to V., decreased
with increasing temperatures (Figure S5). The model
predicted slight increases in V7 . with increased vapour
pressure deficit and elevation due to reduced stomatal con-

ductance (Fig. 1).

Model-data comparison

When compared to the global database, our theoretical model
captured 64% of the total variation in chax[obs] values (Fig. 2).
After tuning the model to have a slope near 1, the intercept of
the relationship between observed and predicted values had a
95% confidence interval (CI) that bracketed 0 (mean = —2.01,
95% CI: -5.49, 1.12). The model performed similarly well using
only data derived from A,.-C; curves (r*> = 0.68; Supplementary
Information). Our theoretical model was also able to capture
61% of the variation in Jm‘lx fobs| IV fobs] At the 90 sites that
contained J/ data (Figure S3). The slope and intercept of

max|[obs]

the relationship between observed and  predicted
dex[obs IV cmax[obs] values had 95% confidence intervals (CI) that

bracket 1 and 0, respectively (slope = 0.94, 95% CI: 0.79, 1.12;
intercept =—0.44, 95% CI: —0.99, 0.02). In both cases, there
was a slight overprediction of values on average across sites
(Fig. 2 and Figure S3).

Model biases — environmental drivers

Our theoretical model showed a positive bias with growing
season mean irradiance (Fig. 3 and Table S1; Fj 96 = 11.54,
P < 0.01). This was driven by an overprediction in wet, tropi-
cal regions (Fig. 2), potentially due to an overestimation of
incoming light in dense tropical forests. To explore whether
this was due to an overestimation of light availability, we
compared the accuracy of our theory using high-light
ngax[obs] estimates from the CANTRIP database (Keenan &
Niinemets 2016), which are not influenced by canopy shading.
The model tended to underpredict the CANTRIP chax obs]
rates to a greater degree than non-CANTRIP rates (Figure S4
t76,=-2.912, P < 0.01). This result suggests that some data in
the observational dataset may have been collected from leaves
growing under non-maximum light conditions.

The warmest and driest environments in our dataset (D, >
1.5 kPa) showed the greatest underestimation of ch\x[obs]’
leading to a slight negative bias overall (Fig. 3; F) 196 = 7.66,
P < 0.01). Our model also tended to overpredict V’ cmax[obs] at
elevations above c. 1500 m (Fig. 3), which led to a significant
positive bias in our model with elevation (F) 96 = 11.62,
P < 0.01). There was no systematic bias in our model related
to Tg (Flg 3, F1’196 = 219, P= 014)

Model biases — leaf traits

When evaluated across variation in N, our theory showed a

negative bias, indicating an overestimation of V7, ., among
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Figure 2 Comparison of observed to optimal V7 .. Observed mean
maximum rate of Rubisco carboxylation (V[,,) at 201 global sites
plotted against the predicted V[  value at that site from the theoretical
model. Sites are coloured by Koppen climate classification. Tropical (first
letter A), arid (first letter B), temperate (first letter C), boreal (first letter
D) and polar (first letter E) regions are represented by red, yellow, green,
blue and grey colours. Error bars represent standard errors of the mean.
The solid black line is the best fit line from the reduced major axis
regression. The grey-shaded area represents a 95% confidence interval.
The dotted black line is a 1:1 line. Koppen climate classification key: Af=
tropical rainforest, Am= tropical monsoon, Aw= tropical wet savannah,
BSh= hot arid steppe, BSk= cold arid steppe, BWh= hot arid desert,
BWk= cold arid desert, Cfa= temperate hot summer without dry season,
Cfb= temperate warm summer without dry season, Cfc= temperate cold
summer without dry season, Csa= temperate hot summer with dry
summer, Csb= temperate warm summer with dry summer, Cwa=
temperate hot summer with dry winter, Cwb= temperate warm summer
with dry winter, Dfa= boreal hot summer without dry season, Dfb=
boreal warm summer without dry season, Dfc= boreal cold summer
without dry season, Dsc= boreal cold summer with dry summer, Dwc=
boreal cold summer with dry winter, EF= eternal winter, ET= tundra. A
version of this figure with individual points can be found in the
Supplementary Information (Figure S8).

low N, sites and underestimation at high N, sites (Fig. 4 and
Table S2; F9, = 29.67, P <0.01). To explore the relative
impact of N, versus climate and environmental variables driv-
ing the optimality model, we fit three linear regression models
predicting Vémdx[obs]‘ one with chdx[pred] a second with N,,
and a third with chdx[pred] and N,, each using the same subset
of the dataset where N, was reported (n = 98 sites). The fit of
the model that included both Vi, ireq) @and Ny (AIC = 724.5,
r? = 0.67) was slightly better than the model that included just
Vemaxiprea) (AIC = 7417 =0.60) and substantially better
than the model that mcluded N, (AIC = 8284, = 0.03),
suggesting that, while N, did add significant predictive value,
environmental constraints and light availability (indexed by
V. preq)) are the dominant drivers of photosynthetic capac-
ity. Our theory showed no bias in response to LMA (Fig. 4
and Table S3, F1’106 = 009, P= 076)
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Figure 4 Partial residuals of the observed bias (%) in maximum rate of Rubisco carboxylation (V7 ,.) predicted by the theoretical model by site plotted
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(P < 0.05) are shown. Colours are as in Figure 2.

. . . ratio, soil pH, soil silt content, soil clay content and o), only
Model biases — soil characteristics soil pH had a significant influence (Fig. 5 and Table S4; pH:
For the 193 sites with soil data, we used a linear model to Fy182 = 10.14, P <0.01; all others: P > 0.05). The negative

explore the relative influence of soil nutrient and water supply
on bias in our theory. Of six indices of soil nutrient and water
availability (soil cation exchange capacity (CEC), soil C:N

relationship between model bias and pH indicated that our
theoretical model tended to overpredict chax[obs] as soil acid-
ity increased. To assess the relative influence of climate and
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soil on Vémdx[obs] we quantified the influence of the soil met-
rics on model predictive ability by comparing three models
for predicting Vlmax obs): ONE based on site climate and eleva-
tion (indexed by ch ax| pred) a second model with the six met-
rics of soil nutrient and water availability only, and a third
model based on both climate and soils. The fit of the model
that included both V’Cmax fpred] and soil variables (AIC = 1529.3;

=0.68) was slightly better thdn the model that only
1ncluded chx [pred] (AIC = 1536.4; r* = 0.64) and substantially
better than the model that only included the soil variables
(AIC = 1669.1; r* = 0.32). These results suggest that soil vari-
ables (pH in particular) add statistically significant greater
ability to predict V’lex fobs] OVer biophysical constraints and
light availability alone, but that the dominant drivers of

V'cmax[obg] are captured by our theory.

DISCUSSION

The broad fidelity of our theory to observations suggests that,
across large spatial and phylogenetic scales, realized V7. is
principally determined by the optimization of photosynthetic
processes in response to environmental conditions. Predicted
carboxylation capacity is largest in tropical and subtropical
regions of the world (Fig. 6), where temperatures and incoming
solar radiation are highest. This effect not only follows from the
observations presented here (Fig. 2), but also results from tem-
perature (e.g. Smith & Dukes 2017b) and light (e.g. Meir et al.
2007) gradient studies. These results suggest that future, warmer
conditions may favour increased photosynthetic potential,
although this may be balanced by decreases in V., as a result
of elevated CO, (Ainsworth & Rogers 2007).
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Figure 5 Model bias in relation to soil variables. Partial residuals of the observed bias (%) in the maximum rate of Rubisco carboxylation predicted by the
theoretical model (V7,,,,) by site plotted against soil cation exchange capacity (CEC, panel a), pH (panel b), carbon-to-nitrogen ratio (C:N, panel c), silt
content (panel d), clay content (panel e), and an index of soil water availability (o; panel f) (black transparent circles). Model bias was defined as

i and V/

cmax|pred] -V
cmax|obs]

is the observed V/

cmax

by 100, where Vemaxiprea) 18 the predicted optimal ¥

cmax
cmax[obs]

Lines indicate the modelled response from the multiple linear regression models. Shading indicates 95% confidence intervals for regression lines. Only
significant trends (P < 0.05) are shown. Data are plotted for each of the 193 sites that had available soil data. Colours are as in Figure 2.

Data points are sized logarithmically by V/

cmax[obs] "
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Nonetheless, there were some significant biases in our model
predictions that warrant further discussion. The linear model
results indicated a positive bias with light availability, suggest-
ing that the observational data were less sensitive to light
availability than predicted by the theory. It is possible that
this was driven by individual variation in the realized quan-
tum yield of photosynthetic electron transport (¢), which is
the product of the intrinsic quantum efficiency and leaf
absorptance of incoming radiation. Previous studies have sug-
gested that intrinsic quantum efficiency and leaf absorptance
are not driven by light availability (Evans & Poorter 2001)
and, for intrinsic quantum efficiency, that observed variability
may be due to measurement technique rather than meaningful
biological variation (Skillman 2008). This suggests that the
bias in the light response may be due to variability in leaf
position and angle, which influence the actual light reaching
the leaf surface. Our comparison to the CANTRIP dataset
(Keenan & Niinemets 2016) indeed suggests that measured
leaves likely were not receiving full sunlight, which would
have contributed to the model overestimation that we
observed. The combined impact of light availability, leaf posi-
tion and canopy architecture is a major research need for scal-
ing from leaf to whole-plant responses at large scales.

Unlike with light availability, there was no bias in our
model related to temperature, indicating that the temperature
response predicted tends to follow similar responses seen in
the global dataset. Notably, the response is also similar to
that seen in meta-analytical (Kattge & Knorr 2007) and con-
trolled-environment (Scafaro ef al. 2017; Smith & Dukes
2017b) studies. Nonetheless, temperature was an important
determinant of optimal V.,  rates (Figure 1). Our theory
suggests that as temperature increases, higher V7 . is neces-
sary to support increased electron transport up to their
optima. This effect is amplified by a greater stimulation of K.
compared to the CO, compensation point, /¥, with tempera-
ture (Bernacchi et al. 2001). This phenomenon is also observ-
able as a reduction in the optimal ratio of J, , to V.. at

nax cmax

higher temperatures (Figure S5), an effect consistent with pre-
vious studies (e.g. Medlyn et al. 2002; Kattge & Knorr 2007;
Crous et al. 2013; Smith & Dukes 2017b).

It is worth noting that our theory predicts Vinax rates at
the average growing season temperature (i.e. V. . ), rather
than at a standardized temperature. Indeed, V.« at a stan-
dardized temperature is likely to be better correlated to N,
than V7, .. is to N, because Vemax at a standardized tempera-
ture is a proxy for Rubisco content rather than a realized
rate. This possibly explains the relatively weaker trend seen
here compared to other studies (e.g. Kattge er al. 2009;
Walker et al. 2014). Nonetheless, our strategy allows for a
prediction of V7 .. that is as good or better than a recent
approach for estimating V..« at a standardized temperature
from dynamic allocation of leaf N (Ali ez al. 2016). Predicting
Vemax under typical growth conditions is likely more useful
for vegetation modelling because it allows for predictions of
Vemax at temperatures near to the temperatures regularly expe-
rienced by plants in a given environment, rather than at a
common temperature (e.g. 25 °C), which may be atypical for
that environment. Thus, V7 .. would vary temporally owing
to comparatively modest diurnal or day-to-day temperature
variation rather than across large temperature gradients,
which will minimize potential predictive errors due to the
choice of temperature response functions used to scale V..

Our approach could be extended to examine the influence
of temporal variation in environmental conditions on optimal
Vi nax Predictions. Due to the scale of our analyses and a lack
of consistent, high-resolution environmental data, we used
monthly mean data (Harris er al. 2014) to create our predic-
tions. While our predictions were able to pick up large spatial
trends, the ability of our model to simulate temporal variation
is untested here. Better temporal data, coupled with a firmer
understanding of the timescale of photosynthetic acclimation,
should lead to better temporal predictions.

Our model showed a bias with soil pH, a proxy for soil fer-
tility and leaf N,. The soil pH effect may be due to the
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negative effect of soil acidity on nutrient availability, which
has been linked to lower rates of photosynthesis (Maire et al.
2015). However, because soil acidity tends to correlate with
rainfall (Slessarev et al. 2016), the overprediction may partly
be the result of an overestimation of light availability in wet,
tropical regions, as mentioned above. The leaf N, effect indi-
cated that the model underestimated V7, . in high N, leaves.
This is not surprising, as a substantial amount of leaf N, is
used for Rubisco (Evans 1989). However, neither soil pH
nor leaf N,, although significant, provided substantial addi-
tional explanatory power over climate. By contrast, a sub-
stantial portion of global V7 .. is explained by climate
alone.

One possible downside to our approach to predicting V7.,
is that our theory, as presented here, does not explicitly
include an index of soil moisture and only implements mois-
ture influences through vapour pressure deficit impacts on C..
While it is still uncertain how soil moisture influences V7.
(Smith et al. 2014), models that include soil water stress
impacts on V.na.x tend to match observations better than
those that do not (Keenan er al. 2010). Nonetheless, our
model did not show any bias in relation to an index of soil
water availability, o. The least-cost theory, as originally pre-
sented (Wright ez al. 2003), does implicitly assume soil mois-
ture costs to photosynthesis and future work devoted to
including these costs explicitly into the quantitative theory
could improve model predictions. Optimality based plant
hydraulic transport models (e.g. Sperry et al. 2017) could be
used for this purpose.

Our findings are consistent with the hypothesis that photo-
synthetic demand drives leaf nitrogen content, rather than
the other way around. This was previously suggested by
Evans (1989), after which photosynthetic theory has been
used to successfully predict leaf nitrogen concentrations
(Dong et al. 2017). However, most current carbon cycle
models utilize leaf N content to predict Vin.x, even those
that do not include an interactive N cycle (Smith & Dukes
2013). Our data suggest that leaf N concentration is more
likely a consequence of demand for V... Even so, our the-
ory presents an avenue for reliably predicting V7, at global
scales without needing to predict N,, which would reduce
model uncertainty.

While we found that collinearity of our data likely had no
effect on the results presented here (see VIF analysis in Meth-
ods), some degree of collinearity in climate and environmental
variables is unavoidable when using natural gradient data. A
potential next step in testing our theory is to tailor controlled-
environment studies to assess the individual response of each
input of the theoretical model, as well as the influence of soil
nutrient availability.

In conclusion, we have developed and tested a theory for pre-
dicting environment-dependent optimal rates of V7, against an
observational dataset. The agreement between data and theory
suggests that plants, through acclimation, adaptation or some
combination of the two, are assimilating carbon in an efficient
manner by preferentially allocating resources to rate-limiting
processes. This allows for greater resources to be used for non-
photosynthetic processes, such as growth, storage and reproduc-
tion, which are important in competitive environments.
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