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Abstract

For embodied agents, navigation is an impor-
tant ability but not an isolated goal. Agents
are also expected to perform specific tasks af-
ter reaching the target location, such as pick-
ing up objects and assembling them into a par-
ticular arrangement. We combine Vision-and-
Language Navigation, assembling of collected
objects, and object referring expression com-
prehension, to create a novel joint navigation-
and-assembly task, named ARRAMON. Dur-
ing this task, the agent (similar to a Poké MON
GO player) is asked to find and collect dif-
ferent target objects one-by-one by navigat-
ing based on natural language instructions in
a complex, realistic outdoor environment, but
then also ARRAnge the collected objects part-
by-part in an egocentric grid-layout environ-
ment. To support this task, we implement a
3D dynamic environment simulator and col-
lect a dataset (in English; and also extended to
Hindi) with human-written navigation and as-
sembling instructions, and the corresponding
ground truth trajectories. We also filter the
collected instructions via a verification stage,
leading to a total of 7.7K task instances (30.8K
instructions and paths). We present results for
several baseline models (integrated and biased)
and metrics (nDTW, CTC, rPOD, and PTC),
and the large model-human performance gap
demonstrates that our task is challenging and
presents a wide scope for future work.!

1 Introduction

Navigation guided via flexible natural language
(NL) instructions is a crucial capability for robotic
and embodied agents. Such systems should be
capable of interpreting human instructions to cor-
rectly navigate realistic complex environments and
reach destinations by understanding the environ-
ment, and associating referring expressions in the

'Our dataset, simulator, and code are publicly available at:
https://arramonunc.github.io

Navigation Phase: Turn left to face the dumpster. Go around the
building corner, and past the phone booth to the next intersection. At
the intersection turn left. Next to the yellow building there is a green
bucket. Pick the bucket up.

TURN 1

v

Assembly Phase: Turn right and place the bucket in front of the
striped red mug.

Navigation Phase: Turn around to face the speed limit sign. Go to
the sign and then turn right around the corner. Go to the booth and a
little past it and to the right there is a brown hourglass. Pick it up.

TURN 2

Assembly Phase: Place the hourglass to the right of the red mug in
front of you.

Figure 1: Navigation and assembly phases (2 turns),
via NL (English) instructions in a dynamic 3D envi-
ronment. In the navigation phase, agents are asked to
find and collect a target object. In the assembly phase,
agents have to egocentrically place the collected object
at a relative location (navigation turn 2 starts where turn
1 ends; we only show 3 snapshots here for space rea-
sons, but the full simulator and its image set will be
made available).

instructions with the corresponding visual cues in
the environment. Many research efforts have fo-
cused on this important vision-and-language navi-
gation task (MacMahon et al., 2006; Mooney, 2008;
Chen and Mooney, 2011; Tellex et al., 2011; Mei
et al., 2016; Hermann et al., 2017; Brahmbhatt and
Hays, 2017; Mirowski et al., 2018; Anderson et al.,
2018; Misra et al., 2018; Blukis et al., 2018; Das
et al., 2018; Cirik et al., 2018; de Vries et al., 2018;
Blukis et al., 2019; Thomason et al., 2019; Nguyen
et al., 2019; Nguyen and Daumé III, 2019; Chen


https://arramonunc.github.io

et al., 2019; Jain et al., 2019; Shridhar et al., 2020;
Qi et al., 2020; Hermann et al., 2020; Berg et al.,
2020; Zhu et al., 2020). However, in real-world ap-
plications, navigation alone is rarely the exclusive
goal. In most cases, agents will navigate to perform
another task at their destination, and also repeat
subtasks, e.g., a warehouse robot may be asked to
pick up several objects from different locations and
then assemble the objects into a desired arrange-
ment. When these additional tasks are interweaved
with navigation, the degree of complexity increases
exponentially due to cascading errors. Relatively
few studies have focused on this idea of combin-
ing navigation with other tasks. Touchdown (Chen
et al., 2019) combines navigation and object refer-
ring expression resolution, REVERIE (Qi et al.,
2020) performs remote referring expression com-
prehension, and ALFRED (Shridhar et al., 2020)
combines indoor navigation and household manip-
ulation. However, there has been no task that in-
tegrates the navigation task in complex outdoor
spaces with the assembling task (and object refer-
ring expression comprehension), requiring spatial
relation understanding in an interweaved temporal
way, in which the two tasks alternate for multiple
turns with cascading error effects (see Figure 1).

Thus, we introduce a new task that combines
the navigation, assembling, and referring expres-
sion comprehension subtasks. This new task can
be explained as an intuitive combination of the nav-
igation and collection aspects of PokéMON GO?
and an ARRAnging (assembling) aspect, hence we
call it ‘ARRAMON’. In this task, an agent needs
to follow navigational NL instructions to navigate
through a complex outdoor and fine-grained city
environment to collect diverse target objects via
referring expression comprehension and dynamic
3D visuospatial relationship understanding w.r.t.
other distracter objects. Next, the agent is asked
to place those objects at specific locations (relative
to other objects) in a grid environment based on
an assembling NL instruction. These two phases
are performed repeatedly in an interweaved man-
ner to create an overall configuration of the set of
collected objects. For enabling the ARRAMON
task, we also implement a simulator built in the
Unity game engine? to collect the dataset (see Ap-
pendix B.2 for the simulator interface). This sim-
ulator features a 3D synthetic city environment

https://www.pokemongo.com
Shttps://www.unity.com

based on real-world street layouts with realistic
buildings and textures (backed by Mapbox*) and
a dynamic grid floor assembly room (Figure 1),
both from an egocentric view (the full simulator
and its image set will be made available). We take
7 disjoint sub-sections from the city map and col-
lect instructions from workers within each section.
Workers had to write instructions based on ground
truth trajectories (represented as path lines in navi-
gation, location highlighting during assembly). We
placed diverse background objects as well as target
objects so that the rich collected instructions re-
quire agents to utilize strong linguistic understand-
ing. The instructions were next executed by a new
set of annotators in a second verification stage and
were filtered based on low match w.r.t. the original
ground truth trajectory, and the accuracy of assem-
bly placement. Overall, this resulted in a dataset of
7,692 task instances with multiple phases and turns
(a total of 30,768 instructions and paths).5 We have
since extended our dataset by also collecting the
corresponding Hindi instructions.

To evaluate performance in our ARRAMON task,
we employ both the existing metric of nDTW (Nor-
malized Dynamic Time Warping) (Ilharco et al.,
2019) and our newly-designed metrics: CTC-k
(Collected Target Correctness), rPOD (Reciprocal
Placed Object Distance), and PTC (Placed Target
Correctness). In the navigation phase, nDTW mea-
sures how similar generated paths are to the ground
truth paths, while CTC-k computes how closely
agents reach the targets. In the assembly phase,
rPOD calculates the reciprocal distance between
target and agents’ placement locations, and PTC
counts the correspondence between those locations.
Due to the interweaving property of our task with
multiple navigation and assembling phases and
turns, performance in the previous turn and phase
cascadingly affects the metric scoring of the next
turn and phase (Section 3.2).

Lastly, we implement multiple baselines as good
starting points and to verify our task is challeng-
ing and the dataset is unbiased. We present inte-
grated vision-and-language, vision-only, language-
only, and random-walk baselines. Our vision-and-
language model shows better performance over the
other baselines, which implies that our ARRAMON
dataset is not skewed; moreover, there exists a very

4https 1/ /www.mapbox.com

3Our dataset size is comparable to other similar tasks (e.g.,
R2R, Touchdown, ALFRED, CVDN, REVERIE; we are also
planning to further increase the size and add other languages.
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Figure 2: Illustration of the basic object types that the
agent must collect, and will also appear as distracter
objects during both navigation and assembly phases.

large gap between this model and the human per-
formance, implying that our ARRAMON task is
challenging and that there is substantial room for
improvements by future work. We will publicly re-
lease the ARRAMON simulator, dataset, and code,
along with a leaderboard to encourage further com-
munity research on this realistic and challenging
joint navigation-assembly task.

2 Related Work

Vision-and-Language Navigation.  Recently,
Vision-and-Language Navigation (VLN) tasks, in
which agents follow NL instructions to navigate
through an environment, have been actively studied
in research communities (MacMahon et al., 2006;
Mooney, 2008; Chen and Mooney, 2011; Tellex
etal., 2011; Mei et al., 2016; Hermann et al., 2017;
Brahmbhatt and Hays, 2017; Mirowski et al., 2018;
Anderson et al., 2018; Misra et al., 2018; Blukis
et al., 2018; Das et al., 2018; Cirik et al., 2018;
de Vries et al., 2018; Blukis et al., 2019; Thoma-
son et al., 2019; Nguyen et al., 2019; Nguyen and
Daumé III, 2019; Chen et al., 2019; Jain et al.,
2019; Shridhar et al., 2020; Qi et al., 2020; Her-
mann et al., 2020; Berg et al., 2020; Zhu et al.,
2020). To encourage the exploration of this chal-
lenging research topic, multiple simulated environ-
ments have been introduced. Synthetic (Kempka
et al., 2016; Beattie et al., 2016; Kolve et al., 2017;
Brodeur et al., 2017; Wu et al., 2018; Savva et al.,
2017; Zhu et al., 2017; Yan et al., 2018; Shah et al.,
2018; Puig et al., 2018) as well as real-world and
image-based environments (Brahmbhatt and Hays,
2017; Mirowski et al., 2018; Anderson et al., 2018;
Xia et al., 2018; Cirik et al., 2018; de Vries et al.,
2018; Chen et al., 2019; Savva et al., 2019) have
been used to provide agents with diverse and com-
plement training environments.

Referring Expression Comprehension. The abil-
ity to make connections between objects or spatial
regions and the natural language expressions that
describe those objects or regions, has been a focus
of many studies. Given that humans regularly carry

out complex symbolic-spatial reasoning, there has
been much effort to improve the capability of refer-
ring expression comprehension (including remote
objects) in agents (Kazemzadeh et al., 2014; Mao
etal., 2016; Hu et al., 2016; Yu et al., 2018; Chen
et al., 2019; Qi et al., 2020), but such reasoning re-
mains challenging for current models. Our ARRA-
MON task integrates substantial usage of referring
expression comprehension as a requirement, as it
is necessary to the successful completion of both
the navigation and assembly phases.

Assembling Task. Object manipulation and con-
figuration is another subject that has been studied
along with language and vision grounding (Bisk
etal., 2016; Wang et al., 2016; Li et al., 2016; Bisk
et al., 2018). However, most studies focus on ad-
dressing the problem in relatively simple environ-
ments from a third-person view. Our ARRAMON
task, on the other hand, provides a challenging dy-
namic, multi-step egocentric viewpoint within a
more realistic and interactive 3D, depth-based en-
vironment. Moreover, the spatial relationships in
ARRAMON dynamically change every time the
agent moves, making ‘spatial-action’ reasoning
more challenging. We believe that an egocentric
viewpoint is a key part of how humans perform
spatial reasoning, and that such an approach is
therefore vital to producing high-quality models
and datasets.

These three directions of research are typically
pursued independently (esp. navigation and assem-
bling), and there have been only a few recent ef-
forts to combine the traditional navigation task with
other tasks. Touchdown (Chen et al., 2019) com-
bines navigation and object referring expression
resolution, REVERIE (Qi et al., 2020) performs
remote referring expression comprehension, while
ALFRED (Shridhar et al., 2020) combines indoor
navigation and household manipulation. Our new
complementary task merges navigation in a com-
plex outdoor space with object referring expression
comprehension and assembling tasks that require
spatial relation understanding in an interweaved
temporal style, in which the two tasks alternate for
multiple turns leading to cascading error effects.
This will allow development of agents with more
integrated, human-like abilities that are essential in
real-world applications such as moving and arrang-
ing items in warehouses; collecting material and
assembling structures in construction sites; finding
and rearranging household objects in homes.



3 Task

The ARRAMON task consists of two phases: nav-
igation and assembly. We define one turn as one
navigation phase plus one assembly phase (see Fig-
ure 1). Both phases are repeated twice (i.e., 2 turns),
starting with the navigation phase. During the nav-
igation phase, an agent is asked to navigate a rich
outdoor city environment by following NL instruc-
tions, and then collect the target object identified
in the instructions via diverse referring expressions.
During the assembly phase, the agent is asked to
place the collected object (from the previous nav-
igation phase) at a target location on a grid lay-
out, using a different NL instruction via relative
spatial referring expressions. Target objects and
distracter objects are selected from one of seven
objects shown in Figure 2 and then are given one
of two different patterns and one of seven differ-
ent colors (see Figure 11 in Appendices). In both
phases, the agent can take 4 actions: forward, left,
right, and an end pickup/place action. Forward
moves the agent 1 step ahead and left/right makes
agents rotate 30° in the respective direction.®

3.1 Environment

Navigation Phase. In this phase, agents are placed
at a random spot in one of the seven disjoint sub-
sections of the city environment (see Figure 3),
provided with an NL instruction, and asked to find
the target object. The city environment is filled
with background objects: buildings and various ob-
jects found on streets (see Figure 4). There are also
a few distracter objects in the city that are similar
to target objects (in object type, pattern, and color).
During this phase, the agent’s end action is ‘pick-
up’. The pick-up action allows agents to pick up
any collectible object within range (a rectangular
area: 0.5 unit distance from an agent toward both
their left and right hand side and 3 unit distance
forward).

Assembly Phase. Once the agent picks up the col-
lectible object in the navigation phase, they enter
the assembly phase. In this phase, agents are again
provided with an NL instruction, but they are now
asked to place the target object they collected in the
previous phase at the target location identified in
the instruction. When the assembly phase begins,

%1n our task environment, holistically, the configuration of
the set of objects dynamically changes as agents pick-up and
place or stack them relative to the other objects, which is one
challenging interaction between the objects.

Figure 3: Illustration of the seven city sections in which
data was collected.

8 decoy basic-type objects (Figure 2) with random
pattern and color, are placed for use as distractions.
In this phase, agents can only move on a 4-by-5
grid layout. The grid is bordered by 4 walls, each
with a different texture/pattern (wood, brick, spot-
ted, striped) to allow for more diverse expressions
in the assembly phase. Their end action is ‘place’,
which puts the collected object onto the grid one
step ahead. Agents cannot place diagonally and, un-
like in the navigation phase, cannot move forward
diagonally.

Hence, to accomplish the overall joint
navigation-assembly task, it is required for agents
to have integrated abilities. During navigation they
must take actions based on understanding the ego-
centric view and aligning the NL instructions with
the dynamic visual environment to successfully
find the target objects (relevant metrics: nDTW
and CTC-k, see Section 3.2). During assembly,
from an egocentric view, they must understand
3D spatial relations among objects identified by
referring expressions in order to place the target
objects at the right relative location. (relevant
metrics: PTC and rPOD, see Section 3.2).”

3.2 Metrics

Normalized Dynamic Time Warping (nDTW).
To encourage the agent to follow the paths closely
during the navigation task, we employ nDTW (II-
harco et al., 2019) as our task metric. nDTW mea-

"We assume agents backtrack their path to go back to
the warehouse for assembling, after each navigation phase
(since the path is known, it can be automated and there is
no additional learning task involved, and so no visuals are
needed). Likewise, after the assembly phase, the agent can
resume at the pick-up position by re-following the previous
path. One can also imagine agents are moving with a container,
in which they assemble the objects as they pick them up.
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Figure 4: Illustration of the background environmental
objects scattered around the city environment.

sures the similarity between a ground-truth path
and a predicted trajectory of an agent, thus penaliz-
ing randomly walking around to find and pick up
the target object.

Collected Target Correctness (CTC). An agent
that understands the given NL instructions well
should find and pick up a correct target object at the
end of the navigation task. Therefore, we evaluate
the agent’s ability with CTC, which will have a
value of 1 if the agent picks up a correct object,
and a value of 0 if they pick up an incorrect object
or do not pick up any object. Since collecting the
correct object is a difficult task, we also implement
the CTC-k metric. CTC-k measures the CTC score
at distance k. If the agent is within k distance of
the target object, then the value is 1, otherwise it is
0 (CTC-0 indicates the original CTC).

Placed Target Correctness (PTC). In the assem-
bly task, placing the collected object at the exact
target position is most important. The PTC metric
counts the correspondence between the target lo-
cation and the placed location. If the placed and
target locations match, then the PTC is 1, otherwise
it is 0. If the collected object is not correct, then
the score is also 0.

Reciprocal Placed Object Distance (rPOD). We
also consider the distance between the target po-
sition and the position where the collected object
is eventually placed in the assembly task (Bisk
et al., 2018). The distance squared is taken to pe-
nalize the agent more for placing the object far
from the target position. Then 1 is added and the
reciprocal is taken to normalize the final metric
value: rPOD = ﬁ, where D,, is the Manhattan
distance between the target and placed object posi-
tions. If the collected object is not correct, then the

score is 0 (see Figure 9 in Appendices).

Overall, our metrics reflect the interweaving
property of our task. For example, if agents show
poor performance in the first turn navigation phase
(i.e., low nDTW and CTC-k scores), they will not
obtain high scores in the continuing assembly phase

@i.e., low PTC and rPOD scores), also leading to
lower scores in the second turn navigation phase.

4 ARRAMON Dataset

Our ARRAMON navigation-assembly dataset is a
collection of rich human-written NL (English) in-
structions. The navigation instructions explain how
to navigate the large outdoor environments and de-
scribe which target objects to collect. The assembly
instructions provide the desired target locations for
placement relative to objects. Each instruction set
in the dataset is accompanied by ground truth (GT)
trajectories and placement locations. Data was col-
lected from the online crowd-sourcing platform
Amazon Mechanical Turk (AMT).

4.1 Data Collection

The data collection process was broken into two
stages: Stage 1: Writing Instructions, and Stage
2: Following/Verifying Instructions. Within each
stage, there are two phases: Navigation and Assem-
bly (see Figure 15 in Appendices for the interface
of each stage and each phase). During the first
stage’s navigation phase, a crowdworker is placed
in the city environment as described in Section 3.1
and moves along a blue navigation line (represent-
ing the GT path) that will lead them to a target
object (see Appendix B.1 for the exact route gen-
eration details). While the worker travels this line,
they write instructions describing their path (e.g.,
“Turn to face the building with the green triangle on
a blue ... Walk past the bench to the dotted brown
TV and pick it up.”). Workers were bound to this
navigation line to ensure that they wrote instruc-
tions only based on what they could see from the
GT path. Next, the worker starts the first stage’s
assembly phase and is placed in a small assembly
room, where they must place the object they just
collected in a predetermined location (indicated by
a transparent black outline of the object they just
collected) and write instructions on where to place
the object relative to other objects from an egocen-
tric viewpoint (e.g., “Place the dotted brown TV in
front of the striped white hourglass.”). The worker
is then returned to the city environment and repeats
both phases once more.

A natural way of verifying the instruction sets
from Stage 1 is to have new workers follow them
(Chen et al., 2019). Thus, during Stage 2 Verifi-
cation, a new worker is placed in the environment
encountered by the Stage 1 worker and is provided
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Figure 5: The frequency distribution of the 25 most
common words in the dataset. Stopwords and target
object words have been removed.

with the NL instructions that were written by that
Stage 1 worker. The new worker has to follow the
instructions to find the target objects in the city and
place them in the correct positions in the assembly
environment. Each instruction set from Stage 1 is
verified by three unique crowdworkers to ensure
instructions are correctly verified. Next, evalua-
tion of the Stage 2 workers performance was done
through the use of the nDTW and PTC metrics.
If at least one of three different Stage 2 workers
scored higher than 0.2 on nDTW in both navigation
turns and had a score of 1 on PTC in both assembly
turns, then the corresponding Stage 1 instruction
set was considered high quality and kept in the
dataset, otherwise it was discarded. The remaining
dataset has a high average nDTW score of 0.66 and
an even higher expert score of 0.81 (see Sec. 8).8

4.2 Data Quality Control

Instructions written by the Stage 1 workers needed
to be clear and understandable. Workers were en-
couraged to follow certain rules and guidelines so
that the resulting instruction would be of high qual-
ity and made proper use of the environment.

Guidelines, Automated Checks, and Qualifica-
tion Tests. Detailed guidelines were put in place to
help ensure that the instructions written contained
as few errors as possible. Rules were shown to
workers before the start of the task and active au-
tomated checks took place as the workers wrote.
These active checks helped prevent poor instruc-
tions (such as those including certain symbols)

8Workers were allowed to repeat both tasks, however they
were prevented from encountering an identical map setting
that already has instructions during Stage 1 and their own
instructions during Stage 2.
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Figure 6: The frequency distributions of instruction
lengths (left) and path lengths (right) in the navigation
and assembly phases. Graphs cut off at length 125
since beyond that there are very few data points.

from being submitted, requiring workers to fix
them before submitting. In the case the instruc-
tion quality was questionable, an email notification
was sent (see Appendix B.1 for the exact guidelines
and checks that were implemented, as well as de-
tails regarding the email notifications). A screening
test was also required at the start of both stages to
test the crowdworkers’ understanding of the task.
If a wrong answer was chosen, an explanation was
displayed and the crowdworker was allowed to try
again (see Figure 13 and 14 in Appendices for the
screening tests). To help workers place the object
in the right location during Stage 2, we use a sim-
ple placement test which they pass by placing an
object at the correct place during a mock assembly
phase (see Appendix B.1 for details).

Worker Qualifications. Workers completing the
task were required to pass certain qualifications
before they could begin. As the Stage 1 and 2 tasks
require reading English instructions (Stage 1 also
involves writing), we required workers be from
native-speaking English countries. Workers were
required to have at least 1000 approved tasks and a
95% or higher approval rating. A total of 96 unique
workers for Stage 1 and 242 for Stage 2, were able
to successfully complete their respective tasks.
Worker Payment and Bonus Incentives. We
kept fair and comparable pay rates based on similar
datasets (Chen et al., 2019), writing (Stage 1) had a
payment (including bonuses) of $1.00. Instruction
verification (Stage 2) had a payment of $0.20. See
Appendix B.1 for details on bonus criteria, rates.

5 Data Analysis

A total of 8,546 instruction sets were collected.
Each set included two pairs of navigation and as-
sembly instructions (thus, 34,184 instructions in
total). After filtering from Stage 2 results, there
remained 7,692 instruction sets (30,768 instruc-
tions in total). Our dataset size is comparable to



Length Navigation Assembly
max | avg. | max | avg.
Instruction 147 | 47.99 | 90 | 20.99
Path 156 | 48.14 | 8 3.32
Action Sequence | 224 | 75.78 | 34 | 13.68

Table 1: Lengths of the instructions (in words), paths,
and action sequences for both turns across all subsec-
tions in the city.

other similar tasks, e.g., Touchdown (Chen et al.,
2019) contains 9.3K examples (9.3K navigation
and 27.5K SDR task), R2R (Anderson et al., 2018)
has 21.5K navigation instructions, REVERIE has
21.7K instructions, ALFRED (Shridhar et al.,
2020) has 25.7K language directives describing
8K demonstrations, and CVDN (Thomason et al.,
2019) dataset with 7.4K NDH instances and 2K
navigation dialogues.

Linguistic Properties. From our dataset, we ran-
domly sampled 50 instructions for manual analysis.
A unique linguistic property found in our sample
is 3D discrete referring expressions which utilize
3D depth to guide the agent; implying that the com-
bined navigation and assembly task requires that
agents posses a full understanding of object rela-
tions in a 3D environment. Our analysis showed
other linguistic properties, such as frequent direc-
tional references, ego and allocentric spatial rela-
tions, temporal conditions, and sequencing (see
Appendix C.1 for the details and examples).
Dataset Statistics. Figure 5 shows that the most
frequently occurring words in our dataset. These
words are primarily directional or spatial relations.
This implies that agents should be able to under-
stand the concept of direction and the spatial rela-
tions between objects, especially as they change
with movement. Table 1 and Figure 6 show that
navigation tends to have longer instructions and
path lengths. Assembly occurs in a smaller en-
vironment, requiring agents to focus less on un-
derstanding paths than in navigation and more on
understanding the 3D spatial relations of objects
from the limited egocentric viewpoint.

6 Models

We train an integrated Vision-and-Language model
as a good starting point baseline for our task. To
verify that our dataset is not biased towards some
specific factors, we trained ablated and random
walk models and evaluated them on the dataset.

Vision-and-Language Baseline. This model uses
vision and NL instruction features together to pre-

dict the next actions (Figure 7). We implement
each module for navigation/assembly phases as:

L = Emby(Inst.), a; = Emba(a;) (1)
Vi = Ency (Img,), L = Encp (L) )
hy = LSTM(a¢—1, he—1) 3)

Vi, Ly = Cross-Attn(V;, L) (4)

vy = Attn(hy, Vi), Iy = Attn(hy, L;)  (5)

logit,, = Linear(v, l;), a; = max(logit,,) (6)

where Img, is the view of an agent at time step ¢,
Inst. is natural language instructions given to the
agent, and a; is an action at time step ¢. Instructions
and actions are embedded via Emb;, and Emby,
respectively. We use ResNet (He et al., 2016)
for the visual encoder, Ency/, to obtain visual fea-
tures, V; € RW*wxdv and LSTM (Hochreiter and
Schmidhuber, 1997) for the instruction encoder,
Enc;, to obtain instruction features, L € RIxd
We employ the bidirectional attention mechanism
(Seo et al., 2017) for the cross attention Cross-Attn
to align the visual and instruction features, and use
the general attention Attn to align the action feature
and each of fused visual and instruction features.
See Appendix D for the detailed descriptions of
Cross-Attn and Attn modules.

We train the model with the teacher-forcing ap-
proach (Lamb et al., 2016) and cross entropy loss:
pi(ay) = softmax(logit,, ); £ = — >, logps(af),
where af is ground truth action at time step ¢.
Vision/Language only Baseline. To check the uni-
modality bias, we evaluate vision and language
only baselines on our dataset. These exploit only
single modality (visual or language) to predict the
appropriate next action. To be specific, they use
the same architecture as the Vision-and-Language
baseline except the Cross-Attn module.

Random Walk. Agents take a random action at
each time step without considering instruction and
environment information.

Shortest Path. This baseline simulates an agent
that follows the shortest path provided by A* algo-
rithm (Hart et al., 1968) to show that the GT paths
are optimal in terms of trajectory distances.

7 Experiments

We split the dataset into train/val-seen/val-
unseen/test-unseen. We assign the city sub-sections
1 to 5 to train and val-seen, sub-section 6 to val-
unseen, and section 7 to test-unseen splits. We



Val Seen Val Unseen

Model Nav1gat1é);c Assembly Nav1gat1é>¥c Assembly
nDTW | =115 T =7 | 'POP | PTC || nDTW | —=— tPOD | PTC

V/L | 0.135 [ 0.000 | 0.098 | 0.149 [ 0.200 | 0.058 | 0.044 || 0.109 | 0.000 | 0.062 | 0.108 [ 0.153 | 0.036 | 0.028
V/O | 0.055 | 0.000 | 0.043 [ 0.062 | 0.087 | 0.008 | 0.001 || 0.043 | 0.000 | 0.031 | 0.057 | 0.085 [ 0.007 | 0.002
L/O | 0.110 | 0.000 | 0.044 | 0.095 | 0.147 | 0.023 | 0.017 | 0.105 | 0.000 | 0.029 | 0.068 | 0.126 | 0.017 | 0.013
R/W [ 0.045 | 0.000 | 0.030 [ 0.054 | 0.092 | 0.005 | 0.001 || 0.045 | 0.000 | 0.024 | 0.043 | 0.075 | 0.005 | 0.001

S/P | 1.000 [ - [ 1.000 | 1.000 | 1.000 | - - 1000 | - | 1.000 | 1.000 | 1.000 | - -
[ H/W ] 0.671 [ 1.000 | 1.000 | 1.000 | 1.000 [ 0.879 [ 0.861 [| 0.670 | 1.000 | 1.000 [ 1.000 [ 1.000 | 0.869 [ 0.856 |

Table 2: Performance of baselines and humans on the metrics for the Val-Seen/Unseen splits. Overall, there is large
human-model performance gap, indicating our ARRAMON task is very challenging (V/L:Vision-and-Language,
V/O:Vision-Only, L/O:Language-Only, R/W:Random-Walk, S/P:Shortest Path, H/W:Human-Workers).
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Figure 7: Vision-and-Language model: environment
visual features, instruction language features, and ac-
tion features are aligned to generate the next action.

Place the bucket|
atop the dotted
red hourglass.

o

randomly split data from sub-sections 1 to 5 into
80/20 ratio to get train and val-seen splits, respec-
tively. Thus, the final number of task samples
for each split is 4,267/1,065/1,155/1,205 (total:
17,068/4,260/4,620/4,820). The Stage 1 workers
are equally distributed across the city sub-sections,
so the dataset splits are not biased toward specific
workers. We also keep the separate 2 sections (i.e.,
section 6 and 7) for the unseen dataset following
Anderson et al. (2018), which allows the evaluation
of the models’ ability to generalize in new envi-
ronments. Note that for agents to proceed to the
next phase, we allow them to pick up the closest
target object (in the navigation phase) or place col-
lected object at the closest location (in the assembly
phase) when they do not perform the required ac-
tions. Training Details: We use 128 as hidden size.
For word and action embedding sizes, we use 300
and 64, respectively. We use Adam (Kingma and
Ba, 2015) as the optimizer and set the learning rate
to 0.001 (see Appendix E.2 for details).

Test Unseen
Model Navi gatlg;c Assembly
nDTW =0 = = =7 rPOD | PTC
V/L | 0.114 | 0.000 | 0.082 | 0.122 | 0.168 | 0.047 | 0.035
H/W | 0.664 | 1.000 | 1.000 | 1.000 | 1.000 | 0.884 | 0.873
H/E | 0.806 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992 | 0.990
Table 3: The Vision-and-Language (V/L) base-

line and Human performance on Test-Unseen split
(H/W:Human-Workers, H/E:Human-Expert).

8 Results and Analysis

As shown in Table 2, overall, there is large human-
model performance gap, indicating that our ARRA-
MON task is very challenging and there is much
room for model improvement. Performance in the
navigation and assembly phases are directly related.
If perfect performance is assumed in the navigation
phase, rPOD and PTC are higher than if there were
low CTC-k scores in navigation (e.g., 0.382 vs.
0.044 for PTC of the Vision-and-Language model
on val-seen: see Appendix F for the comparison).
This scoring behavior demonstrates that phases in
our ARRAMON task are interweaved. Also, com-
paring scores from turn 1 and 2, all turn 2 scores are
lower than their turn 1 counterparts (e.g., 0.222 vs.
0.049 nDTW of the Vision-and-Language model
on val-seen split; see Appendix F for the detailed
turn-wise results). This shows that the performance
of the previous turn strongly affects the next turn’s
result. Note that to relax the difficultly of the task,
we consider CTC-3 (instead of CTC-0; see Section
3.2) as successfully picking up the target object and
then we calculate the assembly metrics under this
assumption. If this was not done, then almost all
the metrics across assembly would be nearly zero.

8.1 Model Ablations

Vision/Language Only Baseline. As shown in Ta-
ble 2, our Vision-and-Language baseline shows
better performance over both vision-only and



language-only models, implying our dataset is not
biased to a single modality and requires multimodal
understanding to get high scores.

Random Walk. The Random-Walk baseline
shows poor performance on our task, implying that
the task cannot be solved through random chance.
Human Evaluation. We conducted human eval-
uations with workers (Table 2, 3) as well as an
expert (Table 3). For workers’ evaluations, we aver-
aged all the workers’ scores for the verified dataset
(from Stage 2: verification/following, see Sec. 4.1).
For expert evaluation, we took 50 random samples
from test-unseen and asked our simulator devel-
oper to blindly complete the task. Both workers
and the expert show very high performance on our
task (0.66 nDTW and 0.87 PTC for workers; 0.81
nDTW and 0.99 PTC for expert), demonstrating
a large model-human performance gap and allow-
ing much room for further improvements by the
community on our challenging ARRAMON dataset.

8.2 Output Examples

As shown in an output example in Figure 8, our
model navigates quite well and reaches very close
to the target in the 1st turn and then places the tar-
get object in the right place in the assembly phase.
However, in the 2nd turn, our model fails to find the
“striped red mug” by missing the left turn around the
“yellow and white banner”. In the next assembling
phase, the model cannot identify the exact location
(“in front of the spotted yellow mug”) to place the
collected object (assuming the model picked up the
correct object in the previous phase) possibly being
distracted by another mug and misunderstanding
the spatial relation. See Appendix G for more out-
put examples.

9 Multilingual Setup

We have also expanded our dataset now to include
Hindi instructions. In the future, we are hoping to
expand further to other languages.

10 Conclusion

We introduced ARRAMON, a new joint navi-
gation+assembling instruction following task in
which agents collect target objects in a large real-
istic outdoor city environment and arrange them
in a dynamic grid space from an egocentric view.
We collected a challenging dataset (in English and
now also Hindi) via a 3D synthetic simulator with
diverse object referring expressions, environments,

Navigation Assembly

TURN 1

Grovin &
Turn around and walk to the traffic
signal. Take a right and walk past
the orange cone in the middle of
the road. Pick up the dotted red
bucket in the middle of the road.

Turn right and place the dotted red bucket on
top of the brown striped bowl.

TURN 2

Turn around, go forward, and take Place the striped re
a left turn at the intersection. Keep ted yellow mug.
going until you see the yellow and

white banner, then turn left.

Behind a phone booth on your

right you will find a striped red

mug. Pick it up.

Figure 8: Visual demonstrations by our model in nav-
igation and assembly phases (top-down view for illus-
tration). GT navigation paths are solid pink lines and
model’s paths are dotted green lines (start = black dot).
GT assembly target location is solid black circle and
model’s target object placement is dashed blue circle
(start = checkered yellow tile, agent facing brick wall).

and visuospatial relationships. We also provided
several baseline models which have a large perfor-
mance gap compared to humans, implying substan-
tial room for improvements by future work.

Acknowledgments

We thank the reviewers for their helpful comments.
This work was supported by NSF Award 1840131,
ARO-YIP Award W911NF-18-1-0336, DARPA
MCS Grant N66001-19-2-4031, and a Google Fou-
cused Award. The views contained in this article
are those of the authors and not of the funding
agency.

References

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Siinderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3674-3683.



Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom
Ward, Marcus Wainwright, Heinrich Kiittler, An-
drew Lefrancq, Simon Green, Victor Valdés, Amir
Sadik, et al. 2016. Deepmind lab. arXiv preprint
arXiv:1612.03801.

Matthew Berg, Deniz Bayazit, Rebecca Mathew, Ariel
Rotter-Aboyoun, Ellie Pavlick, and Stefanie Tellex.
2020. Grounding language to landmarks in arbi-
trary outdoor environments. In 2020 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), pages 208-215. IEEE.

Yonatan Bisk, Daniel Marcu, and William Wong. 2016.
Towards a dataset for human computer communica-
tion via grounded language acquisition. In Work-
shops at the Thirtieth AAAI Conference on Artificial
Intelligence.

Yonatan Bisk, Kevin J Shih, Yejin Choi, and Daniel
Marcu. 2018. Learning interpretable spatial opera-
tions in a rich 3d blocks world. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Valts Blukis, Dipendra Misra, Ross A Knepper, and
Yoav Artzi. 2018. Mapping navigation instruc-
tions to continuous control actions with position-
visitation prediction. In Conference on Robot Learn-
ing, pages 505-518.

Valts Blukis, Yannick Terme, Eyvind Niklasson,
Ross A Knepper, and Yoav Artzi. 2019. Learning to
map natural language instructions to physical quad-
copter control using simulated flight. In Conference
on Robot Learning, pages 1415-1438.

Samarth Brahmbhatt and James Hays. 2017. Deepnav:
Learning to navigate large cities. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5193-5202.

Simon Brodeur, Ethan Perez, Ankesh Anand, Flo-
rian Golemo, Luca Celotti, Florian Strub, Jean
Rouat, Hugo Larochelle, and Aaron Courville. 2017.
Home: a household multimodal environment. In
NeurIPS 2017’s Visually-Grounded Interaction and
Language Workshop.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Twenty-Fifth AAAI Con-
ference on Artificial Intelligence.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In Conference on Computer Vi-
sion and Pattern Recognition.

Volkan Cirik, Yuan Zhang, and Jason Baldridge. 2018.
Following formulaic map instructions in a street sim-
ulation environment. In 2018 NeurIPS Workshop on
Visually Grounded Interaction and Language, vol-
ume 1.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Ste-
fan Lee, Devi Parikh, and Dhruv Batra. 2018. Em-
bodied Question Answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A
formal basis for the heuristic determination of mini-
mum cost paths. IEEE Transactions on Systems Sci-
ence and Cybernetics, 4(2):100-107.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin
Wang, Ryan Faulkner, Hubert Soyer, David Szepes-
vari, Wojciech Marian Czarnecki, Max Jaderberg,
Denis Teplyashin, et al. 2017. Grounded language
learning in a simulated 3d world. arXiv preprint
arXiv:1706.06551.

Karl Moritz Hermann, Mateusz Malinowski, Piotr
Mirowski, Andras Banki-Horvath, Keith Anderson,
and Raia Hadsell. 2020. Learning to follow direc-
tions in street view. Thirty-Fourth AAAI Conference
on Artificial Intelligence.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory.  Neural computation,
9(8):1735-1780.

Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi
Feng, Kate Saenko, and Trevor Darrell. 2016. Natu-
ral language object retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 4555-4564.

Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene
Ie, and Jason Baldridge. 2019. Effective and gen-
eral evaluation for instruction conditioned naviga-
tion using dynamic time warping. NeurIPS Visually
Grounded Interaction and Language Workshop.

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. 2019.
Stay on the Path: Instruction Fidelity in Vision-and-
Language Navigation. In Proc. of ACL.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. Referitgame: Referring
to objects in photographs of natural scenes. In Pro-
ceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), pages
787-798.

Michat Kempka, Marek Wydmuch, Grzegorz Runc,
Jakub Toczek, and Wojciech Jaskowski. 2016. ViZ-
Doom: A Doom-based Al research platform for vi-
sual reinforcement learning. In /IEEE Conference on
Computational Intelligence and Games, pages 341—
348, Santorini, Greece. IEEE. The best paper award.


http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1605.02097

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015,San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gor-
don, Yuke Zhu, Abhinav Gupta, and Ali Farhadi.
2017. Ai2-thor: An interactive 3d environment for
visual ai. arXiv preprint arXiv:1712.05474.

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying
Zhang, Saizheng Zhang, Aaron C Courville, and
Yoshua Bengio. 2016. Professor forcing: A new
algorithm for training recurrent networks. In Ad-

vances In Neural Information Processing Systems,
pages 4601-4609.

Shen Li, Rosario Scalise, Henny Admoni, Stephanie
Rosenthal, and Siddhartha S Srinivasa. 2016. Spa-
tial references and perspective in natural language
instructions for collaborative manipulation. In
2016 25th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN),
pages 44-51. IEEE.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, and action in route instructions. Def,
2(6):4.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 11-20.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
Thirtieth AAAI Conference on Artificial Intelligence.

Piotr Mirowski, Matt Grimes, Mateusz Malinowski,
Karl Moritz Hermann, Keith Anderson, Denis
Teplyashin, Karen Simonyan, Andrew Zisserman,
Raia Hadsell, et al. 2018. Learning to navigate in
cities without a map. In Advances in Neural Infor-
mation Processing Systems, pages 2419-2430.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3d environments
with visual goal prediction. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2667-2678.

Raymond J Mooney. 2008. Learning to connect lan-
guage and perception. In AAAI, pages 1598-1601.

Khanh Nguyen and Hal Daumé III. 2019. Help,
anna! visual navigation with natural multimodal as-
sistance via retrospective curiosity-encouraging imi-
tation learning. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing
(EMNLP).

Khanh Nguyen, Debadeepta Dey, Chris Brockett, and
Bill Dolan. 2019. Vision-based navigation with
language-based assistance via imitation learning
with indirect intervention. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 8494-8502.

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton
van den Hengel. 2020. Reverie: Remote embodied
visual referring expression in real indoor environ-
ments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,
Thomas Funkhouser, and Vladlen Koltun. 2017. MI-
NOS: Multimodal indoor simulator for navigation in
complex environments. arXiv:1712.03931.

Manolis Savva, Abhishek Kadian, Oleksandr
Maksymets, Yili Zhao, FErik Wijmans, Bha-
vana Jain, Julian Straub, Jia Liu, Vladlen Koltun,
Jitendra Malik, et al. 2019. Habitat: A platform
for embodied ai research. In Proceedings of the
IEEFE International Conference on Computer Vision,
pages 9339-9347.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In /CLR.

Pararth Shah, Marek Fiser, Aleksandra Faust, Chase
Kew, and Dilek Hakkani-Tur. 2018. Follownet:
Robot navigation by following natural language di-
rections with deep reinforcement learning. In Third
Machine Learning in Planning and Control of Robot
Motion Workshop at ICRA.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:
A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition

(CVPR).

Stefanie A Tellex, Thomas Fleming Kollar, Steven R
Dickerson, Matthew R Walter, Ashis Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In AAAL


https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2019. Vision-and-dialog naviga-
tion. In Conference on Robot Learning (CoRL).

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh,
Jason Weston, and Douwe Kiela. 2018. Talk the
walk: Navigating new york city through grounded
dialogue. arXiv preprint arXiv:1807.03367.

Sida I Wang, Percy Liang, and Christopher D Manning.
2016. Learning language games through interaction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2368-2378.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong
Tian. 2018. Building generalizable agents with a
realistic and rich 3d environment. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Workshop Track Proceedings. Open-
Review.net.

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. 2018. Gibson
env: Real-world perception for embodied agents. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9068—-9079.

Claudia Yan, Dipendra Misra, Andrew Bennnett,
Aaron Walsman, Yonatan Bisk, and Yoav Artzi.
2018. Chalet: Cornell house agent learning environ-
ment. arXiv preprint arXiv:1801.07357.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin
Lu, Mohit Bansal, and Tamara L Berg. 2018. Mat-
tnet: Modular attention network for referring expres-
sion comprehension. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 1307-1315.

Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng,
Vihan Jain, E. Ie, and Fei Sha. 2020. Babywalk: Go-
ing farther in vision-and-language navigation by tak-
ing baby steps. In ACL.

Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox,
Li Fei-Fei, Abhinav Gupta, Roozbeh Mottaghi, and
Ali Farhadi. 2017. Visual semantic planning using
deep successor representations. In Proceedings of
the IEEE international conference on computer vi-
sion, pages 483—492.

Appendices
A Task and Metrics

As shown in Figure 9, the score of rPOD is de-
creased according to the placement error (the Man-
hattan distance) exponentially. Thus, to score high
in the rPOD metric, agents should place the target
objects as close to the target place as possible.

Distance: 0 rPOD: 1.0 Distance: 1 rPOD: 0.5

IR
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Distance: 3 ’ rPOD: 0.1 A Dista;u:e: 5 rPOD: 0.0385
Figure 9: Distance and rPOD metric: as the Manhattan
distance between target and agent placement locations

increases, the rPOD score decreases exponentially.

Figure 10: Illustration of the assembly phase test before
the start of stage 2.

B Dataset

To support the ARRAMON task, we collected a
dataset. Our dataset is based on a large dynamic
outdoor environment from which diverse instruc-
tions with interesting linguistic properties are de-
rived.

B.1 Data Collection

Route Generation. The ground truth trajectories
is determined by the A* shortest path algorithm
(Hart et al., 1968). Using the shortest path algo-
rithm allows the resulting Ground Truth (GT) path
to be straightforward and reach the target while
avoiding going to unnecessary places. The blue
navigation guideline provided to the Stage 1 work-
ers is a mimic of this GT path (Figure 15a).

Qualification Tests. When placing an object in
the assembly phase, the item is placed 1 space in
front of where the agent stands. To ensure that the
workers who will be following instructions in Stage
2 fully understood this concept, at the start of Stage
2, they were presented with a small test (Figure 10)
that would show them how to correctly move and
place objects and required that they demonstrate
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Dotted Pattern

Figure 11: Illustration of the colors and patterns that
collectable and distracter objects can have.

Figure 12: Illustration of the assembly grid with the
starting position marked.

that they could do so. Both Stage 1 and 2 workers
were also required to pass a short screening test
before they could begin their respective tasks. The
tests are shown in Figure 13 (Stage 1) and Figure
14 (Stage 2).

Worker Bonus Criteria and Rates. For Stage 1
workers who did the instruction writing task cor-
rectly {5, 20, 50} times, a bonus of {$0.10, $0.90,
$4.00} respectively was awarded. Stage 1 workers
were also provided a $0.10 bonus for every instruc-
tion they wrote that was able to successfully pass
Stage 2 verification with high nDTW and perfect
assembling scores.

Instruction Rules and Guidelines. Rules and
guidelines were put into place to help ensure that
instructions written by the Stage 1 workers were
high quality and written with as few errors as pos-
sible. Particularly, the guidelines serve to prevent
the workers from using other elements of the Ul
or tools we provided, such as the blue navigation
line or guiding arrow (see Figure 15) and other ele-
ments that were not part of the true environment in
their instructions.

* Instructions must be written relative to objects
and the environment and not contain exact counts
of movements (e.g., “Go forward 10 times and
then turn left 2 times” is bad).

Instructions must be clear, concise, and descrip-

tive.

* Do not write more than the text-field can hold.

At the end of writing an instruction for the navi-

gation phase be sure to include something similar

to “pick up” or “collect” the object.

* Atend of writing an instruction for the assembly
phase be sure to include something similar to
“place” or “put” the object you collected before.

* Do not reference the navigation line, the blue
balls on the navigation line, the floating arrows
above the objects, or any of the interface elements
when writing instructions.

* Do not reference any buildings that are a solid

gray color.

Do not reference the transparent black outline or

the white grid tiles on the floor (Figure 12 and

Figure 15b) during the assembly phase

* Do not write vague or potentially misleading in-

structions and do not create any instructions that

reference previous instructions such as “Go back
to” or “Return to”.

Avoid spelling and grammar mistakes.

* When writing instructions for the assembly
phase, do not write movement instructions. Make
sure to use object references (e.g, “the red dotted
ball”).

During the navigation phase, the instruction writ-
ing worker cannot stray from the navigation line,
ensuring that they collect the objects in the correct
order. During the assembly phase, regardless of
where the instruction worker places the collected
object, it will move into the correct position (work-
ers are not informed of this), ensuring that the ob-
jects are always in the correct formation for the
next phase and future instructions do not become
invalid. Additionally, we have implemented active
quality checks which will prevent a worker from
submitting their instructions if certain criteria is not
met. If a worker is blocked by one of these checks,
they will be shown which check failed so that they
can easily correct the error.

General Active Quality Checks.

¢ Each instruction must contain at least 6 words.
¢ Less than 40% of the characters in the instruc-
tions can be spaces.



Quiz
You must pass the quiz before you can continue to the task.

What is a good example of a navigation instruction?
Qa: Go forward and turn left.

Ob: Go forward 5 times to reach the red TV. Then turn 4 times left and continue to the yellow building.
Oc: Turn to face the purple bowl to your right. Continue forward till you reach a lamp post. Pick up the yellow bowl near the red traffic cone.

What is a good example of a navigation instruction?

Oa: Go forward to the intersection and then turn right. Go forward till you reach the green traffic cone. Collect the green ball next to the lamp post.
Ob: Go forward to the intersection and then turn left. Go forward following the blue guideline till you reach the red book.
Oc: Turn around and go forward till you reach the floating arrow. Pick up the green ball underneath.

Which of the following is true?
Oa: All the objects will be dotted.
Ob: Objects will always be the same color.

Oc: Objects will always be a book, hourglass, mug, bucket, ball, tv, or bowl, but may vary in color and texture.

Which of the following is true?

Oa: During Navigation phase, instruction writing is not required. Instruction writing is only required in Assembly phase
Ob: Both Navigation and Assembly phases require instructions to be written.
O c: Writing instructions is optional and should only be done if you feel like it.

Which of the following is a good example of a Assembly instruction?

Oa: Turn to face the left wall. Then place the dotted yellow TV on top of the striped red book.

Ob: Place the object.
O c: Move forward. Turn right and then put down the green book.

Get Results

Figure 13: Screening test that is required to be taken prior to starting Stage 1.

Quiz

You must pass the quiz before you can continue to the task.

What is the overall goal of this task?

Oa: Roam aimlessly until you are done.

Ob: Follow the provided instructions as accurate as possible.
QOc: Pick up random things.

Which of the following is true?
Oa: All the objects will be dotted.
Ob: Objects will always be the same color.

QO c: Objects will always be a book, hourglass, mug, bucket, ball, tv, or bowl, but may vary in color and texture.

Get Results

Figure 14: Screening test that is required to be taken prior to starting Stage 2.

The symbols (, [, 1, ), &, *, ", %. $, #, @, !, =,
and + cannot be included.

Single letter words other than ”a” cannot be in-
cluded.

A single letter cannot be repeated 3 consecutive
times. i.e “sss”.

The same word cannot be repeated twice in a
row.

At least 40% of the words in the instruction must
be unique.

The term “key” cannot be included.

The term “step” cannot be included.

The term “time” cannot be included.

The term “go back” cannot be included.

¢ The term “return” cannot be included.
¢ The term “came” cannot be included.
¢ The term “item” cannot be included.

Navigation Active Quality Checks.

e If the ground truth path requires turning at the
beginning of the path, the term “turn” must be
included.

* The term “arrow” cannot be included.

Assembly Active Quality Checks.

* The terms “tile” or “grid” cannot be included.
* The term “space” cannot be included.
* The term “go” cannot be included.



(a) Navigation phase in stage 1.

(d) Assembly phase in stage 2.

(c) Navigation phase in stage 2.

Figure 15: Simulation Interfaces of the Stage 1 (upper), Stage 2 (lower) showing separate examples, navigation
phase (left), and assembly phase (right) of the data collection. (a) Workers are initially shown the navigation
phase interface and must follow the blue navigation line to the target objects and write instructions as they go. (b)
Workers are moved into assembly and must make assembly instructions guided by the highlighted (transparent
black) objects. (c) Workers are provided with the navigation instructions and must find the target objects identified
by the instructions. (d) Workers are provided with the assembly instructions and must place the collected object at

the target position identified by the instructions.

e The term “corner” cannot be included.
e The term “move” cannot be included.
¢ The black outline cannot be referenced.

Review Notifications. It is possible for instruc-
tions to be written that can pass all automated
checks and still be of poor quality. However, there
is no quick and reliable way to automatically check
if an instruction passes the tests but is still vague
or misleading. Additional active checks could be
added, however, in cases of ambiguity, more active
checks would result in potentially good instructions
being blocked. Instead of blocking submission,
checks that could have been incorrectly triggered,
would send a notification email, allowing us to take
quick action by manually reviewing the instruction
in question to see if the worker who created it needs
feedback on writing better instructions.

B.2 Interface

Stage 1: Instruction Writing. The goal of this
stage is to write instructions on how to navigate and
place objects. The provided interface was designed
to make this process easier for the workers complet-
ing the task. In both phases, the interface provides
a arrow on the bottom left that will also point to
the target destination and target location (depend-

ing on the active phase; navigation and assembly
respectively.)

» Navigation Phase: (Figure 15a) The workers
will follow the provided navigation line and as
they follow it, write instructions on how to reach
the destination. Additionally, the workers are
provided with the controls and a few tips that
they should keep in mind while completing the
navigation phase. A small preview of the next
phase (Assembly) is shown in the lower right.

* Assembly Phase: (Figure 15b) The interface
is similar to that of the navigation phase inter-
face. During this phase, the Assembly preview
which previously occupied the lower right corner
will come into focus, and the navigation phase
preview is now occupying that space. In this
phase, no navigation line is provided, as there
is nowhere that cannot be seen from the start-
ing position. The controls and tip information
are updated with information about the assembly
phase.

Stage 2: Instruction Following. The goal of
this stage is for the instructions written in the pre-
vious to be validated. Again, this interface was
designed to make completing this task easier for
the workers. Workers are also provided with some



Linguistic Property Navigation Frequency | Assembly Frequency Instruction Examples
. . . ; “...Go straight so the striped green bucket with
Egocentric Spatial Relation 34% 34% the red tv on top of it is to your right...”
Allocentric Spatial Relation 86% 98% “Place the dotted yellow bucket on the left side of the striped brown bowl.”
Temporal Condition 64% 2% *“...Continue to walk forward until you reach an intersection...”
Directional Reference 96% 68% “Make a slight left and walk forward stopping at the intersection.”
. “...Go forward past the dotted yellow bucket and
Sequencing 66% 8% past the lamp post near the blue phone booth...”
3D Discrete Referring Expressions 72% 34% “Put the striped blue book behind the dotted red mug.”

Table 4: Linguistic properties and their frequencies found in within 50 randomly sampled instruction sets from the

ARRAMON dataset.

check boxes, which they can use to flag an instruc-
tion for certain issues so that we can more easily
identify poor instructions.

* Navigation Phase: (Figure 15c) Workers are
placed in an exact copy of the environment that a
Stage 1 worker used, as well as given the instruc-
tions they wrote on how to accomplish the task,
which are visible in the top right corner. This
new worker is not provided the blue guideline
and the indicating arrow, and must now navigate
using the instructions alone.

* Assembly Phase: (Figure 15d) The worker is
again shifted into the assembly room, but will no
longer see the transparent outline that indicates
where the object should be placed. They must
instead rely on the instructions written by a Stage
1 worker. The worker is also provided a real-
time diagram indicating where they will place
the object given the position they currently stand.
The object is always placed 1 space directly in
front of the worker’s location. The worker is also
provided with some tips that might help them.

C Data Analysis

C.1 Linguistic Properties

As shown in Table 4, our instruction sets have di-
verse linguistic features that make our task more
challenging. Our ARRAMON task requires that
the agent be able to understand and distinguish
between both egocentric and allocentric spatial re-
lations, necessitating that they comprehend the rela-
tion between entities in the environment according
to their location and orientation. The instructions
contain many directional words and phrases which
require that agents utilize strong navigational skills.
Additionally, due to the large scale of the environ-
ment, temporal condition expressions are crucial
for agents to navigate effectively, as they are useful
for describing long-distance travel.

D Model

Cross Attention. We employ the bidirectional
attention mechanism (Seo et al., 2017) to align the
visual feature V' and instruction feature L. We
calculate the similarity matrix, S € R¥' %! between
visual and instruction.

Sij =W, (Vi® Ly) )

where W, € R?*! is the trainable parameter, and
© is element-wise product. From the similarity
matrix, the new fused instruction feature is:
V = softmax(S ")V (8)
L=W/[L;V;LoOV] 9)

Similarly, the new fused visual feature is:

L = softmax(S)L
V=W [V;L;V e L]

(10)
(11)
where W, and Wy, are trainable parameters.

General Attention. We employ a basic attention
mechanism for aligning action feature, h, and each
of visual and instruction features.

A;=V;"h (12)
a = softmax(A) (13)
v=a'V (14)

E Experiments

E.1 Simulator Setup

Our task is quite challenging. In many cases, agents
may not even be able to pick up an object in the
navigation phase (agents would have to be in a po-
sition close enough to the object and of the correct
rotation to pick the object. These factors along
with the size of the environment, make this diffi-
cult). To decrease the difficulty of the task, in the



Val Seen Val Unseen
Model Nav1gat1é)¥C Assembly NaVIgatl((:)'rliC Assembly
nDTW =0 T%=3 T =5 T = rPOD | PTC || nDTW =0 T %3 T =5 | =7 rPOD | PTC
T1 | 0.222 | 0.000 | 0.138 | 0.194 | 0.260 | 0.088 | 0.070 || 0.186 | 0.000 | 0.080 | 0.139 | 0.192 | 0.054 | 0.044
V/L | T2 | 0.049 | 0.000 | 0.057 | 0.103 | 0.140 | 0.027 | 0.017 || 0.033 | 0.000 | 0.044 | 0.078 | 0.113 | 0.019 | 0.011
total | 0.135 | 0.000 | 0.098 | 0.149 | 0.200 | 0.058 | 0.044 || 0.109 | 0.000 | 0.062 | 0.108 | 0.153 | 0.036 | 0.028

Table 5: Performance of Vision-and-Language (V/L) baseline for turns T1 and T2, plus overall scores

Val-Seen/Unseen splits.

Ground Truth

Our Model Random Walk
Turn 1 @ :Turn slightly left as you move ahead past the traffic light. Go
toward the speed limit sign, and move past the dotted white barrier.
Head to the left to the lamp post, and fetch the dotted brown tv past a
blue cone.
Turn 20:Turn around and pass the blue and orange cones. Keep
going straight for a long way passing the speed limit sign. Head toward
the two striped yellow barriers ahead, but pick up the striped yellow
book before you reach them.

on the

Our Model Random Walk
Turn 1@ :Turn right until you see the green banner. Go towards the tire
stack to the right of it and take a left down the street behind it. Go for-
ward and pass the barrel. In the intersection there is a dotted white
bucket. Pick up the dotted white bucket.
Turn 20:Turn right until you see the green cone. Go forward and take
a left at the first street. Go towards the trash bags and take a left at the
street. Pass the black barrel and go towards the dotted blue bucket.
Pick up the dotted blue bucket.

Figure 16: Navigation paths of ground truth, human evaluation, random walk, and our model. Pink is the GT path
and the other paths are shown in green (turn 1 starts from the black dot and goes to the white dot. Turn 2 starts

from white dot and goes to the end of the path).

Navigation Assembly
Model CTC (k=3) | rPOD | PTC
Vision-and-Language 1.000 0.539 | 0.382

Table 6: Scores in the assembly phase calculated under
the assumption of the perfect performance in the navi-
gation phase on Val-Seen split.

event agents do not successfully pick up an object,
we allow them to continue to the assembly phase
with whatever object is the closest to their final
location. Likewise in the assembly phase, if the
time step limit is reached before the agent places
the object down, the object will be placed in front
of them (in the event “in front of them” is out of
bounds, it is placed at their feet). Note that either
of these actions will result in PTC and rPOD to be
0.

E.2 Training Details

We use PyTorch (Paszke et al., 2017) to build our
model. We take the average of the losses from
navigation and assembly phase modules to calcu-
late the final loss. We use 128 as a hidden size
of linear layers and LSTM. For word and action
embedding sizes, we use 300 and 64, respectively.
The visual feature map size is 7 x 7 with 2048
channel size. For dropout p value, 0.3 is used. We
use Adam (Kingma and Ba, 2015) as the optimizer
and set the learning rate to 0.001. The number of
trainable parameters of our Vision-and-Language
model is 1.83M (Language-only: 1.11M, Vision-
only: 0.73M). We use NVIDIA RTX 2080 Ti and
TITAN Xp for training and evaluation, respectively.

F Results and Analysis

As shown in Table 5, almost all scores from turn
1 are improved compared to turn 2. Scoring in
rPOD and PTC metrics in the assembly phase is



Navigation

TURN 1

Turn left, go to the mailbox and Place bowl in front of the striped blue hour-
turn right. Go past the dumpster glass.

then right at the next intersection.

Go to the phone booth and collect

the striped purple bowl.

TURN 2

Turn around then go left between
the blue and brown buildings. Go
past the silver dumpster and collect
the striped yellow ball next to the
mailbox.

Place the ball on top of the striped purple bowl.

Navigation Assembly

TURN 1

- \
Turn left to face the short traffic Place the striped blue hourglass against the
light. Walk to it and turn right. Walk  brick wall and aligned with the purple bucket.
to the orange barrels and turn left.

Walk past the barricade to the

mailbox and pick up the striped

blue hourglass.

TURN 2

Place the dotted purple mug in between the
blue hourglass and the purple bucket.

Turn to face the yellow and white
flag. Walk to the orange barrels
and turn left. Walk to the short traf-
fic light and pick up the dotted
purple mug.

Figure 17: Visual demonstrations by our model in navigation and assembly phases. GT navigation paths are solid
pink lines and model’s paths are dotted green lines (start = black dot). GT assembly target location is solid black
circle and model’s target object placement is dashed blue circle (start = checkered yellow tile, agent facing brick

wall).

largely dependent on the score of CTC-k in the
navigation phase. Comparing the rPOD and PTC
scores of Vision-and-Language model on the val-
seen split (Table 5) and the ones from Table 6, if
the CTC-k is decreased by 1/10 (1.0 to 0.098), the
PTC is also decreased around 1/10 (0.382 to 0.044).
This demonstrates our ARRAMON task involves
interweaving and is challenging to complete.

G Output Examples

In the left path set of Figure 16, our model follows
the instructions well in the beginning. However,
the model goes a little bit further and fails to find
the target object (dotted brown tv). In the second
turn, the model turns around, but does not do it
fully, so heads a different direction failing to reach
the goal position.

For the example on the right, the model performs
very well in the first turn, but in the second turn
fails to find the target object although reaches very
close to it and then backtracks out of the alley.
Also, as shown in the figure, the human performs
the navigation almost perfectly, indicating there is
significant room for improvement by future work,
and random-walk shows quite poor performance,
implying that our ARRAMON task cannot be com-
pleted by random chance.

Figure 17 compares the model against the GT in

both turns and phases. On the left set, the model
almost reaches the target object, but it cannot find
the target object (striped purple bowl) and goes a
little further past it. In the corresponding assem-
bly phase, the model places the collected object
(assuming it picked up the correct object in the pre-
vious navigation phase) 1 space to the right of the
target location. In the next navigation turn, due to
the error in the previous turn, the model path starts
a bit further away from the GT, however, it starts
to realign itself towards the end around the corner.
The model is able to locate the target object and
stop to pick it up. In the next assembly phase, the
model fails to place the collected object at the right
location. On the right set, the model shows worse
performance. It misses all of the turning needed to
reach the target. In the assembly phase, the model
misses the target location by 1 space, likely due to
misunderstanding the complex spatial relationship
in the instructions. In the next navigation phase, the
model starts in the wrong place, so ends up arriving
at a totally different place from the target position.
In the next assembly phase, the performance of the
previous turn affected the object configuration, so
the model cannot find the place “between the blue
hourglass and the purple bucket”.



