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Abstract

Interest in physical therapy and individual exercises such as
yoga/dance has increased alongside the well-being trend, and
people globally enjoy such exercises at home/office via video
streaming platforms. However, such exercises are hard to fol-
low without expert guidance. Even if experts can help, it
is almost impossible to give personalized feedback to every
trainee remotely. Thus, automated pose correction systems
are required more than ever, and we introduce a new cap-
tioning dataset named FIXMYPOSE to address this need. We
collect natural language descriptions of correcting a “current”
pose to look like a “target” pose. To support a multilingual
setup, we collect descriptions in both English and Hindi. The
collected descriptions have interesting linguistic properties
such as egocentric relations to the environment objects, analo-
gous references, etc., requiring an understanding of spatial re-
lations and commonsense knowledge about postures. Further,
to avoid ML biases, we maintain a balance across characters
with diverse demographics, who perform a variety of move-
ments in several interior environments (e.g., homes, offices).
From our FIXMYPOSE dataset, we introduce two tasks: the
pose-correctional-captioning task and its reverse, the target-
pose-retrieval task. During the correctional-captioning task,
models must generate the descriptions of how to move from
the current to the target pose image, whereas in the re-
trieval task, models should select the correct target pose given
the initial pose and the correctional description. We present
strong cross-attention baseline models (uni/multimodal, RL,
multilingual) and also show that our baselines are competitive
with other models when evaluated on other image-difference
datasets. We also propose new task-specific metrics (object-
match, body-part-match, direction-match) and conduct hu-
man evaluation for more reliable evaluation, and we demon-
strate a large human-model performance gap suggesting room
for promising future work. Finally, to verify the sim-to-real
transfer of our FIXMYPOSE dataset, we collect a set of real
images and show promising performance on these images. '

1 Introduction

As the well-being trend grows and people globally move to
a new online lifestyle, interest in remotely (i.e., at home or
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Current Pose Target Pose

Description 1 (English): slide your right foot back one step and bend your knees,
bring your wrists closer to your shoulders but maintain the position of your hands,
finally drop your arms at the shoulder to level your hands with your neck.
Description 2 (English): bend both of your legs. bring both of your arms down
almost below your ears. your left palm should be facing towards the chair. the
back of your right hand should be facing the glass table.
Description 3 (English): bend both knees away from the lamp, lower down your
body towards the rug, bring both hands down above your shoulder, right palm
facing front and left palm facing the chair, tilt your head back a little towards the
lamp.
Description 1 (Hindi): 3197 gifga &R i U weA 11 fagen] ik s geni @l 11,
ST TS el ST ST o el T SAfehe 1A BTl eht Fedfdl &bt &1 T, 3id & 3aet 716
Y 37 el o GHeT e & oy 37 gl ol Y W |
Figure 1: Current and target image pair and the correspond-
ing correctional descriptions in both English and Hindi (we

show only one of the three Hindi descriptions due to space).

in the office) learning health and exercise activities such as
yoga, dance, and physical therapy is growing. Through ad-
vanced video streaming platforms, people can watch and fol-
low the physical movements of experts, even without the ex-
pert being physically present (and hence scalable and less
expensive). For such remote activities to be more effective,
appropriate feedback systems are needed. For example, a
feedback system should catch errors from the user’s move-
ments and give proper guidance to correct their poses. Re-
lated to this line of work, many efforts have been made on
human pose estimation and action recognition (Johnson and
Everingham 2010, 2011; Andriluka et al. 2014; Toshev and
Szegedy 2014; Wei et al. 2016; Andriluka et al. 2018; Yan,
Xiong, and Lin 2018; Zhao et al. 2019; Cao et al. 2019;
Sun et al. 2019; Verma et al. 2020; Rong, Shiratori, and
Joo 2020). Research on describing the difference between
multiple images has also been recently active (Jhamtani and
Berg-Kirkpatrick 2018; Tan et al. 2019; Park, Darrell, and
Rohrbach 2019; Forbes et al. 2019). However, there has been
less focus on the human pose-difference captioning tasks,
which require solving unique challenges such as understand-
ing spatial relationships between multiple body parts and
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their movements. Moreover, the reverse task of retrieving
or generating a target pose is also less studied. Combining
these two directions together can allow for more interweav-
ing human-machine communication in future automated ex-
ercise programs.

Relatedly, interest in embodied systems for effective
human-agent communication is increasing (Kim et al. 2018;
Wang, Smith, and Ruiz 2019; Abbasi et al. 2019; Kim
et al. 2020). Embodiment is also a desirable property when
designing virtual assistants that provide feedback. For ex-
ample, embodied virtual agents can show example move-
ments to users or point at the users’ body parts that need to
move. Furthermore, for effective two-way communication
with embodied agents, reverse information flow (i.e., human
to agents) is also needed. A user may want to describe what
actions they took so that the agent can confirm whether the
user moved correctly or needs to change their movement.
The agent should also be able to move its body to match the
pose that the user is describing to help itself understand.

Therefore, to encourage the multimodal Al research com-
munity to explore these two tasks, we introduce a new
dataset on detailed pose correctional descriptions called

FIXMYPOSE (W@:ﬁa), which consists of image pairs
(a “current” and “target” image) and corresponding correc-

tional descriptions in both English and Hindi (Fig. 1). To
understand our dataset, imagine you are in a physical ther-
apy program following an instructor in a prerecorded video
at home. Your movements and resulting pose are likely to
be wrong, hence, you would like a virtual Al assistant to
provide detailed verbal guidance on how you can adjust to
match the pose of the instructor. In this case, your incorrect
pose is in the “current” image and the pose of the instructor
is in the “target” image, forming a pair. The verbal guidance
from the virtual Al assistant is the correctional description.

From our FIXMYPOSE dataset, we introduce two tasks
for multimodal AI/NLP models: the ‘pose-correctional-
captioning’ task and the ‘target-pose-retrieval’ task. In the
pose-correctional-captioning task, models are given the
“current” and “target” images and should generate a correc-
tional description. The target-pose-retrieval task is the re-
verse of the pose-correctional-captioning task, where mod-
els should select the correct “target” image among other dis-
tractor images, given the “current” image and description.
This two-task setup will test Al capabilities for both impor-
tant directions in pose correction (i.e., agents generating ver-
bal guidance for human pose correction, and reversely pre-
dicting/generating poses given instructions), to enable two-
way communication between humans and embodied agents
in future research. To generate image pairs, we implement
realistic 3D interior environments (see Sec. 4 for details).
We also extract body joint data from characters to allow di-
verse tasks such as pose-generation (Fig. 4). We collect de-
scriptions for these image pairs by asking annotators from
a crowdsourcing platform to explain to the characters how
to adjust their pose shown in the “current” image to the one
shown in the “target” image in an instructional manner from
the characters’ egocentric view (see Table 1). Furthermore,
we ask them to refer to objects in the environment to create

Figure 2: Example room environments: each room has a di-
verse style/theme (e.g., office, bathroom, living room).

more detailed and accurate correctional descriptions, adding
diversity and requiring models to understand the spatial re-
lationships between body parts and environmental objects.
The descriptions also often describe movement indirectly
through implicit movement descriptions and analogous ref-
erences (e.g., “like you are holding a cane”) (see Sec. 5.2),
which means Al models performing this task should develop
a commonsense understanding of these movements and ref-
erences. To encourage multimodal Al systems to expand be-
yond English, we include Hindi descriptions as well (Fig. 1).

Empirically, we present both unimodal and multimodal
baseline models as strong starting points for each task,
where we apply multiple cross-attention layers to integrate
vision, body-joints, and language features. For the pose-
correctional-captioning model, we employ reinforcement
learning (RL), which uses self-critical sequence training
(Rennie et al. 2017), for further improvement. Also, we
present the results from a multilingual training setup (En-
glish+Hindi) which uses fewer parameters by sharing model
components, but shows comparable scores.

The multimodal models in both tasks show better perfor-
mance than unimodal models, across both qualitative human
evaluation and several of the evaluation metrics, including
our new task-specific metrics: object, body-part, and direc-
tion match (details in Sec. 8.1). There is also a large human-
model performance gap on the tasks, allowing useful fu-
ture work on our challenging dataset. We also show bal-
anced scores on demographic ablations, implying that our
dataset is not biased toward a specific subset. Furthermore,
our model performs competitively with existing works when
evaluated on other image-difference datasets (Image Editing
Request (Tan et al. 2019), NLVR2 (Suhr et al. 2019), and
CLEVR-Change (Park, Darrell, and Rohrbach 2019)). Fi-
nally, to verify the simulator-to-real transfer of our FIXMY-
POSE dataset, we collect a test-real split which consists of
real-world image pairs and corresponding descriptions, and
show promising performance on the real images.

Our contributions are 3-fold: (1) We introduce a new
dataset, FIXMYPOSE, to encourage research on the inte-
grated field of human pose, correctional feedback systems
on feature differences with spatial relation understanding,
and embodied multimodal virtual agents; (2) We collect a
multilingual (English/Hindi) dataset; (3) We propose two



tasks based on our FIXMYPOSE dataset (pose-correctional-
captioning and target-pose-retrieval), and present several
strong baselines as useful starting points for future work
(and also demonstrate sim-to-real transfer).

2 Related Work

Image Captioning. Describing image contents in natural
language has been actively studied (Xu et al. 2015; Yang
et al. 2016; Rennie et al. 2017; Lu et al. 2017; Anderson
et al. 2018a; Melas-Kyriazi, Rush, and Han 2018; Yao et al.
2018). This progress has been encouraged by the introduc-
tion of large-scale captioning datasets (Hodosh, Young, and
Hockenmaier 2013; Lin et al. 2014; Plummer et al. 2015;
Krishna et al. 2017; Johnson, Karpathy, and Fei-Fei 2016;
Krause et al. 2017). Recently, more diverse image caption-
ing tasks, which consider two images and describes the dif-
ference between them, have been introduced (Jhamtani and
Berg-Kirkpatrick 2018; Tan et al. 2019; Park, Darrell, and
Rohrbach 2019; Forbes et al. 2019). However, to the best
of our knowledge, there exists no captioning dataset about
describing human pose differences. Describing pose differ-
ence or body movement requires detailed multi-focus over
all body parts and understanding relations between them, in-
troducing new challenges for Al agents. This kind of dataset
is promising because of its potential real-world applications
in activities such as yoga, dance, and physical therapy.

Human Pose. Human pose estimation and action recogni-
tion have been a long-standing topic in the research commu-
nity (Johnson and Everingham 2010, 2011; Andriluka et al.
2014; Toshev and Szegedy 2014; Wei et al. 2016; Andriluka
et al. 2018; Yan, Xiong, and Lin 2018; Zhao et al. 2019; Cao
et al. 2019; Sun et al. 2019; Verma et al. 2020; Rong, Shira-
tori, and Joo 2020). Recently, researchers are also focusing
on generation tasks which generate a body pose sequence
from an input of a different type from another modality such
as audio or spoken language (Shlizerman et al. 2018; Tang,
Jia, and Mao 2018; Lee et al. 2019; Zhuang et al. 2020;
Saunders, Camgoz, and Bowden 2020). However, there have
been no research attempts on text generation based on pose
correction. Thus, our novel FIXMYPOSE dataset will en-
courage the community to explore this new direction.

Spatial Relationships. Understanding spatial relationships
between objects is an important capability for Al agents.
Thus, the topic has attracted much attention from re-
searchers (Bisk, Marcu, and Wong 2016; Wang, Liang, and
Manning 2016; Li et al. 2016; Bisk et al. 2018). Our FIXM Y-
POSE dataset is rich in such reasoning about spatial relations
with a variety of expressions (not only simple directions of
left/right/up/down). Moreover, all the spatial relationships in
the descriptions of the FIXMYPOSE dataset are considered
from the characters’ egocentric perspective, requiring mod-
els to understand the characters’ viewpoints.

Virtual Assistants. Virtual Al assistants such as Alexa,
Google Assistant, Cortana, and Siri are already ubiquitous in
our lives. However, there has been an increasing demand for
multimodal (i.e., vision+language) virtual Al assistants, and
as robotic and virtual/augmented/mixed reality technologies
grow, so does interest in embodied virtual assistants (Kim

Current Image Target Candidates

Description: hop
and extend both of
your legs outward
so that they are
about four feet
away from each
other. also extend
both of your arms
out to your right and
to your left.

Figure 3: The target-pose-retrieval task: models have to se-
lect the correct “target” image from a set of distractors (the
image with red dashed border is the ground-truth target
pose), given “current” image and correctional description.

et al. 2018; Wang, Smith, and Ruiz 2019; Abbasi et al. 2019;
Kim et al. 2020). Our FIXMYPOSE dataset will contribute
to the evolution of embodied multimodal virtual assistants
by providing a novel dataset as well as proposing a new
approach on how to integrate physical movement guidance
with virtual Al assistants.

3 Tasks

Pose Correctional-Captioning Task. During this task, the
goal is to generate natural language (NL) correctional de-
scriptions, considering the characters’ egocentric view, that
describe to a character how they should adjust their pose
shown in the “current” image to match the pose shown in the
“target” image (Fig. 1). As the “current” and “target” image
pairs contain various objects in realistic room environments,
models should have the ability to understand the spatial re-
lationships between the body parts of characters and the en-
vironment from the characters’ perspectives.

Target Pose Retrieval Task. Here, the goal is to select the
correct “target” image among 9 incorrect distractors, given
the “current” image and the corresponding correctional de-
scription (Fig. 3). For the distractor images, we only con-
sider images that are close to the “target” pose in terms of
body joints distances (see Appendix A for detailed crite-
ria). These distractor choices discourage models from easily
discerning the correct “target” image via shallow inference
or shortcuts, requiring minute differences to be captured by
models. The large human-model performance gap (Sec. 8.2)
verifies the quality of our distractors.



IS
=)
S

Frequency
@
8
3

IN)
=3
<]

=)
<]

0.2 . .
Average Joint Distance

IS
S
S

w
S
S

Frequency

N
=}
S

1=}
S

01 02 03 04 05 06
Standard Deviation of Joint Distance

Right 116 120 Left

Figure 4: The 3D joint configuration of characters (left). The
distribution of joint distances (meters) between poses of the
“current” and “target” images (right). The Avg. of Min joint
distances: 0.04 and the Avg. of Max joint distances: 0.65.

4 Dataset

Our FIXMYPOSE dataset is composed of image pairs with
corresponding correctional descriptions in English/Hindi.

Image, 3D Body Joints, and Environment Generation.
We create 25 realistic 3D diverse room environments, filled
with varying items (Fig. 2). To ensure diversity, we em-
ploy 6 human character avatars of different demographics
across gender/race (each character is equally balanced in our
dataset).” Since creating/modifying the body of characters
requires 3D modeling/artistic expertise, we use pre-made
character models that are publicly available (hence also
copyright-free for our community’s future use) in Adobe’s
Mixamo?. In the rooms, the characters perform 20 move-
ment animations and the camera captures images on a fixed
interval. We also obtain 3D positional body joint data of the
character’s poses in the “current” and “target” images to pro-
vide additional useful features and allow a potential reverse
pose-generation task (Fig. 4). See Appendix B.1 for more on
animation examples, environment creation, body joint data,
and image capturing.

Description Collection. We employ annotators from the
crowdsourcing platform Amazon Mechanical Turk* to col-
lect the correctional descriptions. Workers are provided 3
images, “current”, “target” images, and a “difference” im-
age that shows the difference between the two images, al-
lowing them to write clear descriptions (see Appendix B for
the images and collection interface). We ask them to write as
if they are speaking to the characters as assistants who are

2Qur task focuses on understanding body movements/angles
and not demographics, but we still ensure demographic diversity
and balance in our dataset for ethical/fairness purposes so as to
avoid unintended biases (e.g., see the balanced demographics abla-
tion results and Sim-to-Real Transfer results on people with differ-
ent demographics with respect to the 6 character avatars in Sec. 8).
We plan to further expand our dataset with other types of diversity
(e.g., height, age) based on digital avatar availability.

3https://www.mixamo.com

*https://www.mturk.com

helping them (like “You should ...”), not calling them by the
3rd person (like “The person ...”, “They/She/He ...”). It also
helps prevent accidental biased terms assuming the demo-
graphics of the characters. We collect 1 description for each
image pair for the train split and 3 for all subsequent splits
(i.e., val-seen/val-unseen/test-unseen) from unique workers,
making the computation of automated evaluation metrics
such as BLEU possible.

Description Verification. Each description and its corre-
sponding image pair is given to a separate group of work-
ers through a verification task. For each description, 3 dif-
ferent workers are asked to rank it from 1-4 based on its
relevance to the image pair and its clarity, similar to pre-
vious works (Lei et al. 2020). Descriptions that 2/3 of the
workers rate lower than 3 are discarded. Image pairs that
are flagged with certain issues are discarded as they do not
provide good data (see Appendix B.2 for the verification in-
terface and flags).

Hindi Data Collection. To collect the translated Hindi de-
scriptions, we present a translation task to workers. Work-
ers are given a description that has passed the verification
task and its corresponding image pair to ensure the origi-
nal meaning is not lost (see Appendix B.2 for the translation
interface).

Worker Qualification and Payment. We require work-
ers completing either of the tasks to be fluent in the
needed languages and to have basic MTurk qualifications.
The writing task takes around 1 minute and workers are
paid $0.18 per description. To encourage workers to write
more and better descriptions, an additional increasing-bonus
system is implemented. See Appendix B.4 for qualifica-
tion/bonus/payment details.

5 Data Analysis

We collect 7,691 image pairs and 11,127 correctional de-
scriptions for both English and Hindi (1 per train and 3
per evaluation splits). Our dataset size is comparable to
other captioning tasks/datasets such as Image Editing Re-
quest (Tan et al. 2019) (3.9K image pairs/5.7K instructions),
Spot-the-Diff (Jhamtani and Berg-Kirkpatrick 2018) (13.2K
image pairs/captions), and Birds-to-Words (Forbes et al.
2019) (3.3K image pairs/16K paragraphs). We plan to keep
extending the dataset and add other languages in the future.

5.1 Statistics

Joint Distances. Fig. 4 shows the distribution of average
joint distances (meters) between the poses in the “current”
and “target” images. As indicated by the mean (0.24m), std-
dev (0.18m), and min/max (0.04/0.65m) of the average dis-
tance of individual joints, models should be able to capture
different movement levels simultaneously in an image pair.

Description Vocabulary and Length. The collection of
descriptions in our FIXMYPOSE dataset has 4,045/4,674
unique English/Hindi words. The most common words in
both languages (see Appendix C.1 for details and pie charts)
relate to direction, body parts, and movement, showing that
models need to have a sense of direction with respect to



Reference Frame Freq. Example (English)
Egocentric 100% “... rotate your left shoulder so that
Relation ¢ your hand is above your elbow ...”
Environmental 52 ... turn your left Ieg and right Teg to the
Direction | left to face the wall with the door ...”
Tmplicit Movement ... Tean your body towards and
. 58% . . »
Description slightly over your right leg ...
Analogous ... in front of you as if you are
N 18% . »
Reference gesturing for someone to stop ...

Table 1: Examples of linguistic properties in correctional de-
scriptions (see Appendix C.3 for examples and image exam-
ples of implicit movement description).

body parts and objects, and also capture the differences be-
tween the poses to infer the proper movements. The aver-
age length of the multi-sentenced descriptions (49.25/52.74
words) is high, indicating that they are well detailed (see
Appendix C.2 for details).

5.2 Linguistic Properties

To investigate the diverse linguistic properties in our dataset,
we randomly sample 50 descriptions and manually count
occurrences of traits. We found interesting traits (see Ta-
ble 1 and Appendix C.3 for examples), requiring agents to
deeply understand characters’ movements and express them
in an applicable form (the Hindi descriptions also share these
traits).

Egocentric and Environmental Direction. Descriptions in
our FIXMYPOSE dataset are written considering the ego-
centric (first-person) view of the character. Descriptions also
reference many environmental objects and their relation to
the characters’ body parts, again from an egocentric view.
This means models must understand spatial relations of
body parts and environmental features from the egocentric
view of the character rather than the view of the “camera”.

Implicit Movement Description and Analogous Refer-
ence. Implicit movement description and analogous refer-
ence are often present in descriptions. These descriptions
imply movements without needing to say them. Analogous
references are a more extreme form of implicit movement
description, where the movement is wrapped in an analogy.
Models must develop commonsense knowledge of these
movements in order to understand their meaning. See Ta-
ble 1 and Appendix C.3 for examples.

6 Models

We present multiple strong baselines for both the
pose-correctional-captioning and target-pose-retrieval task
(Fig. 5) to serve as starting points for future work.

6.1 Pose Correctional Captioning Model

We employ an encoder-decoder model for the pose-
correctional-captioning task. Also, we apply reinforcement
learning (RL) after training the encoder-decoder model, and
present multilingual training setup which reduces the num-
ber of parameters through parameter sharing.

Encoder. We employ ResNet (He et al. 2016) to obtain vi-
sual features from images. To be specific, we extract fea-
ture maps f¢ and f! € RNVXNx2048 from the “current”
pose image I¢ and the “target” pose image I°, respectively:
f¢ = ResNet(I¢); f* = ResNet(I*). For 3D joints, J¢, Jt €
R20%3 we use linear layer to encode: J¢ = PE(W,"J°);
Jt = PE(W, J*); J¢ = PE(W, (J' — J°)), where W is
the trainable parameter (all W, from this point on denote
trainable parameters) and PE (Gehring et al. 2017; Vaswani
et al. 2017) denotes positional encoding.

Decoder. Words from a description, {w;}7_,, are embed-
ded in the embedding layer: w;—; = Embed(w;_1), then
sequentially fed to the LSTM layer (Hochreiter and Schmid-
huber 1997): hy = LSTM(t@;_1, ht—1). We employ the bidi-
rectional attention mechanism (Seo et al. 2017) to align im-
age features and joints features.

fe, gt ft,J¢ = CA-Stack(f¢, J¢, f*, J*) (1)

where CA-Stack is a cross attention stack (see Appendix D).
f=WIIs IS0/ J=wI ST T 00 @)
fr = Att(he, f), Jp = Att(hy, J), JF = Att(hy, T4 (3)
kep = Wi [fis Jis hus e © fushe © Jy) 4)

gt = W ka3 J{] ()

where Att is general attention (see Appendix D for details).

The next token is: w; = argmax(g: ), and the loss is: Lysp, =
— > logp(wy|wi,,_1, f,J), where wy is the GT token.

RL Training. We apply the REINFORCE algo-
rithm (Williams 1992) to learn a policy py upon the model
pre-trained with the maximum likelihood approach: Ly, =
—Eyemp, [r(w?®)]; VoLrr = —(r(w®) — b)Vglog ps(w®),
where w?® is a description sampled from the model, 7(-)
is the reward function, and b is the baseline. We employ
the SCST training strategy (Rennie et al. 2017) and use
the reward for descriptions from the greedy decoding (i.e.,
b = r(wY)) as the baseline. We also employ CIDEr as the
reward, following Rennie et al. (2017)’s observation (using
CIDEr as a reward improves overall metric scores). We
follow the mixed loss strategy setup (Wu et al. 2016; Paulus,
Xiong, and Socher 2018): L = v1 Ly + v2LRL.

Multilingual Parameter Sharing. We implement the mul-
tilingual training setup by sharing parameters between En-
glish and Hindi models, except the parameters of word em-
beddings, description LSTMs, and final fully connected lay-
ers, making the total number of parameters substantially less
than those needed for the separate two models summed.

6.2 Target Pose Retrieval Model

The current and target candidate images are encoded the
same way as the captioning model. A bidirectional LSTM
encodes the descriptions: ¢ = BiLSTM(w). Image features
are aligned with description features via cross attention.

667 flti 76ti ) fc = CA-StaCk(Ca fcv ) ftl) (6)
k1; = Self-Gate([¢%; ¢ ;¢ © &) 7
g1; = Self-Gate([f"'; f; f" © f¢]) (®)



Language | Models Automated Metrics Task-Specific Metrics Human Eval.
B4 | C ] MR object-match | body-part-match | direction-match R [ FG

V-Only | 690 | 641 | 16.78 | 30.09 0.04 1.01 0.05 4% | 4%

English | L-Only | 17.74 | 11.42 | 22.14 | 35.16 0.08 1.22 0.15 15% | 27%
V+L 17.55 | 14.47 | 21.29 | 35.21 0.18 1.29 0.13 48% | 45%

V-Only | 843 | 437 | 18.90 | 28.55 0.03 1.21 0.02 9% 10%

Hindi L-Only | 2542 | 11.41 | 29.68 | 36.90 0.0 1.42 0.07 19% | 26%
V+L 18.99 | 8.58 | 29.26 | 34.73 0.08 1.63 0.10 51% | 53%

Table 2: The performance of the unimodal and multimodal models on automated metrics, our new task-specific metrics, and
human evaluation. for both English and Hindi dataset on the val-seen split (B4: BLEU-4, C: CIDEr, M: METEOR, R: ROUGE,
V: Vision+Joints, L: Language, R: Relevancy, F/G: Fluency and Grammar).
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Figure 5: The pose-correctional-captioning model (top) and
the target-pose-retrieval model (bottom).

where © is the element-wise product (see Appendix D for
details of the Self-Gate). For joints feature, we calculate the
difference between the two joints set: J4 = WT (J' —J°);
Jde = W (J¢ — J'). We apply the same process that the
image features go through (i.e., Eq. 6-8) to get ko; and go;.

pi = W, [k1i: 914 k1i © gud] )
@i = W [k2i; gais k2i © gai] (10)
si = W [pi; qipi © qi] (11)

The score s; is calculated for each target candidate and the
one with the highest score is considered as the predicted one:
t = argmax([so; $1; ..-; S9])-

7 Experimental Setup

Data Splits. For the pose-correctional-captioning task, we
split the dataset into train/val-seen/val-unseen/test-unseen
following Anderson et al. (2018b). We assign separate
rooms to val-unseen and test-unseen splits for evaluating

Current Pose Target Pose

Description: shift your weight to your right leg. take your left leg off the

ground until only your toes are touching the ground. lean you body to the
right side and keep your hands on your hip but point your elbows back.

Figure 6: An example from Sim-To-Real transfer dataset.

[ Language [ Models [ B4 ] C I M [ R |

V+L 17.55 | 14.47 | 21.29 | 35.21

English (-) Joints 17.39 | 13.79 | 21.35 | 34.86
(+)RL 18.69 | 16.04 | 22.35 | 36.18

(+) Multi-L | 19.08 | 15.71 | 22.47 | 36.46

V+L 18.99 | 8.58 | 29.26 | 34.73

Hindi (-) Joints 18.23 | 7.93 | 27.55 | 34.12
(+)RL 18.57 | 9.63 | 28.83 | 34.76

(+) Multi-L | 18.67 | 9.77 | 29.05 | 34.74

Table 3: Model ablations on val-seen split (RL: reinforce-

ment learning, Multi-L: multilingual).

model’s ability to generalize to unseen environments. The
number of task instances for each split is 5,973/562/563/593
(train/val-seen/val-unseen/test-unseen) and the number of
descriptions is 5,973/1,686/1,689/1,779. For the target-pose-
retrieval task, we split the dataset into train/val-unseen/test-
unseen. In this task, “unseen” means “unseen animations”.
We split the dataset by animations so that the task cannot be
easily done by memorizing/capturing patterns of certain an-
imations in the image pairs. After filtering for the target can-
didates (see Sec. 3), we obtain 4,227/1,184/1,369 (train/val-
unseen/test-unseen) instances. See Appendix E.1 for the de-
tailed room and animation assignments.

Training Details. We use 512 as the hidden size and 256 as
the word embedding dimension. We use Adam (Kingma and
Ba 2015) as the optimizer. See Appendix E.3 for details.

Metrics. For the pose-correctional-captioning task, we em-
ploy automatic evaluation metrics: BLEU-4 (Papineni et al.
2002), CIDEr (Vedantam, Lawrence Zitnick, and Parikh
2015), METEOR (Banerjee and Lavie 2005), and ROUGE-
L (Lin 2004). Also, motivated by previous efforts towards
more reliable evaluation (Wiseman, Shieber, and Rush



\ Dataset Model [ B4 ] C [ M | R |
Image Editing Request | DRA 6.72 | 26.36 | 12.80 | 37.25
Tan et al. (2019) Ours 7.88 | 27.70 | 12.53 | 37.56
NLVR2 DRA 5.00 | 46.41 | 10.37 | 22.94

Suhr et al. (2019) Ours 5.30 | 45.09 | 10.53 | 22.79
CLEVR-Change (SC) | DUDA | 429 | 94.6 | 29.7 -
Park et al. (2019) Ours 44.0 | 98.7 | 334 | 655

Table 4: Our baseline V+L model performs competitively on
other image-difference captioning datasets (DRA: Dynamic
Relation Attention (Tan et al. 2019), DUDA: Dual Dynamic
Attention Model (Park, Darrell, and Rohrbach 2019); SC =
Scene Change).

2017; Serban et al. 2017; Niu and Bansal 2019; Zhang
et al. 2019; Sellam, Das, and Parikh 2020), we introduce
new task-specific metrics to capture the important factors.
Object-match counts correspondences of environment ob-
jects, body-part-match counts common body parts men-
tioned, and direction-match counts the (body-part, direc-
tion) pair match between the model output and the ground-
truth (see Appendix E.4 for more information on direction-
match). In the target-pose-retrieval task, we use the accuracy
of the selection as the performance metric.

Human Evaluation Setup. We conduct human evaluation
for the pose-correctional-captioning task models to com-
pare the output of the vision-only model, the language-only
model, and the full vision+language model qualitatively. We
sample 100 descriptions from each model (val-seen split),
then asked crowd-workers to vote for the most relevant de-
scription in terms of the image pair, and for the one best
in fluency/grammar (or ‘tied’). Separately, to set the perfor-
mance upper limit and to verify the effectiveness of our dis-
tractor choices for the target-pose-retrieval task, we conduct
another human evaluation. We sample 50 instances from the
target-pose-retrieval test-unseen split and ask an expert to
perform the task for both English and Hindi samples. See
Appendix E.2 for more details.

Unimodal Model Setup. We implement unimodal models
(vision-/language-only) for comparison with the multimodal
models. See Appendix E.5 for more details.

Other Image-Difference Datasets. We also evaluate our
baseline model on other image-difference datasets to show
that the baseline is strong and competitive: Image Editing
Request (Tan et al. 2019), NLVR2 (Suhr et al. 2019) (the
variant from Tan et al. (2019)), and CLEVR-Change (Park,
Darrell, and Rohrbach 2019).

Sim-to-Real Transfer. To verify the possibility of the trans-
fer of our simulated image dataset to real images, we collect
real image pairs of current and target poses. We randomly
sample 60 instances from test-unseen split (test-sim) and
then the authors and their family members® follow the poses
in the sampled test-sim split to create the real image version
(test-real). Since the environments (thus objects and their

SHence covering diverse demographics, including some that are
different from the simulator data splits, as well as different room
environments. All participants consented to the collection of im-
ages (and additionally, we blur all faces).

Current Pose Target Pose

Predicted: you need to bring your right foot to the right and then
finally bring your right arm up to be at shoulder height and your
right hand up in front of your face

Ground Truth 1: pull your left foot in right next to your right foot
extend your right foot out about 2 feet opposite the direction of the
right curtain on the window lift up both hands so that they are in
front of your face about a foot from each other and a foot from
your face

Ground Truth 2: you need to bring your right foot to the right and
have that leg slightly straightened you also need to have your
back more up right. then finally bring your head to face more for-
wards then place both your hands up at head height but keep
your elbows at the side

Ground Truth 3: move your right foot to the right towards the
telephone bring your body and head back towards the coffee
table and lean to the window move your hands up in front of your
head.

Current Pose Target Pose

Predicted: 37 a1 &7t &1 R % % G 3 TG 10 R de
N
) X g MR A Y 7t STt bl ) &g 37K 37 g7t ol BTt & &R

FIRFA A
Ground Truth 1: 397 gifgA Rl dier g TRE B | 397 a1q WA

379 g TR % WA T | 37194 Gl g1l &l eI 1.5 e T & el |

37Tt gl @l ST ot 3Tk TaT 91ey |
Ground Truth 2: 3797 13 &R & ga1 7 319 &7 IR & G g 31k a1

3T % 3R AT T dieT A1 e 31U gl &l 31 O et & "He g
3T Sl TR iR R Tefifas it awes g ey |

Ground Truth 3: 3797 a1 8 &1 S W @ 3R 38 37104 gifga R &
SR Y YR & | 30 SO IR i &1 3R v < iR o7 ot a1el &t o
ek = T ST a9 9 DT ol STS & A T3 |

Figure 7: Output examples of our multimodal model in En-
glish (top) and Hindi (bottom).

layout too) and poses (though they are told to try to match
as accurately as possible) have differences between the two
splits (i.e., test-sim and test-real), we manually re-write a
few words or phrases in the descriptions to make it more
consistent with images in the test-real split (see Fig. 6).

8 Results

8.1 Pose Correctional Captioning Task

As shown in Table 2, the V+L models show better perfor-
mance than V-only models. The L-only model shows higher
scores on some of the automatic metrics, likely because the
descriptions in our FIXMYPOSE dataset are instructional
about body parts (and their movements/directions), so sim-



[ CharacterNo. | B4 [ C [ M [ R ]
20.23 | 9.44 | 21.87 | 35.98
17.54 | 7.43 | 20.20 | 34.70
18.54 | 7.24 | 20.74 | 35.58
19.00 | 9.28 | 20.43 | 34.01
19.77 | 10.59 | 21.08 | 35.01
2028 | 7.94 | 2094 | 35.47

A\ | B W 19| —

Table 5: The V+L model’s performance (English) on the in-
dividual characters’ demographics. The balanced scores in-
dicate that our dataset is not biased towards any specific de-
mographic.

Split Automated Metrics Task-Specific Metrics
P Bf [ C | M | R OM | DM
test-sim | 16.93 | 9.91 | 21.79 | 35.08 0.04 0.20
test-real | 13.01 | 7.12 | 21.40 | 33.05 0.07 0.11

Table 6: Sim-to-Real transfer performance. Since there is no
GT joints for real images, the body-part-match metric is not
available (OM: object-match, DM: direction-match).

ilar phrases are repeated and shallow metrics will only fo-
cus on such phrase-matching, not correctly reflecting human
evaluations (Belz and Reiter 2006; Reiter and Belz 2009;
Scott and Moore 2007; Novikova et al. 2017; Reiter 2018).
Thus, we also evaluate the output of each model on our
task-specific metrics that account the important factors (ob-
jects, body parts, and movement directions), and we also
conduct human evaluation to check the real quality of the
outputs. The V+L models show better performance on the
task-specific metrics and human evaluation, meaning they
capture essential information and their outputs are more rel-
evant to the images and more fluent in the respective lan-
guage. See Appendix F.2 for “unseen” split results.®

Ablations. As Table 3 shows, adding body joints features
improves the score much, implying body joints gives addi-
tional important information to capture human movements.

RL/Multilingual Model Results. As Table 3 shows, RL
training helps improve scores by directly using the evalua-
tion metric (CIDEr) as the reward. We leave exploring more
effective reward functions (e.g., the joints distance from a
reverse pose generation task) for future work. Table 3 also
shows that the multilingual training setup achieves compa-
rable scores (similar observation to Wang et al. (2019)) with
only 71% of the parameters of the separate training setup
(13.2M vs 18.7M), promising future work on more compact
and efficient multilingual models.

Other Image-Difference Datasets. Table 4 shows that our
V+L baseline model beats or matches state-of-the-art mod-
els on other datasets, implying our baseline models are
strong starting points for our FIXMYPOSE dataset.

Output Examples. Outputs from our V+L models are pre-

We also checked for variance by running models with 3 differ-
ent seeds and the stddev is small (less than/near 0.5% on CIDEr).

Accuracy (%)
Models English | Hindi
Random-Selection 9.81
V-Only 34.82
L-Only 8.86 8.96
V+L 38.49 | 37.84
[ Human [ 96.00 ] 96.00 |

Table 7: The scores for the target-pose-retrieval task. While
the V+L models scores the highest, there is still much room
for improvement when compared with human performance.

sented in Fig. 7. The English model captures the movement
of the character’s legs and arms (“bring your right foot to
the right” and “bring your right arm up to be at shoulder
height ... right hand up in front of your face”). The Hindi
model captures movement of the body parts and their spatial
relationship to each other (English translation: “move your
left leg in front of your right leg...”), the model can also de-
scribe movement using object referring expressions (English
translation: “...move your head slightly away from the win-
dow...”). See Fig. 7 for the original Hindi and Appendix F.1
for full analysis and unimodal outputs.

Demographic Ablations. We split the dataset into subsets
for each individual character avatar, and evaluate our V+L
model on each subset. As shown in Table 5, scores from
each subset are reasonably balanced, indicating our dataset
is not skewed to favor a specific demographic or character.

Sim-to-Real Transfer. As shown in Table 6, the sim-to-real
performance drop is not large, meaning information learned
from our simulated FIXMYPOSE dataset can be transferred
to real images reasonably well. Also, considering that the re-
sults are from a set of images of people with different demo-
graphics and different environments, there is no particular
bias in the models’ output which is trained on our dataset.
Since there is no GT body joints for the real images, we
modify our model so it can also be trained to predict the
joints during training time as well as generate descriptions
(i.e., in a multi-task setup) and use the estimated joints at
test time.”

8.2 Target Pose Retrieval Task

As shown in Table 7, V4L models show the highest scores
for the target-pose-retrieval task, indicating that achieving
high performance is not possible by exploiting unimodal bi-
ases. V-Only models score higher than the random-selection
model, which selects an image at random, because even with
our careful distractor choices (see Sec. 3 and Appendix A),
the poses in the “current” and “target” images are more simi-
lar to each other than the other images. However, the human-

"For the simulated data results in Table 3 (English), we ob-
tain a CIDEr score of 14.17 using predicted joints (on the val-
seen split), which as expected is between the non-joint (13.79) and
GT-joint (14.47) models’ results (hence showing that reasonable
performance can be achieved without GT joint information at test
time). The average distance between predicted and GT joints is
around 0.4 meters.



model performance gap is still quite large, implying there is
much room for improvement.

9 Conclusion and Future Work

We introduced FIXMYPOSE, a novel pose correctional de-
scription dataset in both English and Hindi. Next, we pro-
posed two tasks on the dataset, pose-correctional-captioning
and target-pose-retrieval, both of which require models to
understand diverse linguistic properties such as egocentric
relation, environmental direction, implicit movement de-
scription, and analogous reference as well as capture fine vi-
sual movement presented in two images. We also presented
unimodal and multimodal baselines as strong starter mod-
els. Finally, we demonstrated the possibility of transfer to
real images. In future work, we plan to further expand the
FIXMYPOSE dataset with more languages and even more
diversity in the character pool (e.g., height, age, etc. based
on digital avatar availability) and animations.

Ethics Statement

Our paper and dataset hopes to enable people to improve
their health and well-being, as well as strives to follow
ethical standards, e.g., we especially try to maintain bal-
ance across diverse demographics and avoid privacy con-
cerns by collecting data from a simulated environment (but
still show good transfer to real images from authors), and
we also expand beyond English so as to more inclusively
cover multiple languages. Similar to other image caption-
ing tasks/models, some imperfect descriptions from models
trained on our FixMyPose dataset might also lead to diffi-
cult/unnatural poses. Presenting models’ confidence scores
can help people ignore such unnatural pose corrections;
however, most importantly, careful use is required for real-
world applications (similar to all other image captioning
models/tasks, e.g., the ones used for accessibility and vi-
sual assistance), and further broader discussion on develop-
ing fail-safe Al systems is needed.
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Appendices

A Distractor Choice Criteria

For the “target” and distractor images of the target-pose-
retrieval task, we only consider images that meet these cri-
teria: (1) the “target” pose image must have more than 10cm
average joints distance from the “current” pose image, (2)
each distractor has an average joints distance between 10cm
and Im from the “target” pose image, (3) each distractor
must have less than 2m average joints distance from the
“current” pose image, (4) the “current” pose image is in-
cluded in the distractor images, and (5) all the distractor

images are from the same environment and have the same
character as the one in the “target” pose image.

B Dataset
B.1 Image and Environment Generation

Environment Creation. Every object inside of each room
is collected from free assets in the Unity Asset Store’ and
various other free online resources. The first room is also
collected as a free asset from the Unity Asset Store, how-
ever the rest of the rooms are manually created. In all rooms,
including the first room, we manually choose and configure
the arrangement of the objects.

Movement Animations. Movement animations are taken
from realistic and natural body movements that people could
potentially perform at home. Fig. 8 shows a few key frames
of some movement animations. All characters and anima-
tions are collected from the free collection on Adobe’s Mix-
amo.

Image Capture. To obtain each pair of images, we run the
same animation twice but the second instance of the anima-
tion is offset by 10 animation frames. The 10 frame offset
helps ensure that a clear visual difference is created, but not
so much that it creates two unrelated images. The image of
the first instance is the “current” image and the image of the
second instance is the “target” image. Fig. 9 shows an ex-
ample of a “current” and “target” image as well as a “differ-
ence” image which shows the overlap of the “current” and
“target” images with the pose in the “target” image shown
in red. Every 20 frames, an image pair is captured.

3D Body Joint Data. We obtain the 3D positional joint
data of the character’s poses from both the “current” and
“target” images (see Fig. 13). The positional data is relative
to the camera’s position and angle. This keeps all the data
normalized regardless of which room or location in a room
is chosen.

B.2 Data Collection Interface

For each of the 3 data collection tasks (writing, verification,
translation), we create a separate interface. The writing task
and verification task are also provided with certain flags (de-
tailed in corresponding interface paragraphs). Upon clicking
the images in any of the interfaces, the clicked image will be
enlarged and an option to view the image in a separate tab is
given in case the worker would like an even larger image.

Writing Task Interface. During this task, the goal is to
have the workers see the 3 images (“current”, “target”, “dif-
ference”) and then write a correctional description based on
those images. The interface (as shown in Fig. 10) provides
the 3 images labeled and a writing area. Workers are also
provided with “no clear difference” and “character is go-
ing through an object” flag. The “no clear difference” flag

*https://assetstore.unity.com



Capoeira

House Dancing

Swing Dance

Figure 8: Examples of specific movement animations (each image is 10 frames apart). Each image sequence show a segment of
the movement animation.

Difference

Current Target

Figure 9: Current, target, and difference images. The tar-
get images are taken 10 frames after the current images are
taken. The difference image shows the overlap of the “cur-
rent” and “target” images with the pose in the “target” image
shown in red.

is designed to be used in the case the difference between the
poses in the “current” image and “target” image is too small
to write a good description. The “character is going through
an object” flag is meant to be used in the event that a char-
acter in either image has a body part going through a wall,
table, or any other object.

Verification Task Interface. This task serves to filter out
any descriptions that are of poor quality. To do this, work-
ers are provided with the “current” image and the “target”
image and then the correctional description that is written
for that image pair. They are then asked to rank the quality
of the description from 1-4, with 1 being the description is
completely unrelated and 4 being the description is perfect.
Then, just as for the writing task, a checkbox for the “char-
acter is going through an object” flag is provided in case
the writing task workers miss it. The interface is shown in
Fig. 11.

Translation Task Interface. During this task, workers
are asked to translate descriptions from English into Hindi.
As shown in Fig. 12, the interface provides the “current” and
“target” images for context and then the English description.
Then, a text field is provided where workers can write the
translation.

B.3 Data Collection Filters

During the writing task, some active quality checks are put
in place to ensure that descriptions are of a certain base qual-
ity before they reach the verification task. Below is the list
of each active quality that is put in place.

* Each description must contain at least 30 words.

e The symbols (, [, 1, ), &, *, ", %. $, #, and @ cannot be
included.

¢ At least 50% of the words in the instruction must be
unique.

* The term “image” cannot be included.

e The term “i” cannot be included.

* The term “target” cannot be included.

¢ The term “difference” cannot be included.

In the case that workers in writing task select the “no clear
difference” checkbox on the interface, the 30-word mini-
mum check is removed so that workers could write shorter
descriptions, since there is not much difference to write
about if the images are almost the same.

B.4 Worker Qualifications and Incentives

There were a total of 356, 373, and 47 unique crowd-workers
who successfully passed the qualifications and completed
the writing, verification, and translation tasks, respectively,
at least once.'?

Worker Qualifications. For all 3 tasks, crowd-workers
are required to pass certain qualifications before they could
begin. As both writing and verification tasks require reading
(and writing in the case of the writing task) English, we re-
quire workers to be from native-speaking English countries
and as the translation task requires translating to Hindi, we
require that workers be from India. Crowd-workers are also
required to have at least 1000 approvals from other tasks and
a 95% or higher approval rating.

%We do not collect or use any private information from the
workers.
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Pose Difference (ciick image to enlarge)

« Please do not repeat phrases (i.e. 'move your right ... Then move your left ... Then move your ..."), instead try and diversify

how you write (i.e. Shift your right ...Your left arm should be ....).

« Please try to use an analogy such as "move your right arm down to your side so it is like you are holding a cane" to make

your descriptions more clear.

Enter Description Below (Remember: Well detailed is defined as a description that someone else can easily follow in order to convert the
current image into the target image and the description covers all the position and pose changes that happen.)

You can select multiple checkboxes if nessesary.
Please use the below boxes IN THE RIGHT SITUATIONS.

[JThe images are the same. (Please still try to write some description.)

[ Character's body or body part is going through some other object (i.e. the character's leg is going through a wall or table. (in the Current

or Target image))
Reminders:

Write detailed descriptions
Do not write unessary things

« Write as if you are speaking to the character in the current image
.

The left/right rules. See image at the top of the page

If you are ever unsure of the checkboxes or your description, please feel free to contact us.

Figure 10: The interface of the writing task.

Worker Payment. The writing task takes around 1
minute and workers are paid $0.18 per description. For the
first 25 high-quality descriptions that a worker writes, an
additional bonus of $0.02 is given for each description and
then for every subsequent 50 high-quality descriptions writ-
ten, the bonus per description is increased by $0.01 ($0.02
bonus per description for first 25, $0.03 bonus for the next
50, $0.04 bonus for the next 50, and so on). With this bonus
rate, workers could get more than $0.20 quite easily since
the task is not long (and hence overall reasonably higher
than minimum hourly wages). Since there is no limit on how
much a worker can write, they could potentially keep stack-
ing the bonus as much as they want.

C Analysis
C.1 Most Commonly Occurring Words

The most commonly occurring words in our dataset are
about direction, body parts, and movement, showing that

models need to have a sense of direction with respect to body
parts and objects, and also capture the differences between
the poses to infer the proper movements. Fig. 14 shows
the most commonly occurring English/Hindi words in our
dataset, which also primarily relate to directions, body parts,
and movements.

C.2 Description Length

The average length of the multi-sentenced descriptions
(49.25 English / 52.74 Hindi words) is quite high, indicat-
ing that they are well detailed. The stddev (17.28/18.88) and
the gap between the min and max (20/14 vs. 188/239) is
quite large, reflecting the varying degrees of difference be-
tween the poses in an image pair. This length characteristic
of the FIXMYPOSE dataset requires models to generate de-
scriptions without being redundant or insufficient in detail.



Current Pose (Click image to enlarge)

Target Pose (Click image to enlarge)

Description: move your entire body back one inch. drop both arms down to your shoulder level. bend your right elbow slightly away from

your body, with your right forearm pointing at a four oclock angle.

On a scale of 1-4, how accurate is the description?

[0 Check this box if a character in the images is going through a wall or table or something else.

Any additional comments you have regarding the images or the description accuracy.

The description was very good...The description was good but needed more details...etc...

Figure 11: The interface of the verification task.

Reference Frame Freq. Examples (English)
“... rotate your left shoulder so that your hand is above your elbow ...”
Egocentric Relation 100% “... put your right foot and leg forward so it is parallel with your torso ...”
““... move your left leg down and put in front of your right leg ...”
“... turn your left leg and right leg to the left to face the wall with the door ...”
Environmental Direction 52% “...turn your head to look to the bed...”

“...somewhat aligning your eyes with the closest lamp ...”

Implicit Movement Description | 58%

“... lean your body towards and slightly over your right leg ...”

““... rotate your torso slightly to the left ...”
“... then slightly lean forward ...”

Analogous Reference 18%

““... extend your right arm straight in front of you as if you are gesturing for someone to stop ...”
““... twist your upper body back to your right in a golf swing motion ...”
“... hold your right hand next to your body as if you are leaning on a cane ...”

Table 8: Frequencies and detailed examples of the different properties present in correctional descriptions.

C.3 Linguistic Properties

The descriptions in the FIXM YPOSE dataset contain diverse
linguistic properties. These properties as well as a few ad-
ditional examples are provided in Table 8. Additional ex-
amples of implicit movement description along with basic
explanations are shown in Fig. 15.

D Models

Cross Attention Stack. CA-Stack is a stack of cross at-
tentions.

CA-Stack(f¢, Je, ft,J?) :

where CA is cross attention.

Cross Attention. We calculate the similarity matrix, S,
between two features.
-
Sij=1i 95 13)
From the similarity matrix, the new fused instruction feature
is:

f = softmax(S") - f (14)

g=W,lg:fig0 f] (15)
Similarly, the new fused visual feature is:

g = softmax(S) - g (16)

F=W/[If;4:f o4 (17)

where W, and W; are trainable parameters, © is the
element-wise product, and - is matrix multiplication.



You must be able to read English and speak/write Hindi fluently.

In this task you will read a caption that is explaining how a person in the first image can change their body to look like the second image.
Then you will translate the caption (without changing the meaning) into Hindi (please use Hindi characters not English).

Image 1 (Click image to enlarge)

Image 2 (Click image to enlarge)

move your entire body back one inch. drop both arms down to your shoulder level. bend your right elbow slightly away from your body,
with your right forearm pointing at a four oclock angle.

Please write your translation here (make sure to write in Hindi characters and do NOT change the meaning of the English caption above):

Please write your translation here

Figure 12: The interface of the translation task.

15 Jw
Right Jm sz Left

Figure 13: The 3D joint configuration of characters (from
index 1 to 20: center hip, spine, neck, head, right shoul-
der/elbow/wrist/hand, left shoulder/elbow/wrist/hand, right
hip/knee/ankle/foot, left hip/knee/ankle/foot).

General Attention. We employ a basic attention mecha-
nism for aligning description features, h, and each of the
visual and joints features.

A =f"h (18)
a = softmax(A) (19)

f=a'f (20)

Self Gate. We employ a basic attention mechanism for
weighted summation of features.

A; = Linear(k;) (1)
a = softmax(A) (22)
k=a"k (23)

E Experiments
E.1 Data Splits

For the pose-correctional-captioning task, we split the
dataset into train/val-seen/val-unseen/test-unseen. Since
each room in our FIXMYPOSE has different visual set-
ting (i.e., wall, floor, furniture, etc.), we assign separate
rooms to val-unseen and test-unseen split. To be specific,
we assign room 1 to 19, 24, and 25 to the train and
val-seen splits, room 20 and 21 to the val-unseen, and
room 22 and 23 to the test-unseen split. The final num-
ber of task instances for each split is 5,973/562/563/593
(train/val-seen/val-unseen/test-unseen) and the number of
descriptions is 5,973/1,686/1,689/1,779. For the target-pose-
retrieval task, we split the dataset into train/val-unseen/test-
unseen. However, “unseen” in this task means “unseen an-
imations”. The reason we split the dataset by animations
is that, otherwise, the task would be easier by memoriz-
ing/capturing some patterns in the image pairs from certain
animations. We assign animation 6 and 16 to val-unseen, 7
to test-unseen, and the rest of the animations to the train
split. After filtering for the target candidates, we obtain
4,227/1,184/1,369 (train/val-unseen/test-unseen) instances.



{/I’

& %,
5 %, K

8
Onp,

peay

English

<&
4

%
<
R
\
&
)
%y

%
K3
g g8 ®

Hindi

Figure 14: The 30 most common English/Hindi words in the dataset (excluding stop words). They primarily relate to directions,

body parts, and movements.

Current Image

Target Image

Description: ...turn
your torso toward the
bucket...

Reasoning: Twisting
the torso will also
cause the arms and
head to rotate.

Description: ...pull §
your right foot under 3
your body... o

Reasoning: Pulling
the right foot under-
neath the body will
cause the entire body &
to straighten. >

Description: ..lean
your body towards and =
slightly over your right = i
leg... B

Reasoning: Leaning =
the body forward will =~
result in every joint
moving forward.

Figure 15: Examples of the ‘implicit movement description’
linguistic property.

E.2 Human Evaluation Setup

We conduct human evaluation for the pose-correctional-
captioning task’s models to compare the output of the V-only
(V: vision+joints) model, the L-only (L: language) model,
and the full V+L model qualitatively. We randomly sam-
ple 100 generated descriptions from each model (val-seen
split), then asked 3 random crowd-workers (we also applied
the standard quality filters of above 95% hit success, over
1000 Hits, workers from native language-speaking coun-
tries) for each description to vote for the most relevant de-
scription in terms of the image pair, and for the one best in
fluency/grammar (or ‘tied’).

Separately, to set the performance upper limit and to ver-
ify the effectiveness of our distractor choices for the target-
pose-retrieval task, we conduct human evaluation. We ran-
domly sample 50 instances from the target-pose-retrieval
test-unseen split and ask an expert for the English and Hindi

samples to perform the task. Human evaluation is conducted
the same way for both English and Hindi. We also ask the ex-
pert to complete the task from a unimodal perspective (i.e.,
only given the “current” image or only given the description)
to also show that the distractor choices cannot be exploited
by any unimodal biases.

E.3 Training Details (Reproducibility)

All of the experiments are run on a Ubuntu 16.04 sys-
tem using the NVIDIA GeForce GTX 1080 Ti GPU
and Intel Xeon CPU E5-2630. We employ PyTorchl.3
(Paszke et al. 2017) to build our models (torchvi-
sion(0.4/Python3.5/numpy1.18/scipyl.4). The number of
trainable parameters of the pose-correctional-captioning
V+L models are 9.1M and 9.6M for English and
Hindi version, respectively (V-only: 10.4M/10.9M, L-only:
2.8M/3.1M), and the number of trainable parameters of
the target-pose-retrieval V+L models are 10.9M/10.9M (V-
only: 4.5M, L-only: 6.7M/6.7M). For the pose-correctional-
captioning task experiments, we use 9595/5555/2020 as the
seed values, and run models 500 epochs and choose the
best ones on val-seen/val-unseen splits. For the target-pose-
retrieval task experiments, we use 5555/5556/5557 as the
seed values, and run models 50 epochs and choose the
best ones on the val-unseen split. In the pose-correctional-
captioning task model training, at training time, the models
are trained with teacher-forcing approach, and at test time,
the greedy-search is employed to generate the descriptions.
For the multilingual model, we freeze the shared parame-
ters at the point at which the English score is the highest,
and then fine-tune specific non-shared modules for each lan-
guage with ML and RL training. We employ ResNet-101
for the visual features. We use 512 as the hidden size and
256 as the word embedding dimension for both task mod-
els. We use the visual feature map of 7 x 7 with 2048 chan-
nel size for the pose-correctional-captioning task models and
14 x 14 with 1024 channel size for the target-pose-retrieval
task models. We use Adam (Kingma and Ba 2015) as the



Current Pose Target Pose

Predicted: you need to bring your right foot to the right and then
finally bring your right arm up to be at shoulder height and your
right hand up in front of your face

Predicted Lang: move your right foot to the right a little towards
the sofa turn your body to the left towards the window move your
right hand up with palm facing the floor move your left hand up
beside your chest

Predicted Vis: turn your right foot to your right and from the your
body and and the left turn your head towards the the and your
head head the window raise your head head head and move your
head head the the

Ground Truth 1: pull your left foot in right next to your right foot
extend your right foot out about 2 feet opposite the direction of the
right curtain on the window lift up both hands so that they are in
front of your face about a foot from each other and a foot from
your face

Ground Truth 2: you need to bring your right foot to the right and
have that leg slightly straightened you also need to have your
back more up right. then finally bring your head to face more for-
wards then place both your hands up at head height but keep
your elbows at the side

Ground Truth 3: move your right foot to the right towards the tele-
phone bring your body and head back towards the coffee table
and lean to the window move your hands up in front of your head.

Current Pose Target Pose

Predicted: 319 ST &R & 3109 gifgA R & Gmm & Sig 3194 giigq &)
I 2T HIYT B2 3T FHUL IR I 18 3R A1 31T A 370+ faR ot fageht
T oISt g g1 SR & Y 370+t e bl < AT 3fR orun gl ol ot &
TWHIRAAM|

Predicted Lang: 3197 gifgn 8 & 319 gifgn IR & 1o o oy &f)
ST &I O Rl e G W1 B | ST IR g1y i 31U IR & GrEa
Y 3R 379 &1 g1 el 370 YRR & T <4 |

Predicted Vis: 3109 gifgd T & I & ST 309 319w IR &l g
37T Y YRR H HEA T AT 3194 IR F & & T | 30 IR F &

FHFH D P DY
Ground Truth 1: 3797 gifga TR & ier g aveh WY | 319 &1 Tt

37T g U o TrEn T | 319 g1 gl &bl T 1.5 hie T e o |
37t gAfer @bt ST Y &7k WA TRy |

Ground Truth 2: 397 a1q & &l ga1 & 39 a1g I % amEA g 3ik
Y 3Tq &Y 37 G = 2ier e & 37 gl el &1 Uit BTt & A
AT TR S TR 7R &R TefeT &t avw gen a1y |

Ground Truth 3: 3799 ST &R &1 S IR T 3fk 28 s gifga IR &
SR Y UR X | 30 FU TR & 18 3R e S 3K of oot a1l ol e
ek =) T ST e d BTl &l HaTS & STHIE A gl |

Figure 16: Output examples of our unimodal and multimodal models in English (left) and Hindi (right). “Predicted” shows
the V+L model output while “Predicted Lang” and “Predicted Vis” show the unimodal outputs for L-only and V-only models,

respectively.

optimizer and set the learning rate to 1 x 10~ for ML train-
ing (for both tasks), and to 1 x 107% and 5 x 10~ for RL
training of English and Hindi models, respectively. The loss
weights for ML+RL training (y; and ;) are set to 0.05, and
1.0, respectively. For the dropout p value, 0.5 is used ex-
cept for the multilingual training (0.3 is used). For hyper-
parameters tuning, we try grid-search (e.g., dropout={0.3.
0.5}, learning-rate={1 x 1074, ..., 1 x 107}, etc).

E.4 Direction-Match Metric

We use the word order heuristic to extract (body-part, di-
rection) pairs to compute direction-match. Our method can
match 86% and 87% of human-extracted pairs for English
and Hindi, respectively, meaning our metric is very closely
matched with how humans would extract (body-part, direc-
tion) pairs.

E.5 Unimodal Model Setup

In the pose-correctional-captioning task, the V-only model
is not fed with the previous token at each decoding time step
and does not attend to any previous tokens to decode the
next token, and the L-only model does not take as input im-
age pairs. In the target-pose-retrieval task, the V-only model
selects the “target” image only by comparing the “current”

Automated Metrics

B4 TCJ] M TR

Val-Unseen
Eng. 1894 | 9.19 | 21.16 | 35.04 || 0.11 | 1.59 0.18
Hindi | 23.14 | 8.12 | 29.62 | 35.81 || 0.01 | 1.77 0.11
Test-Unseen
Eng. 17.26 | 6.40 | 21.30 | 34.82 || 0.04 | 1.42 0.17
Hindi | 18.98 | 6.69 | 28.47 | 34.53 || 0.03 | 1.52 0.11

Task-Specific Metrics
OM [ BM [ DM

Lang.

Table 9: Val-unseen and Test-unseen: the performance of
multimodal models on traditional automated metrics and our
new task-specific metrics for both English and Hindi dataset
(OM: object-match, BM: body-part-match, DM: direction-
match).

image to distractors without the correctional description, the
L-only model selects the “target” image by comparing the
correctional description to distractors without relying on the
“current” image.

F Results
F.1 Output Examples

Outputs from our V+L multimodal models are presented in
Fig. 16. Our multimodal English model captures the move-



ment of the character’s legs and arms (“bring your right foot
to the right” and “bring your right arm up to be at shoulder
height ... right hand up in front of your face”). The Hindi
model captures movement of the body parts and their spa-
tial relationship to each other (English translation: “move
your left leg in front of your right leg...”), the model can
also describe movement using object referring expressions
(English translation: “...move your head slightly away from
the window...”). See Fig. 16 for the original Hindi. For all
of the unimodal models, the outputs perform poorly and do
not accurately match the image pair. For the V-only models’
outputs, the grammar and sentence structure are also very
poor.

F.2 “Unseen” Split Results

Table 9 shows our V+L models’ scores on the val-unseen
and the test-unseen splits (the scores are chosen by the best
performance on the val-unseen split). We suggest that model
tuning/selection be done on the val-seen/unseen splits and
the results from the test-unseen are reported, following the
practice of Anderson et al. (2018b).
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