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Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation
on Intermi�ently-Powered Systems
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We propose Zygarde — which is an energy- and accuracy-aware soft real-time task scheduling framework for batteryless
systems that �exibly execute deep learning tasks1 that are suitable for running on microcontrollers. The sporadic nature of
harvested energy, resource constraints of the embedded platform, and the computational demand of deep neural networks
(DNNs) pose a unique and challenging real-time scheduling problem for which no solutions have been proposed in the
literature. We empirically study the problem and model the energy harvesting pattern as well as the trade-o� between
the accuracy and execution of a DNN. We develop an imprecise computing-based scheduling algorithm that improves the
timeliness of DNN tasks on intermittently powered systems. We evaluate Zygarde using four standard datasets as well as by
deploying it in six real-life applications involving audio and camera sensor systems. Results show that Zygarde decreases
the execution time by up to 26% and schedules 9% – 34% more tasks with up to 21% higher inference accuracy, compared to
traditional schedulers such as the earliest deadline �rst (EDF).
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1 INTRODUCTION
Batteryless IoT devices are powered by harvesting energy from ambient sources, such as solar, thermal, kinetic,
and radio-frequency signals (RF). These devices, in principle, last forever—as long as the energy harvesting
conditions are in favor. They have applications in long-term sensing and inference scenarios, such as wildlife
monitoring, remote surveillance, environment and infrastructure monitoring, and health monitoring using
wearables and implantables. While every IoT application has an expected response time, many of them require
timely feedback. For instance, in acoustic sensing systems, such as hearables and voice assistants [64, 70], car
1The DNN, by de�nition, refers to neural networks having more than one hidden layers [41, 57, 63, 91]. Thus, a wide variety of networks
qualify as a DNN in the existing literature. DNNs considered in this paper have up to 105 neurons and weights combined. They �t into
256KB memory of an MCU; have convolutional, ReLU, pooling, and fully-connected structures as regular DNNs; and perform on-device
inference [54, 84, 85]
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(c) Proposed Algorithm (Intermittent Power)

(b) EDF Scheduling Algorithm (Intermittent Power)

(a) EDF Scheduling Algorithm (Continuous Power)

Mandatory Optional

Fig. 1. (a) With constant power both tasks meet their deadline. (b) With intermi�ent power, job �2 misses its deadline. (c)
When tasks are imprecise, the mandatory parts of both jobs complete on time, and some optional part of �1 gets done as well.

detectors [42], and machine monitors [120], events need to be detected and reported on time in order to ensure
prompt responses, safety, and timely maintenance. Though a batteryless system is desirable, the unpredictability
of the harvested energy, combined with the complexity of on-device event recognition tasks, complicates timely
execution of machine learning-based event detection tasks on such systems.

Prior works on time-aware batteryless computing systems can be broadly categorized into two types. The �rst
category focuses on maintaining a reliable system clock when the power is out [46, 60, 109]. The second category
includes runtime systems that consider the temporal aspect of data across power failures [30, 59, 139, 144] by
discarding data after a prede�ned interval or considering energy to increase the chances of task completion. Recent
works [53, 54, 85] on batteryless systems have proposed frameworks and runtime to execute non-real-time DNN1

tasks on intermittently-powered systems. The real-time community have proposed techniques [24, 69, 86, 134, 143]
for deadline-aware execution of DNNs, primarily on GPU and server-grade machines. Despite these commendable
e�orts, there is a gap in the existing literature that none has considered all three dimensions, i.e., intermittence of
harvested energy, variable utility of DNN inference, and real-time schedulability; and merely combining existing
solutions does not entirely solve the problem.
We illustrate this using an example in Figure 1. We consider two jobs, �1 and �2, released at time 0 and 20,

respectively. Their relative deadline is 34, and the execution time is 28. The intermittency of energy generally has
no consistent pattern in the duration of or in the gaps between ON/OFF phases. Figure 1(a) shows that when
the power is uninterrupted, both jobs meet their deadlines under the earliest deadline �rst (EDF) scheduling.
When power is intermittent (Figure 1(b)), task �2 misses its deadline. Figure 1(c) illustrates our proposed approach
which partitions a job into mandatory and optional portions and ensures that the mandatory portion (which is
required to achieve a desirable inference accuracy) of each job �nishes on time. And if there is extra time, our
proposed approach schedules some optional jobs that may increase the accuracy further.

In this paper, we present Zygarde— which is the �rst system that enables deadline-aware imprecise execution
of DNNs on an intermittently-powered system. The design of Zygarde is motivated by two observations. First,
energy generated by a harvester is bursty, i.e., the state of energy generation is maintained over a short period. This
property enables us to obtain a probabilistic model of the energy harvesting pattern – which can be characterized
by a single parameter for a given harvester used in a particular application scenario. Second, since deeper layers of
a DNN extract more detailed and �ne-grained features of the input data, for a given accuracy, the required amount
of DNN computation depends on the quality of data itself. Zygarde exploits these observations and proposes
an imprecise computing-based [90, 118] online scheduling algorithm, which considers both the intermittence of
energy and the accuracy-execution trade-o� of a DNN.

Themain contribution of this paper is a deadline-aware runtime framework for DNNs executing on intermittently-
powered systems, for which, runtime adaptation of a DNN is necessary, on top of compile-time compres-
sion [54, 56, 104, 135–138]. Compile-time compression alone is not su�cient when the remaining deadline is
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inadequate for a full execution of the DNN, but long enough to compute the inference result from the partial
execution of the DNN. This runtime adaptation process requires (1) modeling the energy harvesting pattern
using a single factor(�), which helps determine the system how much computation is possible in the near future,
and (2) specialized o�ine training of the DNNs to minimize the loss of accuracy due to partial execution.
Zygarde complements prior work on batteryless systems such as time-keeping [60, 109] and execution of

non-real-time tasks [18, 19, 36, 53, 54, 95, 96, 100, 111]. In contrast to all previous works, Zygarde’s contribution
is at the framework, modeling, and algorithmic level, while its implementation relies upon existing open-source
frameworks and APIs [54, 95] that handle the lower-level aspects of an intermittent system.
We implement Zygarde on a TI MSP430FR5994 microcontroller and evaluate its performance using four

standard datasets (MNIST [82], ESC-10 [108], CIFAR-100 [81], and Visual Wake Works [35]) as well as in six
real-world acoustic event detection and visual sensing experiments. Zygarde achieves 5%–26% reduction in
execution time using early termination. By using the layer-aware loss for early termination, it also increases
the inference accuracy by upto 21% than the state-of-the-art solutions that use cross-entropy loss [142] and
contrastive loss [71]. Moreover, it schedules 9%–34% more jobs with upto 30% higher inference accuracy than the
earliest deadline �rst (EDF) scheduling algorithm. Furthermore, it gains up to 28% higher inference accuracy than
the imprecise variant of EDF.

2 ZYGARDE SYSTEM DESIGN
In this section, we describe the system architecture of Zygarde and provide an example to illustrate its execution.

2.1 System Architecture
Zygarde is a framework and a runtime system that enables time-aware execution of a DNN on intermittently-
powered systems. It consists of �ve major components: a job generator, an energy manager, an agile DNN model,
semi-supervised k-means classi�ers, and a scheduler. These components are shown in Figure 2.

Job Queue

Sensor

Energy ManagerQueue Status

Select Job Capacitor & 
Harvester Status

Update 
Semi-Supervised ModelsUpdate StatusExecute Job Update Status

Deep  Features
Agile DNN Model

SchedulerJob Generator

Output

New Job

Semi-Supervised 
k-Means Classifiers

Update Cluster 
Centroids

Fig. 2. Zygarde System Architecture.
Job Generator. Zygarde reads data from sensors (e.g., a microphone) and writes them to the non-volatile memory
(FRAM) of the microcontroller using direct memory access (DMA). It considers the processing of the sensor
data stream for each classi�cation task (e.g., user identi�cation and event detection) as separate tasks. The
end-to-end processing of one data sample of a sensor stream (i.e., from feature extraction to classi�cation and
model adaptation) is called a job. For example, an audio sensing system that performs both speaker recognition
and hotword detection has two tasks, and the processing of each audio frame to recognize the speaker and to
detect the hotword are two separate jobs. Thus, if this system (having 2 tasks) generates k audio frames/second,
then after 3 seconds, there will be a total of 6k jobs. The Job Generator creates and enqueues jobs into a queue. A
job leaves the queue when it gets scheduled for execution or its deadline has passed.

Energy Manager. The Energy Manager monitors the state of the energy storage (i.e., the supercapacitor) and the
energy harvesting rate. The scheduler uses this information for scheduling decisions (described in Section 5). The
energy manager implements an open-source intermittent computing runtime [54, 95] to manage the execution of
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jobs across power failures. At the implementation level, each job of Zygarde consists of multiple small atomic
fragments that maintain a strict precedence order. These fragments execute atomically and the runtime ensures
that repeated attempts to execute a fragment is idempotent.

Agile DNN Model. The Agile DNN Model is a pre-trained deep neural network that converts data samples into
feature representations [25]. The network is trained o�ine, on a high-end server, using labeled training data. We
use rank-decomposition [26] and separation [56] to compress and �t the network into the limited memory of a
microcontroller. Based on the quality of the input data sample, Zygarde may terminate the execution of the DNN
early at runtime, and hence, we call it an agile DNNModel. We note that an agile DNN is a special type of anytime
DNN [65, 76–78, 125, 140] — where the depth of a neural network is dynamically adjusted during inference.
However, unlike anytime networks, where the output of a hidden layer is fed to a secondary shallow neural
network for classi�cation, agile DNN employs a cluster-based classi�er to replace expensive matrix multiplication
operations with 4X less costly additions/subtractions [4, 13]. In our implementation of agile DNN, this design
saves 27,750 execution cycles per inference, when compared to anytime neural networks.

Semi-Supervised k-Means Classi�ers. The feature representation obtained from the execution of the Agile
DNN is classi�ed by a semi-supervised k-means clustering algorithm [16]. The clustering algorithm uses the L1
distance between two feature vectors [28]. For layers (e.g., the convolution layers) that produce two or more
dimensional features, they are �attened or vectorized prior to computing the L1 norm. Since the execution of
an Agile DNN may terminate at any layer depending on the input data, Zygarde maintains a separate k-means
classi�er for each layer of the Agile DNN. These k-means classi�ers are trained o�ine on a server machine.
However, to enable online learning, these classi�ers are updated at runtime using a model adaptation process
described in Section 4.3. The motivation behind the k-mean based approach is to reduce the execution time and
energy consumption by avoiding multiplications which is over 4⇥more expensive than additions and subtractions.

Scheduler. Zygarde implements an online, dynamic priority, real-time scheduler that considers not only the
timing aspects but also the expected inference accuracy of a job and the energy harvesting status of the system. It
dynamically partitions an executing job into mandatory and optional portions based on the early termination of
an agile DNN and prioritizes the execution of its mandatory portion to ensure both timeliness and accuracy under
the constraints of intermittently available energy. Note that, the beginning portion of all jobs are mandatory
and whether the next unit is mandatory or optional is determined during the execution of the current unit. An
illustration of the scheduler is described next.

Table 1. Description of the workload.
Job Total Layers Mandatory Optional Release Time Deadline
�1,1 4 1 3 t1 t7
�1,2 4 2 2 t3 t9
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Fig. 3. Execution schedule of the workload.

Table 2. Explanation of the schedule in Figure 3.
Time Actions with Reasoning
t0 There is no job in the system.
t1 � 11,1 (the only job) gets scheduled.
t2 Since Ecurr < Eopt , optional � 21,1 is not scheduled.
t3 System prioritized � 11,2 over �

2
1,1 (See: Section 5).

t4 Since Ecurr < Eman no job is scheduled.
t5 System prioritized mandatory � 21,2 over optional �

2
1,1 .

t6 Only optional jobs remain and Ecurr >Eopt . The system
prioritizes � 21,1 over �

3
1,2 due to its tighter deadline.

t7 � 31,2 (the only job) gets scheduled.
t8 � 41,2 (the only job) gets scheduled.
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2.2 Example Execution
Table 1 de�nes two jobs �1,1 and �1,2 from the same task, �1. Figure 3 demonstrates the execution of the jobs along
with the status of harvested energy over a timeline. Ecurr refers to the current energy, and Eopt and Eman refer
to two thresholds that determines whether the optional and the mandatory parts of a job should be executed,
respectively. �ki , j refers to the kth partition of job �i , j . Table 2 shows the action taken by the scheduler along
with the reasoning at each time step. Here, the mandatory part of �1,2 is longer than the mandatory part of �1,1
because, for the second data sample, the classi�er is not con�dent enough with the result after the execution of
the �rst layer. Note that to simplify the illustration, we assume that each layer requires one time unit to execute
and the partition (mandatory vs. optional) is known ahead of time. The proposed scheduling algorithm (described
in Section 5) handles further complexities such as the di�erent execution times of di�erent layers, multiple time
units per layer, dynamic partitioning, and power-failure during the execution of a layer.

Setting Eman and Eopt . The Eman is set to the minimum energy required to turn on the MCU and execute an
atomic fragment. During the compile time, Zygarde programming tools (described in Section 6) estimates the
maximum energy required by any atomic fragment by running EnergyTrace++ [1] and sets this threshold. The
Eopt , on the other hand, is by default set to the energy required to �ll up the capacitor. This is because, once
the capacitor is full, the excess energy gets wasted if nothing is executing on the MCU. By executing optional
tasks, we minimize this wastage, and increase the performance of the system. However, a developer can override
these values using the APIs provided (Section 6.2). If Eopt is small, e.g., comparable or equal to Eman , then all the
optional portion of the tasks will execute, causing starvation of the mandatory tasks. On the other hand, if Eopt
is high, the optional portion of the jobs will never execute.

3 MODELING INTERMITTENT ENERGY
This section derives a single metric, namely the �-factor, which characterizes an energy harvester used in a
particular application. The metric is later used in the real-time scheduler in Zygarde.

3.1 Energy Event
The unavailability of harvestable energy and the required time to bu�er su�cient energy before it can be used
cause intermittence in batteryless systems. The pattern of intermittence is stochastic, hard to predict, and heavily
dependent on the available harvestable energy. Hence, instead of modeling and predicting the harvested energy
to characterize a harvester, we de�ne a binary random variable, called the energy event, that denotes the state
of the energy storage to have at least �K Joules of energy over a �T period, where �K and �T depend on the
application as well as the underlying system. In our empirical model, we set �K to Eman .
Furthermore, instead of directly dealing with the harvested energy, it is often easier to observe the physical

phenomenon behind energy generation. For instance, for a piezoelectric harvester installed inside a smart shoe,
the number of footsteps that generate at least �K Joules over �T time can be equivalently used to de�ne an energy
event. Likewise, a certain light-intensity for a solar harvester, and a certain number of packet transmissions for
an RF harvester over �T time can be used to de�ne energy events for these systems.

To characterize an energy harvester using the de�nition of energy events, we conduct a two-month long study
on solar and RF harvesters (using empirically collected data) and human footsteps (using the dataset [98]) to
analyze the pattern of energy events. Our study reveals that energy events occur in bursts, i.e., every harvester
has a tendency to maintain its current binary state, and there is a probabilistic relation between consecutive
energy events over a period.

For instance, when a person starts walking, the probability that they will continue to walk is high over the next
few time units and the probability decreases with time. Conversely, when a person is not walking, the probability
that they will continue not to walk is going to be high over the next few time units and will diminish with time.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 3, Article 82. Publication date: September 2020.



82:6 • Islam and Nirjon

This observation enables us to impose conditional probability on future energy events, given the recent history
of energy events—which is the key to characterize an energy harvester. We denote an energy event at time t
using the random variable Ht 2 {0, 1}.

3.2 Conditional Energy Event
We de�ne conditional energy event, h(N ) as the probability that an energy event will occur, given the immediately
preceding N consecutive energy events have occurred (for N > 0) or have not occurred (for N < 0):

h(N ) =

(
p(Ht = 1 | Ht�1 ^ . . . ^ Ht�N = 1), for N > 0
p(Ht = 1 | Ht�1 _ . . . _ Ht�N = 0), for N < 0

(1)

To illustrate, h(10) = 90% implies that an energy event will occur with 90% probability if 10 immediately
preceding consecutive energy events have occurred.
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Fig. 4. Conditional energy event for (a) persistent power source, (b) piezo-electric harvester, (c) stationary solar harvester,
and (d) stationary RF harvester. We use �T = 5 minutes.

Figures 4(a)-(d) show the distribution of h(N ) for a persistently-powered and three energy harvested systems.
To characterize an energy harvester, we measure the Kantorovich-Wasserstein (KW) distance [75] between its
distribution, H(i) from an ideal (persistent power) source, P to obtain:

KW
�
H

(i ), P
�
=

π +1

�1

|CDF (H(i )
) �CDF (P) | (2)

In Figure 4, we observe that h(N ) drops when |N | increases. For example, in Figure 4(b), h(N ) drops after N = 20
since the person we studied never walked for more than 100 minutes. Similarly, in Figure 4(c), after about �ve
hours of consecutive energy events (i.e., light intensity > 2730 lux), the probability of energy event drops as the
stationary solar harvester was placed beside a window that does not get enough light after �ve hours. We also
notice that after about 19 hours of absence of any energy event (i.e., light intensity < 2730 lux), the probability of
the next energy event is high as the sun shows up again at the window.

3.3 The � Factor
Despite being informative, the KW distance has a limitation that not all h(N )’s are estimated using the same
number of instances. Hence, we normalize the KW score against a purely random harvesting pattern, R to obtain
a revised metric, called the �-factor:

� = 1 �
KW

�
H

(i ), P
�

KW
�
R, P

� (3)

The value of � lies in [0, 1] and it measures how close a harvester’s harvesting pattern is to a constant energy
source. For a persistently-powered system, � = 1, and for an energy harvester that shows no apparent pattern
has � = 0. For any other energy harvesting system, the �-factor will lie in-between and it is generally high for
small |N |. A higher �-factor indicates less randomness in its energy harvesting pattern, and thus encourages a
scheduler to make more aggressive decisions on scheduling tasks in the next few time slots. The �-factor needs
to be empirically estimated for a given application-speci�c system. A critical discussion of �-factor is presented
in Section 11.
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Fig. 6. Sequential execution of units of an agile DNN.

4 MODELING DNN TASKS
In this section, we describe the task model of Zygarde, training procedure of agile DNN, and construction of
semi-supervised k-means classi�er.

4.1 Task Model

Tasks, Jobs, Units, and Fragments. Zygarde considers the processing of a sensor data stream for each classi�-
cation task as an imprecise sporadic task [90], �i = (Ti ,Di ,Ci ), where Ti denotes the period (i.e., the minimum
separation between two consecutive jobs), Di is the relative deadline, and Ci is the worst-case execution time.

An instance of a task, aka a job, comprises of an ordered sequence of modules (henceforth these modules are
called units). The �rstM units are mandatory and must be completed before the deadline, whereas the rest of the
units of a job are optional and can be executed if time and resources are available. Such a partitioning scheme is
known as the imprecise computing model in real-time systems literature [90, 101, 141]. In this paper, however,
the partition (i.e., the value ofM) is dynamic and depends on the input data.
In Zygarde, a job that executes an L-layer agile DNN has L units, where each unit corresponds to processing

one DNN layer, along with the execution of the corresponding semi-supervised k-means classi�er. The cluster
centroids of this semi-supervised k-means classi�er are updated with new unlabeled data. Based on the input
data, Zygarde may decide to exit from a unit or continue executing the next unit. The decision is based on a
utility function, which is described next.

Although a unit represents a logical grouping of related modules at each layer of the DNN, the size of a typical
unit is generally too large to execute without an intermittence. Hence, at the implementation level, to avoid
corrupted results and to ensure forward progress of code execution, these units are further divided into atomically
executable fragments—which guarantees correct intermittent execution using SONIC API [54].

Dynamic Partitioning and Utility. Unlike traditional imprecise computing models [90, 101, 141] where the
partition of a job into mandatory and optional parts is known, the number of mandatory units in Zygarde is
determined at runtime. We propose a utility function that estimates the con�dence in classi�cation at a given
unit for that job. This represents the utility of the data where higher utility at earlier units is desirable.

Since we use a k-means classi�er, we assume that a classi�cation result is more likely to be correct if the input
data sample being processed is unambiguously close to exactly one of the k means. To achieve this, we compute
the L1 distance of an input data sample (represented in terms a DNN layer and then vectorized) from two of its
closest of the k means, �1 and �2, and if their di�erence |�2 � �1 | is above a unit-speci�c threshold, we decide to
classify it as belonging to its closest cluster; otherwise, the computation of the DNN continues to the next unit.
The process is illustrated by Figure 5.
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The utility function described above runs in linear time with the number of clusters, i.e., O(k). It is lightweight,
energy-e�cient, and suitable for resource-constrained systems as it uses the byproduct of clustering-based
classi�cation which computes the cluster distances, �i ’s anyways. It, however, depends on an o�ine-estimated
threshold. Section 4.3 describes how the utility threshold is computed using an empirical dataset. Section 11
further discusses alternative utility functions that are suitable for other types of classi�ers.

Preemption and Task Switching Zygarde allows limited preemption [20] where a job can be preempted only
after a unit completes its execution. The scheduler kicks in at the completion of a unit and at the deadline of a job.
After the execution of a unit, a job returns to the job queue with updated utility and imprecise status (mandatory
or optional). Then the scheduler chooses the next highest priority job from the job queue using the priority
function described in Section 5. By prohibiting preemption of a unit, Zygarde reduces context switching and
read-write overheads, and minimizes the memory requirements to O(N ) for N jobs by using double-bu�ering [17].
Figure 6 shows the execution of two units. Each unit is shown as a large dotted rectangle and it contains four
logical modules that are shown as solid rectangular boxes.

4.2 Agile DNN Construction
Unlike previous works where inference happens only at the last layer [133] or where a second classi�er is used
at hidden layers to decide early exit [125], in Zygarde, the output of any hidden layer can be directly used as a
feature that gets classi�ed by a k-means classi�er. Features obtained in this manner neither guarantee that the
data samples from the same class are closer nor guarantee that the data samples from di�erent classes are farther
in the feature space. Hence, to ensure that the feature representation obtained after an early exit from the DNN
execution maximizes the separability of di�erent classes and minimizes the distance between examples of the
same class, Zygarde employs a layer-aware loss function.
Layer-Aware Loss Function. A convex combination of contrastive losses [71] at each layer is used as the loss
function of an Agile DNN – which we call the layer-aware loss function:

LA =
L’
i=1

ai ⇥ LC
⇣
W i , X i

1 , X
i
2 , · · · , X

i
N

⌘
(4)

where, ai is the convex coe�cient for the ith layer and
ÕL

i=1 ai = 1; L and N represent the total number of
layers and classes, respectively;W i represent the weights of the ith layer; X i

1,X
i
2, · · · ,X

i
N are the output vectors

corresponding to the members of each class at the ith layer; and LC is the contrastive loss function. For two
classes, LC is de�ned as:

LC
⇣
W i , X i

1 , X
i
2

⌘
=

1
2

⇣
1 � Y

⌘ ⇣
GW i (X i

1 ) �GW i (X i
2 )
⌘
+

1
2
Y max

⇣
0, � �GW i (X i

1 ) �GW l (X i
2 )
⌘

(5)

where, GW i (X
i
n) is the output feature set of a member of the n-th class (1  n  N ) at layer i . The coe�cient

Y = 0, if X1 and X2 belong to the same class, and Y = 1, otherwise. � represents the margin between the members
of di�erent classes in the feature space.

Training Agile DNN. To train an agile DNN, we use a siamese network architecture [71] as shown in Figure 7.
In a siamese network, there are two identical neural networks, called the sister networks, that share the same
weights. From the labeled dataset, we select pairs of data points and use them as the inputs to the twin networks.
Among the selected pairs of data points, 50% belong to the same class, while the rest belong to di�erent classes.
Unlike [71], which only uses the contrastive loss at the last layer (LC3), we use the layer-aware loss function
(Equation 4) at every layer to train these networks. We perform an exhaustive search for hyper-parameter tuning
and to determine the weights of each layer. After the training, we use only one of the sister networks for inference.
During inference, we obtain a representation of the input data from each layer, and use them as features for the
semi-supervised k-means classi�ers. Note that, for convolution layers, we �atten the output of a layer to get a
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vector instead of a tensor in order to be able to compute the L1-norm during the clustering-based classi�cation
step of Zygarde.
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Fig. 7. Training agile DNN with Siamese network
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Fig. 8. E�ect of utility threshold on performance

Note that although the combination of an agile DNN and semi-supervised k-means classi�ers in Zygarde is
inspired by Anytime Neural Networks, an agile DNN is di�erent as it is a representation learner rather than a
classi�er. Besides, an agile DNN is trained using a siamese network and it only has one loss function, which is
di�erent from anytime neural networks that use multiple auxiliary loss functions. Furthermore, the exit policy
and the utility function of an agile DNN is di�erent from that of anytime neural networks, and are optimized for
resource-constrained systems. Moreover, Zygarde forms an imprecise computing problem where an early exit
from the network depends not only on the data but also on the time and energy budget.

4.3 Semi-Supervised k-Means Classifiers Construction
In Zygarde, we maintain a semi-supervised k-means classi�er at each unit. In this section, we describe how we
construct and update these classi�ers.

Computing Cluster Centroids. Using the trained agile DNN, we obtain a feature representation from each
layer for each data point in the training dataset. Using these representations, we train a semi-supervised k-means
classi�er corresponding to each layer of the agile DNN (see Figure 6). Using the labeled training data, we select the
top N features using SelectKBest [52] and �

2 tests, so that the features are computable on the resource-constrained
target device. We utilize the labeled training data to determine the value of k (for k-means) and assign a class
label to each cluster. Finally, we compute the centroid of each cluster in the selected feature space.

Determining Utility Threshold. Utility thresholds are crucial to determining whether a data point should exit
from the current hidden layer or continue processing through the network. A smaller threshold is likely to force
too early exits and thereby, a lower classi�cation accuracy; whereas a larger threshold is like to delay exits and
thereby, increase the inference latency. This trade o� is demonstrated by Figure 8 for the �rst layer of the DNN
on the CIFAR-100 dataset. For di�erent layers, we see similar trade o�s. To determine a suitable utility threshold
for each layer, we generate such a trade o� curve and pick a utility threshold that ensures a desired minimum
inference accuracy as con�gured by the programmer.

Updating Centroids at Run-Time. We incrementally update the means, i.e., the cluster centroids, of the k-
means classi�ers at runtime to evolve the classi�ers over time and to learn from new examples—which is common
in semi-supervised learning approaches [23, 33, 47]. Referring to Figure 6, this is done inside the Classi�er
Adapter when the classi�cation result from the k-means Classi�er passes the Utility Test at a unit. A new cluster
centroid is computed by taking the weighted average of the current cluster centroid and the current example.
Taking the weighted average guards against abrupt changes to the centroids due to the presence of an outlier or
incorrect classi�cations. If the distribution of the input data points changes (e.g., the system is deployed in a new
environment), the cluster centroid gradually shifts towards the new mean of the data points as it encounters the
new data points.
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Updating Centroids beyond Mandatory Layers. Due to early exit from the network, a data sample fails to
update the k-means models of the deeper layers. To achieve this, Zygarde adapts the cluster centroids of the deeper
layers using the corresponding cluster heads of the layer from which the example exits early. Mathematically, the
update operation is ci+1 = 1

r �
�
W

i+1
⇥ r ⇥ c

i � . Here, ci and ci+1 denote the corresponding cluster centroid of the
k-means classi�ers of layers i and i + 1;W i+1 denotes weights (including the bias term) for layer i + 1; r denotes
the size of a cluster; and � (x) = x+ |x |

2 is the non-linear activation function [114].
Since this technique estimates the cluster centroids of a deeper layer instead of actually running the data

samples through those layers, it saves O(r ) multiplication operations and performs the operation in O(1); at the
maximum approximation error of (

Õr
k=1 |W

i+1
⇥ X

i
k | � |W

i+1
⇥
Õr

k=1X
i
k |)/(2r ).

5 REAL-TIME SCHEDULER
This section describes the real-time scheduler in Zygarde. First, we introduce an online scheduling algorithm
for dynamically-partitioned, sporadic, imprecise tasks on a persistently-powered system. Then, we extend the
algorithm for intermittently-powered systems.

5.1 Scheduler for Persistent Systems
Despite being an optimal online scheduling algorithm for sporadic tasks, the earliest deadline �rst (EDF) algo-
rithm [80] is not directly applicable to Zygarde as EDF does not consider the accuracy of a DNN. Furthermore,
traditional scheduling algorithms for imprecise tasks [90, 117] are not directly applicable to Zygarde as well since
the mandatory and optional portions of an agile DNN is determined dynamically at runtime.

To address these challenges, we propose a priority function to prioritize the units of Zygarde. At the end of the
execution of an unit, the scheduler selects the highest priority unit as the next unit for execution. The priority
function considers not only the remaining deadline of a job, but also the utility (as de�ned in Section 4.1) and the
dynamically determined impreciseness status (i.e., mandatory vs. optional) of a unit:

� li , j =
⇣
1 � � (di , j � tc )

⌘
+
⇣
1 � ��li , j

⌘
+ � li , j (6)

where the �rst term represents the remaining deadline, which is the di�erence between a job’s absolute deadline
di , j and the current time tc . The second term ensures that units with lower utility score �l

i , j gets higher priority
as these tasks need further execution for accurate classi�cation. The third term is a binary variable � li , j 2 {0, 1}
that denotes if the unit under consideration is mandatory � li , j = 1 or optional � li , j = 0, which is determined at
runtime based on the unit-speci�c utility threshold. � and � are scaling parameters that normalize the deadline
and utility, which are the inverse of the maximum deadline and utility, respectively.

Note that, Zygarde supports multiple tasks including multiple DNN tasks as long as the required memory does
not exceed the available memory of the system. For non-DNN tasks or other absolute (non-imprecise) tasks, �i is
always 1 and �i is a constant for all units. �i is user-de�ned based on the priority of the task.

5.2 Scheduling for Intermi�ent System
For an intermittently-powered system, we utilize the �-factor introduced in Section 3 to extend � as follows:

� lIi , j =
8>><
>>:
�
1 � � (di , j � tc )

�
+
�
1 � ��li , j

�
+ � li , j , �Ecurr � Eopt

� li , j
⇣ �
1 � � (di , j � tc )

�
+ (1 � ��li , j )

⌘
, �Ecurr < Eopt

(7)

Here, Ecurr is the current energy of the system and Eopt is a threshold that determines if the system has
enough energy to execute both mandatory and optional units. The expression �Ecurr is high enough to cross the
threshold as long as at least one of the two variables � and Ecurr is high-valued and the other is not extremely
low. We identify two cases:
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First, when �Ecurr is above the threshold, both mandatory and optional units are considered for scheduling.
Intuitively, it captures the cases when (a) an energy harvester is predictable and generating at least su�cient
energy to keep the capacitor charged, and (b) when an energy harvester is predictable with medium con�dence
and generating more than su�cient energy. We omit the explanation of the three terms in this case since they
are similar to the persistent power system as described in the previous section.

Second, when �Ecurr is below the threshold, only the mandatory units are considered for scheduling. It captures
the cases when an energy harvester is – (a) unpredictable, (b) predictable but generates insu�cient energy, and
(c) predictable with medium con�dence and generates su�cient energy.
�I minimizes two types of energy waste in batteryless systems: 1) wasted energy due to executing unnecessary

portions of a job, and 2) wasted energy due to not executing any job while the harvester gets enough energy from
the source to keep the capacitor charged [30]. The �rst type of waste is avoided by scheduling conservatively
when �Ecurr < Eopt , and the second type of waste is avoided by executing optional units when �Ecurr � Eopt .

5.3 Schedulability Condition
A set of N sporadic tasks is schedulable by an imprecise scheduler if the total utilization,

ÕN
i=1

Ci
Ti  1 [90],

where the execution time, Ci includes only the mandatory portion of the task. Scheduling sporadic jobs in an
intermittently-powered system adds further complexity as power outages essentially blocks the CPU and thus
increases the CPU utilization by increasing the execution time Ci , although no task is actually executing on the
system as power is out. In order to incorporate energy intermittence into the schedulability analysis framework,
we model power outages event as a very high-priority job of a sporadic Energy Task.

In this extended task set having N + 1 tasks, the schedulability condition becomes
ÕN

i=1
Ci
Ti +

Ce
Te  1, where,Ce

and Te are the duration and interval of energy intermittence. The execution time of an energy task, Ce is related
to the �-factor of the system. The probability that an energy harvester will remain in its current power-outage
state for the next d energy events can be derived from � using the properties of a geometric distribution �d (1��),
whose expected value is E[Ce ] = �/(1 � �). Given this, the necessary condition for an intermittent computing
system to be able to schedule N sporadic tasks is TE �

�/(1��)
1�

ÕN
i=1(Ci /Ti )

.
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Fig. 9. Zygarde Programming Framework

6 ZYGARDE PROGRAMMING MODEL
Zygarde’s programming model consists of: (i) a Network Trainer tool that is used by the developer to train
and compress agile DNNs and to generate the k-means classi�ers and corresponding hyper-parameters; and
(ii) APIs for the target embedded device which are used by the developer to write custom C application for an
intermittently-powered MSP430 MCU. A high-end development machine is recommended for these one-time,
o�ine steps. At the end of these steps, we obtain an executable binary �le for the MSP430 MCU.
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6.1 Zygarde Network Trainer
The network trainer takes four inputs from the developer, i.e., (1) a labeled training dataset, (2) DNN architec-
ture/model, (3) timing parameters, and (4) the �-factor. The network trainer generates C header �les as the output
– which are used by the APIs for the target embedded platform described in the next section. Figure 9 shows the
intermediate steps inside the Zygarde network trainer.
At �rst, the network trainer trains the agile DNN model using the labeled dataset using the layer-aware loss

function described in Section 4.2. It relies on an exhaustive search for hyper-parameter tuning, and outputs the
weights and bias parameters of the network. Considering the limited memory of the target device, the DNN
is compressed and pruned to reduce its memory requirement [26, 34, 43, 44, 56, 104, 127]. The network trainer
also checks if the compressed network �ts into the memory of the target device and signals an error if it does
not. Using this compressed agile DNN model and the input dataset, the network trainer generates the cluster
centroids and the utility threshold for each layer of the network – following the steps described in Section 4.3.
Finally, C header �les are generated that contain the compressed DNN parameters, cluster centroids, utility

thresholds, features used in clustering, and task-speci�c timing parameters (e.g., deadline and period) and the
energy parameter (i.e., �-Factor).

6.2 Zygarde APIs
The Zygarde APIs extend open source SONIC [54] APIs for intermittent DNN computing by incorporating
Zygarde-speci�c capabilities, such as early termination, cluster-based inference, and scheduling. We divide the
APIs into two categories: (1) external APIs, and (2) internal APIs.

The external APIs contain library functions that a developer uses to implement early-exit capable agile DNNs
for feature representation and the k-means classi�ers. These library functions rely on the header �les generated
by the network trainer to access the classi�er parameters and are su�cient for most developers who only want
to de�ne the high-level logic of their application. For instance, to implement the two tasks shown in Figure 10
on an MSP430 platform, a developer essentially has to write a C program that uses Zygarde external APIs to
implement a state diagram similar to the one shown in Figure 11.
The internal APIs provide some of the lower level functions that are primarily used by the external APIs.

These APIs implement several key features of Zygarde including the scheduler, job queue management, time
management, and handling the timers. If a developer wishes to change the default implementation of any of
these functions, they need to override these methods to provide their own implementation.

7 IMPLEMENTATION

Computing Device.We use TI-MSP430FR5994 [10] MCU (shown in Figure 12) that has 256KB of FRAM, 8KB of
SRAM, 6-channel DMA, a low energy accelerator (LEA), and an operating voltage range of 1.8V to 3.6V. During
the training phase, we use an Intel Core i7 PC with RTX2080 GPU to train and compress the agile DNN, initialize
the centroids of semi-supervised k-means classi�ers, and compute the utility thresholds.
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Fig. 12. Zygarde experimental setup.

Energy Harvester. Figure 12 shows our solar and RF energy harvester setup. The solar harvester includes an
Ethylene Tetra�uoroethylene (ETFE) based solar panel [12] and a step-up regulator [3]. We use the Powercast
harvester-transmitter pair [6, 7] to harvest RF energy. Like previous works on intermittent systems [54, 95], both
harvesters use a 50mF capacitor.

Sensor Peripheral. We use an electret microphone [8] and the built-in ADC in MSP430 for acoustic sensing.
For visual sensing, we use an OV2640 CMOS camera module [2] connected via I2C and SPI. Using LEA and DMA,
we perform FFT on audio data and write the audio data to the FRAM without involving the CPU.

Time Keeping. Like [59, 139], we use a real-time clock, DS3231 [5] for timekeeping in most of the experiments.
We use this clock only during the power up to sync and maintain the internal clocks of the MCU. This clock
is easily replaceable with an SRAM or capacitor-based timekeeping system during power outages [60, 109]. In
order to quantify the e�ect of such a batteryless timekeeper on Zygarde, we implement and use an open-source
remanence clock, called CHRT [46], in one of the experiments. To use the CHRT correctly with Zygarde, the
energy required to charge the CHRT has been considered when de�ning the energy events to estimate the
�-factor.

Libraries. Zygarde uses an open-source intermittent execution model SONIC [54] and related APIs (e.g., AL-
PACA [95]). We use Tensor�ow [14] for training the DNN models.

8 MICROBENCHMARKS
In this section, we evaluate each component of Zygarde using datasets and compare Zygarde with baseline
algorithms. We also observe the e�ect of capacitor size and remanence clock on Zygarde.

8.1 Datasets and Environments

Datasets and DNNs. To evaluate the performance of di�erent components of Zygarde, we use four datasets:
MNIST [82], ESC-10 [107], CIFAR-100 [81], and Visual Wake Word [35]. MNIST is a popular image dataset having
80,000 28 ⇥ 28 pixel images (60,000 for training and 10,000 for testing) and ten classes, and it has been used for
evaluating state-of-the-art intermittent computing systems [54]. ESC-10 also has ten classes and 44.1 kHz �ve
seconds-long audio clips. We use 1s audio downsampled to 8KHz. We split the dataset into 80% training and 20%
testing datasets. CIFAR-100 contains 32 ⇥ 32 pixel color images from 100 classes. It has 500 training images and
100 testing images per class. In order to �t this dataset in the MSP430, we use randomized subsets of 5 classes
from the dataset for 100 iterations and report the average.

Visual Wake Word (VWW) is a large dataset containing 82,783 training and 40,504 validation images from the
state-of-the-art vision dataset COCO [89]. To �t these images into the MCU’s memory, we �rst crop an image to
move the target object (human) in the center and then downsample the cropped image to 32 ⇥ 32 pixels. Our
dataset can be accessed at [11]. Note that if we only downsample the image to 32 ⇥ 32 pixels without cropping it
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(a) Original Image (b) Downsampled Only (c) Targeted Crop
Fig. 13. Visual Wake Word dataset: (a) Original image (640⇥320), (b) Only downsampled (32⇥32), (c) A�er targeted cropping
and downsampling (32⇥32).

�rst, the resultant image scales down the target object (human) so much that they are not recognizable anymore.
Figure 13 shows an example image from the VWW dataset, followed by two downsampled versions of it – with
and without cropping.

We implement four compressed networks summarized in Table 3. Our feature-maps after each layer consist of
a maximum of 150 features selected using k-best select. These feature-maps are used for the semi-supervised
k-means classi�ers. The scheduler has a queue-size of 3.

Controlled Energy Sources. To evaluate the system with di�erent �-factors (�T=1s and �K=9.36mJ), we
perform controlled experiments. To determine the value of �K , we run the system for multiple iterations and
take the highest observed energy consumption. We vary the distance between the transmitter and the receiver
between 1-5 feet for RF. We simulate solar power with three dimmable bulbs with varying intensity (5.6 Klx - 35
Klx) as shown in Figure 12. The seven scenarios considered for the evaluation is described in Table 4. Note that,
we use outdoor scenarios and windowed rooms to get the sunlight for the real-life experiments in Section 9.

Table 3. DNNs considered in this section.
Dataset MNIST ESC-10 CIFAR-100 VWW
Layers CONV

CONV
FC
FC

CONV
CONV
CONV
FC

CONV
CONV
FC
FC

CONV
CONV
CONV
CONV
FC

Dimensions 20⇥1⇥5⇥5
100⇥20⇥5⇥5
200⇥1600
500⇥200

16⇥1⇥5⇥5
32⇥16⇥5⇥5
64⇥32⇥5⇥5
95⇥256

32⇥3⇥5⇥5
64⇥32⇥5⇥5
384⇥1600
192⇥384

16⇥3⇥5⇥5
32⇥16⇥5⇥5
64⇥32⇥5⇥5
64⇥64⇥5⇥5
192⇥256

Parameters Size 8 ⇥ 103 55 ⇥ 103 27 ⇥ 103 14 ⇥ 103

Table 4. Algorithm Evaluation Scenarios

System Energy
Source � Average

Power (mW)
1 Battery 1
2 Solar 0.71 600
3 Solar 0.51 420
4 Solar 0.38 310
5 RF 0.71 58
6 RF 0.51 71
7 RF 0.38 80

8.2 System Overhead
Figure 14 shows the overhead of di�erent components of Zygarde described in Section 2. To measure the execution
time and energy consumption, we use the TI eZ-FET debug probe with EnergyTrace++ [1], which provides
milliseconds and µJ resolution data. We isolate each component of Zygarde and report the average overhead from
�ve repeated measurements. To measure smaller overheads we repeat the experiment for multiple iterations (e.g.,
2000 iterations for energy manager) and report the mean overhead of a single execution. We use a persistent
power source during overhead measurements.
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Fig. 14. Overhead of Zygarde.

The job generator reads 1s audio data from the microphone, performs FFT, and writes it to the FRAM in
1.325s. The �rst convolution layer (ESC-10 network of Table 1) has 2.6⇥-3.6⇥ higher execution time than other
convolution layers due to larger input dimension. Using max-pool with stride decreases the input size, inference
time, and energy consumption at each layer. The last fully-connected layer performs 50% less multiplications
than the previous layer and thus has a lower cost. Each job executes the semi-supervised k-means classi�ers at
most four times. It is 14⇥ faster and 13⇥ more energy-e�cient than executing the whole DNN. Execution of the
k-means classi�er includes performing the utility test, classifying with k-means classi�er and updating the model
centroids for adaptation. For N examples in the system, the scheduler kicks in 4N times and the overhead of this
speci�c example with three jobs are 3.72 ms and 636µJ, which is less than 1% of the overall cost of processing an
example. The energy manager has negligible cost and runs once every time the scheduler executes.
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Fig. 15. Comparison of Loss Functions with Early Exit.
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Fig. 16. Comparison of the Termination Policies.

8.3 E�ect of Layer-Aware Loss Function
In Figure 15, we compare our proposed layer-aware loss function with cross-entropy loss [142] and contrastive
loss [71] functions when early termination is in action. Since loss functions are equally applicable to both
persistently-powered and energy-harvested systems, we conduct this experiment in a persistently-powered
setting. We train three agile DNNs with three di�erent loss functions that have the same network structure, hyper-
parameters, and training dataset. All three networks use the proposed utility test where the utility-threshold is
determined during training.
Though the loss functions achieve similar accuracy (⇡98% for MNIST and ⇡75% for ESC-10) without early

termination, their performance varies when early termination is applied. Note that, the inference accuracy of
ESC-10 su�ers due to downsampling of the 5s and 44KHz data samples to 1s and 8KHz data samples. In Figure 15,
the layer-aware loss function demonstrates 4.13%-13.40% higher accuracy than cross-entropy loss by forcing the
layers to learn distinguishable features [132]. It also decreases the average inference time by upto 13.97%, by
executing the �nal layer of 14%-26% less jobs compared to cross-entropy loss. Layer-aware loss function further
achieves 2%-5% higher accuracy and 2%-9% less average inference time than the contrastive loss function. Thus,
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Fig. 17. Real-time Scheduling for di�erent Systems on MNIST test dataset.
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Fig. 18. Real-time Scheduling for di�erent Systems on ESC-10 test dataset.
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Fig. 19. Real-time Scheduling for di�erent Systems on CIFAR-100 test dataset.
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Fig. 20. Real-time Scheduling for di�erent Systems on Visual Wake Word test dataset.

layer-aware loss function achieves higher accuracy and lower inference time than other loss functions when
early termination is active.

8.4 E�ect of Early Termination
In Figure 16, we evaluate the proposed utility test by comparing it with a system that does not implement
early exit and an oracle that knows the exact number of units needed for each data sample. We use the same
persistently-powered system and dataset as in Section 8.3. All of these systems use the same trained network
with the layer-aware loss function. Utility-based termination (exit) achieves similar accuracy while lowering the
average inference time by 4%-26%. The di�erence in accuracy between these systems is below 2.5%.
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8.5 Performance of the Real-Time Scheduler
We evaluate the proposed scheduling algorithm for dynamic imprecise tasks in both persistently and intermittently
powered systems for four di�erent �-factors and two di�erent CPU utilization described in Table 4. To compare
our proposed algorithm, we choose earliest deadline �rst (EDF) and one of its variants– earliest deadline �rst
mandatory (EDF-M). EDF-M schedules only the mandatory portions of the jobs. We choose EDF as a baseline
because it is the optimal online scheduling algorithm for sporadic tasks. Here, both Zygarde and EDF-M use
the proposed utility test to partition jobs into mandatory and optional units. For the fairness in comparison,
successful completion of a job’s mandatory units before deadline makes the job schedulable in all algorithms.
Note that, we discard a job after its deadline to avoid domino e�ect [116].

Persistently Powered System. Figure 17 shows the performance of proposed scheduling algorithm for MNIST
dataset forT = 3s and D = 6s . As the CPU utilization (U ) is greater than one, none of the schedulers can schedule
all the tasks even on persistent power. However, with early termination, EDF-M and Zygarde schedule 17%
more jobs. In Figure 18, we schedule 80 jobs from the ESC-10 dataset, where U < 1, T = 0.36 minutes, and
D = 0.72 minutes. Persistently powered system (System 1) can schedule all the tasks with EDF, EDF-M, and
Zygarde. In Figures 19 and 20, we schedule 500 and 40,000 jobs for CIFAR-100 and visual wake words (VWW)
datasets, respectively, where the deadline is twice the period. In both cases, EDF-M and Zygarde schedules all the
jobs while EDF fails to do so. As successfully scheduling only the mandatory units of a job before deadline is
su�cient to be schedulable, EDF-M schedules similar number of jobs as Zygarde. However, Zygarde achieves
higher accuracy by opportunistically executing optional units.

Intermittently Powered Systems. For intermittent systems (Systems 2-7), EDF-M schedules 14.98%-19.51%
more jobs for MNIST, 9.44%–20.70% more jobs for ESC, 8.59%–33.59% more jobs for CIFAR, and 16.97%–24.53%
more jobs for VWW than EDF. If the utility tests were optimal, EDF-M would have produced correct results for
all the scheduled jobs. However, due to the limitation of utility tests, Zygarde increases the number of scheduled
jobs that produce the correct results by up to 27.60% by executing some of the optional units. We observe that,
Zygarde increases the performance (i.e., the number of scheduled jobs that produce correct results) from EDF-M
when � is high. With low �, the performance of Zygarde and EDF-M becomes similar as no optional units are
executed. It is interesting to notice that despite having the same �, solar powered systems schedule 9% - 31% more
jobs than RF powered systems due to more available power.
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Table 5. E�ect of Cascaded Hierarchical Remanence Timekeeper
System Number of

Reboots
Power On

Time
Scheduled
Tasks using

RTC

Scheduled
Tasks with

CHRT
2 67 77.67% 29989 29980
3 1252 71.48% 27401 27390
4 1820 65.83% 24921 24897

8.6 E�ect of Capacitor Size
The goal of this experiment is to quantify the e�ect of the capacitor’s size on scheduling. We use the CIFAR-100
dataset and its corresponding DNN (Table 3), and power the system from an intermittent RF energy source (� =
0.51) at around 0.5m distance. The period of the tasks are varied between 9s to 11s and the deadline is set to twice
the period. We use four di�erent capacitors: 0.1mF, 1mF, 50mF, and 470mF. This setup and workload stress tests
the system and forces the scheduler to miss the deadline when the capacitor values are too small or too high.
Figure 21 shows that when the capacitor value is below 50mF, more tasks miss their deadlines as they re-execute
an atomic fragment when the power goes o� before its completion. On the other hand, when the capacitor value
is high (e.g., 470mF), tasks miss deadline due to the extra time required to charge such a large capacitor. Hence,
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we choose to use a 50mF capacitor for the rest of the experiments. Note that although we empirically determine a
suitable capacitor for our experiments, one can roughly estimate the optimal value of the system capacitor, C by
using a capacitor’s energy equation, when the average input power, P , voltage across the capacitor, V , and the
di�erence between the deadline and the total execution time of the task, �T , is known: C =

q
2P�T
V 2 .

8.7 E�ect of Remanence Clock
Keeping track of the time is crucial for a real-time scheduler and it is a hard problem, in general, for batteryless
systems. To keep track of time reliably across power failures, recently, a batteryless remanence clock, namely
the Cascaded Hierarchical Remanence Timekeeper (CHRT) [46] has been proposed for intermittently-powered
systems. The CHRT clock has three modes or tiers. Its tier-1 yields near-perfect time-keeping accuracy, but has a
range of only 100ms. On the other hand, the tier-3 o�ers 1s resolution, 100s range, and reports accurate time
80% of the cases, while reporting +1s error for the rest of the time and rarely shows +2s, -1s or -2s error. We
implement this clock following the open source hardware design (see Figure 12) and use it to power Zygarde–
to implement a completely batteryless system. We evaluate the e�ect of batteryless CHRT clock on Zygarde’s
scheduler and compare it to the performance of Zygarde when it uses battery-powered RTC.

Table 5 shows the number of tasks meeting deadlines for both types of clocks for the systems 2–4 (see Table 4
for de�nitions). We do not show results for systems 5–7, which are powered by RF harvesters and require using
CHRT tier-1 (which is optimized for RF), since the results are identical for both CHRT and RTC. We observe that
the number of missed jobs increases with the number of reboots due to intermittent energy. Upon investigating
the cause we �nd that during the positive error of the CHRT clock, the scheduler either reports the missed
deadlines or terminates a job early, as it mistakenly thinks that the deadline has passed, and thus, continuing to
execute these tasks is a waste of time. During negative error of the CHRT clock, the scheduler schedules a job
despite the fact that it missed the actual deadline and triggers a domino e�ect that results in more tasks missing
their deadlines. However, CHRT shows negative error < 3% time and often it compensates for a positive error.
Overall, the loss of schedulable tasks due to the use of a batteryless clock is below 0.1%.

9 REAL-WORLD APPLICATION EVALUATION
In the previous section, we compared the performance of Zygarde with di�erent baseline algorithms. In this
section, we observe Zygarde in two real-world applications. In the �rst application, we perform acoustic sensing
and show how di�erent scenarios a�ect the system performance. In the second application, we compare the
performance of Zygarde with a state-of-the-art intermittent DNN inference system [54] for visual sensing tasks
in a real-world setting.

9.1 Acoustic Sensing

Experimental Setup. In this section, we evaluate Zygarde in real-world uncontrolled experiments using six
audio event detection applications. Due to the presence of background noise and multiple audio events in the
data, these applications require DNN-based features for audio event representation and classi�cation. Existing
works show that DNN performs signi�cantly better than threshold or classic machine learning-based audio event
detectors in real-life noisy environments [9, 79].
Table 6 shows the the application environment, energy source, harvester placement, cause of energy inter-

mittence, target event and other events present in the environment for the six applications. Each applications
runs for 10 minutes and the audio sensor samples every two seconds. We play recorded sound, that are not used
during training, 10 times from a speaker as the positive example. The relative deadline of the jobs are 3s which is
the required execution time for the whole model. The agile DNN, consisting of a convolution layer and two fully
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Table 6. Real-life evaluation setup.
Application Energy Source Harvester Placement Cause of Intermittence Target Event Other Events
Car Detector Solar (74Klx to 111Klx) Pavement Vehicle on the closest lane Car Honk Silence, Dog, Human Voice, Car
Barking Dog Solar (2Klx to 18Klx) Under the Tree People, objects and cloud Dog Bark Silence, Car, Car Honk, Voice
People Detector Solar (1Klx to 5 Klx) Edge of the Railing People and cloud Voice Silence, Car, Honk, Dog Bark
Baby Monitor RF (-0.48dB to -1.66dB) On the Desk Change of Distance Crying Baby Silence, Voice, Washer, Printer
Laundry Monitor RF (-0.48dB to -1.91dB) On the Counter Change of Distance Washer Status Silence, Voice, Cry, Printer
Printer Monitor RF (-1.59dB to -1.91dB) On the Desk Change of Distance Printer Status Silence, Voice, Crying Baby, Printer
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Fig. 22. Real-life evaluation of Zygarde for acoustic event detection.

connected layers, has an execution time that varies between 1.7s and 3s, depending on early termination. As
it is not possible to ensure that each audio event of the target classes falls neatly into one second buckets, we
combine the outputs of two consecutive jobs by taking their logical OR.

We use two energy harvesters: solar and RF. The solar energy harvester is a�ected by outdoor in�uences such
as passing vehicles. We vary the distance between the RF transmitter and the receiver to test the applications
under di�erent levels of noise and interference.

Results. In Figures 22(a)-(f) we plot the MCU’s input voltage, the cut-o� voltage, the classi�er’s output, and
deadline misses for the six applications over time. Findings from this experiments are as follows.
The car detector in Figure 22(a) always harvests su�cient energy from the sun and meets the deadline for

all jobs. However, it misclassi�es twice when both pedestrians (talking) and cars are in the scene due to the
limitations of the classi�er. The dog monitor in Figure 22(b) experience intermittency due to people blocking the
sun. It misses two target events due to the lack of su�cient energy to read the sensor data and misclassi�es one
event due to the limitation of the classi�er. For two audio events, the applications experience deadline misses
despite doing accurate classi�cation because of the limitation of the utility test. For similar reasons, the people
detector in Figure 22(c) fails to sense two events and misclassi�es one.
The baby monitor in Figure 22(d), powered with an RF harvester, does not harvest enough energy to read

audio samples during one audio event. It also fails to �nish execution of mandatory units within the deadline for
one event. Due to the limitation of the utility test, it misclassi�es one event and misses deadline of another. The
Laundry monitor in Figure 22(e) misclassi�es one event and misses the deadline for two. The printer monitor in
Figure 22(f) experiences the highest intermittence, misses four deadlines and misclassi�es three events.
A number of interesting observations from these experiments are: (1) a shorter power-o� period decreases

the number of event misses, e.g., the solar powered dog monitor misses more events than the laundry monitor
despite having less frequent reboots due to insu�cient power supply; (2) a shorter continuous energy results in
more deadline misses, as evident in dog monitor and printer monitor applications; (3) deadline and target event
misses depend on the harvested energy and the accuracy of the utility test, whereas the classi�cation accuracy
relies on the competence of the classi�er and the accuracy of the utility test, e.g., the car detector misclassi�es
due to the limitation of the classi�er, whereas the dog monitor misses the deadline of two correctly classi�ed
samples due to the inaccuracy of the utility test.
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9.2 Visual Sensing

Experimental Setup.We evaluate the performance of Zygarde in a multi-tasking scenario having two visual
recognition tasks: tra�c sign recognition and shape recognition. Both DNNs have two convolution layers and
two fully-connected layers, but the convolution layers of the sign recognizer has 8 and 16 �lters, whereas the
convolution layers of the shape recognizer has 4 and 8 �lters. The shape recognizer’s execution time is about half
of sign recognizer’s execution time, and hence, it has a smaller relative deadline. After capturing an image, a sign
detection job is created and inserted into the job queue, followed by a shape detection job.
Figure 23(a) shows the setup for this experiment. We use a 2MP OV2640 camera sensor and capture the test

images from the GTSB [121] dataset displayed on the screen of a laptop. We use 80% of the dataset for training
and the remaining 20% for testing. We annotate the dataset to label the shape of the sign. We use a solar energy
harvester to power the system and acquire 5V and 3V power lines for the camera and the MSP430, respectively,
by using two voltage regulators. The camera module requires 4s to capture an event but works in parallel with
the MSP430 which uses DMA.
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Fig. 23. (a) Experimental setup. (b) Percentage of captured events that meet the deadline.

Results. In Figure 23(b), we compare the performance of Zygarde against SONIC’s [54], which does not implement
early termination and uses either an EDF or a round-robin (RR) scheduler. We observe that due to the high
energy demand of the camera, 37% of the events are missed and do not enter any of the three systems. Although
SONIC-EDF schedules 55% of the jobs that enter the system, it is partial towards the shape recognition jobs since
they have earlier deadlines. By choosing the sign recognition job, which has higher execution time, SONIC-RR
does not spare su�cient time to execute shape recognition job. SONIC-RR schedules only 11% jobs that enter
the system in total, among which, only 1% are shape recognition jobs due to the shorter relative deadline of the
shape recognition task. By performing imprecise computing with early termination, Zygarde assigns di�erent
priority to the same job at di�erent units. Thus, Zygarde switches between jobs from di�erent tasks and enables
fairness. Zygarde schedules 93% of the jobs that enter the system, where 43% are sign recognition jobs and 50%
are shape recognition jobs. Zygarde achieves 61% and 85% classi�cation accuracy for sign and shape recognition,
respectively, which is is within 2% of the baselines’ that execute the DNNs end-to-end.

10 RELATED WORK
This section describes the existing literature on intermittent computing, timeliness in batteryless systems, DNN
compression and partial execution (Anytime Neural Networks), energy harvesting system model, and real-time
scheduling for imprecise and mixed critical task set.

Intermittent Computing. Intermittently powered systems experience frequent power failures that reset the
software execution and result in repeated execution of the same code and inconsistency in non-volatile memory.
Previous works address the progress and memory consistency using software check-pointing [27, 61, 72, 92,
96, 100, 111, 128], hardware interruption [18, 19, 99], atomic task-based model [36, 37, 95] and, non-volatile
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processors(NVP) [93, 94]. Recently SONIC [53, 54] proposes a unique software system for intermittent execution
of deep neural inference combining atomic task-based model with loop continuation. Despite being used for
intermittent execution by Zygarde, SONIC does not handle time-aware, partial execution of DNN with model
adaptation like Zygarde.

Timeliness of Batteryless Systems. Prior works on intermittent computing propose runtime systems to
increase the likelihood of task completion by �nding optimum voltage [30], adapting execution rate [49, 119], and
discarding stale data [59]. However, none of these works consider the accuracy/utility of the target application or
deadline-aware execution of tasks. Some works in wireless sensors [102, 103, 144] have addressed scheduling,
but none of them consider the higher computation load of inference tasks. INK [139] proposes a reactive kernel
that enables energy-aware dynamic execution of multiple threads. Note that INK does not consider DNN tasks or
utilize partial execution of tasks for increasing schedulability. Unlike INK, which schedules kernel threads and
only one data sample at a time, Zygarde schedules multiple data samples present in the job queue. Recent work on
real-time in intermittent systems [69] explores this problem for only periodic tasks and unlike Zygarde does not
considers the impreciseness of the taskset. Other works focus on maintaining time through power loss [46, 60, 109]
by exploiting discharge rate of SRAM and capacitors. Our work is complementary to these works and relies on
these techniques for timekeeping.

Compression and Partial execution of DNN. Recent works reduce the cost of DNN inference by pruning and
splitting models [56, 104, 135–138], reduction of �oating-point and weight precision [45, 55, 74], and factorization
of computation [26, 34, 105, 122–124, 131]. Though these works are crucial for enabling fast DNN execution, they
alone are not su�cient for batteryless systems. Binary networks [38, 39, 68, 112] are not suitable for batteryless
systems due to the higher number of required parameters [54].
Recent works propose early exit during DNN inference [29, 51, 87, 125]. However, they are not su�cient for

highly constrained batteryless systems due to the large termination overhead. In most cases, the terminations
require execution of a neural layer requiring 45⇥ more execution cycles than performing utility test and clas-
si�cation with Zygarde . Moreover, these approaches lack model adaptation capability which is required for
life-long sensing. Some works on anytime neural networks depends on module selection [66, 106, 126], dynamic
layer pruning during inference [29, 58, 66, 67, 129] and depth and width adjusting techniques [65, 76–78, 140] for
anytime prediction. However, none of these works have considered the the e�ect of energy intermittence and
they are yet to be modeled as imprecise task.

Modeling Energy Harvesting Systems. Previous works on energy harvesting (EH) modeling of a speci�c
energy source have achieved promising results in predicting available energy [40, 73, 115]. Some other works
have focused on analytically model the trade-o� associated with length of history to maximize forward propaga-
tion [113]. However, none of the prior works are generalizable and fails to model energy harvesting systems
irrespective of energy source. In Zygarde, we provide a single metric, � factor that models the predictability of an
energy harvesting system irrespective of the source.

Real-time Scheduling for Imprecise and Mixed Critical Task Set. Previous works on imprecise computing
only considered the task models where mandatory-optional partitions are �xed and known a priori [90, 117].
Existing works on Quality of Service (QoS) based resource management [83, 110] do not handle the data-dependant
dynamic relationship between quality and required unit for each job in Zygarde. Though, Zygarde can also be
formulated as a mixed-critical system, the changing utility of jobs at runtime and intermittent energy makes it
more suitable as a imprecise-computing system. Previous works on mixed-critical systems [21, 22, 31, 48, 88, 130]
propose scheduling schemes for predetermines critical levels, which is a characteristic of a task. On the other
hand, utility in Zygarde varies for each job.
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11 DISCUSSION
11.1 Importance of DNNs
For batteryless sensing systems, the inference accuracy dictates the response time and the energy-e�ciency of
the system [54]. Due to very high energy cost of wireless communication, these systems have to implement a
large capacitor – which takes several minutes to charge – in order to send just one data packet. Hence, every
false positive wastes signi�cant amount of energy and time. This is why, DNNs are preferred over less accurate
traditional classi�ers such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN), k-means, and
Random Forest. Table ?? shows that DNNs are 1%–15% more accurate than the traditional classi�ers.

Table 7. Classification Accuracy for Di�erent Models.
Classi�er MNIST ESC-10 CIFAR-100 VWW
KNN 92% [50] 40% 55% 60%
K-means 93% [50] 41% 50% 59%
Random Forest 93% [50] 25% 29% 62%
SVM 96% [50] 50% 51% 69%
CNN (No Early Termination) 98% 75% 78% 84%
CNN (Early Termination) 97% 73% 77% 84%

11.2 Generic Utility Functions
In Zygarde, the utility function provides an estimate of how con�dent the cluster-based classi�er is. For a di�erent
type of classi�er, although the proposed utility function may not be directly applicable, the general principle
behind the utility function remains the same. For some classi�ers [15], e.g., support vector machine and K nearest
neighbour, the distance of the input data point from the decision boundary or the neighbours can be used to
design the utility function that is similar to Zygarde’s. For classi�ers that provides a probability distribution over
all classes as the output [15], e.g., neural networks, naïve bayes, and logistic regression, we recommend using the
entropy [32] of this distribution as the utility function, i.e.,U = �

Õc
i=1 pi log2pi , where pi is the probability of the

input being in class i and c is the total number of classes. A higher entropy indicates that the probability of the
input belonging to some class is higher than the rest of the classes, whereas a lower entropy indicates similar
probability across all classes.
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11.3 Adapting the k-Means Classifiers
In Zygarde, we adapt the cluster-based classi�ers at runtime since a classi�er running on a perpetually-powered
system is likely to encounter shifts in the input data distribution over its extended lifetime. To enable this, we
implement a simple strategy where the cluster centroids are updated by taking the weighted average of the
current centroid and the new data point. By assigning more weights to the current centroid, we ensure that the
adaptation process is gradual, and is not a�ected by a few outliers. This strategy has both bene�ts and limitations.
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The bene�t of cluster adaptation is that if a system is trained and tested in di�erent environments, unless
measures are taken to adapt the classi�er, its accuracy drops. We conduct an experiment to quantify this. We
�rst divide the ESC-10 audio dataset in to 80% training and 20% testing subsets. Then we record only the testing
subset in three di�erent environment, i.e., lab, hall, and o�ce. The training subset, 80% data, is recorded only in
environment 1 and is used to train the agile DNN and the initial k-means classi�er. We test the accuracy of the
classi�er on the testing subset from environment 1 (lab), followed by testing the accuracy on the testing subset
from environment 2 (hall), followed by testing the accuracy on the testing subset from environment 3 (o�ce).
We repeat this experiment with and without the cluster adaptation step of Zygarde. Figure 24 shows the result.
Without the adaptation, Zygarde loses 8% accuracy due to the environment changes. More than half of this lost
accuracy is gained back when Zygarde enabled cluster adaptation.

Two major limitations of this approach are: (1) the adaptation process being slow, if the environment changes
rapidly, the system may not be able to adapt fast enough. By adjusting the weights assigned to the new data, this
problem can be addressed; (2) the proposed adaptation process is robust to only a certain types of distribution
shifts, e.g., translation and rotation of feature spaces, where the relative distances of the cluster heads do not
change signi�cantly. However, if the shift in the data distribution in the new environment is complex and/or
non-linear, this simple threshold-based cluster adaptation approach may not work. To deal with this, a more
sophisticated approach that normalizes the e�ect of domain shifts in data [62, 97] has to be employed by adding
an extra layer of computation prior to the clustering step.

11.4 Limitation of � Factor
In Zygarde, we estimate the �-factor o�ine, using energy harvesting traces of the systems that we experiment
with. The modeling accuracy of � largely depends on the length of this empirical study – which must be long
enough to capture the variability in harvested energy. Note that this variability depends not only on the energy
source, but also on how the system is used by a user or how/where it is deployed. Hence, prior knowledge about
the system’s energy usage pattern and/or the experience of the system designer are crucial to determining a
reasonable study duration to obtain an accurate estimate of the �-factor.
A limitation of the o�ine estimator for � in Zygarde is that there is always a possibility that the estimate is

o� when the system is deployed in the wild. To deal with this scenario, the accuracy of � could be assessed at
runtime, and then � could be updated via an online or an o�ine re-estimation process. Such an assessment is
possible since � is used by the system to predict the energy state of the next time slot, for which, the system
observes the ground truth immediately after the current time slot, and thus, the system can precisely compute
the prediction error at runtime. Depending on the amount of this error, � can be adapted to � ± ��, where �� is
proportional to the prediction error.

In our experiments, however, we do not have to perform such adaptations as the empirically derived values for
� have been fairly accurate. Here, the accuracy of estimation refers to how closely we are able to characterize the
randomness in intermittent energy, as opposed to accurately predicting the harvested energy. In Figure 25, we
show that the estimated value of � for three harvesters (used in Section 3) converges to their respective prediction
accuracy values. For example, the kinetic energy harvester’s estimated �-factor is 0.65, and its (measured) accuracy
of predicting the energy state of the next slot is also close to 65%. The convergence of these two values indicates
that the estimate is fairly accurate.

11.5 Limitations of the Zygarde Scheduler
Although the scheduler in Zygarde outperforms state-of-the-art scheduling techniques, it has some limitations
that need further investigations. First, the scheduler does not provide any guarantee that all the jobs will �nish
their mandatory part before the deadline. This is primarily due to the uncertainty of the intermittent energy
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which does not allow us to formally approach the scheduling problem without introducing any probabilistic
terms. Besides, in this paper, we only provide a necessary condition for schedulability analysis (Section 5.3),
while deriving a su�cient condition remains an open problem. Second, the current design of Zygarde does
not schedule the wake-up cycles of the system. Instead, it reactively wakes up (and shuts down) based on the
harvested energy/input voltage. Because of this, the system often misses capturing the events as it might be
in power down state. By learning the event pattern and incorporating the probability of job arrivals into the
scheduling framework, this problem can be addressed. We leave it as one of our future works. Third, the queue
size has a signi�cant e�ect on the scheduler. Due to memory limitations, we cannot implement a longer queue (in
Section 8, the queue size is 3). If the queue size is smaller (e.g., 1), the scheduler will only schedules the mandatory
portions.

12 CONCLUSION
In this paper, we introduce a deadline-aware DNN runtime framework for intermittent systems. First, We devise
a generic metric, the � factor, that models the predictability of an energy harvesting system. Second, we propose
a DNN construction and execution technique which adapts the DNN inference process at runtime, and decreases
the execution time by 5%-26%. Finally, we utilize the � factor and the adaptive execution framework of a DNN to
devise an online scheduling algorithm for batteryless systems that successfully schedules 9%-34% more tasks
than traditional scheduling algorithms. We also derive a necessary condition for scheduling real-time imprecise
DNN tasks on intermittently-powered systems.
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