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Abstract: The goal of computer-generated holography (CGH) is to synthesize custom illu-
mination patterns by modulating a coherent light beam. CGH algorithms typically rely on
iterative optimization with a built-in trade-off between computation speed and hologram accuracy
that limits performance in advanced applications such as optogenetic photostimulation. We
introduce a non-iterative algorithm, DeepCGH, that relies on a convolutional neural network
with unsupervised learning to compute accurate holograms with fixed computational complexity.
Simulations show that our method generates holograms orders of magnitude faster and with up to
41% greater accuracy than alternate CGH techniques. Experiments in a holographic multiphoton
microscope show that DeepCGH substantially enhances two-photon absorption and improves
performance in photostimulation tasks without requiring additional laser power.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Computer generated holography (CGH) aims to synthesize custom light intensity distributions by
modulating a coherent wavefront, typically by digitally encoding its phase with a spatial light
modulator (SLM). CGH is the preferred method to create custom volumetric illumination in a
broad range of applications including neural photostimulation [1–3], optical trapping [4,5], and
3D displays [6,7].
CGH algorithms identify the best possible wave modulation by solving a multidimensional,

nonlinear, and non-convex inverse problem that is generally ill-posed. Holograms must be a
free space solution of the wave propagation equation that conserve energy, and thus many target
intensities are physically infeasible and cannot be rendered exactly. This issue is most notable in
3D CGH when the target intensities specified across several successive depth planes are mutually
incompatible. Additional factors that prevent feasibility include the numerical aperture of the
optical system, which sets the maximal allowable resolution, as well as hardware limitations such
as finite SLM resolution. In practice, CGH solutions are always approximate and numerical
methods are required to identify a feasible hologram that best matches the desired illumination
pattern.
Aside from simple holographic superposition techniques [8], existing methods for CGH rely

on iterative exploration. The most common approach is the Gercheberg-Saxton (GS) algorithm
[9], which digitally propagates a complex wave back and forth between the image plane, where
the intensity distribution is rendered, and the SLM plane, where the wavefront is modulated,
while enforcing amplitude constraints at each step. This algorithm is simple and straightforward
to implement, but yields sub-optimal solutions. More recently, advanced algorithms have been
developed that compute holograms by solving an optimization problem with an explicit loss
function. This includes non-convex optimization with a gradient descent [10], and methods based
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on Wirtinger derivatives that redefine CGH as a quadratic problem which can be minimized with
first-order optimization [11,12]. Both approaches yield significantly better solutions than GS, but
at the cost of increased computation time.
Existing algorithms are unfit to meet a growing demand for synthesizing high resolution

holograms in a short time window, for instance, in holographic optogenetic microscopes [1,13]
where specific neuron ensembles must be stimulated in direct response to an online observation
of animal behavior or neural activity [14]. Current strategies to accelerate hologram computation
include optimizing hardware implementation [15] and compressed sensing approaches that reduce
computation to smaller regions of interest [2] when the target intensity patterns are spatially
sparse. All these approaches rely on time-consuming algorithms that must perform several
iterations to identify feasible solutions.
Machine learning models such as convolutional neural networks (CNNs) are powerful tools

to model and compute highly non-linear mappings in constant computation time [16,17] and
therefore are excellent candidates for fast and efficient processing of optical information, including
fast CGH. Neural networks have already been successfully implemented for applications in
microscopy to estimate the refractive index map of 3D objects from indirect recordings using
tomographic [18] coded illumination [19], or from intensity-only recordings of out-of-focus
images [20–23].

CNNs have been implemented to directly map a target intensity pattern to a phase mask at the
SLM and can synthesize low resolution (64 × 64 pixels) holograms [24]. The limitations of this
direct phase inference method are twofold. First, the model is trained using a dataset made of
random SLM phase masks (CNN outputs) paired with their simulated amplitude pattern (CNN
input). This supervised approach restricts training to feasible target intensity distributions of
random patterns and does not train the model to identify approximate solutions for infeasible
patterns that routinely occur in real-world applications. Second, convolutional layers in CNNs
operate across the spatial dimensions of the input data and are best suited to model and compute
mappings that preserve some spatial correspondence between input and output. With direct phase
inference, the CNN performs a cross-domain mapping of the illumination pattern, defined in
the image plane, to the SLM phase mask, defined in the Fourier domain. Therefore the spatial
correspondence is not preserved and the CNN capabilities are underutilized.
Since holograms are synthesized with coherent electromagnetic waves, the Huygens-Fresnel

principle [25] determines how a wave at any given 2D plane along the optical axis propagates to
the rest of the 3D volume. It is, therefore, possible to compute phase information at the SLM
indirectly by estimating the phase and amplitude of the reconstructed field anywhere else along
the optical axis. A natural approach for CGH with deep learning is to estimate the hologram in
the image plane by inferring phase and amplitude at z = 0 which best leverages the abilities of
CNNs for spatial feature learning [26–28].
We introduce DeepCGH, a new algorithm for hologram synthesis that addresses all these

issues by employing a CNN to perform image plane holography with unsupervised training. A
trained CNN first infers the complex field of a feasible hologram at the image plane that best
matches the desired illumination pattern. The CGH solution, phase at the SLM plane, is then
obtained indirectly by simulating the reverse propagation of the estimated wave to the SLM plane.
In order to enable the unsupervised training of the model, our algorithm computes a virtual
reconstruction of the hologram based on the estimated CGH solution and compares it to the
target intensity pattern with an explicitly defined loss function. The computed loss across several
training examples is used to optimize the parameters of the CNN.
In section 2, we introduce the DeepCGH algorithm. In section 3, we compare DeepCGH to

existing algorithms in terms of speed and accuracy. Simulation results indicate that DeepCGH
outperforms the current state of the art and yields holograms several orders of magnitude faster
and with superior accuracy than existing algorithms. We present experimental results for a
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CGH application in neural photostimulation with a holographic multiphoton microscope and
demonstrate enhanced two-photon absorption in holograms generated with DeepCGH.

2. Methods

2.1. Optical setup

Our CGH setup is based on the standard Fourier holography configuration shown in Fig. 1.
A collimated laser beam propagating along the optical axis, z, illuminates the active surface
of an SLM with a static amplitude profile, ALaser(x, y). A computer controlling the SLM
applies a custom phase pattern, φSLM(x, y), to the laser beam. The modulated complex wave,
PSLM(x, y) = ALaser(x, y)eiφSLM(x,y), propagates through the optical system that consists of a single
lens and renders a volumetric image that is defined by its complex field, P(x, y, z), in the image
space. We define the center of this image, z = 0, at a distance f from the other side of the lens. In
this f-f configuration, the task of a CGH algorithm is to identify the phase modulation, φSLM , for
which |P(x, y, z)|2 best matches the desired target intensity distribution.

Fig. 1. Optical set up for Fourier holography. A SLM modulates a collimated coherent
wave in the pupil plane of a thin lens to render a 3D intensity pattern discretized as a series
of parallel planes along the optical axis.

The complex field at the center of the image plane, P(x, y, z = 0), is a 2D “Optical” Fourier
Transform (FT) of the field at the SLM plane, PSLM(x, y) (see Fig. 1), and is expressed using the
Fraunhofer wave propagation model [25]:

P(x, y, z = 0) =
1

iλf

∬
PSLM(x′, y′) exp

[
2iπ(xx′ + yy′)

λf

]
dx′dy′. (1)

The phase and amplitude of the wave in the image plane, P(x, y, z = 0), fully determines the
intensity distribution in the entire 3D volume. The field at any location x, y, z is determined by
the Fresnel wave propagation equation [25]:

P(x, y, z) =
∬

P(x′, y′, 0)
√

iλz
exp

[
iπ((x − x′)2 + (y − y′)2)

λz

]
dx′dy′. (2)

The volume of interest is decomposed into a series of adjacent planes at predetermined depths
around z = 0 (e.g. Pz=0, Pz=z1 , and Pz=z2 in Fig. 1) and discretized into m × m × p voxels, where
m is the edge length of the square hologram and p is the number of planes defining the volume.
Naturally, propagation to planes located before z = 0 correspond to negative values for z in
Eq. (2). We note that our method can be implemented with any holographic setup as long as it
can be modeled with a differentiable transfer function from the SLM plane to the image plane.
The SLM pixel size, ps, the wavelength λ, and the focal length of the lens, f , determine the

span, L = λf /ps, of the addressable window in the (x, y) domain.
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2.2. DeepCGH algorithm

Our algorithm is shown in Fig. 2(a). Input 3D target amplitudes, A(x, y, z), consist of a multi-
channel image with edges size of m and p channels that correspond to each depth plane. A
trained CNN maps the target amplitude, A(x, y, z), to a feasible approximation of the desired
illumination pattern in the image plane by estimating the complex field at z = 0, P̂(x, y, z = 0).
The complex field is then virtually propagated back to the SLM plane with an inverse 2D Fourier
transform (Eq. (1)) to yield the solution to the CGH problem, i.e. SLM phase mask ϕSLM .

Fig. 2. DeepCGH algorithm. (a) A trained CNN estimates the complex field in the image
plane at z = 0, P̂z=0, which is then reverse propagated to the SLM plane to yield the solution
of the CGH problem, ϕSLM . During training of the CNN, the objective is to maximize
the fidelity of the simulated illumination pattern, Â, that results from the estimated SLM
phase. (b) CNN structure for DeepCGH. A plus sign, +, represents concatenation of the
tensors along the channel dimension. C and CC indicate one and two convolutional layers
respectively. The number of convolutional kernels is shown below each convolutional
layer. Interleaving (Int) and De-interleaving (Deint) modules reshape the input and output
of the CNN. Phase and amplitude are predicted by two separate paths. (c) The interleave
module reduces the spatial dimensions of the network input without losing information by
rearranging the pixels of the original input into multi-channel images of smaller size. The
de-interleave module performs the inverse operation. (d) The U-Net model contains two
types of convolutional blocks, CCn and CBNn, where n denotes the block number. The
number of convolutional kernels is denoted below each convolutional block. (e) CCn and
CBNn convolutional blocks, with convolutional, C and batch-normalization, BN, layers.

In this configuration, termed image plane holography, the input and output of the CNN
share significant spatial correspondence, which simplifies the mapping that the CNN performs,
thereby facilitating training [26,29–31]. During operation, this two-step sequence enables fast
computation of the holograms in a fixed and predictable time window that only depends on the
model size (number of convolutional layers, number of kernels, and kernel size), as well as on
the number of depth planes and hologram resolution.
Our algorithm is unsupervised, i.e. trained without explicitly providing the optimal solution

ϕSLM . For training, (see Fig. 2(a) in red), we first simulate the intensity pattern that results from
the predicted SLM phase, |Â(x, y, z)|2, and compare this simulated hologram with the target
intensity pattern |A(x, y, z)|2 via an explicitly defined loss function, L(A, Â).
To this end, we simulate the complex field that will be synthesized at the SLM plane,

PSLM = ALasereiϕSLM . We virtually propagate the resulting wave to the image plane at z = 0 via
a FT (Eq. (1)), and then to each plane in the discretized volume via the Fresnel propagation
(Eq. (2)). The CNN is trained by minimizing the loss L(A, Â) on a large pool of sample target
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intensity patterns. We employed the Adam optimizer [32] to find a suitable set of parameters for
the CNN.

2.3. CNN structure and interleaving

Figure 2(b) shows the main components of the CNN structure. At the heart of our CNN is a fully
convolutional network (U-Net model [33]) with five convolutional blocks that process the data at
multiple scales (see Fig. 2(c)). Two convolutional blocks in the contracting path (denoted with
CBNn, where n is the block number) are each followed by a max-pooling layer (green arrows)
that halves the spatial dimensions of the data. Each CBNn module consists of two convolutional
layers, with the same number of kernels, that are each followed by batch-normalization layers
(see Fig. 2(d)) [34]. In the expanding path, three convolutional blocks (denoted with CCn,
where n is the block number) are followed by up-sampling layers (red arrows) that doubles the
spatial dimensions. The structure of CCn consists of two convolutional layers without the batch
normalization (BN) layers (see Fig. 2(d)), since early simulation results indicated that they reduce
convergence speed.

Two convolutional blocks after the U-Net (denoted with CC in Fig. 2(b)) create separate paths
that will compute the phase, ϕ̂z=0, and amplitude, Âz=0, of the complex field in the image plane at
z = 0. Concatenation, denoted with + in Fig. 2(b), facilitates residual learning by the network
[29–31,35].

The convolutional layers account for the majority of the computational cost of the DeepCGH
algorithm, which is proportional to the size of their input along the (x, y) dimensions. To
significantly reduce the spatial dimensions of the input to the U-Net and therefore decrease
the computation time associated with the U-Net model, we implemented interleaving. The
interleaving module [36,37], (see Fig. 2(e)) rearranges the raw target amplitude pattern A(x, y, z)
with size m × m × p voxels into IF2 × p channels with spatial dimension of m/IF × m/IF where
IF is the interleaving factor. Each channel consists of a periodic sampling of pixels from the
input that are separated by a specific distance IF along the (x, y) dimensions. In the illustrative
example shown in Fig. 2(e), m = 8, p = 3, and IF = 2, thus the rearranged output has 3× 22 = 12
channels. The color of each channel maps to the location of pixels in the original input data.
Interleaving is a loss-free transformation that preserves the number of pixels.
As we increase the image size, we proportionally increase the IF to maintain a fixed spatial

dimension in the input of the U-Net. The number of channels in the rearranged tensor
increases quadratically with IF, which in turn slightly increases the computation time of the
first convolutional layer but reduces the computation time of the rest of the network. Since
interleaving compresses all the information in the first convolutional layer, a trade-off exists
between speed gain and performance, and excessively increasing the IF will create an information
bottleneck and result in degraded performance. The IF is also limited by the CNN structure
and the number of pooling layers. In our model the U-Net consists of three max-pooling layers
that each halve the spatial dimensions of the feature maps. The spatial dimension of the feature
maps in the bottleneck of the U-Net is eight times smaller than the U-Net input, and should be
considered while determining a suitable IF.

Interleaving increases the CNN’s ability to generate high spatial frequency patterns [36], thus
improving CNN’s capability in modeling highly non-linear mappings. Interleaving also increases
the CNN’s receptive field, which is defined as the area along the spatial dimensions of the input
image that affect each pixel in the output of the last convolutional layer. The receptive field of the
first convolutional layer along the (x, y) dimensions with interleaving is IF2 times the original
receptive field. Therefore, interleaving will increase the receptive field of the entire network
by a factor IF2. A larger receptive field enhances the CNN’s ability to perform CGH tasks by
allowing each pixel in the input image to contribute to the output of the CNN.
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DeepCGH can accommodate any orthogonal sampling of the 3D volume, simply by increasing
the number of input channels or the input size. However, each new discretization of the 3D
image domain and each SLM resolution requires a separate model that must be trained using a
matched dataset. We kept the overall CNN structure (number of convolutional layers, number of
convolutional kernels in each layer, and kernel size) fixed regardless of the edge size, m, and
number of depth planes, p.

2.4. Loss function and feasibility criteria

To evaluate the performance of our algorithm in comparison with other CGH methods, we
calculate the accuracy, AC, a measure of the similarity between the target intensity pattern,
I = |A(x, y, z)|2, and the simulated hologram, Î = |Â(x, y, z)|2. The accuracy is based on the
Euclidean norm in the volume of interest and is defined as:

AC(I, Î) =

∑
x,y,z

(
I.Î

)
√[∑

x,y,z I2
] [∑

x,y,z Î2
] . (3)

We note that AC = 1 when the target and reconstruction are identical after normalization, i.e.
when I = KÎ, with K>0, and 0 ≤ AC<1 when the distributions are mismatched. Accuracy is
differentiable with respect to the network parameters and therefore a suitable loss function for
training DeepCGH.
A target intensity pattern is considered feasible when there exists an optimal value for ϕSLM

for which the reconstructed pattern exactly matches the target, i.e. AC = 1. In practice, target
intensity patterns for real-world applications are generally infeasible, and CGH algorithms can
only compute a feasible approximation of the desired illumination pattern. When a hologram is
not feasible, the approximation will always satisfy AC<1, even using the best CGH algorithm.
The performance of CGH algorithms can be compared measuring the respective accuracy of
the illumination patterns they yield, and the respective feasibility of any two patterns can be
measured empirically by comparing their best achievable accuracy.

3. Results

We demonstrate DeepCGH’s improved performance in comparison to existing techniques, both in
simulation and experimentally, for applications in 3D cellular photostimulation and two-photon
holographic optogenetics. To evaluate our algorithm under a broad range of realistic experimental
conditions, we trained and tested DeepCGH for various hologram resolutions and discretizations
of the target illumination volume. We considered two SLM resolutions of square edge size,
m = 512 and m = 1024 pixels, and three discretizations of the volume of interest into 3, 7, or 11
depth planes. For m = 512 and m = 1024 pixels we considered IF = 16 and IF = 32 respectively,
setting the spatial dimensions of the input to the U-Net model at 32 × 32 pixels.

For each of the considered scenarios, we generated 30,000 samples for training each DeepCGH
model with an additional 1,000 samples for testing. We used the same test samples again in
the simulation of the other CGH techniques for a direct comparison with our model. Each
sample, A(x, y, z), consists of non-overlapping disks at random locations with fixed radius of
10 pixels. This particular data represents a suitable choice for applications in biology, where
CGH is routinely implemented to illuminate custom groups of cell-sized targets. The amplitude
within each disk is randomly assigned to values between 0.2 and 1 to account for the need to
precisely place variable amounts of optical power in each target. We also normalize the input
data to enforce conservation of energy across all depth planes, an essential feasibility criteria that
target intensity distributions must meet. The total intensity is adjusted to keep voxel amplitudes
between 0 and 1 and facilitate learning in the CNN.
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We selected simulation parameters matching our experimental capabilities with a laser
wavelength λ = 1035nm, a f = 200mm SLM lens, and a SLM with a pixel size of ps = 9.2µm.
In this configuration, the accessible window in the image plane is a square of size X = fλ/ps =

22.5mm. Adjacent depth planes are separated by 10mm, hence the total depth of the volume
of interest is determined by the number of depth planes, p, and is equal to 20mm, 60mm, and
100mm for p = 3, p = 7, and p = 11, respectively.

We compared DeepCGH to two other existing CGH techniques. First, we considered Global
Gerchberg-Saxton (GS), the simplest and most commonly used 3D variation of the Gerchberg-
Saxton algorithm [9,38]. Second, we implemented Non-Convex Optimization for Volumetric
CGH (NOVO-CGH) [10], one of the current state of the art CGH algorithms that yields holograms
with very high accuracy by performing direct optimization of the phase in a forward model. We
implemented DeepCGH in Python programming language using Tensorflow 2.0 deep learning
framework [39] as we show in Code 1 [40] and trained our models with Nvidia GeForce RTX
2080Ti GPUs. The GS and NOVO-CGH algorithms were implemented with MATLAB and
CUDA GPU libraries. All methods were tested on an Nvidia Titan RTX GPU.

3.1. Simulation results and computation speed

We compared the performance of DeepCGH with GS and NOVO-CGH by recording the
computation time needed to yield the SLM phase mask and by measuring the accuracy of
the simulated illumination patterns that different CGH techniques yield. Simulation results
are shown in Fig. 3. An example target intensity pattern for m = 512 and p = 7 at depth
z = −30mm is shown along with the simulated reconstructions obtained with all three algorithms
(Fig. 3(a)). Supplementary Visualization 1 and Visualization 2 show 3D reconstructions of the
simulated intensity pattern at different z values for the 5122∗7 and 10242∗11 models respectively.
Supplementary Visualization 3 shows projection views of a sample from the 10242∗11 DeepCGH
model.
All CGH algorithms yield approximate solutions that place a significant amount of light in

off-target locations. At each plane, we observe diffused patterns, in addition to the desired targets,
that correspond to the footprint of photons focused on targets in adjacent planes. A qualitative
comparison of the reconstructed images in Fig. 3(a) indicates that DeepCGH identifies solutions
that spread the energy of these footprints more efficiently across space.
To quantitatively validate this observation, we measured the average accuracy of simulated

reconstructions as well as the computation time of DeepCGH, TDeepCGH , for 1,000 test samples.
We compared those results to simulations of iterative CGH techniques on the same testing dataset
for up to 3,500 iterations per sample.

Simulation results for the 512 pixels model with 7 planes and 1024 pixels model with 11 planes
are shown in Fig. 3(b). Holograms generated with DeepCGH (in green) achieve significantly
higher accuracy than existing techniques even after a large number of iterations.

Figure 3(c) shows the computation time for DeepCGH, TDeepCGH , for six models with various
resolutions and number of depth planes. We observed slight variations across samples, which
can be attributed to the multi-threaded nature of operations by the operating system. The
computation time increases with p and m, partly due to data transfer latency. Larger p and m
values also increase the computation complexity of the first convolutional layer as well as the
Fourier transform at the output of the model.
We also compared TDeepCGH to the computation time, T , required for iterative methods to

reach 95% of their maximum accuracy. The speed gain factor, T/TDeepCGH , (Fig. 3(d)) shows
that DeepCGH is at least ten times faster than the iterative algorithms.
The accuracy (Fig. 3(e), in green), of DeepCGH is consistently higher than the maximum

achievable accuracy of GS (red) and NOVO-CGH (blue) for all m and p, except for m = 512
and p = 11 where NOVO-CGH slightly outperforms DeepCGH. In this particular case, all

https://doi.org/10.6084/m9.figshare.12453323
https://doi.org/10.6084/m9.figshare.12453326
https://doi.org/10.6084/m9.figshare.12453329
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Fig. 3. Simulation results comparing DeepCGH to existing algorithms. (a) Example target
distribution and simulated reconstructions of the intensity computed with GS, NOVO-CGH,
and DeepCGH, at z = −30mm with SLM resolution m = 512. (b) Accuracy of the simulated
3D intensity reconstruction as a function of the computation time for holograms of size
m = 512, with 7 depth planes, and m = 1024 with 11 depth planes. Computation speeds
for GS and NOVO-CGH are shown for an increasing number of up to 3,500 iterations.
Simulation results for six different 3D models show (c) the inference time for DeepCGH, (d)
the ratio of the computation time, T , for iterative methods to reach 95% of the maximum
accuracy they can reach, to the inference time of DeepCGH, TDeepCGH , and (e) the maximum
achievable accuracy of iterative methods in comparison to the accuracy of DeepCGH.

algorithms fail to identify a well-matched hologram. The average accuracy values (0.47 vs 0.45
for NOVO-CGH and DeepCGH, respectively) are overall low and the observed 2% difference is
not substantial. In this case, the CGH problem is more difficult with 11 consecutive intensity
constraints but with less degrees of freedom due to the small SLM resolution. This is evident in
the case with m = 1024 and p = 11, where, for the same number of depth planes, DeepCGH
yields solutions with higher accuracy than iterative methods.

With any CGH method, the accuracy of the holograms depends on the resolution (edge size
m), number of depth planes (p), and on the feasibility of each individual target intensity pattern
(see Fig. 3(e)). For the values of m and p we selected, DeepCGH was 9% to 43% more accurate
than GS, and at least 10 times faster. Compared to NOVO-CGH and excluding the case where
m = 512 and p = 11, DeepCGH was between 9% to 22% more accurate and at least 200 times
faster. Overall, simulation results show that DeepCGH adequately computes high fidelity 3D
holograms, significantly faster and with greater accuracy than the current state of the art.

3.2. Experimental results

Two-photon holographic photostimulation [41,42] is an immediate application that directly
benefits from DeepCGH. 3D CGH is routinely used to activate custom groups of neurons
expressing a photosensitive opsin [13,43]. Fast computation is necessary to elicit patterns of
neural activity on demand in awake animals [1], and high accuracy is critical to maximize
two-photon absorption by confining light into the desired targets while minimizing brain tissue
heating [44,45]. In this set of experiments, we compared 3D measurements of two-photon
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absorption in a florescent calibration slide for holograms targeting identical distributions, but
generated with different CGH techniques.
Our experimental setup is shown in Figure 4(a). We integrated a Fourier holography setup

into the path of a femtosecond laser beam (Coherent Monaco 1035-80-60) providing coherent
illumination, ALaser, at wavelength λ = 1035nm and collimated on a reflective liquid crystal on
silicon (LCoS) SLM (Meadowlark, 1920x1152) in the pupil plane of a f = 200mm lens. For
simplicity, Fig. 4(a) shows the reflected beam on the other side of the SLM, as with a transmissive
SLM design. The undiffracted light is reduced with a reverse pinhole made by grinding a <0.2mm
hole in the center of an optical flat. The hologram is relayed into a microscope with a 16X
objective (Nikon 16x /0.8W LWD) mounted on a precision mechanical stage (Sutter MP285).

Fig. 4. (a) Experimental setup for multiphoton holography. The SLM and lens are placed in
the optical path of a microscope to demagnify the hologram by a factor of 16. An ultra-fast
laser provides a coherent light source, and a reverse pinhole blocks any undiffracted light. A
calibration slide with a thin, uniform fluorescent film intercepts the hologram at a custom
depth, z, and the corresponding two-photon fluorescence image is captured with sub-stage
objective coupled to a camera. (b) Left, experimental measurements of fluorescence in
the calibration slide observed at each of the p = 3 depth planes, and maximum intensity
projection images along the (y) and (x) axes for holograms computed with GS, NOVO-CGH
and DeepCGH and synthesized with the same amount of laser power. Right, uncompensated
target two-photon absorption, |A|4. (c) Two-photon fluorescence measured in n = 20
disks randomly picked in our experimental data as a function of the expected amount of
two-photon absorption after power calibration to account for spatial dependency of the
diffraction efficiency. (d) Same data as in (c) but showing the ratio of measured to predicted
fluorescence. (e) Radial Full Width at Half Maximum (FWHM) for n = 20 randomly
selected disks. (f)same as in (e) but showing axial FWHM.
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A thin fluorescent calibration slide (Tamiya red TS36 on a glass slide) is placed under the
objective, allowing visualizations of two-photon absorption at any depth to be captured by a
camera (Thorlabs DCC1645M) with a substage microscope. To map multiphoton absorption in
3D, Z-stack images of the two-photon (2p) fluorescence are recorded by moving the excitation
objective in 1µm increments along the z-axis and capturing one frame at each depth. Infrared
filters (two Thorlabs FES0800) remove the remaining infrared light so that only fluorescence
photons can be captured by the camera. The camera signal is only counted if it is twice above the
standard dark noise level to eliminate background artifacts.
We considered samples similar to our simulation data with m = 1024. For each sample, we

computed phase masks with GS and NOVO-CGH at maximal accuracy, and with DeepCGH.
We placed each phase mask on the SLM to compare the resulting holograms under identical
experimental conditions. Using the substage microscope, we recorded three 2D images of the
fluorescence induced by two-photon absorption in the calibration slide. We captured two-photon
fluorescence images in random order to account for possible photobleaching. We repeated the
process while mechanically moving the excitation objective along the z axis by 1µm increments.
The resulting volumetric images are quantitative measurements of two-photon absorption that
compare the performance of the three CGH algorithms for photostimulation tasks with the same
amount of laser power.

Figure 4(b) shows experimental recordings of two-photon fluorescence induced in the calibration
slice at each of the p = 3 depth planes as well as maximum projection images along the (x) and
(y) axis for a hologram with resolution m = 1024. The three fluorescence images are perfectly
co-aligned and address the desired custom 3D locations. The fluorescence signal is brighter
in the center of the image across all CGH methods. This is a well known property of Fourier
holography systems that experience a gradual loss of diffraction efficiency when placing light
at increasing radial distances from the optical axis. This issue is generally addressed with a
power calibration [1] that digitally compensates for attenuation. Measurements of accuracy in
simulations predicts that our method is able to focus more light onto the desired targets than
iterative CGH methods. Our experiment confirms this prediction and shows that with the same
amount of laser power, DeepCGH is able to yield stronger fluorescence in the calibration slide.
Two-photon absorption is a nonlinear process that is proportional to the square of the

illumination intensity. Hence, any mismatch between the desired and actual illumination intensity
in targets yields an even larger error in the resulting fluorescence image. This type of error is
very common in holograms synthesized with the GS algorithm that does not explicitly optimize
for hologram accuracy. Maximum fluorescence intensity projection images along the y and x axis
(Fig. 4(b)) show that two targets near the center of the hologram seem to have their brightness
overestimated by the GS algorithm, while both NOVO-CGH and DeepCGH seem to render more
power-balanced distributions.
To compare CGH methods in their ability to address randomly distributed groups of cells

with precise amounts of two-photon absorption, we considered n = 20 individual cell-sized
disks randomly picked in the samples we recorded and measured the size and total amount of
fluorescence in each spot from 3D recordings of fluorescence with all three CGH methods.
Results are shown in Fig. 4(c-f) and compare experimental measurements of the total

fluorescence to the amount predicted by simulations (i.e. the square of the target intensity
distribution, or |A|4) adjusted for radial losses in diffraction efficiency. A linear interpolation of
the experimental data (see Fig. 4(c)) as well as statistical analysis of the ratio between measured
and predicted fluorescence (see Fig. 4(d)) show that DeepCGH is able to yield 16% more
fluorescence than NOVO-CGH holograms and 48% more fluorescence than GS holograms.
We also compared the radial (see Fig. 4(e)) and axial (see Fig. 4(f)) dimensions of the

fluorescent spots by measuring the Full-Width Half-Max (FWHM) from perfectly aligned
high resolution volumetric recordings of two-photon fluorescence. The data indicates that the
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dimensions of the 3D fluorescent spots and therefore the achievable spatial resolution are not
significantly affected by the choice of a different algorithm for hologram synthesis.
An example maximum projection image for our largest model (m = 1024 and p = 11) is

shown in Fig. 5(a). Experimental results show that DeepCGH enables precise targeting of
cell-sized objects randomly placed in a cube of 700µm edge size (see Supplementary Visualization
4 for co-aligned 3D tomographic reconstructions and animated projection views) and yields
substantially more multiphoton absorption than iterative algorithms with the same amount of
laser power. We measured the total optical power under the microscope objective for each
SLM phase mask (Fig. 5(b), top) using a power meter (Thorlabs PM100). We observed small
fluctuations of optical power (less than 1% on average) attributed to losses in the optical path and
variable amounts of undiffracted light (blocked by the reverse pinhole) that are specific to each
SLM phase mask. We computed the total amount of two-photon absorption in each 3D image by
integrating the fluorescence signal across the volume of interest (Fig. 5(b), center).

Fig. 5. (a) Maximum projection images from 3D recordings of two-photon fluorescence for
holograms generated with GS, NOVO-CGH, and DeepCGH. The target intensity distribution
and laser power is identical across all recordings. (b) Simulation (box-plots, n=50) and
experimental (n=4) measurements of the total power under the objective (top), and total
two-photon fluorescence signal in the 3D volume (center). Normalized two-photon gain
defined as total fluorescence divided by the square of the intensity under the objective
(bottom).

To quantify the bulk gains in multiphoton absorption at equal levels of energy under the
objective (i.e. heat deposition), we measured the two-photon efficiency ratio (Fig. 5(b), bottom)
by dividing the total amount of two-photon fluorescence by the square of the laser power under
the objective. In addition to experimental results (data points), we also display estimated values
of the same quantities from simulations on n = 50 holograms of the similar type (box plots).

Simulation results indicate that 3D holograms synthesizedwithDeepCGHhave greater accuracy
than existing methods. Hence, the resulting illumination patterns better concentrate photons into
the targets that are more likely to undergo multiphoton absorption. Our experimental results
confirm this prediction, showing that DeepCGH holograms can yield 50% more multiphoton

https://doi.org/10.6084/m9.figshare.12453332
https://doi.org/10.6084/m9.figshare.12453332
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absorption with the same amount of optical power under the objective. This substantial gain in
performance directly benefits applications in biology and neuroscience by increasing two-photon
photo-activation without additional tissue heating or photodamage.

3.3. Model generalizability

A CNN model is considered generalizable when it not overfitting to the dataset on which it was
trained and is able to compute accurate results from previously unseen data. By this definition,
DeepCGH is generalizable if a trained model can compute equally high-fidelity holograms of
new unseen shapes that are not representative of the training image dataset.
Generalizability is a valuable feature for learning-based CGH algorithms, especially for

experimental settings where some variability in target distributions is expected. For instance, in
holographic optogenetics applications, the exact shape of neurons depends on the brain region
being considered with slight variations specific to each animal. Training a separate model for
each sample would be inefficient and time consuming.
To evaluate the generalizability of DeepCGH, we compared the accuracy of simulated

DeepCGH holograms for models trained and tested on different types of data. We considered
three datasets of 2D images with resolution m = 512 each with a random number of disks,
squares, or lines randomly placed in the image field. We trained, and tested DeepCGH on all the
nine possible combinations of training and testing datasets.
Accuracy measurements with 1,000 test samples of each data type are shown in Fig. 6(a).

The accuracy of DeepCGH slightly decreases when the model is tested on a type of image data
that differs from what the model was trained on. However, this drop in accuracy is insignificant
(less than 0.5% in all cases). Simulation results also show that the squares model performs
better than the lines model when tested with the lines data set. We believe that this could be
due to the increased diversity of shapes in the squares data compared to the lines data. Image
diversity helps the CNN explore a wider range of the manifold that represents the mapping from
target intensities to complex field at z = 0. As a result, the CNN learns a mapping that is more
generalized compared to models trained with the lines model. In some applications, one can also
choose to purposefully overfit the model to a specific data type and tailor the cost function to
favor a particular outcome with additional gains in performance.

Fig. 6. (a) Comparison of the accuracy of simulated DeepCGH reconstructions when the
model is trained (on 30,000 samples), then tested (on 1,000 samples) on three distinct image
data sets made of either randomized disks, squares, or lines. (b) Example target intensities
and reconstructions for GS, NOVO-CGH, and DeepCGH (trained on the Lines dataset) tested
on line image (top) and a natural image (bottom). Line image is zoomed in to show detail.
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We further illustrate the generalizabilty of DeepCGH with a model that is trained on the
lines dataset and tested on a natural image. Simulation results in Fig. 6(b) show intensity
reconstructions by each method with patterns picked from the lines test dataset and a natural
image. DeepCGH yields image quality that compare to holograms obtained with iterative
algorithms. This example perfectly illustrates the generalizability of the mapping that DeepCGH
learns from a specific data type to synthesize high-fidelity holograms of completely different
nature. Although DeepCGH holograms seem to contain more speckle than holograms synthesized
with iterative techniques, we note that DeepCGH yields this solution 33 and 3,678 times faster
than GS and NOVO-CGH, respectively, at speeds that would be compatible with online hologram
synthesis at video rate.

4. Conclusion

We have developed DeepCGH, a new algorithm based on CNNs for fast and accurate 3D
computer-generated holography. DeepCGH operates with a fixed computation time that is
predetermined by the hologram size and model complexity. We found that DeepCGH not only
synthesizes extremely large holograms (up to 11 Megavoxels) at record speeds, but also reliably
identifies solutions with greater accuracy than existing techniques. We validated DeepCGH
with experiments in multiphoton holography where the enhanced accuracy of our method
yields substantially more two-photon absorption without hardware modifications. Image plane
holography simplifies the mapping that the CNN performs and best utilizes the capabilities of
CNNs compared to other CNN-based CGH approaches. DeepCGH can be easily customized to
accommodate various spatial discretizations of the volume of interest and SLM resolutions by
adjusting the number of input channels, the interleaving factor, or number of kernels in the CNN
model. Finally, DeepCGH enables unsupervised training of the CNN, allowing the model to be
tailored to custom applications of holography by selecting training datasets that best match the
desired real-world experimental conditions, as there is no need to explicitly provide ground truth
phase masks. Further tailoring can be achieved by customizing the loss function to optimize the
model to best execute a user-defined task and directly optimize for the desired outcome instead of
hologram accuracy.
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