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Abstract As climate changes and populations grow, a deeper understanding of deltaic
surface and subsurface processes will help design sustainable management practices of
deltaresources. Numerical delta models are useful tools for understanding the relation-
ship between the surface and subsurface, but quantitatively linking surface dynamics
to subsurface structures remains difficult. The challenges stem from uncertainty in the
numerical model parameters and the selection of informative post-processing metrics.
In this work a Monte Carlo- and metric-based probabilistic framework is proposed for
testing how well a numerical delta model captures the link between surface dynam-
ics and subsurface structure. Probabilistic analysis of three graph-theoretic metrics
describing morphology, morphodynamics, and subsurface structure shows that, at the
laboratory scale, certain delta surface features, including channelization and chan-
nel stability, are informative of the spatial organization of sediment in the subsurface.
Other surface features, such as sheet flows, are less informative. The surface dynamics
metrics are also applied to data from a laboratory-scale physical experiment to show
key differences in the numerical and experimental surface dynamics. The experimen-
tal morphology is more channelized than the numerical model and also undergoes
more dramatic morphologic changes. These differences are likely due to a combina-
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tion of numerical model resolution limitations, assumptions in the numerical model
physics, and differences in flow field extraction in the numerical model and physical
experiment.

Keywords Delta modeling - Graph theory - Morphodynamics - Surface processes -
Monte Carlo

1 Introduction

Over 300 million people throughout the world live on river deltas (Giosan et al. 2014;
Edmonds et al. 2020). Deltas are attractive places for societies because of the abundant
water resources, rich soils for agriculture, and a great amount of biodiversity and
natural beauty (Hoitink et al. 2020). Understanding the spatiotemporal evolution of
deltas and the interactions between the surface processes and subsurface structures
will be crucial for informed and sustainable deltaic resource management (Haasnoot
et al. 2012).

Many numerical models of deltas have been developed for various purposes, includ-
ing Sedsim for hydrocarbon exploration (Griffiths et al. 2001), Delft3D for coastal
engineering (Lesser et al. 2004), 3D-Sedflux for stratigraphic modeling (Stewart and
Irina 2002), and more (Overeem et al. 2005). Surface observations are often used to
constrain subsurface flow models (Xu et al. 2021) through conceptual or numerical
process models (Hariharan et al. 2021) when direct subsurface information is lacking.
However, it is difficult to test how accurately these process models are capturing the
link between surface dynamics and subsurface structures (Miller et al. 2008). These
difficulties stem from the fact that surface dynamics and subsurface structures are cal-
culated through post-processing of numerical model results, rather than being directly
predicted. Therefore, establishing a quantitative link between surface dynamics and
subsurface structures requires many model realizations, and the link will be specific to
the range of model parameters used. Monte Carlo methods can generate many model
realizations from a set of parameters, but the range of parameters varies depending on
the application. Many numerical delta model parameters, such as grain size and sedi-
ment cohesion, are difficult to adequately constrain, even in well-controlled laboratory
experiments (Viparelli et al. 2014; Huang et al. 2012). In this work, the question of
how to establish a link between emergent surface dynamics and subsurface structures
is addressed in a way that accounts for model parameter uncertainty.

Surface dynamics may be broken down into two components: the morphology of
a delta and how that morphology changes (morphodynamics). Many metrics exist to
quantify delta surface morphology, morphodynamics, and subsurface structure (Liang
etal. 2016; Wolinsky et al. 2010; Edmonds etal. 2011; Heckmann et al. 2015). One sub-
group of these metrics are graph-theoretic metrics, which are being increasingly used
in the geosciences (Phillips et al. 2015; Kang et al. 2015), with applications to delta soil
development (Phillips 2011), and flow field topology and transport properties (Tejedor
etal. 2015a, b). Graph-theoretic metrics have also been proposed to validate numerical
models of braided channel morphology (Connor-Streich et al. 2018). Because these
metrics are uniquely able to capture emergent morphologic features on the delta sur-
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face (Marra et al. 2014; Tejedor et al. 2015b) and in the subsurface (Nesvold 2019;
Hirsch 1999; Thiele et al. 2016a), they are well suited for studying the relationship
between surface dynamics and subsurface structure in deltas if a proper framework
for making the comparison in the face of parameter uncertainty is developed (Thiele
et al. 2016b).

In this work, a framework is presented to (1) quantify the link between surface
dynamics and subsurface structure through a numerical model and (2) compare numer-
ically modeled and experimental surface dynamics. The framework uses Monte Carlo
methods to account for numerical model parameter uncertainty and graph-theoretic
metrics to quantify morphology, morphodynamics, and subsurface structure. The
approach is demonstrated using the numerical model DeltaRCM (Liang et al. 2015b)
and experimental data from Straub et al. (2015). The three graph-theoretic metrics are
applied to all Monte Carlo realizations of DeltaRCM. Cluster and probabilistic anal-
ysis is used to determine which surface and subsurface features are most informative
of one another. The morphology and morphodynamics metrics are also applied to the
physical experiment and compared to the numerical model using dimension reduction
techniques. It is important to note that the focus of this work is not to conclude whether
or not DeltaRCM can match the physical experiment, but rather what insights can be
drawn from a quantitative comparison.

In Sect. 2, an outline the numerical delta modeling, graph fitting procedure, and
the Monte Carlo framework for linking surface dynamics to subsurface structure is
presented. Section 3 presents the metrics used to quantify surface dynamics, and
subsurface structure are discussed. In Sect. 4, the metrics are applied to a Monte Carlo
simulation of DeltaRCM and the physical experiment, and a link between surface
dynamics and subsurface structure is established. Finally, in Sect. 5, assumptions used
in metric calculation, the surface—subsurface link, and the results of the comparison
to the physical experiment are discussed.

2 Methods

In this section, an outline of the framework used to compare numerically modeled
flow field dynamics to physical experiment dynamics is presented. An overview of this
workflow is shown in Fig. 1. The key components of this workflow are the numerical
model DeltaRCM, the graph fitting algorithm, the quantification of uncertainty in
DeltaRCM, and the linking of surface metrics to subsurface metrics. Below, each of
these steps in the workflow are elaborated. Note that for the physical experiment,
subsurface data does not exist, motivating the need to predict subsurface structure
from a process-based model like DeltaRCM.

2.1 Modeling Deltas with DeltaRCM

DeltaRCM is an open-source reduced-complexity model designed to simulate delta
morphodynamics, with an emphasis on delta-plain channel dynamics. While more
details can be found in the relevant papers (Liang et al. 2015a, b), the basic operations
are described below.
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Fig. 1 Workflow for (1-3) fitting graphs to the numerically simulated and experimental deltas and (4-5)
comparing the numerical simulations to the physical experiment by extracting quantitative metrics from the
flow field graphs

DeltaRCM assumes a rectangular basin with lateral dimensions w x £, with grid
cell dimensions Ax x Ay, and a fixed water depth, ho. Water and sediment come into
the basin through a channel on one side of the domain. Two classes of sediment are
considered: mud and sand with their relative proportions controlled by the bedload
(sand) fraction f;. Mud is transported as suspended load and sand is transported
as bedload. The quantities of water Q,, and sediment Q; are then divided into Ny,
and Nj discrete parcels, respectively. Each parcel is individually routed through the
domain using a weighted random walk approach that depends on water depth and the
water velocity vector at each pixel along the walk. Sediment erosion and deposition
are simulated throughout the random walk using thresholds dependent on the water
velocity and sediment type. Once all water and sediment parcels have been routed, the
topography, water-free surface, and water velocity are all updated, and the simulation
advances in time. A complete list of parameters can be found in Table 1, with more
detailed descriptions in Sect. S.1 of the electronic supplementary material (ESM).

2.2 Fitting Graphs to Deltas with the Mapper Algorithm

There are several fundamental ways to represent a graph, but in this work graphs are
quantified through the k x k weighted adjacency matrix, W, where k is the number
of graph nodes. There are several ways to construct W from delta flow fields, all of
which use a binary map of wetted pixels as the main input. This binary map is referred
to as a flow field mask because it represents flowing water. The first graphs used to
study deltas designated nodes at each channel intersection, with channel segments
connecting successive vertices defined as links (Smart 1971). Tejedor et al. (2015a,b)
expanded this approach to quantify flow and topological patterns. Several automated
procedures, which skeletonize the delta flow field and assign nodes to bifurcation
points, have been developed (Schwenk and Hariharan 2021; Marshak et al. 2020).
However, sheet flows, commonly observed in physical experiments (Hoyal and Sheets
2009), are not easily skeletonized. Therefore, a different graph abstraction is used for
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Table 1 DeltaRCM parameters used for the field-scale and Monte Carlo simulations

Parameter  Units Description Field-scale value Monte Carlo value

Ow m3/s Inlet water flux 1250 1.72 x 1074 *

Os kg/s Inlet sediment flux 1.25 See Table 2 *

s kg/m>  Inlet sediment density 1 2.6348 x 103 **

SLR mm/year Rate of sea level rise 0 See Table 2 *

No - Number of inlet cells 5 3f

ho m Basin depth 5 U(0.1, 0.22)

Ny - Number of water parcels 2000 500 T

Ns - Number of sediment parcels 2000 500 T

Ow - Water routing depth dependence exp. 1 U(.5,1)

0 - Bedload routing  depth 2 U2, 4)
dependence exp

Om - Mud routing depth dependence exp. 1 U(0.75, 2)

b3 - Input fraction of bedload (m) 0.2, (s)0.8 U(0.1, 0.9)
sediment (sand)

B - Bedload transport capacity exp. 3 U2, 3)

A - Mud deposition quantity coeff. U(0.75, 1.25)

Wdm - Mud deposition  velocity 0.3 0.45 **
threshold coeff.

em - Mud erosion velocity thresh- 1.5 U(1.35,2)
old coeff.

Ies - Sand  erosion  velocity 1.05 U, 1.25)
threshold coeft.

o - Topographic diffusion coeftf. 0.1 U(0.03, 1)

Csmooth - Free surface smoothing coeff. 0.9 U(0.1, 0.9)

Ngmooth ~— — Num. free surface smooth- 10 5%
ing iterations

s fc - Water surface underrelax- 0.1 U(0.01,0.4)
ation coeff.

O flow - Flow velocity underrelax- 0.9 U(0.5,0.99)
ation coeff.

itmax - Num. flow routing/free sur- 5 1 f
face iterations

y - Flow vector energy partition (m) 0.069, (5):0.128 U(0.01, 0.1)
coeff.

So m/m Characteristic topographic m)1.4x107%,(s) UU.0 x 1072
slope 2.6 x 1074 5.0 x 1072)

U(., -) represents a uniform distribution. () and (s) denote to the muddy and sandy field-scale simula-
tions, respectively. Notes: *controlled in physical experiment, **held constant for numerical stability, Theld
constant for geometric consistency, Ttheld constant to reduce computational time
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Fig.2 Mapper algorithm workflow for fitting graphs to binary masks. a A binary flow field mask example.
b Pixels are clustered based on geodesic distances. Each color represents a different cluster of pixels. ¢
Graph nodes are assigned to each cluster. Node diameters are proportional to the number of pixels in the
node cluster, and edge widths are proportional to the magnitude of the corresponding edge weight in W

this work, where nodes represent locations on the flow field that are roughly equidistant
from one another, and connections between nodes to represent hydraulic connection
(Nesvold 2019). This type of graph, which is better suited for non-channelized flow
field morphology, can be fit to a flow field mask automatically using a modified version
of the Mapper algorithm from computer science literature (Singh et al. 2007).

2.2.1 The Mapper Algorithm for Fitting Surface and Subsurface Graphs

The modified Mapper algorithm (Nesvold 2019) transforms a binary pixel mask,
representing the delta flow field, to a graph. Figure 2 illustrates how the graphs are
fit. First, geodesic distances between all pairs of pixels in the mask are computed
using the fast marching algorithm (Sethian 1996). Then, pixels are grouped into k
clusters based on these geodesic distances using the spectral k-medoids algorithm.
Graph nodes represent the medoid of each cluster. Off-diagonal elements of W are
calculated as the inverse of the harmonic mean of geodesic distances to the ten nearest
pixels. Therefore, the edge weights represent the connection strength of the two nodes,
such that two nodes with larger edge weights have small geodesic distances between
them, and vice versa.

The procedure for fitting a graph to a permeability field with the Mapper algorithm
is the same as fitting a graph to a flow field mask, except for two key differences.
First, a randomly sampled point cloud with » points is used as the basis for graph node
clustering. Second, eikonal travel times, instead of geodesic distances, are used to
calculate distances between the points in the point cloud. The eikonal travel times are
computed using the fast marching method (Sethian 1996), with the permeability field
used as the speed function. In this way a graph fit to a permeability field represents
the dominant subsurface flow pathways.

Both surface and subsurface graphs are affected by the number of desired graph
nodes, k. If k is too low, then the stochastic nature of the Mapper algorithm leads to
uncertainty in the graph properties of a graph. Increasing k decreases the variability
in the spectral properties of the graph, but when & is too large, delta channel networks
are indistinguishable by their graph properties (Nesvold 2019). However, the optimal
value of k is also a function of the complexity of the delta, with highly branching
deltas requiring larger k values. For deltas represented by a 250 x 250-pixel mask,
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Table 2 Known input parameters for DeltaRCM simulations from TDB-12-1 flume experiment
(Straub et al. 2015)

Stage Time (h) Quw (m3/s) Qs (kgls) Base level rise (mm/h)
0 0-127 1.72 x 1074 2.65x 107 0

1 127-478 1.72 x 1074 2.65x 107 0.25

2 478-512 1.72 x 1074 3.91 x 1074 0

3 512-1481 1.72 x 1074 3.91 x 1074 0.25

Nesvold (2019) found that £ > 50 is best for balancing graph spectrum variability
and distinguishing power, and for smaller channel segments 20 < k < 50 is best.

2.2.2 DeltaRCM Flow Field Graphs

To extract the binary flow field mask for graph fitting (Sect. 2.2), the water velocity field
simulated by DeltaRCM at a single time step is thresholded. The velocity threshold
value is selected so that the flow field mask represents the parts of the delta that are
able to entrain sediment (Liang et al. 2016). In practice, a threshold of 0.5 to 1.5 times
the mud deposition velocity, uq,,, is used. In DeltaRCM, ug4,, is calculated using the
expression ug, = uoidm where ug is the inlet water velocity and w4, is the mud
deposition coefficient. The inlet velocity is calculated by ug = ﬁ, where Ny
is the number of inlet cells. A velocity threshold lower than that recommended by
Liang et al. (2016) results in an overestimate of sheet flow, and a higher threshold may
discard important channels or other parts of the flow field.

The graphs are then fitted to the largest connected component of the binary flow
field masks to avoid graph nodes on isolated artifacts produced by the thresholding
procedure. Forty graph nodes are used for the field-scale deltas (Sect. 3) and 20 graph
nodes for the lab-scale deltas (Sect. 4), in line with the number of nodes that has
been shown to be effective for distinguishing delta channel network patterns from one
another (Nesvold 2019).

A schematic workflow for this procedure is shown in the top row of Fig. 1. The
same procedure is followed for each time step in the DeltaRCM realization after the
initialized delta has grown to a point where autogenic dynamics dominate.

2.2.3 DeltaRCM Subsurface Graphs

In DeltaRCM, the subsurface is represented by a three-dimensional spatial field of the
sand fraction, f;(x, y, z). To fit a graph to the subsurface, the sand fraction field must
be transformed to a permeability field, k(x, y, z). In this work the transform from sand
fraction to permeability is designed to emphasize the fact that, in general, sand is more
permeable than mud. It is assumed that a voxel with only mud has a permeability of 10
milliDarcy, and a voxel with only sand has a permeability of 10 Darcy, approximately
consistent with permeabilities reported for unconsolidated sediments (Bear 1972).
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An exponential transform from sand fraction to permeability under these constraints
is shown in the following expression.

k(x,y,z) = 0.01 - (1000fs<x%2>). (1

After transforming the subsurface sand fraction to permeability, the Mapper algo-
rithm can be used to fit graphs to the permeability field. In this work only the subsurface
configuration in the final frame of the DeltaRCM realization is considered in an effort
to understand how autogenic variability relates to subsurface observations. As with
the flow field graphs, the subsurface graph properties will be sensitive to the number of
graph nodes. Nesvold (2019) suggests that subsurface graphs with 50 or more nodes
can distinguish differences in subsurface heterogeneity. Therefore, 150 nodes are used
in the field-scale simulations (Sect. 3) and 100 nodes in the lab-scale simulations (Sect.
4).

The permeability transform will also affect the subsurface graphs. The permeability
transform in Eq. 1 emphasizes the fact that fluid will flow in both sand and mud,
but much faster through sand. If the permeability transform did not emphasize the
permeability contrast between sand and mud, then all subsurface graphs would be
similar. If the permeability transform overemphasized the contrast between sand and
mud, then the graph would only represent pockets of sand-dominated material without
consideration of flow through mud-dominated material.

2.2.4 Physical Experiment Flow Field Graphs

The physical experiment data used in this study is from the TDB-12-1 experiment,
conducted at Tulane University (Straub et al. 2015). A mixture of sand and other
types of sediment were fed into a 4.2 x 2.8 x 0.65-meter basin, using a polymer to
simulate sediment cohesion. The experiment consisted of four separate stages, where
sediment supply and sea level rise were varied throughout the stages according to
Table 2. Data used in this study consist of overhead RGB images taken every 15
minutes and laser topography scans taken every hour. No subsurface data are used
in this work, and therefore no subsurface graphs are fit to the physical experiment.
Instead, the metric-based relationships calculated using DeltaRCM are used to infer
the subsurface characteristics of the physical experiment directly from its surface
characteristics.

The binary flow field mask is extracted by detecting water presence in the overhead
RGB images. Pixels in each overhead image from TDB-12-1 were classified as wet or
non-wet based on the cyan color content, which was shown by Jarriel et al. (2019) to be
an effective and straightforward classification scheme. The shoreline is extracted from
corresponding laser topography measurements and used to isolate wet pixels on the
delta topset, resulting in binary masks of the flow field. Flow field masks are obtained
in 1-hour intervals throughout stage 3 (Table 2). Since the automated flow field mask
classification was not perfect, 213 frames which upon visual inspection had poor flow
field classifications, were manually removed from the physical experiment. On the
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remaining 687 flow field masks, graphs are fit to the largest connected component in
the mask using 20 nodes, to match the number of nodes used in graphs fitted to Monte
Carlo realizations.

2.3 Monte Carlo Framework

Monte Carlo methods are the cornerstone of this framework for comparing numer-
ically modeled deltas to experimental data. This is because many of the DeltaRCM
parameters in Table 1 are not explicitly controlled in the physical experiment. The
simplest example is the input sand fraction, f;. The input sediment in TDB-12-1 is
a mixture of sand, other sediments, and a cohesive polymer, which cannot be eas-
ily separated into sand and mud as required by DeltaRCM. Therefore, the value for
fp 1s not explicitly controlled by the physical experiment, and a range of f; values
must be tested to see if DeltaRCM is capable of reproducing the experimental surface
dynamics. Another 21 DeltaRCM parameters are also not explicitly controlled by the
physical experiment (Table 1), prompting the need for Monte Carlo simulations to
generate DeltaRCM realizations from the full range of uncertainty in the DeltaRCM
parameters.

The Monte Carlo framework for comparing surface dynamics in DeltaRCM to
surface dynamics in the experiment consists of five steps. The first step is to define
prior distributions for each uncertain DeltaRCM parameter. The second step is to
generate many realizations of delta surface and subsurface data by randomly sampling
input parameters from the prior distributions. The third step is to calculate metrics
for each DeltaRCM realization. The fourth step is to perform cluster and sensitivity
analysis on the metrics to understand the trends in the DeltaRCM realizations and
which parameters control those trends. The fifth and final step is to compare the
metrics calculated for DeltaRCM to those calculated for the physical experiment.
These steps are applied in Sect. 4. Then, based on this comparison, inferences about
the differences between DeltaRCM and the experiment can be made, and hypotheses
for the subsurface structure in the physical experiment can be generated.

2.4 Linking Surface Dynamics to Subsurface Structure

Surface dynamics and subsurface structure are linked through DeltaRCM simulations
and a metric- and cluster-driven probabilistic framework. First, metrics that describe
surface dynamics and subsurface structure are calculated for each delta in the Monte
Carlo simulation. Any set of metrics may be used, but in this work, three graph-
theoretic metrics are selected to describe surface dynamics and subsurface structure.
These metrics are described in more detail in Sect. 3. Then the models are clustered
into three groups based on their corresponding metrics using the k-medoids algorithm.
Essentially, each model is mapped to a set of three discrete variables, one variable for
morphology, one for morphodynamics, and one for subsurface structure.

Surface dynamics and subsurface structure are then linked through conditional
probabilities based on the three clusters each simulated delta is classified into. The
probability of any delta being classified into a given cluster is denoted by Pr(class;),
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where class; represents the event that a delta is classified into cluster i. If a metric has
already been observed to be a part of cluster j, then the observation, or condition, is
denoted by cond. Using this notation, the conditional probability of a delta belonging
to cluster class; given the observation cond; can be calculated from the Monte Carlo
realizations using the definition of conditional probability.

Pr(classi N condj)
Pr(cond j)

Pr(classi|condj) = vi,je{l,...,9}, 2)

where the numerator and denominator of the right-hand side of (2) can be calculated
using indicator functions; in this case, i, j € {1, ..., 9}, because the deltas are mapped
to three discrete random variables, each with three clusters. Conditional probabilities
for all combinations of metrics and clusters can be calculated through Eq. (2) to gain
insight on the relationship between metrics.

3 Metrics Describing Surface Dynamics and Subsurface Structure

In this section the metrics that quantify surface dynamics and subsurface structure are
described. Surface dynamics are divided into morphology and morphodynamics to
separate the shape of the flow field from how the flow field changes throughout time,
respectively. Figure 3 illustrates how the DeltaRCM realizations are used to calculate
metrics and link them probabilistically. The metrics are illustrated with two simple,
synthetic deltas. Both deltas are simulated with DeltaRCM in rectangular 8 x 4-km
basins, with cell size Ax = 40 m. All parameters are the same for both realizations
except for the bedload fraction f}, such that one synthetic delta is sand-dominated
with higher diffusive forces, and one is mud-dominated with higher inertial forces.
The sandy delta uses f; = 0.8, and the muddy delta uses f;, = 0.2. The parameters
y and Sy are calculated as functions of f; (see Sect. S.1 of the ESM). All of the
DeltaRCM parameters are listed in Table 1. Figure 4 shows the evolution of the two
simulations throughout 20 years of simulation time with a time step of 29.2 days.

To create the binary flow field mask, the flow velocity is thresholded at 0.7 m/s,
about twice the threshold velocity for mud deposition, which for both deltas is 0.375
m/s. Graphs with 40 nodes are then fitted to the largest connected component of the
flow field mask. The same procedure is followed for each frame in the DeltaRCM
realization, such that each time-series realization is quantified by a set of 250 time
steps, each time step with one graph. Since the delta morphology does not stabilize
until around 3.5 years into the simulation, only the final 200 graphs are used to compute
the morphology and morphodynamics metrics. Subsurface graphs with 150 nodes are
fit to the permeability field for each delta computed through Eq. (1).

3.1 Quantifying Flow Field Morphology

Morphologic metrics such as channel fractal dimension, channel width and sinuos-
ity, and wetted area are useful for understanding a delta’s flow field (Seybold et al.
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Fig. 4 Snapshots from the two synthetic field-scale deltas created using the default DeltaRCM parameters,
except for the sand fraction: (top) 20% bedload fraction and (bottom) 80% bedload fraction

2007; Wolinsky et al. 2010; Liang et al. 2016). However, flow patterns exhibited by
laboratory-scale deltas, such as sheet flow, cannot always be easily classified into
channels. Similarly, the graph-theoretic metrics proposed by Tejedor et al. (2015b),
such as loopiness and resistance distance, rely on the skeletonization of a delta channel
network, which is challenging for sheet flow. Therefore, the graph abstraction used by
the Mapper algorithm is more useful for quantifying complex flow field geometries
exhibited by physical experiments. One graph-theoretic metric that summarizes the
shape of a delta flow field, as fitted by the Mapper algorithm, is the algebraic connec-
tivity, or Fiedler value (Fiedler 1973; Chung 1997). The Fiedler value is defined as the
first nonzero eigenvalue of the graph Laplacian matrix, and describes the interconnect-
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edness of nodes in a graph (see Appendix A). In the context of deltas, Phillips (2011)
used the Fiedler value to study delta soil development through the spatial connectivity
of different soil types. In general, graphs with highly interconnected nodes will have
higher Fiedler values than graphs with one or two connections to each node.

3.1.1 Proposed Morphology Metric: the Fiedler Value Cumulative Distribution
Function (CDF)

In this work, the Fiedler value is used as the basis for comparing delta flow field
morphology because it can be used as a proxy for the degree of channel branching
or the presence of sheet flow. To account for temporal variability in the flow field
morphology, the CDF of the Fiedler value is estimated using each time step as an
individual sample. Flow fields with more branching will have more connections per
node and therefore higher average Fiedler values, explaining why the sandy delta has
a higher mean Fiedler value than the muddy delta (Fig. 5a,b) and also more branching
channels (Fig. 6). Sheet flow will also cause higher Fiedler values for the same reason.

The number of graph nodes and the velocity threshold will significantly affect the
magnitude of the Fiedler value. Graphs with more nodes will generally have lower
Fiedler values than graphs with fewer nodes. For this reason, the Fiedler value metric
is most useful when comparing graphs with equal numbers of nodes. Lower velocity
thresholds, which result in more sheet flow-like morphology, will tend to increase
the Fiedler value. Higher thresholds, which remove important parts of the flow field,
may either decrease the Fiedler value by isolating the main distributary channels, or
increase the Fiedler value by removing channels altogether. However, these effects
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Fig. 6 Example sequence of events in the synthetic field-scale simulation with corresponding Fiedler and

MHD values for (top) the 20% bedload simulation and (bottom) the 80% bedload simulation. Flow velocity
fields and binary masks can be found in Fig. S2 of the ESM

depend on the specific characteristics of the individual delta and may not hold for all
deltas.

3.2 Quantifying Flow Field Morphodynamics

Morphodynamic features such as the avulsion timescale and fluvial reworking
timescale (Wickert et al. 2013; Cazanacli et al. 2002; Liang et al. 2016) capture impor-
tant surface dynamics features, but fail to capture instantaneous changes in the flow
field shape. To address this problem, Wickert et al. (2013) use the channel instanta-
neous planform change metric to quantify the spatial variability of channel networks
between two time frames in an experimental delta. Similarly, Scheidt et al. (2016)
and Hoffimann et al. (2019) use the modified Hausdorff distance (MHD) to quantify
the temporal variability of delta morphology. The MHD was developed to compare
shapes in computer vision applications (Dubuisson and Jain 1994; Huttenlocher et al.
1993). The MHD between shape A and shape B is the maximum of two values, dap
and dp 4, where d 4 p is the mean of the set of Euclidean distances between each point
on A and the closest point on B, and dp 4 is the same except between each point on B
and the closest point on A. By calculating the MHD between flow fields at successive
time steps, Scheidt et al. (2016) and Hoffimann et al. (2019) identify morphodynamic
trends that may be used for stochastic modeling.

3.2.1 Proposed Morphodynamics Metric: the Modified Hausdorff Distance CDF

To compare morphodynamics between deltas, the CDF of the MHDs is calculated
between successive flow fields to represent the range of morphodynamic variability
exhibited by a delta. The MHD calculation is computationally expensive for large
numbers of points, so the MHDs are calculated using the graph node locations, instead
of the set of points along the edge of the flow field mask, to represent the flow field
mask. This modification significantly reduces the dimensionality of the flow field mask
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and speeds up the MHD computation. Note that the MHD CDF does not say anything
about how a delta is changing, only that relatively large or small changes have occurred
between successive time steps. In the synthetic example, the sandy delta, which has
a higher mean MHD (Fig. 5b,c), undergoes more rapid channel switching than the
muddy delta (Fig. 6).

The MHD CDF will be more sensitive to the velocity threshold than the number of
graph nodes, as long as the number of graph nodes is sufficient to cover the entire flow
field. If the flow field mask produced by the thresholding procedure overestimates sheet
flow, then the MHD will decrease on average because successive sheet flow masks
appear similar. If important channels are removed by the thresholding procedure, then
the MHD may also decrease, because the flow fields will be more concentrated near
the inlet, and channel dynamics will not be captured by the MHD.

3.3 Quantifying Subsurface Flow Structure

Many metrics can be used to quantify the spatial distribution of sediment. Geostatistical
metrics like the variogram range and correlation length provide a coarse description
of the length scales upon which sedimentary bodies are distributed (Matheron 1963).
However, variograms are poor measures of geological connectivity (Mariethoz and
Caers 2014), meaning that their ability to identify the degree of preferential flow in
the subsurface, an important factor for groundwater and hydrocarbon applications, is
limited. Nesvold (2019) proposed using metrics derived from subsurface graphs, fitted
using the methods summarized in Sect. 2.2.3, to overcome the inability of variogram-
based metrics to describe geological connectivity. In particular, it was shown that the
eigenvalue spectrum of the Laplacian matrix can distinguish differences in subsurface
structure.

3.3.1 Proposed Subsurface Structure Metric: the Permeability Laplacian Spectrum

The metric describing the subsurface structure is borrowed from Nesvold and Muk-
erji (2021). The entire eigenvalue spectrum of the subsurface graph Laplacian is
used as the subsurface structure metric, and referred to as the permeability Laplacian
spectrum. Note that this metric only represents the final state of the subsurface and
contains no dynamic information. As an example, the permeability Laplacian spec-
tra of the two synthetic deltas show clear differences, particularly in the lower-order
eigenvalues (Fig. 5e). The sandy delta has larger low-order eigenvalues than the muddy
delta, including a higher Fiedler value, which corresponds to a highly interconnected
subsurface structure (Fig. 7).

The permeability Laplacian spectrum will be predominantly sensitive to the perme-
ability transform. A permeability transform that underemphasizes the contrast between
sand and mud will reduce the number of preferential flow pathways and therefore
increase the Fiedler value. A permeability transform that overemphasizes the contrast
between sand and mud will result in more disconnected flow pathways and a decreased
Fiedler value. However, the theory around the higher-order eigenvalues of the Lapla-
cian spectrum is undeveloped (Spielman 2012), and it is unclear how the rest of the
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Fig. 7 (Left) Top-down view of the bed elevation field plotted over the three-dimensional permeability
field graphs for the (top) 20% bedload and (bottom) 80% bedload deltas. (Right) select cross sections of
the sand fraction fields

spectrum is affected by specific differences in subsurface structures and permeability
transforms (Nesvold and Mukerji 2021).

4 Linking Surface Dynamics to Subsurface Structure in DeltaRCM and
the Physical Experiment

The morphology, morphodynamics, and subsurface structure metrics from Sect. 3 are
applied to an ensemble of DeltaRCM realizations generated via Monte Carlo sim-
ulation. The eventual goal is to compare the realizations to a physical experiment.
Therefore, the Monte Carlo simulation is designed to mimic the physical experiment
(Tables 2 and 3). Then, the metrics are calculated and clustered, and sensitivity analyses
are performed to interpret the results of the Monte Carlo simulation. Finally, a discus-
sion on how the clusters are related to each other is presented using the probabilistic
framework described in Sect. 2.4.

4.1 DeltaRCM Monte Carlo Setup

The Monte Carlo simulation is designed to match the conditions of the physical
experiment TDB-12-1 (Sect. 2.2.4) as closely as possible. The spatial and tempo-
ral discretization described in Table 3 was used to set up a domain in DeltaRCM that
matched the geometry of the experimental basin. The spatial and temporal domains
were discretized coarser than the synthetic examples from Sect. 3 to increase numer-
ical stability and reduce computational time. The vertical discretization is a function
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Table 3 Simulation parameters used in DeltaRCM Monte Carlo runs

Parameter Description Value
w Domain width (x) 40m
l Domain length (y) 2.0m
Ny Cells along width 101
Ny Cells along length 51

T Total simulation time 1481 h
At Time step 1/3h

of the basin depth, k¢, such that Az = 0.1 - ho. The temporally varying discharges and
base level rise (Table 2) were included as boundary conditions. All other parameters
were sampled from the probability distributions in Table 1. The prior distributions
represent ranges of numerically stable values, determined by varying parameters one
at a time until they caused numerical instabilities in DeltaRCM. In particular, the basin
depth, i has a lower bound of 0.1 m that was found to be the lowest value that did not
cause numerical instabilities. An upper bound of 0.22 m for &g was chosen because
the initial water depth of TDB-12-1 was certainly less than a third of the total basin
depth of 0.65 m (Straub et al. 2015).

A total of 670 realizations were generated from the Monte Carlo simulation. Snap-
shots of surface morphology were saved every 8.33 h of simulation time, for a total
of 177 snapshots for each realization. Each realization was generated using a set of
parameters independently sampled from the distributions in Table 1. Binary flow field
masks for each snapshot were created by thresholding the water velocity at 2 x 1073
m/s, which is about half the velocity required to entrain mud in the DeltaRCM simula-
tions (2.9x 1073 < uy, < 4.3x1073 m/s). This threshold was determined to produce
flow field masks that consistently captured the primary distributary channels without
overestimating sheet flow (Fig. S5). Then, graphs with 20 nodes were fit to the binary
flow field masks. Permeability field graphs were fit to the subsurface structure at the
final time step using 100 nodes and the permeability transform in Eq. (2). The Fiedler
value CDFs, MHD CDFs, and permeability Laplacian spectra metrics, described in
Sect. 3, were computed for all realizations. The realizations took approximately 583
h to stabilize, and therefore only the final 898 h of simulation time was used in the
analysis, leaving a total of 107 morphologic snapshots.

4.2 Linking Morphology, Morphodynamics, and Subsurface Structure through
DeltaRCM

Each metric is grouped into three clusters using the k-medoids algorithm. L2-norm

distances were used to populate the distance matrices used in clustering. Figure 8
shows all the resulting metrics, colored by cluster.
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Fig.8 Summary of the three proposed metrics and clustering results for the Monte Carlo realizations. (left)
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order
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Fig. 9 Bed elevation snapshots with graphs overlain for the morphology medoids taken at hour 1242 of
the simulation. Graph nodes are shown as blue dots, and connections are shown in red. Node sizes are
proportional to the number of pixels in the node cluster, and edge widths are proportional to the magnitude
of the corresponding edge weight in W. Flow velocity fields and binary masks can be found in Fig. S3 of
the ESM

4.2.1 Cluster Analysis

The morphology clusters in Fig. 9 are separated according to the average Fiedler
value of each realization. The term connected will be used to refer to deltas with a
high mean Fiedler value, the term channelized will be used to refer to deltas with
a low mean Fiedler value, and the term intermediate will be used to refer to deltas
somewhere in between. In Fig. 9, the bed elevation and the flow field graphs are plotted
for a randomly selected time step. Visual inspection of the graphs in Fig. 9 shows that
connected deltas have graphs with more interconnected nodes, channelized deltas have
graphs with more of a branching structure, and intermediate deltas are somewhere in
between.

The morphodynamics clusters in Fig. 8 are separated according to mean MHD. A
delta with a higher mean MHD will be referred to as unstable since the high MHD
suggests that the delta experiences larger, more frequent changes. A realization with
lower MHDs will be referred to as stable since changes in flow field morphology are
smaller. A simulation in between will be referred to as semi-stable. Figure 10 shows
time series for the medoid realizations of each morphodynamics cluster. The MHD
between each frame is also displayed. The stable delta in Fig. 10 has relatively stable
channels that do not move very rapidly. On the other hand, the graph structure for the
unstable delta changes more rapidly.
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Fig. 10 Four successive snapshots of bed elevation with graphs overlain for the morphodynamics medoids.
Node sizes are proportional to the number of pixels in the node cluster, and edge widths are proportional to
the magnitude of the corresponding edge weight in W. Flow velocity fields and binary masks can be found
in Fig. S4 of the ESM
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Bedload Fraction

Fig. 11 Medoid stratigraphies for each cluster. (Top) Final bed elevation with stratigraphy graphs overlain.
(bottom) Fence diagrams with corresponding graphs

The subsurface structure clusters in Fig. 8 are controlled by the first few eigenval-
ues in the realization’s permeability Laplacian spectrum. The medoid stratigraphies
show that subsurface structures with larger eigenvalues have a more interconnected
permeability field (Fig. 11), which will be referred to as a homogeneous subsurface
structure. Subsurface structures with smaller eigenvalues exhibit a pattern of coarse
material concentrated at the apex and the shoreline, which is referred to as a radial sub-
surface structure. Subsurface structures between the two end members will be referred
to as mixed.
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Fig. 12 Pareto charts showing parameter sensitivity analysis results for the metric clusters shown in
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Fig. 13 Conditional cumulative distributions for select metrics, colored by cluster according to the legend
in the bottom-right panel

4.2.2 Sensitivity Analysis

Sensitivity analysis is performed using the distance-based generalized sensitivity anal-
ysis (DGSA) method (Fenwick et al. 2014). DGSA works by calculating the L2-norm
of the difference between the unconditional CDF of an input parameter and the con-
ditional CDFs for the parameters in each cluster. The average differential L2-norm
over each of the clusters is normalized by a bootstrapping procedure using samples
from the unconditional CDF to estimate a sensitivity index. If the cumulative CDF is
significantly different than the conditional CDFs, the sensitivity index will be high,
and vice versa. The ten most-sensitive parameters for each type of metric are shown
in Pareto charts in Fig. 12. The conditional CDFs of the most sensitive parameters are
shown in Fig. 13.

The sand fraction, f}, is important for all three metrics (Fig. 12). The basin depth,
hg is also important for both surface dynamics metrics. Finally, the energy partition
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coefficient, y, also plays a significant role in the morphodynamics. A higher f} is
associated with intermediate/connected morphology, unstable morphodynamics, and
homogeneous subsurface structures, and vice versa (Fig. 13). Deeper basins are asso-
ciated with channelized morphology and unstable morphodynamics. Higher y values,
which cause diffusion forces to dominate the flow over inertial forces, are associated
with unstable morphodynamics. Lower y values, where inertial forces dominate the
flow, result in more stable morphodynamics.

4.2.3 Conditional Probability Analysis

The conditional probabilities of each cluster combination are computed according to
Eq. (2), and are shown in Fig. 14. Four of the nine clusters are strongly informative
as conditions, with at least one classification cluster that can be predicted with at
least 70% accuracy: connected morphology predicts semi-stable morphodynamics,
intermediate morphology predicts unstable morphodynamics, stable morphodynamics
predicts channelized morphology and radial subsurface structure, and homogeneous
subsurface structure predicts unstable morphodynamics. Morphology in general is not
a strong predictor of subsurface structure, and vice versa. Unstable and semi-stable
morphodynamics, and radial and mixed subsurface structures, are not very strong
predictors of any other cluster.

4.3 Comparing Monte Carlo Realizations to the Physical Experiment

The Fiedler value CDF of the physical experiment is computed from all 687 flow
field graphs. For computing MHDs, only successive overhead snapshots that are 8 h
apart are considered since DeltaRCM frames were saved every 8.33 h. This left a total
of 85 high-quality MHDs that are used to construct the MHD CDF. Finally, a scale
correction is applied to ensure that the Fiedler values and MHDs have the same units
(meters). Four successive frames with graphs, Fiedler values, and MHDs are shown
in Fig. 15.

The experimental and DeltaRCM Fiedler value CDFs and MHD CDFs are plotted
in Fig. 16. Multidimensional scaling (Scheidt et al. 2018) is performed with the same
distance matrix used for clustering (Sect. 4.2). The metrics in reduced-dimension space
are shown in the bottom two panels of Fig. 16. Itis clear in Fig. 16 that the experimental
graph metrics fall outside the range of those produced by the DeltaRCM realizations.
The Fiedler values exhibited by the physical experiment are consistently lower than
those exhibited by the DeltaRCM realizations, and the MHDs in the physical experi-
ment have a higher variance than any of the DeltaRCM realizations. However, physical
experiment morphology is closest to the channelized group, and the morphodynamics
are closest to the unstable group. Varying the flow velocity threshold has little impact
on these observations (Figs. S5, S6 of the ESM).
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Fig. 14 Conditional probabilities between metric clusters defined by the Monte Carlo simulation. Entries
can be read as Pr(Row|Column)
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Fig. 15 Four successive time steps from the physical experiment, showing the Fiedler value for each frame
in the white text, and the MHD between frames in black text between images. Graph nodes are shown as
black dots, and connections are shown in white. Binary masks can be found in Fig. S5 of the ESM

5 Discussion
5.1 Effect of Flow Field Masks on Surface Dynamics Metrics
The flow velocity threshold, required to fit flow field graphs to the DeltaRCM real-

izations, is a key assumption. Although the velocity threshold is based on the mud
deposition velocity (Liang et al. 2016), the mud deposition velocity varies from
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Fig. 16 Comparison of Fiedler value CDF (top left) and MHD CDF (top right) metrics with those derived
from the physical experiment. (Bottom) Metrics for all realizations projected into MDS space

2.9 x 1073 to 4.3 x 1073 m/s because of uncertainty in the basin depth. This may
explain the sensitivity of the morphology and morphodynamics metrics to the basin
depth. The 2.5-mm/s threshold was ultimately chosen because it generally resulted
in flow field masks that capture the main distributary channels without overestimat-
ing sheet flow. Furthermore, changing the threshold did not significantly affect the
comparison to the physical experiment (Fig. S6).

The physical experiment flow field masks depend on the cyan color, not the flow
velocity. It is possible that variations in dye color, lighting, and flow depth may affect
the quality of the experimental flow field graphs. The fact that the physical experiment
flow field masks are not dependent on flow velocity may also have unknown effects
on the comparison to DeltaRCM. A more rigorous comparison may use flow depth as
a threshold to create DeltaRCM flow field masks as a proxy for the cyan-based exper-
imental flow field masks. However, a flow depth threshold would require accurate,
automatic shoreline detection to remove open-water pixels in the DeltaRCM Monte
Carlo realizations, e.g. Shaw et al. (2008).
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5.2 The Link between Surface Dynamics and Subsurface Structure in
DeltaRCM

Conditional probability analysis (Sect. 4.3 and Fig. 14) demonstrates that the link
between surface dynamics and subsurface structure is complex. Some features make
intuitive sense, such as stable morphodynamics being primarily associated with highly
channelized deltas (79%) and homogeneous subsurfaces being formed by unstable
morphodynamics (75%). However, the relationships between metrics are not always
straightforward. For example, not all informative metrics are bijective; that is, just
because one metric informs another metric, does not mean the relationship holds
in reverse. For example, stable morphodynamics are predictive of radial subsurface
structures (70%), but radial subsurface structures are not predictive of any morphody-
namics (26% stable, 39% semi-stable, and 36% unstable). Another feature to note is
that some metrics may not be strongly predictive of another metric, but may still be
informative by reducing the likelihood of other metrics. For example, a mixed sub-
surface structure helps to rule out stable morphodynamics (14%), but is less useful
for distinguishing between semi-stable (39%) and unstable (47%) morphodynamics.
Overall, it is clear that even a highly simplified numerical model such as DeltaRCM
can produce complex, nonlinear surface—subsurface relationships.

5.3 Comparing DeltaRCM and Physical Experiment Surface Dynamics and
Subsurface Structure

The Fiedler CDF and MHD CDF metrics show that the physical experiment and
DeltaRCM produce flow field morphology and morphodynamics in the same order
of magnitude, though with some key differences. Generally, the physical experiment
is most consistent with channelized morphology and unstable morphodynamics (Fig.
16). However, the morphodynamics exhibited by the physical experiment are signifi-
cantly different than those of the DeltaRCM realizations. The MHDs in the physical
experiment have a much higher variance than any of the DeltaRCM realizations. This
implies that the physical experiment experiences morphodynamic changes similar
to the magnitude of those in the DeltaRCM realizations some of the time, but at
other times undergoes more rapid morphodynamic change than anything observed in
the DeltaRCM realizations. The flow field morphology of the physical experiment is
slightly more channelized than the DeltaRCM realizations, but much more comparable
to DeltaRCM than the morphodynamics metric.

If the morphology and morphodynamics metrics were similar in the experiment
and numerical model, then the probabilistic link between surface and subsurface
(Fig. 14) could be used to generate a testable hypothesis of the experimental sub-
surface structure. For example, under the assumption that the physical experiment
exhibits channelized morphology, DeltaRCM predicts that the subsurface structure
of the physical experiment is most likely radial, with Pr(homo.|chan.) = 0.14,
Pr(mixed|chan.) = 0.29, and Pr(radial|chan.) = 0.57. In this hypothetical sce-
nario, one could design a subsurface measurement strategy to test for a radial pattern
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of coarse-grained sediment which would indicate whether or not DeltaRCM is able to
accurately capture the link between surface dynamics and subsurface structure.

5.4 Discrepancy Between Experimental and DeltaRCM Surface Dynamics

There are several reasons why the physical experiment and DeltaRCM realizations
exhibit different surface dynamics. The first reason may be due to the differences
in how the flow field masks are calculated. For the numerical deltas, the flow field
masks are calculated using a flow velocity threshold, whereas the physical delta flow
field masks are calculated by thresholding the cyan saturation in each pixel. The cyan
saturation is a complex function of the flow velocity, as well as dye concentration,
flow depth, the underlying sediment, and other fluid dynamics phenomena that are
not perfectly correlated with the flow velocity. This possibly excludes thin or fast-
moving flows from the cyan-based flow field masks and may introduce some bias in
the comparison between the numerical and physical deltas.

The second potential reason for the discrepancy between the physical experiment
and DeltaRCM realizations is that the physical processes of DeltaRCM are fundamen-
tally different than those in the experiment. For example, DeltaRCM uses only two
grain sizes that may not be representative of the full range of sediment and cohesive
polymers used in the physical experiment. The sediment transport model of DeltaRCM,
which uses two grain sizes, may be inadequate to capture the transport properties of
the full range of sediment and cohesive polymers used in the physical experiment.

The final potential reason that DeltaRCM and the physical experiment exhibit dif-
ferent surface dynamics is that the spatial and temporal resolution of the DeltaRCM
simulations is too coarse. Previous work has shown that capturing the fine-scale chan-
nel dynamics is important for modeling deltas (Tucker and Hancock 2010). If the
resolution were increased and resulted in less sheet flow, then the Fiedler values would
decrease and the MHDs would increase, which would be more similar to the physical
experiment. To test this hypothesis, significant development of the DeltaRCM code
is required to reduce the number of errors the simulation encounters before a Monte
Carlo analysis is feasible. In this work, 36% of realizations failed before completion.
The failure rate increases dramatically as spatial and temporal resolution increases.
The significant number of failures are thought to be influenced primarily by unstable
parameter combinations and random errors in the stochastic routing algorithm. Ongo-
ing improvements to DeltaRCM (Moodie et al. 2021) will make future Monte Carlo
studies more practical for higher-resolution models.

6 Conclusions

Emergent deltaic surface dynamics characteristics in numerical models are quanti-
tatively compared to those observed in a physical experiment using a Monte Carlo
and metric-based framework. Using graph-theoretic metrics to describe delta flow
field morphology, morphodynamics, and subsurface structure, the experimental delta
is shown to exhibit more channelized flow field morphologies and a wider range of
morphodynamic behavior than what was simulated in DeltaRCM.
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More work is needed to determine the effect of the flow velocity threshold, used
to create flow field masks for graph fitting, on the metrics used in the comparison.
Other metrics may also be used to study other emergent relationships in the numerical
model. Improving the numerical stability of DeltaRCM at higher spatial and temporal
resolutions may also impact the modeled surface dynamics and subsurface structure.
Regardless, using Monte Carlo simulations to account for model parameter uncertainty
in the comparison of numerical models and physical experiments provides deeper
insight into the limitations of numerical models to capturing deltaic surface dynamics,
and helps generate testable hypotheses for how surface dynamics relates to subsurface
structure in natural systems.
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Appendix A: Graph Theory and the Fiedler Value

Graph theory is a mathematical description of a set of nodes linked together by edges
(Chung 1997). The nodes and edges can have different interpretations for different
applications, but share a common mathematical framework. One way to represent
a graph with k nodes is through a k x k symmetric matrix W called the weighted
adjacency matrix. The diagonal elements of W are zeros. Off-diagonal elements of
W, denoted by W;;, are zero if nodes i and j are not connected, and some positive
value if the nodes are connected.

An important property of a weighted graph is the graph Laplacian matrix L. The
graph Laplacian is defined as L = D — W, where

D = Diag(dy, da, ..., dx)

k

3

d; = E Wij. )
j=1

The graph Laplacian is important because its eigenvalue spectrum contains a mea-
sure of the topological connectivity of the graph. For a graphs without disconnected
components, the first eigenvalue, X1, of the Laplacian matrix is zero. The second eigen-
value, A7, is called the Fiedler value, or algebraic connectivity. The Fiedler value is a
scalar measure of the interconnectedness of a graph. By definition, the Fiedler value
must satisfy the following optimization problem, where b; is the i element of the
second eigenvector of L, E is the set of all edges in the graph, and V is the set of all
nodes (Chung 1997).
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If the nodes of a graph have few connections, then there will be fewer edges in E.
With fewer edges in [E, the numerator of (4) will be small relative to the denominator.
Therefore, for a graph containing nodes with few connections, A, will be small. By
the same reasoning, a graph containing nodes with many connections will have a large
X2. In this way the Fiedler value quantifies, on average, how interconnected the nodes
of a graph are.

“
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