
A Latency-Defined Edge Node Placement Scheme
for Opportunistic Smart Cities

Oluwashina Madamori⇤, Esther Max-Onakpoya⇤, Gregory D. Erhardt†, Corey E. Baker⇤
⇤Department of Computer Science, †Department of Civil Engineering, University of Kentucky, Lexington, KY USA

shina@uky.edu, esther.max05@uky.edu, greg.erhardt@uky.edu, baker@cs.uky.edu

Abstract—Smart city projects have the potential to improve
the management of environmental and public infrastructure.
However, the operational and capital expenditures of smart cities
can prevent cities from becoming smarter. A notable factor that
influences the cost is providing cellular Internet connectivity
to IoT devices. 5G has been proposed as a possible solution,
but projections show that 5G will not be able to support the
load of billions of IoT devices coming online. To mitigate this,
people, vehicles, and other nodes in transportation networks
can be exploited to transmit non-urgent data by leveraging
device-to-device communication in order to reduce cellular
connectivity costs associated with smart city sensors. Hence,
this paper addresses cost-effective edge node placement in smart
cities that opportunistically leverage public transit networks. We
introduce an algorithm that selects a set of edge nodes that
provide minimal delivery delay within a budget. The algorithm
is evaluated for two public transit network data-sets: Chapel Hill,
North Carolina and Louisville, Kentucky and results show that
our algorithm outperforms betweeness and in-degree centrality
metrics with a reduction in latency of over 20 minutes.

Index Terms—smart cities, opportunistic networks, delay tol-
erant networks, internet of things, edge computing, wireless

I. INTRODUCTION

Development of smarter cities has been proposed as a
means of combating the challenges arising from the increasing
rate of urbanization within many cities in the world [1].
One major characteristic of most smart city designs is the
deployment of a vast number of IoT devices/sensors across
the city to monitor and sometimes control the state of public
infrastructure such as water and gas pipes [2]. These IoT
devices, which include weather sensors and traffic monitors,
generate large amounts of data that need to be forwarded
to the Cloud for processing and storage. To achieve this,
deployed IoT devices typically rely on cellular connectivity.

However, the additive operating cost incurred from each
sensor’s cellular subscription plan is high [3]. The price
of deploying and maintaining smart city projects is a huge
deterrent for city officials, especially when the sustainability
and impact of such projects are uncertain [4]–[6]. In addition,
since sensors generate large amounts of data and connect to
the same base stations that facilitate cellular connectivity for
personal mobile devices, using cellular networks for smart
city data can quickly lead to network congestion and poor
user experience. Though 5G has been proposed as a viable

This material is based upon work supported by the National Science
Foundation under Grant No. 1952181.

solution, projections show that 5G will not be able to support
the load of billions of IoT devices coming online [7]–[9].

Hence, there is need for cost-effective smart city commu-
nication networks that reliably and efficiently forward sensor
data to the cloud without over burdening cellular infrastruc-
ture. In response to aforementioned needs, various researchers
have historically explored delay tolerant networks (DTNs)
or opportunistic networks for smart city applications that
can tolerate high latency [10]–[14]. Messages are delivered
with some delay which is directly correlated with the layout,
density, and mobility of nodes in the network [15], [16].
Consequently, a question that has been marginally addressed
is: where should edge nodes be placed to minimize latency
in a low-cost smart city?

Edge placement in opportunistic networks is not intended
to perform better than 5G or other centralized communication
schemes, but rather offer a low-cost alternative for delivering
non-urgent data, thus enabling municipalities to become smart
cities at a fraction of the cost. In this paper we: (i) introduce
the Minimal Delivery Delay (MDD) edge node placement
problem; (ii) formulate the MDD problem as an Influence
Maximization problem; (iii) develop an approximation algo-
rithm for solving the MDD problem; (iv) compare the results
of our algorithm with traditional network centrality measures
and finally; (v) develop a simulation tool that models a ve-
hicular communication network consisting of data generators
(sensors), intermediate carriers (buses) and destination devices
(edge nodes/gateways) within any real-world city, by directly
using transit network information provided in the General
Transit Feed Specification (GTFS) format.

The rest of the paper is structured as: Section II discusses
related work; Section III introduces the network model; Sec-
tion IV defines the MDD problem and describes its solution;
Section V explains the simulation design and environment;
Section VI offers the numerical evaluation; and finally Section
VII discusses and concludes the work.

II. RELATED WORKS

Various researchers have investigated the opportunistic use
of vehicular transportation networks for data forwarding in
smart city communication networks. The network architecture
often consists a set of vehicular data mules (e.g. buses,
boats, train, etc) that encounter IoT devices, opportunistically
collect sensed data and deliver the data to edge nodes with
wired Internet connectivity [17], [18]. However, the vast

PerAwareCity 2021: 6th IEEE International Workshop on Pervasive Context-Aware Smart Cities and Intelligent
Transport System

978-1-6654-0424-2/21/$31.00 ©2021 IEEE 142

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

er
va

siv
e

Co
m

pu
tin

g
an

d
Co

m
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 a
nd

 o
th

er
 A

ffi
lia

te
d

Ev
en

ts
 (P

er
Co

m
 W

or
ks

ho
ps

) |
 9

78
-1

-6
65

4-
04

24
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

PE
RC

O
M

W
O

RK
SH

O
PS

51
40

9.
20

21
.9

43
09

77

majority of research in this area has focused on the design
of data forwarding schemes. Some works have proposed
new routing schemes that harness the quasi-deterministic
nature of public transportation networks and utilize metrics
such as intercontact times to reduce latency and improve
delivery [10], [11]. Others have explored routing in the context
of different wireless communication media such as, LoRa
and WiFi [17]. Some others have investigated routing and
forwarding schemes in the context of preserving privacy [14].
Nevertheless, none of the aforementioned work addresses the
question of edge node placement.

While placement algorithms are typically unique to the
network, certain techniques from other network domains are
relevant to this problem. A previous work on node place-
ment optimization exploits the principle of submodularity to
tackle the problem of sensor placements in water distribution
networks [19]. In another work, the authors explore several
optimization techniques for access point placement in wire-
less mesh networks [20]. Unlike prior research, this work
formulates the edge node placement problem as an Influence
Maximization problem, provides an algorithmic solution, and
evaluates the algorithm using GTFS-data derived from real
transits in multiple cities. The resulting solution can be applied
to low-cost smart cities that leverage opportunistic networks.

1) Classic Centrality Analysis: In the field of network
analysis, several popular centrality measures exist. These cen-
trality measures are usually computed as real-valued functions
and reflects a node’s significance or importance within the
respective network [21]. Centrality measures have been used
in many kinds of networks including the Internet, social
networks, biological networks, and transportation networks.
Unfortunately, centrality measures work best with simple
static networks [22] and not dynamic networks. Since our
network model is more complex, containing not just nodes
(stops) and edges (trips), but also vehicle schedule information
across each node, centrality measures may not prove very
useful for optimizing edge node placement.

2) Evaluation of Opportunistic Networks: A number of
real-world test-beds have been developed to facilitate re-
search in the field of vehicular communication networks and
vechicular opportunistic networks [3], [23]. Although real-
world deployments of various network architectures provide
the most accurate results, oftentimes these results are not
sufficiently generalized due to insufficient geographic di-
versity as well as the limited scale of the experiments. In
addition, such deployments are typically financially expensive.
A popular alternative to real-world evaluations has been the
use of mathematical models and simulations. Simulations are
advantageous due to their cost-effectiveness, scalability, and
geographical and hardware heterogeneity. Examples of some
widely used open-source generic simulators in the field of
vehicular communication and DTN include the ONE simula-
tor [16] and ns-3 [24]. However, it can be difficult to fully
incorporate real-world data into currently available simulation
environments, or adapt the environment to match the designed
network model. Hence, this work develops a simulator that

closely emulates the movement of real world transit vehicles,
using GTFS, in order to evaluate the performance of our
algorithm across many cities.

Figure 1. Simplified Example of Network Architecture

III. MODEL

The entities within the smart city are depicted in Figure 1
and described below:

1) Bus routes: Every public transit network has a list of
predefined routes on which buses move/operate. Each route is
primarily defined by its list of bus-stops. A route also contains
a list of trips which specifies the arrival and departure times
for buses operating on that route, as well as the sequence of
stops the bus moves through during each trip. Note that a stop
may service more than one route.

2) Sensors: Sensors are located at select bus stops. Each
sensor generates non-urgent data at a specific periodic rate
around-the-clock. The data is stored locally until it can be
forwarded to a bus. Every sensor is equipped with a device
that allows it to opportunistically connect to a bus when the
bus is within a specified geographic range of the sensor. In
addition, we are only considering sensors with data packets
that are small enough to justify an assumption of transmitting
to a bus in a short time window. Local storage of a sensor is
considered to be infinite, since data is expected to be picked
up by a bus periodically, thereby eliminating the need for a
policy for dropping packets.

3) Edge nodes: These are stationary devices which, when
active, are continuously connected and able to forward data
directly to remote servers via the Internet for post processing
and analysis. They act as the destination for all data generated
by sensors. Not all bus stops are edge nodes, rather edge nodes
are placed at selected bus stops. Similar to sensors, edge nodes
are assumed to always be within transmission range of buses
traveling on routes for the stop on which the edge node is
located. Each edge node is also equipped with a device that
allows it to opportunistically connect to a bus when the bus
is within a specified geographic range of it.

4) Buses: These move along predefined routes on a fixed
schedule. Hence, the specific geographic position of buses
moving on a specific route at any time can be estimated. Each

PerAwareCity 2021: 6th IEEE International Workshop on Pervasive Context-Aware Smart Cities and Intelligent
Transport System

143

bus is equipped with the necessary hardware to connect to
sensors, retrieve and store sensor data packets, and forward
the data to edge nodes. We currently do not consider the
buffer/queue sizes of data in buses and so buses are assumed
to have buffer/queue sizes of infinity since they are expected
to deliver data to at least one edge node within a day (buses
park at transit stations which are expected to have an active
edge node), so a drop-policy for stored data is not necessary.

IV. EDGE NODE SELECTION PROBLEM

In this section, we present Minimal Delivery Delay (MDD)
problem. The objective of MDD is to select the set of
locations, G ⇢ S, to place edge nodes such that the average
network latency for data generated across the network is
minimized, without exceeding a budget constraint, k. Where,
the budget constraint refers to the number of edge nodes that
can be added to the network and S is the set of stops. In
considering network latency, we account for both delivered
and undelivered data. We also assign a penalty value to
data that is undelivered, which is explained in Section IV-A.
Further, the edge node selection process is conducted without
prior knowledge of the stops in which the sensors will be
placed in the city.

We formulate the problem as an Influence Maximization
(IM) problem, which is defined: Given a network with n nodes
and given a propagation process on that network, choose
a set of nodes called the seed set D of size b < n that
maximizes the number of nodes in the network that are
ultimately influenced [25]. However, our problem differs from
the traditional IM problem because the set of nodes we want to
select are not seed/source nodes but destination nodes. Hence,
we consider each potential edge node location, s 2 S to
possess an influence value, �(s), which describes its impact
on the network latency if it is added to an existing set of edge
nodes. Thus, our problem objective is to select a set of edge
nodes, G, below a specified cardinality, k < |S|, that together
decreases the network latency the most. Since, G = D, k = b
and |S|= n, the problem can be defined as an influence
maximization problem. Given a decision variable, ys 2 {0, 1},
which indicates whether a stop, s 2 S, was selected as an
edge node, a budget constraint, k and an influence value, �(s)
associated with every stop s 2 S, the ILP formulation is thus:

max
P

s2S ys�(s)
s.t. (1)

X

s2S

ys k (2)

ys = {0, 1} 8 s 2 S (3)

Finding the set of edge nodes that maximize influence
is NP-Hard. However, the solution can be approximated
using the Greedy and Cost-Effective Lazy Forward (CELF)
algorithms [26]. Nevertheless, defining the influence function
is critical to the success of the algorithm.

A. Influence Function
Current IM algorithms require an influence function that

simulates the propagation process and computes the marginal
influence that each potential seed has on the overall propa-
gation. Therefore for our algorithm, we develop an influence
function (�) that computes the expected latency across the
network for any potential set of edge nodes.

For a given stop, s, the influence function is defined as:

�(s) = T � 1

|S|�1
X

s2S,s6=s

(⌧(s, s) + t(s, s)) (4)

Where T is the time penalty (maximum latency possible in the
network — in our evaluation, we picked a fixed value outside
the range of simulation window), ⌧(u, v) is the minimum
time it takes to get from stop v to stop u and t(s, s) is
the lag between the time at which data is generated and the
time at which the next bus for the route arrives at the stop
where the sensor s is located. From equation 4, one can see
that the influence of a bus stop is determined by its network
latency. Since the influence value is calculated by subtracting
the latency from the time penalty, magnitude of the latency
is inversely correlated with the influence value of a bus stop.
Consequently, the influence function for a set of edge nodes,
G is:

�(G) = T � 1

|S|�G
X

s2S,s 62G

min(T(G, s)) (5)

Where,

T(G, s) = {(⌧(g, s) + t(g, s)) | 8 g 2 G} (6)

Each element in the set, T(G,S), is the sum of the time
it takes for a vehicle to forward data to an edge node and
the time it takes for the vehicle to get to the sensor. In
addition, given that there is no prior knowledge of the sensor
locations, we compute the network latency over multiple
sensor placement scenarios rather than just one, through a
Monte Carlo simulation. This method increases the likelihood
of the influence function returning an unbiased estimation of
network latency for a specific set of edge nodes [25]. We
generate a set of sensor placement scenarios, in which each
scenario is essentially a simulation environment consisting
of the transit network graph, where n sensors are randomly
placed at various stops, and each sensor is randomly assigned
a message generation frequency.

B. Influence Function Submodularity
We postulate that our influence function is a monotonically

increasing submodular function.
Definition: Given a finite ground set, S, and a set function

f : 2S �! R, � is a submodular function if 8 A ✓ B ✓
S, a 2 S \B.

�(A+ a)� �(A) � �(B + a)� �(B) (7)

Let the ground set be the set of bus stops in the network,
S where, each edge node placement scenario, G, can be

PerAwareCity 2021: 6th IEEE International Workshop on Pervasive Context-Aware Smart Cities and Intelligent
Transport System

144

expressed as a subset of S and the stops in G are edge nodes.
Also, let �(G) be the maximum influence that can be acquired
from G. From equation 6, if G = ;, then the time it takes for
any sensor to get to an edge node in G is the time penalty
T . The average latency would be T and �(;) would be 0
(equation 5), indicating � is normalized. Next, we ask the
question: Is �(G) monotonically increasing?

Recall that a function �: 2S �! R is monotonically increas-
ing if 8 A ✓ B ✓ S, �(A) �(B). Let c = B \A. Suppose
�(B) < �(A), then, there has to be a stop, s, which when
added to B causes its data latency to be greater than that of A.
Since the influence function depends on the stop that provides
the minimum latency in B, and A [c is equal to B, this
statement holds: min(T(B, s)) = min(T(A, s) [T(c, s).
As such, the minimum latency in B, is either equal to the
minimum latency in A or c (whichever is lower). Hence,
min(T(B, s)) cannot be greater than min(T(A, s)) 1. Thus,
�(B) � �(A) and � is monotonically increasing. Following
this, we ask the question: Is �(G) submodular?

Given a single stop, s 2 S, and the edge node
placement scenarios, A, B and a, as described above.
When a is added to G, its minimum latency for any
single stop s, min(T(G + a, s)), can be rewritten as
min(min(T(G, s)),min(T(a, s))). This indicates that the
result of min(T(G+ a, s)) is either equal to min(T(G, s))
or min(T(a, s)).
Case 1: min(T(B + a, s)) = min(T(B, s))

In this case, the minimum delay derived from the set a has
to be greater than that of B for any stop, s. As a result, the
marginal influence, derived from the right side of equation 7
is 0 and since the marginal influence derived from the left
side of the equation must be non-negative, the conjecture of
submodularity holds.
Case 2: min(T(B + a, s)) = min(T(a, s))

Here, the minimum delay derived from the set B has to be
greater2 than that derived from a for a subset of stops, L ⇢ S.
The influence derived by adding a to any placement set G is:

(8)
�(G+ a) = �(G)� 1

|L|
X

l2L

(T �min(T(G, l)))

+
1

|L|
X

l2L

(T �min(T(a, l)))

The first term represents the influence derived from the
original set, the second term represents the influence con-
tributed by L to the original set and the third term represents
the marginal influence derived from the added set, a. By
rewriting the left and right hand sides of equation 7 using
equation 8, it is reduced to:

min(T(A, l)) � min(T(B, l)) 8 l 2 L (9)

1This is the case because our model does not assume bus-to-bus commu-
nication, all added edge nodes in an edge node placement set provide new
elements to T(G, s))

2This is because the influence an edge node placement set has on each
stop is added together and averaged to find the influence- Equation 5

Since the minimum latency derived from B cannot be greater
than that of A for any s 2 S, � is submodular.

C. CELF-MDD Algorithm
Since the problem is reduced to the maximization of a

monotone submodular function, the greedy algorithm provides
a (1� 1/e)-approximation of the optimal edge node set [26].
Although the greedy algorithm is much quicker than a brute-
force approach, it is still very slow when considering the size
of actual transit networks. Therefore, we use the cost-effective
lazy forward (CELF) approach. CELF significantly reduces
the running time by exploiting the submodular property of
our influence function while still providing the same solution
set as the Greedy algorithm [27]. It eliminates the need to
compute the marginal influence value of all potential edge
nodes at each iteration.

In the first round, we calculate the influence for all stops
(like Greedy), select the stop with the greatest influence, and
store the influence values of the other stops in a max heap. In
subsequent iterations, the marginal influence of the top stop
in the heap is computed and added back to the heap. If the
stop remains at the top of the heap, then it must have the
highest marginal influence of all remaining stops, due to the
sub-modular property of the influence function. If a different
stop is on top of the heap, the process continues until a stop
remains on top after two iterations, after which that stop is
added to the edge node set. This process is repeated until the
edge node budget has been met.

Algorithm 1 CELF Minimal Delivery Delay (CELF-MDD)
Input — graph N , influence function �, budget k
Output — selected edge node set G

1: procedure CELF-MDD(N,�, k)
2: G ;
3: Q ;
4: for v 2 N.nodes do
5: u v
6: u.gain = �({v})
7: add u to Q in descending order

8: while |G|< k do
9: u Q.top

10: if u.flag = |G| then
11: G G [{u}
12: Q Q \ u
13: else
14: u.gain �(G [{u})� �(G)
15: u.flag |G|
16: Re-sort Q in descending order

17: return G

V. SIMULATION DESIGN

We developed a simulation tool3 that models a vehicular
communication network consisting of sensors, buses and edge

3The code for the simulator is available on GitHub - https://github.com/
netreconlab/low cost smart city optimization

PerAwareCity 2021: 6th IEEE International Workshop on Pervasive Context-Aware Smart Cities and Intelligent
Transport System

145

nodes within any real-world city, by directly using real transit
network information provided in the General Transit Feed
Specification (GTFS) format [28]. GTFS handles information
on transit routes, stops, and timetables [28]. Incorporating
GTFS information into the simulator enables us to evaluate the
performance of our model for many cities around the world.

1) Transit feed to graph conversion: The GTFS transit
feed data for a transit agency is converted into a directed
graph via an open-source library called peartree [29]. The
graph contains: (i) Nodes representing stops, with each node
containing the departure times for all vehicles from that stop,
and (ii) Edges representing a bus path from one stop to
another. The edge weight is the average time it takes for a
bus to get from one stop to a neighboring stop on a trip.

2) Sensor Placement: Sensors are placed at randomly se-
lected stops in the transit network. Each stop has a maximum
of one sensor and the total number of sensors to be placed in
the network is defined for each simulation. In addition, each
sensor is assigned a frequency at which it generates data.

3) Data Delivery Delay: For each data packet generated at
a sensor, the shortest duration it takes for the data packet to get
to an edge node is computed. A subgraph (consisting of only
stops in a single route) is extracted from the main graph for
each route. Next, we iterate through each route the sensor is
on and compute the shortest path length from the sensor to any
edge node on that route. Since the edge weight is the average
travel time for vehicles between a node pair, the computed
shortest path length represents the estimated time it takes for
a vehicle to forward the data to an egde node after departing
from the sensor. The total estimated delay is the sum of the
shortest path length and the waiting time. After completing
the iterations, the path with the shortest total estimated delay
is selected as the path through which the data will travel.

VI. NUMERICAL EVALUATION

A. Simulation Setup

In order to evaluate the performance of our algorithm, we
make use of the GTFS data of two bus transit agencies: Chapel
Hill Transit (CHT) in Chapel Hill, North Carolina, and Transit
Authority of River City (TARC) in Louisville, Kentucky [30].
Chapel Hill measures 55 km2 (21.3 mi2) with an estimated
population of about 60,988. While, Louisville has a population
of 620,118 and land area of 171.70 km2 (66.29 mi2) [31].The
difference in city size also translates to the differences in
public transit networks present in both cities (Table I).

Table I
BUS NETWORK CHARACTERISTICS CHT AND TARC

Statatistics CHT TARC
Routes 26 46
Stops 571 4391
Total trips 1252 1917
Betweenness centrality avg. 0.04896 0.00829
In-degree centrality avg. 0.00210 0.00025

B. Minimizing Latency

The performance of CELF-MDD was compared to be-
tweenness centrality (BC) and in-degree centrality (IC) in
terms of network latency minimization. For each algorithm,
the top k stops generated were selected as edge nodes,
where k is the budget. The centrality metrics were computed
on graph weighted with latency. Simulations were run with
the selected edge node set using the simulation parameters
outlined in Table II. Consistent with the influence function
in IV-A, the upper bound value specified in Table II is
assigned as the penalty value (delay) for undelivered data.
Figure 2a and 2b show the average network latency of various
budgets using each algorithm.

For CHT, we observe that CELF-MDD consistently out-
performs both BC and IC by ⇡ 20 minutes or higher. In
addition, there is very little decrease in delay after first 5
edge nodes have been selected when using CELF-MDD. For
TARC, we observe that CELF-MDD consistently outperforms
both BC and IC by ⇡ 45 minutes or higher. There is also
minimal decrease in delay after the first 9 edge nodes have
been selected when using CELF-MDD. For CHT and TARC,
the CELF-MDD algorithm can effectively serve the whole
network with 5 and 9 well placed edge nodes, respectively.

Table II
SIMULATION AND SCENERIO PARAMETERS

Random generator seeds 0:1:100
Simulation time window 1:00:00-24:00:00
Time penalty/maximum-latency (hours) 25
Number of sensors 30%⇥ |stops|
Sensor data generation frequency (minutes) U(1, 120)
Number of sensor scenarios 5
Number of sensors for scenarios U(30, 40)
Budget 1:1:15

VII. CONCLUSION

This work addresses the problem of efficient edge node
placement in low-cost smart cities that opportunistically uti-
lize public transit networks as data mules. We introduced the
MDD optimization problem, formulated it as an IM problem
and proposed an IM heuristic that considers the layout of
the city and various sensor placement options in minimizing
latency. Experiments were carried out using public transport
networks in two cities in the United States; Chapel-Hill and
Louisville. The results show that our algorithm outperforms
traditional centrality measures by reducing network latency
at a lower cost, indicating that our algorithm is effective in
determining the best locations to place edge nodes such that
delivery delay is minimized without exceeding a budget.

REFERENCES

[1] P. Hayat, “Smart cities: A global perspective,” India Quarterly,
vol. 72, no. 2, pp. 177–191, 6 2016. [Online]. Available: http:
//journals.sagepub.com/doi/10.1177/0974928416637930

[2] L. Guevara and F. Auat Cheein, “The role of 5g technologies: Chal-
lenges in smart cities and intelligent transportation systems,” Sustain-
ability, vol. 12, no. 16, p. 6469, 2020.

PerAwareCity 2021: 6th IEEE International Workshop on Pervasive Context-Aware Smart Cities and Intelligent
Transport System

146

(a) (b)

Figure 2. (a) Average network latency for CHT (b) Average network latency for TARC.

[3] J. Paradells, C. Gómez, I. Demirkol, J. Oller, and M. Catalan, “Infras-
tructureless smart cities. Use cases and performance,” 2014 Interna-
tional Conference on Smart Communications in Network Technologies,
SaCoNeT 2014, 2014.

[4] Deloitte, “The challenge of paying for smart cities projects,” Tech. Rep.,
2018. [Online]. Available: http://dx.doi.org/10.14257/ijfgcn.2014.7.1.15

[5] T. R. Dillahunt and T. C. Veinot, “Getting there: Barriers and
facilitators to transportation access in underserved communities,” ACM
Trans. Comput.-Hum. Interact., vol. 25, no. 5, Oct. 2018. [Online].
Available: https://doi.org/10.1145/3233985

[6] SmartCitiesWorld, “Smart cities : understanding the challenges and
opportunities,” Tech. Rep.

[7] Cisco, “Cisco annual internet report 2018-2023,” 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
pdf

[8] D. Loghin, S. Cai, G. Chen, T. T. A. Dinh, F. Fan, Q. Lin, J. Ng, B. C.
Ooi, X. Sun, Q.-T. Ta et al., “The disruptions of 5g on data-driven
technologies and applications,” IEEE Transactions on Knowledge and
Data Engineering, vol. 32, no. 6, pp. 1179–1198, 2020.

[9] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J.
Ramos-Munoz, and J. M. Lopez-Soler, “A survey on 5g usage scenarios
and traffic models,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 2, pp. 905–929, 2020.

[10] O. Choi, S. Kim, J. Jeong, H. W. Lee, and S. Chong, “Delay-Optimal
Data Forwarding in Vehicular Sensor Networks,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 8, pp. 6389–6402, 2016.

[11] C. Giannini, P. Calegari, C. Buratti, and R. Verdone, “Delay tolerant
network for smart city: Exploiting bus mobility,” in 2016 AEIT Inter-
national Annual Conference (AEIT), Oct 2016, pp. 1–6.

[12] C. E. Baker, A. Starke, T. G. Hill-Jarrett, and J. McNair, “In vivo
evaluation of the secure opportunistic schemes middleware using a delay
tolerant social network,” in Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on. IEEE, 2017, pp. 2537–
2542.

[13] O. Madamori, E. Max-Onapkoya, C. Grant, and C. E. Baker, “Using
Delay Tolerant Networks as a Backbone for Low-cost Smart Cities,”
in 5th IEEE International Conference on Smart Computing (SMART-
COMP), Washington D.C., USA, 2019.

[14] T. E. Amah, M. Kamat, K. A. Bakar, W. Moreira, A. Oliveira Jr,
and M. A. Batista, “Preparing opportunistic networks for smart cities:
Collecting sensed data with minimal knowledge,” Journal of Parallel
and Distributed Computing, vol. 135, pp. 21–55, 2020.

[15] P. Hui and A. Lindgren, “Phase transitions of opportunistic commu-
nication,” in Proceedings of the third ACM workshop on Challenged
networks. ACM, 2008, pp. 73–80.

[16] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn
protocol evaluation,” in Proceedings of the 2nd international conference
on simulation tools and techniques. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering),
2009, p. 55.

[17] R. Almeida, R. Oliveira, M. Luı́s, C. Senna, and S. Sargento, “A multi-
technology communication platform for urban mobile sensing,” Sensors,
vol. 18, no. 4, p. 1184, 2018.

[18] F. Raissi, S. Yangui, and F. Camps, “Autonomous cars, 5g mobile
networks and smart cities: Beyond the hype,” in 2019 IEEE 28th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE). IEEE, 2019, pp. 180–185.

[19] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Falout-
sos, “Efficient sensor placement optimization for securing large water
distribution networks,” Journal of Water Resources Planning and Man-
agement, vol. 134, no. 6, pp. 516–526, 2008.

[20] F. Xhafa, C. Sánchez, A. Barolli, and M. Takizawa, “Solving mesh
router nodes placement problem in wireless mesh networks by tabu
search algorithm,” Journal of Computer and System Sciences, vol. 81,
no. 8, pp. 1417–1428, 2015.

[21] M. Newman, Networks: An Introduction. New York, NY, USA: Oxford
University Press, Inc., 2010.

[22] W. Chen and S.-H. Teng, “Interplay between social influence and
network centrality: a comparative study on shapley centrality and single-
node-influence centrality,” in Proceedings of the 26th international
conference on world wide web, 2017, pp. 967–976.

[23] H. Soroush, N. Banerjee, A. Balasubramanian, M. D. Corner, B. N.
Levine, and B. Lynn, “DOME: a diverse outdoor mobile testbed,”
Proceedings of the 1st ACM International Workshop on Hot Topics
of Planet-Scale Mobility Measurements, pp. 1–6, 2009.

[24] T. R. Henderson, M. Lacage, and G. F. Riley, “Network Simulations
with the ns-3 Simulator,” in SIGCOMM’08, 2008, p. 527. [Online].
Available: http://www.isi.edu/nsnam,

[25] D. Kempe, J. Kleinberg, and Tardos, “Maximizing the spread of
influence through a social network,” Theory of Computing, vol. 11,
pp. 105–147, 2003.

[26] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions-I,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265–294, 1978. [Online].
Available: https://www.researchgate.net/publication/242914003

[27] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2007, pp. 420–429.

[28] “GTFS Static Overview — Static Transit — Google Developers.”
[Online]. Available: https://developers.google.com/transit/gtfs/

[29] K. Butts, “Peartree: A library for converting transit data into a
directed graph for sketch network analysis.” 2018. [Online]. Available:
https://github.com/kuanb/peartree

[30] OpenMobilityOrg, “OpenMobilityData - Public transit feeds from
around the world.” [Online]. Available: https://transitfeeds.com/

[31] U.S. Census Bureau, “U.S. Census Bureau QuickFacts: UNITED
STATES,” 2016. [Online]. Available: https://www.census.gov/quickfacts

PerAwareCity 2021: 6th IEEE International Workshop on Pervasive Context-Aware Smart Cities and Intelligent
Transport System

147

