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Sensory modality, widely accepted as a key factor in the

functional organization of posterior cortical areas, also shapes

the organization of human frontal lobes. ‘Deep imaging,’ or the

practice of collecting a sizable amount of data on individual

subjects, offers significant advantages in revealing fine-scale

aspects of functional organization of the human brain. Here, we

review deep imaging approaches to mapping multiple sensory-

biased and multiple-demand regions within human lateral

frontal cortex. In addition, we discuss how deep imaging

methods can be transferred to large public data sets to further

extend functional mapping at the group level. We also review

how ‘connectome fingerprinting’ approaches, combined with

deep imaging, can be used to localize fine-grained functional

organization in individual subjects using resting-state data.

Finally, we summarize current ‘best practices’ for deep

imaging.
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Introduction
The accurate mapping of the functional architecture of

the frontal lobes presents a number of scientific chal-

lenges. In the human brain, frontal cortex appears to

consist of many small functional regions that exhibit

substantial anatomical variation across individuals.
www.sciencedirect.com 
Recent work has uncovered an increasingly fractionated

architecture, with many functionally distinct regions lying

within the larger regions defined by early fMRI studies

[1,2]. Unlike primary sensory or motor areas, these regions

typically exhibit modest levels of functional MRI activa-

tion for a variety of cognitive tasks. Because of the low

activation levels, frontal lobe researchers traditionally

average together the results from many subjects and

spatially smooth data in hopes of observing statistically

significant activation [3–5]. While that strategy provides

advantages in terms of statistical power, it may come at

the cost of obscuring fine-scale organization. In particular,

small, functionally distinct regions could potentially be

obscured and misinterpreted as large functionally homog-

enous regions. ‘Deep imaging,’ or the practice of collect-

ing a sizable amount of data on individual subjects, offers

significant advantages in revealing fine-scale aspects of

functional organization [6�,7��,8–11]. In this paper, we

discuss deep imaging approaches to mapping sensory-

biased and multiple-demand regions within human lat-

eral frontal cortex.

Sensory-biased frontal lobe regions
Sensory modality preference plays a fundamental role in

the functional organization of occipital, temporal, and

parietal cortex [12–15]; however, investigations of human

frontal lobe have long reported no specificity for sensory

modality [4,5,16–19]. This amodal view of human frontal

cortex contrasts with substantial non-human primate evi-

dence for strong sensory modality influences in lateral

frontal cortex [20,21��,22]. Through the use of deep

imaging fMRI methods and fine-scaled within-subject

analyses, we have shown across several studies that func-

tional organization of human frontal cortex does indeed

exhibit a substantial influence of sensory modality, with

multiple visual-biased and auditory-biased regions in

lateral frontal cortex. In Ref. [10], we presented subjects

with simultaneous streams of multiple visual and multiple

auditory stimuli and asked subjects to selectively attend

to only a single stimulus stream. The contrast of attend-

visual to attend-auditory revealed that the superior

branch of the precentral sulcus (sPCS) and the inferior

branch of the precentral sulcus (iPCS) were both selec-

tively driven by visual attention (Figure 1). Conversely,

the transverse gyrus intersecting the precentral sulcus

(tgPCS) and the caudal portion of the inferior frontal

sulcus and gyrus (cIFS/G) were both preferentially driven
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Comparison of single subject and group averaged analysis of sensory-biased organization. (a) Individual subject maps reveal multiple, bilateral

visual-biased (blue) and auditory-biased (yellow) regions in human lateral frontal cortex. The visual-biased regions are superior precentral sulcus

(sPCS) and inferior precentral sulcus (iPCS). The auditory-biased regions are the transverse gyrus intersecting precentral sulcus (tgPCS) and

caudal inferior frontal sulcus (cIFS). In contrast, (b) group analysis reveals only a single auditory-biased region in left hemisphere and a single

visual-biased region in right hemisphere. (c) Schematic of visual-biased (blue) and auditory-biased (orange) regions forming whole brain sensory

biased networks across frontal, parietal and temporal lobes. Figures reprinted from [10,44] with permission.
by auditory attention. These interdigitated sensory-

biased regions were observed bilaterally and robustly in

individual subjects, when the data were examined in

native space with no volumetric smoothing and minimal

spatial smoothing (3 mm) on the cortical surface

(Figure 1a). However, when the data were subjected to

group averaging in a common space, the interdigitated

pattern of sensory-biased regions was obscured and lost

(Figure 1b) — only a single visual-biased region in the

right hemisphere and a single auditory-biased region in

the left hemisphere persisted. These findings led us to

propose a schematic of frontal sensory biased regions and

their membership in whole brain networks supporting

sensory biased cognition. (Figure 1c) Another functional

study identified spatially separate visual-biased and audi-

tory-biased structures in LFC [23], whereas a structural

analysis identified complementary connectivity gradients

for audition and vision within lateral frontal cortex [24].

The findings of sensory-biased frontal lobe organization

[10] were replicated and extended by an fMRI investiga-

tion of visual and auditory working memory [11]. Subjects

performed a 2-back working memory (WM) task on
Current Opinion in Behavioral Sciences 2021, 40:169–177 
blocks of visual stimuli (faces) and auditory stimuli (ani-

mal sounds). In order to diminish the influence of verbal

strategies and to encourage reliance on sensory working

memory mechanisms, stimuli within a block were exem-

plars of a single category (e.g. female faces, cat sounds).

The contrast of visual 2-back WM to auditory 2-back WM

conditions revealed the same pattern of visual-biased

sPCS and iPCS interleaved with auditory-biased tgPCS

and cIFS/G as observed in Ref. [10]. The Noyce study

examined several of the same subjects of the Michalka

attention study approximately two years later and

observed a very high spatial correspondence of the loca-

tion of the individual sensory-biased regions within indi-

vidual subjects. Within-subject, cross-session replication

is a powerful validation method for deep imaging

methods.

These sensory-biased frontal regions are small, relative to

sensory-biased regions in posterior cortex. Additionally,

between-subject frontal lobe anatomicalvariabilityappears

to be on a similar spatial scale as the size of these areas. For

these reasons, group averaging of the interdigitated visual-

biasedandauditory-biasedregionseffectivelyblurredaway
www.sciencedirect.com
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theability toobservetheminourdata set. Theuseofsimilar

group averaging methods could account for prior failures to

observe both visual-biased and auditory-biased regions in

frontal cortex. Collectively, these results demonstrate the

power of deep imaging methods for observing fine-scale

functional organization in the human brain.

Multiple-demand versus sensory-biased
representations
Prior studies, including some that have emphasized

within-subject analyses, have reported that lateral frontal

cortex contains ‘multiple-demand’ regions that are

recruited by a broad range of cognitive task-demands

[4,25–27]. At first glance, the ‘sensory-biased’ account

might be viewed as contradictory to the ‘multiple-

demand’ account of lateral frontal cortical organization.

In order to examine the relationship between sensory-

biased regions and multiple-demand regions, we [11]

scanned subjects who performed 2-back auditory or visual

working memory tasks or performed sensory-motor con-

trols with equivalent stimuli and motor responses but no

working memory component. A group-average analysis of

the contrast of 2-back versus sensory-motor control, com-

bined across sensory modality, revealed bilateral swaths

of activation across the regions of lateral frontal cortex

(LFC) that contain sensory-biased regions (Figure 2a). In

addition, multiple-demand activation was observed in

pre-supplementary motor area (preSMA), anterior insula

cortex (AIC), and several regions in posterior cortex

including superior temporal gyrus/sulcus (STG/S) and

intraparietal sulcus (IPS). Within-subject analysis was

performed to examine working memory activation in each

sensory modality in these ROIs (Figure 2b–f). The pos-

terior cortical auditory-biased and visual-biased regions

(pAud, pVis) exhibited antagonistic interactions between

the sensory modalities, with modest suppression of acti-

vation during working memory (2-back versus control) for

the non-preferred modality. In contrast, all frontal areas of

interest exhibited some degree of working memory

recruitment in both sensory modalities. There was a

notable asymmetry between modalities, with auditory-

biased regions exhibiting relatively modest activation

during visual working memory and visual-biased regions

exhibiting more robust activation during auditory work-

ing memory. That is, multiple-demand activation is more

closely linked with the visual-biased network than with

the auditory-biased network in frontal cortex. Despite

exhibiting a degree of multiple-demand responsiveness,

the visual-biased regions still preferred visual working

memory over auditory working memory. In contrast, pre-

supplementary motor area (preSMA) and anterior insula

(AI) exhibited true multiple-demand behavior, with

equal responsiveness to working memory demands in

either sensory modality.

Although Ref. [11] clearly demonstrates a close link

between the visual-biased networks and multiple-
www.sciencedirect.com 
demand processing in frontal cortex, a number of funda-

mental questions remain. It is possible that multiple-

demand regions only partly overlap with frontal visual-

biased regions (and also with frontal auditory-biased

regions but to a lesser extent). Additionally, frontal lobe

organization might exhibit multiple, overlaid dimensions

of functionality. Ref. [10] demonstrated that the degree of

cross-modal recruitment of sensory-modality biased fron-

tal regions depended strongly on the informational nature

of the task. The ‘Modality Appropriateness Hypothesis’

of perception suggests that the modality best suited for a

perceptual task will be more strongly weighted in making

multi-sensory judgements [28]. Specifically, the auditory

system exhibits high fidelity for temporal information

while the visual system excels in coding spatial informa-

tion; these strengths of each modality complement the

weaknesses of the other modality. In Ref. [10], we pro-

posed the ‘domain recruitment hypothesis,’ that informa-

tion domain advantages of sensory modalities extend to

cross-modal recruitment of working memory networks.

In Ref. [10], a visual WM task that required subjects to

remember precise timing of a sequence strongly recruited

auditory-biased frontal regions, whereas as a similarly

difficult task with only spatial working memory demands

did not strongly recruit those areas. Conversely, an audi-

tory WM task with high spatial demands more strongly

recruited visual-biased frontal regions than did an audi-

tory temporal WM task with the same stimuli. In Ref.

[29], we demonstrated that the domain recruitment

extended to visually mapped regions of parietal cortex

as well for spatially demanding auditory WM.

Resting-state functional connectivity
networks
Resting-state functional MRI (rs-fMRI) scans, in which

participants are not given explicit cognitive tasks to

perform (other than ‘keep your eyes open and let your

mind wander’), are effective in revealing brain networks

across groups of individuals [2,30–32], but also can reveal

fine-scale individual differences in functional organiza-

tion [6�,7��,33]. We advocate for routinely including

rs-fMRI as part of deep imaging protocols. Here, we

discuss 3 potential uses: network-level validation in indi-

vidual subjects, application to large public datasets, and

connectome fingerprinting predictions.

In Refs. [10,34,35], we employed task fMRI data to define

multiple sensory-biased ROIs in individual subjects,

using the approaches described above. These ROIs were

then used as ‘seed’ regions to examine the patterns of

resting-state functional connectivity. In Refs. [10,35]

seed-to-seed functional connectivity analysis was per-

formed, by averaging the time courses across all voxels

or cortical surface vertices within each seed region in each

subject and then correlating time courses across possible

seed region pairs within a subject (See Figure 3a). This
Current Opinion in Behavioral Sciences 2021, 40:169–177
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Figure 2
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Multiple Demand and Sensory-Biased Regions in Frontal Cortex. (a) Group analysis of combined auditory and visual working memory versus

sensorimotor control conditions reveals a network of regions activated. (b) We characterized each area by computing its Multiple Demand Index

(MDI) in each individual subject, using a cosine transform of the ratio between visual and auditory WM responsiveness (each modality’s WM

versus control; see Noyce et al. [11] for details). The Multiple Demand Index ranges between �1 and 1. An MDI score of 1 indicates equal WM

activation in each sensory modality; 0 indicates strict selectivity for the preferred modality, and negative numbers reflect competitive interaction

between modalities, with activation in the preferred modality and suppression in the non-preferred modality. This analysis reveals that anterior

insula cortex (AIC) and pre-supplementary motor area (preSMA) are truly multiple-demand areas responding equally well to working memory in

either sensory modality. In contrast, auditory-biased frontal regions tgPCS and cIFS/G reveal low levels of recruitment during visual working

memory. sPCS and iPCS exhibit an intermediate degree of multiple-demand activity, exhibiting response for auditory working memory, but

stronger responses for visual working memory. Posterior sensory regions (STG/S and IPS) are the most sensory-specific. Figures reprinted from

[11] with permission.

Current Opinion in Behavioral Sciences 2021, 40:169–177 www.sciencedirect.com
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analysis revealed that even though frontal regions sPCS,

tgPCS, iPCS, and cIFS/G are relatively small and alter-

nate by sensory preference, they exhibit strong selectivity

for preferred sensory modality in their connectivity to

posterior cortical regions. Visual-biased sPCS and iPCS

exhibited strong connectivity with posterior visual corti-

cal regions and negligible connectivity with posterior

auditory cortical regions. Conversely, auditory-biased

tgPCS and cIFS/G were strongly connected to posterior

auditory cortical regions and negligibly connected to

posterior visual regions. Seed-to-seed correlations were

also combined across subjects and hierarchical clustering

analysis was applied to examine reliability in functional

network structure. This revealed strong segregation of

visual-biased and auditory-biased networks spanning

frontal and posterior cortex (Figure 3c). These resting-

state functional connectivity analyses therefore provide

important confirmation of the task-fMRI findings on

sensory-biased frontal cortical organization.

The proliferation of public datasets (e.g. Human Con-

nectome Project – HCP) provides another opportunity to

utilize resting-state and task data. Although public data sets
Figure 3

(a)
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(

Resting-state functional connectivity analysis. (a),(c) Individual Subject ROIs

frontal and posterior cortex. Seed-to-seed functional connectivity analysis c

networks with traditionally identified sensory biased regions in posterior cor

imaging studies in our lab were used to construct probabilistic ROIs and th

469 subjects in the Human Connectome Project. This analysis not only con

pointed to additional candidate sensory-biased regions (d). Figures reprinte
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are unlikely to contain the specific task contrast examined

in in-lab deep imaging investigations, many such data sets

do include high-quality resting-state data. In Ref. [36], we

created probabilistic ROIs for each frontal and posterior

sensory-biased region identified in 9 subjects from Ref. [10]

and used those ROIs to examine resting-state data in

469 subjects of the HCP data set [37]. These analyses

(Figure 3b) confirmed the network findings of our small

in-lab study. Although there was some loss of specificity, as

would be expected from applying probabilistic ROIs, the

large N afforded by the HCP data set allowed us to observe

clear patterns. More generally, this approach of mapping

probabilistic ROIs from in-lab deep imaging studies onto

rs-fMRI data of large public data sets offers a low-cost

means of validating findings across large populations.

In addition to seed-to-seed analyses, seed-to-vertex rest-

ing-state connectivity analysis can be performed in order

to more broadly examine network connectivity. In Ref.

[36], we again applied probabilistic ROIs drawn from a

small set of in-lab subjects to HCP resting-state data. We

contrasted functional connectivity maps for auditory and

visual posterior cortical seeds by taking the difference of
d)

b)
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the z-score maps, thresholded to exclude anticorrelation.

This analysis (Figure 3d) not only provided a map-based

confirmation of the sensory-biased connectivity of sPCS,

iPCS, tgPCS, and cIFS/G, but also revealed more anterior

sensory-biased candidate regions, including mid-inferior

frontal sulcus (midIFS; visual-biased) and frontal opercu-

lum (FO; auditory-biased). These maps can then be used

to guide further in-lab task-based investigations [35].

Seed-to-vertex maps can also be constructed for in-lab

deep imaging data sets [34]. Since the task-defined seeds

and the resting-state data come from the same individual

subjects, this approach can achieve greater localization

specificity than cross-subject applications with out-of-lab

datasets. Using this approach, we have revealed func-

tional gradients of organization within parietal cortex [34]

and additional visual-biased and auditory-biased regions

with frontal cortex [35].

Connectome fingerprinting – connectivity
predicts function
The localization of small functional cortical regions in

individual subjects presents logistical and financial chal-

lenges. Although the deep imaging methods described

above and in other articles in this special issue can identify

small cortical regions effectively, deep imaging requires

collection of a substantial amount of task-fMRI data per

subject. This not only places a high price tag on
Figure 4

(a) (c)

(b)

‘Connectome Fingerprinting’ predicts individual subject functional organizat

task and resting-state scans on a limited number of subjects can be used t

organization across a broad region of interest. (b) With a CF model in hand

connectome of novel individuals and to then to predict their task activation.

individual subject predictions of task activation that greatly exceed the pred

with permission.
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functional localization, in terms of scanner time, but

also the prolonged scan sessions required for deep imag-

ing may not be feasible for clinical subjects, children or

other subject populations. Connectome Fingerprinting

[38–40,41��,42�,43,44], a machine learning approach, can

leverage high-quality deep imaging data from one set of

subjects to accurately predict functional organization in

novel individual subjects from a modest amount of

resting-state fMRI data, without the need for deep

imaging on these novel subjects.

Passingham et al. [41��] proposed that each cortical area

has a unique pattern of cortico-cortical connections — a

‘connectional fingerprint’ — that could be used to func-

tionally localize cortical areas in individuals. Connec-

tome Fingerprinting (CF) approaches implement this

idea in a two-stage process. First, a structure-function

CF model of a cortical region (search space) is con-

structed from connectivity and task data in a population

of model-training subjects (Figure 4a). Then for each

novel subject connectivity data, the subject’s unique

connectome, is collected and passed through the model to

predict the subject’s task activation and/or functional

organization (Figure 4b,c). High quality individual sub-

ject task data, which is obtained in deep imaging

studies, is ideal for CF model construction. In addition,

high quality connectivity data — either functional
Current Opinion in Behavioral Sciences 
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connectivity, as obtained from resting-state fMRI

[40,43,44] or structural connectivity, as obtained from

diffusion tractography [39,42�] — must be collected on

the same subjects. Any of several general cortical par-

cellation schemes (e.g. Refs. [2,31,32]) can be used in

the connectivity analysis. CF models relating connec-

tivity and function can be constructed using penalized

regression (e.g. ridge) or deep neural network methods.

The resulting CF model of a cortical area is simply a

series of weights with dimensionality of the parcellation

scheme. An individual’s task activation within a cortical

region can then be predicted by applying the subject’s

connectome (i.e. connectivity matrix) to the CF model

(Figure 4b).

In Ref. [44], we applied CF modeling to two modestly

sized (n = 9, n = 14) deep imaging investigations of

sensory-biased functional organization in frontal lobes

[10,11]. In this analysis, we defined a single lateral

frontal cortical search space in each hemisphere (black

lines Figure 4c), which was large enough to enclose

sPCS, tgPCS, iPCS, and cIFS with high probability. In

order to demonstrate the effectiveness of the CF modeling

approach in these data sets, we employed a leave-one-

subject-out cross-validation procedure, comparing the

CF predicted activation with the actual task activation

for the left-out subject. CF model predictions

(Figure 4c) produced high-fidelity predictions of task

activation in individual subjects (spatial correlation of

r = 0.67 in RH and r = 0.71 in LH) that greatly out-

performed predictions based on group average activity

(r = 0.18 in RH and r = 0.22 in LH). In nearly every

instance a subject’s own connectome produced more accu-

rate task activation predictions than the application of any

other subject’s connectome, even when that other sub-

ject’s data was used in construction of the CF model.

CF models of functional organization that are con-

structed and validated using deep imaging data sets

can be released to the public for broader application. In

our analysis �20 min of resting-state data (along with

T1 structural scans for standard cortical surface recon-

struction [Freesurfer]) yielded high quality predictions

of task activity. Even a modest 6 min of resting-state

data yielded CF predictions on par with typical cross-

task localization methods (e.g. 3 repeats of 4.5 min task

runs). The modest scanning requirements of the appli-

cation of Connectome Fingerprinting models open

application to clinical and other populations for whom

deep scanning on highly challenging cognitive tasks is

not feasible [45,46]. These applications will likely ben-

efit from further advancements in cross-scanner harmo-

nization efforts [38]. Note that a single set of resting-

state data can be applied to each of many CF models,

constructed for different tasks and/or brain regions to

yield a broad set of individual-subject functional

localizations. Therefore, there is considerable merit in
www.sciencedirect.com 
compiling deep imaging data sets on a broad range of

tasks in support of CF models.

Best practices in deep imaging
Deep imaging has the potential to reveal fine-scale func-

tional architecture that can be obscured by group-level

analyses. There are notable trade-offs implicit in deep

imaging approaches, since investing resources into collect-

ing ample amounts of data per subject implies a potential

cost in terms of the number of subjects and/or number of

task contrasts studied. We consider four ‘best practices’

considerations for deep imaging fMRI experiments: Cog-

nitive Task Design; Resting-State fMRI; Research Parti-

cipants; and Analysis Procedures. Although a number of

these factors are helpful across a range of possible experi-

mental objectives, the deep imaging investment in a small

number of subjects and possibly a small number of tasks

places a high premium on these factors.

Cognitive task design

Since frontal lobe structures might be driven by any of a

variety of cognitive factors, it is vital to equate the

difficulty of contrasted conditions, if one wishes to draw

specific conclusions. Therefore, it is best to pilot test the

key conditions in behavioral studies and to fine-tune the

experimental design to match performance across condi-

tions. Moreover, since deep imaging methods focus on

the analysis of individual research participants, it is criti-

cal to produce robust task activation in as many subjects

and regions of interest as possible. Therefore, tasks

should be highly demanding of cognitive resources, yet

within the performance capacity of each individual. We

recommend pre-training each participant in the task in a

separate behavioral session before the day of scanning.

During this training session, the task might initially be

presented in an easy format, with the difficulty then

ramped up as the subject learns to perform the task.

Ideally, subject performance will reach a plateau that is

well below ‘ceiling’ level, before the scan day. The use of

multiple tasks within each subject, even if across sessions,

also offers a spatial resolution advantage over group

studies in examining fine-scale functional organization.

Resting-state fMRI

Resting-state fMRI can be combined with task fMRI

data to support investigations of network organization.

Application to mining large data sets and to individual

subject connectome fingerprinting is described above in

detail. Existing resting-state protocols collect anywhere

from 6�60 min of data. Although more data is almost

always better, there appears to be an inflection point in

performance at about 18�20 min of resting-state data

[7��,44]. This is a relatively small further investment

beyond the task data collection, yet it opens up a

number of potential revealing avenues for analysis of

functional organization.
Current Opinion in Behavioral Sciences 2021, 40:169–177
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Research participants

Given the high investment per subject with deep imaging

approaches, there is a premium on the quality of data from

each subject. We recommend working with individuals

who are both experienced with fMRI scanning, and thus

less prone to head movement, and with prolonged per-

formance of cognitive experimental tasks, thus more

likely to perform strongly for many repeated task runs.

Researchers should be cognizant of the limitations of a

smaller sample size for generalization to a broader popu-

lation and recruit an appropriately diverse group of

participants.

Data acquisition and analysis

Deep imaging protocols should acquire high-resolution

anatomical images and perform individual subject anal-

yses of fMRI data with minimal to no transformation of

the data outside of native space in order to retain high

spatial resolution advantages. Cortical analyses are best

done in a surface-based pipeline with minimal (e.g. 3 mm)

surface-based smoothing and no volume smoothing; sub-

cortical analyses, which require volume-based analysis,

will typically benefit from modest smoothing (e.g. 2�3

mm) in the volume. Individual subject ROIs, which are

often hand-drawn, can be validated by compared activa-

tion patters across or within sessions (e.g. split-half reli-

ability). Probabilistic ROI maps can be constructed from

the subject population to characterize the location and

anatomical variability of regions.
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