

Accessible Block-Based Programming for K-12
Students with Vision Impairments.

Meenakshi Das1, Daniela Marghitu1, and Ayanna Howard2

1
Auburn University, Auburn AL 36830, USA

2
Georgia Institute of Technology, Atlanta GA 30332, USA

Abstract. Block-based programming applications, such as MIT’s Scratch and

Blockly Games, are commonly used to teach K-12 students to code. Due to the

COVID-19 pandemic, many K-12 students are attending online coding camps,

which teach programming using these block-based applications. However,

these applications are not accessible to the Blind/Low Vision (BLV)

population since they neither produce audio output nor are screen reader

accessible. In this paper, we describe a solution to make block-based

programming accessible to BLV students using Google’s latest Keyboard

Navigation and present its evaluation with four individuals with vision

impairments. We distill our findings as recommendations to developers who

may want to make their Block-based programming application accessible to

individuals with vision impairments.

Keywords: Accessibility · Block-Based Programming · Blind/Low Vision.

1 Introduction

Block-based programming relies on visual cues and structures to convey

information to users. In addition, they heavily utilize drag and drop gesture to

create computer programs. This makes it inaccessible for people with visual

impairments to interact with them. We reviewed the current approaches to make

Block-based programming accessible and used the following research questions

in guiding us to develop our solution:

1. What interaction techniques can individuals with vision impairments use to

understand the structure of a block-based program?

2. What interaction techniques can individuals with vision impairments use to

receive non-visual feedback from a block-based program?

3. What interaction techniques can individuals with vision impairments use to

debug a block-based program?

4. What are the benefits of a screen-reader vs a non-screen reader approach?

Our contributions ultimately built upon the Keyboard Navigation feature [1]

which was released recently by Blockly. Since many Block-based applications

utilize the Google Blockly library as a base for their application, we concur building

2 Meenakshi Das, Daniela Marghitu, and Ayanna Howard

upon their already developed accessible keyboard navigation solution is the best

standard approach.

2 Related Work

There has been substantial effort in making Block-based programming accessible

to visually impaired individuals. Google first released their accessible version of

Blockly which replaced the drag and drop layout with a text layout for

screenreader compatibility [2]. Stephanie Ludi’s work mainly focused on adding

screen reader capability to Blockly, along with keyboard navigation, while

maintaining its original block-based interface [2]. Google later released their own

version of Blockly with Keyboard navigation for its blocks [1]. Although the blocks

in this current version are navigable by keyboard, they neither produce audio

output nor are accessible via screen readers. Lauren Milne and Richard Ladner

created Blocks4all, an iOS touch-based tablet application which is accessible via

VoiceOver [3]. Varsha Kaushik and Clayton Lewis have proposed a non-visual

blocks language called Psuedospatial blocks (PB), which distorts spatial layout,

and is based on T.V. Raman’s idea that instead of making spatial visual data

accessible to screen-readers, the focus should be on making better non-visual

representations of information. Their application uses synthetic speech instead of

a screen-reader for providing output, although they state it will be possible to add

screen reader support to it as well [4].

3 Our solution

Custom Text-to-speech Our initial data collection shows that not all K12 students

are proficient in using a screen-reader. Some of them come from low social-

economic backgrounds and may not have had the financial means to learn to use

a screen-reader. One of the most popular and affordable screen readers, Job Access

with Speech(JAWS), also costs about 90 dollars a year. Mac computers come with

a free screen-reader called VoiceOver, but a Mac itself is quite expensive.

Moreover, some K-12 students might have lost their eyesight in recent times, and

not be adept in using a screen-reader yet which has a steep learning curve. When

Google conducted user studies with their initial Accessible Blockly approach, they

found that many students were not comfortable using a screen-reader [5]. Hence,

we developed a non-screen reader, self-voicing solution using synthetic speech

and interactive text to speech approaches. The ability to use a screen-reader

adeptly should not be a prerequisite or a barrier to learning to code, and hence we

took this approach.

Retaining spatiality The Individuals with Disabilities Education Act(IDEA)

requires that students with disabilities receive education in the least restrictive

environment, i.e alongside their non-disabled peers. We make this possible by

 Title Suppressed Due to Excessive Length 3

using a spatial approach to convey information, instead of non-visual approaches

which distort spatiality. Although non-visual approaches have been shown to have

immense learning benefits for blind users [6], they are not very useful if blind and

non-blind individuals want to collaborate and work together. In a research

conducted on access overlays for blind users [7], it was shown that, “Access

techniques that distort or remove spatial information may reduce users’ spatial

understanding and memory”; furthermore, this distortion makes it more difficult

for a blind person to collaborate with sighted peers. Peer programming is a

common method through which not only students, but adults at software

companies code. Our approach maintains a spatial yet accessible organization of

the block-based coding platform, making it easier for sighted and non-sighted

peers to collaborate and learn programming together.

Auditory Cues Auditory Cues such as Earcons are distinctive sounds that convey

certain information. In studies for teaching robotics to BLV K-12 students, earcons

were shown to improve learning of coding concepts [8]. In addition, using non-

speech audio such as earcons can greatly reduce the cognitive burden that comes

with sole speech output [9]. Blockly already features some auditory cues such as

a click sound to denote the deletion of a block. Research has shown that sounds

produced from different spatial locations are easier to distinguish [10]. For

example, when you play video games, you can hear certain audio sounds from only

the left/right ear of the headphones or certain sounds can feel “nearer” than

others. Audio software enables this process by specifying audio coordinates in a

3D space. This type of binaural spatialization has been effective in math notation

feedback and its use has also been investigated in Pencil Code (a blockbased

coding platform) with positive outcomes [11]. We used this technique to assist

students to understand the opening and closing of nested code blocks. For

example, a click sound is heard through the left and right side of the earphones

respectively to denote the opening and closing of nested blocks.

4 Technical Details

Blockly fires an event for almost every change on its workspace [12]. All events

contain properties that provide further information about that event. This was the

key in developing the voice functionality as we could listen to specific event details

on the workspace and convey them via speech to the user. Blockly currently has

three cursors in their Keyboard Navigation functionality to navigate through the

blocks. We chose the line cursor with few modifications since it closely mimicked

a text editor - with the ability to move up and down and next and previous lines of

code.

Adding Text to Speech Text to speech was added for the following:

4 Meenakshi Das, Daniela Marghitu, and Ayanna Howard

1. Toolbox: As the user navigates the toolbox through its various categories and

blocks, multiple events are fired. The workspace listens to these events and

uses the Web Speech API to communicate the details of that event to the user.

In this case, it would be the name of a category or a block.

2. Block connections: Blocks have several connections such as an input

connection, block connection, previous connection, next connection, and field

connections. Fig 1 shows the different types of connections a block may have.

Specific values from these connections were listened to and sent to Web

Speech API, and then ultimately conveyed to the user.

Fig.1. Image from Google Blockly’s Keyboard Navigation Page which shows different

connections of an if-do and logic-compare block.

3. Marking a connection: In order to connect a block to an existing block onthe

workspace, a connection has to be marked on the latter. This can be done

through navigating to the desired connection and pressing the Enter key. This

leads to the connection color flickering between red and blue. Since there is

no audio feedback for this feature, we listened to this marking event and sent

the spoken speech Location marked to the Web Speech API.

4. Connecting two blocks: After marking the desired connection on a block ona

workspace, the user proceeds to add a block from the toolbox to connect to

that block. We added spoken speech which conveyed the moved block that was

connected to the parent block on the workspace. For example, if the repeat

block was already on the workplace, and the print block was to be inserted

from the toolbox to the repeat block’s do connection, the feedback would say,

Print block connected to the repeat block. This way the user knows whether the

block was inserted into the place it was intended to. If the two blocks are

incompatible and cannot be connected, the feedback says, This block can not

be inserted at the marked location.

 Title Suppressed Due to Excessive Length 5

Creating and Firing Custom Events At some of the places which required a voice

feedback, there was no event present. An example of the location is the dropdown

options of a field on a block. In Fig 2, a user was able to navigate up and down the

dropdown list; however, no event was fired. Hence, there was no capability to add

the voice feedback. After consulting with the Google Blockly team on their forum,

we created our own custom events at the needed locations. In our case, for the Fig

2 scenario, we added an UI event to go up and down the dropdown field in the core

Blockly code, fired and listened to the event, which ultimately allowed us to add

the voice feedback .

Fig.2. Image from Google Blockly which shows the dropdown options of a logic compare

block.

Adding Keyboard Shortcuts Some features of Blockly such as accessing the Tooltip,

deleting a block, are not accessible via the keyboard. A Tooltip in Blockly is a user

interface element which provides more information on what a block does when

you hover over it with a mouse. Hence, after consulting with the Blockly team on

their forum, we added custom keyboard shortcuts for these features so a blind

user could access them via the keyboard. After selecting a block, the user would

have to press CTRL + T to access the tooltip and press the DELETE key to delete a

block. In addition to this, we also added a shortcut to get the text representation

of a block, including its nested children. For example, on pressing CTRL + I on the

outer block in Fig 3, the user would hear, if (count = 3) do print “ Hello ”.

6 Meenakshi Das, Daniela Marghitu, and Ayanna Howard

Fig.3. Image from Google Blockly of a block of code which says if (count = 3) do print “ Hello

”.

Adding Auditory cues via Binaural Spatialization To signify the opening and closing

of a nested block, we made use of binaural spatialization, i.e., directing audio

through the left or right audio channel. This was developed using the

StereoPannerNode interface of the Web Audio API which provides the capability

of panning an audio stream through the left or right. For example, in Fig 4, when

the cursor is on print block’s top connection(as denoted with a red line), a beep is

heard through the left audio channel to denote opening of the nested block.

Similarly, when the cursor is on print block’s bottom connection(as denoted with a

blue line), a beep is heard through the right audio channel to denote closing of the

nested block.

Fig.4. Image from Google Blockly of a block of code which says if (count = 3) do print “ Hello

”. Print block’s top connection is marked with red, and bottom connection marked with blue.

Accessing Output The focus of this work is on Accessible input, i.e making block

navigation, creating, inserting and moving blocks accessible to users with vision

impairments. For the purposes of testing, we added output in the form of print

statements. Participants were asked to write code which printed some text

depending upon the logic of the code. This is explained further in the evaluation

section. We are currently experimenting adding voice feedback to outputs of code

in a robotic simulation as well. This involves the use of auditory cues and audio

descriptions to let user know of the robot’s movement and position in a

simulation.

 Title Suppressed Due to Excessive Length 7

5 Evaluation

We evaluated our solution with four participants of whose visual impairments

ranged from low vision to total blindness. Two of these were experienced

programmers, while the other two were low or inexperienced in programming.

The was done to get a variety of feedback. Table 1 below shows participant’s

demographic data.

The participants were given some simple warm-up exercises followed by a

combination of some, all or related tasks below :
Table 1. Participant details

Participant Age Gender Level of Corrected Vision Screen Reader Proficiency

P1 18-

22
Female 20/200 to 20/400 severe low vision Moderate

P2 27-

35
Male Total Blindness with Light Perception Expert

P3 14-

17
Female 20/70 to 20/160: moderate low vision Low

P4 14-

17
Male more than 20/1,000: near total blindness Moderate

1. Write code using the if-do block which print’s Hello world if the value of

variable test is equal to 3.

2. Write code using the repeat while block which prints Hello world until the

value of a variable named apple reaches 10.

3. Debugging: The following code in Fig 5 is supposed to print Hello world until

the value of count reaches 3. Find the bug on one line.

4. Debugging: The following code in Fig 6 is supposed to print Hello world until

the value of count reaches 3. Find the bug on one line.

Fig.5. A block of code with the following text representation: set Count to 1, repeat while
(Count greater than or equal to 3) do print “ Hello World! ” , set Count to (Count + 1), end of
do.

8 Meenakshi Das, Daniela Marghitu, and Ayanna Howard

Participant 1: Experienced Programmer working as a Software Engineer in

Industry.

Observation: Participant at first was trying to connect two blocks without marking

a connection on the workspace. Due to this, the blocks were simply inserted into

the workspace and not connected to the desired block. She tried to move the block

from the workspace and connect to the desired block, however current

functionality only allows blocks to be connected via toolbox insertion. After this

understanding, she was successfully able to complete all the tasks. However, she

did not realize that binaural spatialization was used for the nested blocks until

specifically told about it. We concur she was still able to debug the statements

Fig.6. A block of code with the following text representation: set Count to 1, repeat while
(Count lesser than or equal to 3) do print “ Hello World! ” end of do, set Count to (Count + 1).

successfully due to her having light perception and thus using it to understand the

nested structure.

Feedback: Participant utilized the audio feedback most of the time with light

perception guiding her to understand the structure of the code. As an experienced

programmer who does not write code in linear fashion, the major frustration of

the participant was not being able to move blocks across the workspace. As a

person with moderate screen reader proficiency, she wanted a capability to

increase speed of the audio feedback and more options to control the voice and

verbosity. The participant liked the navigation and controls and found them easy

to work with.

Participant 2: Experienced Programmer working towards a PhD in Computer

Science.

Observation: When the participant tried to create a variable, there was no audio

feedback provided as to whether the application was ready to take the variable

name as input. This is due to the fact that when one clicks on the create variable

button in Blockly, a JavaScript alert box pops up asking to type the variable name.

 Title Suppressed Due to Excessive Length 9

In other words, this is not a part of the Blockly workspace, hence there were no

audio feedback provided. We guided the participant to creating the variable in this

case. This could have been mitigated if his screen-reader was on to read

information outside of the workspace or if synthetic speech was added for this

particular instance.

Another instance where we guided the participant was while changing the value

of a math block. A value of math block can be changed by navigating to its field and

pressing the Enter Key which leads to the current value being selected and thus

can be changed. However, no audio feedback was provided after pressing the

Enter Key. Hence, we guided the participant in this scenario as well.

In the current cursor, a user can navigate up and down lines/connections of code

using keys W and S respectively and can navigate in and out a line of code by using

keys A and D respectively. However, if reached the start or end of a block using

keys A and D, the cursor will automatically reach the first element of the block on

new line, but not the new line’s top or input connection. In other words, no block

could be marked between those two lines. This caused some confusion to the user

as he did not know whether a new line had started. Fig 7 illustrates this issue. If a

user keeps pressing the D key starting from the if element on line 1, they will

eventually reach the do element as marked by orange square in the figure.

However, access to the do connection is needed to insert a block between if and do,

as illustrated by a black line in the figure. Using the D key does not reach this do

connection. Constraining how a user navigates between lines can fix this issue. The

participant completed all given tasks.

Feedback: The participant liked the workflow of marking and inserting blocks. He

also liked the binaural spatialization to understand the structure of the code once

we explained what they meant. The participant said they would have liked more

feedback as to how the toolbox was arranged with a more hierarchical description.

Fig.7. A block of code with the following text representation: set Count to 1, repeat while

(Count lesser than or equal to 3) do.

10 Meenakshi Das, Daniela Marghitu, and Ayanna Howard

Participant 3: High School Student with minimal programming experience.

Observation: The participant seemed to use a combination of mouse, zoom

function and keyboard since she had moderate low vision. The participant

experienced a bit of learning curve trying to understand the different connections

and markings but once got used to it, was able to write code using blocks. She also

had some understanding issues with the cursor as did participant 2. She did

understand when a new line had started due to her moderate vision. However,

same as participant 2, needed some help to navigate to the input connection of the

next line as pressing the D key moved to the first element on the next line, and not

its input connection.

Feedback: The participant said the software was easy to understand and the tasks

helped her understand the basics of computer programming. She preferred having

this synthetic voice than a screen reader because she felt that screen readers

repeat words and read out unnecessary information. This can also be due to the

fact she had low screen reader proficiency. She also mentioned she would have

liked a custom zoom feature to zoom on individual blocks.

Participant 4: High School Student with no programming experience.

Observation: Due to technical difficulties arising from a Bluetooth Keyboard, we

shifted our testing approach to a purely audio based one. Using our audio feedback

solution, we went over a couple programs and asked the participant to answer

what the program printed. The programs contained if-do, logic compare and

repeat-while blocks. After the participant got used to do the synthethic speech, he

was able to answer most of the questions correctly. However, this was purely

based on the researcher operating the keyboard and the participant only listening

to the audio feedback. The participant had keyboarding skills and we concur with

practice the participant should be able to use the keyboard commands

successfully as well.

Feedback: We did not get any feedback on the Keyboard Navigation. However, the

participant mentioned that they believed with practice they could get a strong

understanding of the application.

6 Recommendations for Improvements

We propose working on the following to improve the experience informed by our

usability studies described above:

 Title Suppressed Due to Excessive Length 11

1. Personalization: Add controls to control the speed and verbosity of synthetic

speech so users with different levels of audio comprehension have that

flexibility.

2. Moving Blocks: Currently, the cursor will not move to a block unless theblock

does not have a previous or next connection(which is unlike in case of most

blocks), and hence moving blocks on workspace is not possible. We will

modify the cursor to add this functionality.

3. Improved Audio Feedback: We will add audio feedback to the creating

variable experience as explained in Observation data of Participant 2. Other

ways to fix that experience could be :

(a) move the create variable workflow to the Blockly workspace, as is in Open

Roberta [13].

(b) ask users to turn on screen-reader so content outside Blockly workspaceis

accessible to them.

We will also make granular aspects of the workspace accessible. For example,

adding audio feedback after pressing the Enter Key to change the math block

value. We will also add audio feedback on some hierarchical information of

the toolbox. An example of that could be: Logic, category 1 of 9...

4. Improved Cursor: We will constrain how the user can navigate through

theblocks so that they are not able to go next or previous lines of code without

using their respective keys specifically. This should fix most of the navigation

issues such as not knowing if new line of code has begun as found in usability

testing.

5. Other: We hope to add screen-reader support to blocks itself so experienced

screen-reader users can benefit. This can be done by using the Aria Live region

to communicate where the cursor is. Stephanie Ludi and team has already

done work on this [2]. In addition to this, we will add a zoom feature to assist

users with low vision.

After we make the following changes above, we will re-evaluate our solution

with more users with vision impairments.

7 Acknowledgments

We sincerely thank the Google’s Blockly team for answering our technical

questions on their public Blockly forum. This work is made possible due to a NSF

Grant 1842092.

12 Meenakshi Das, Daniela Marghitu, and Ayanna Howard

References

1. “Keyboard Navigation — Blockly.” Google Developers,
https://developers.google.com/blockly/guides/configure/web/keyboard-nav.
Accessed 10 Feb. 2021.

2. Ludi, Stephanie, and Mary Spencer. ”Design Considerations to Increase Block-

basedLanguage Accessibility for Blind Programmers Via Blockly.” Journal of Visual

Languages and Sentient Systems 3.1 (2017): 119-124.
3. Milne, L. R., & Ladner, R. E. (2018, April). Blocks4All: overcoming accessibilitybarriers

to blocks programming for children with visual impairments. In Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems (pp. 1-10).
4. Koushik, Varsha, and Clayton Lewis. “An Accessible Blocks Language: Work

inProgress.” Proceedings of the 18th International ACM SIGACCESS Conference on

Computers and Accessibility, Association for Computing Machinery, 2016, pp. 317–18.

ACM Digital Library, doi:10.1145/2982142.2982150.
5. Google/Blockly-Experimental. 2019. Google, 2020. GitHub,

https://github.com/google/blockly-experimental.
6. Lewis, C. (2014). Work in Progress Report: Nonvisual Visual Programing. In

B.duBoulay and J.Good (Eds) Proc. PPIG 2014 Psychology of Programming Annual

Conference, 25th Anniversary Event. Brighton, England, 25th -27th June 2014.
7. Kane, S. K., Morris, M. R., Perkins, A. Z., Wigdor, D., Ladner, R. E., & Wobbrock,J. O. (2011,

October). Access overlays: improving non-visual access to large touch screens for blind

users. In Proceedings of the 24th annual ACM symposium on User interface software

and technology (pp. 273-282).
8. R. Dorsey, C.H. Park, A. Howard “Developing the Capabilities of Blind and

VisuallyImpaired Youth to Build and Program Robots,” Journal on Technology and

Persons with Disabilities, Vol. 1, pg. 57-69, 2014.
9. Brewster SA. Using non-speech sound to overcome information overload.

Displays1997; 17: 179-189.
10. Murphy, E., Bates, E., and Fitzpatrick, D. Designing auditory cues to enhancespoken

mathematics for visually impaired users. In Proceedings of the 12th International ACM

SIGACCESS Conference on Computers and Accessibility, ASSETS ’10, ACM (New York,

NY, USA, 2010), 75–82.
11. S. Ludi, J. Wang, K. Chapati et al., “Exploring the use of Auditory Cues to sonifyBlock-

Based Programs”, Journal on Technology and Persons with Disabilities, Vol. 7, pg. 1-21,

2019.
12. Events — Blockly. Google

Developers,https://developers.google.com/blockly/guides/configure/web/events,

Accessed 10 Feb. 2021.
13. Open Roberta Lab. https://lab.open-roberta.org/. Accessed 10 Feb. 2021.

