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Abstract—This paper examines the use of reinforcement
learning-based controllers to approximate multiple value func-
tions of specific classes of subsystems while following a switching
sequence. Each subsystem may have varying characteristics,
such as different cost or different system dynamics. Stability of
the overall switching sequence is proven using Lyapunov-based
analysis techniques. Specifically, Lyapunov-based methods are
developed to prove boundedness of individual subsystems and to
determine a minimum dwell-time condition to ensure stability of
the overall switching sequence. Uniformly ultimately bounded
regulation of the states, approximation of the value function,
and approximation of the optimal control policy is achieved for
arbitrary switching sequences provided the minimum dwell-
time condition is satisfied.

I. INTRODUCTION

Reinforcement learning (RL)-based methods such as [1]–
[8] have been used to obtain online approximate solutions
to optimal control problems for systems with finite state-
spaces and stationary environments. Approximate dynamic
programming (ADP) uses RL to approximate the value func-
tion (i.e., the solution) corresponding to optimal control prob-
lems for deterministic autonomous control-affine systems
(see [9]–[11]). The optimal control policy is derived from
the Hamilton-Jacobi-Bellman (HJB) equation and depends
on the optimal value function [12], [13]. However, obtaining
an analytical solution of the HJB (the optimal value function)
is, generally, not possible; hence, an approximate value
function is sought. ADP techniques use universal function
approximators, such as neural networks (NNs) (see [14],
[15]), to approximate the value function by using the state
as the inputs. Obtaining a more accurate approximation of
the value function leads to a more accurate approximation of
the optimal control policy. The feedback gains of ADP-based
controllers are not selected a priori for stability, instead,
they are defined by the estimated parameters of the value
function [8]. Because of the lack of traditional feedback,
gain tuning and gain scheduling cannot be performed in the
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sense of manually selecting constant or state-dependent gains
to improve system performance..

ADP-based controllers directly tune system performance
by assigning costs to the state and control variables. Altering
the weights of the cost function in an ADP-based controller
affects system performance by modifying the reward gained
from the system trajectory. This paper proposes a method
by which the weights of the cost function and the system
dynamics can be varied, and the corresponding optimal
controllers can be simultaneously learned and implemented
in a way that maintains closed-loop stability during the
learning phase. That is, different controller properties can
be achieved by varying the weights of the cost of the states.

Previous ADP results consider fixed state cost and control
cost matrices within the cost function, such as [7], [8], [16].
Works such as [17] and [18] examine the use of ADP-based
methods for switched discrete-time nonlinear systems. Pre-
vious results such as [19]–[23] use optimal control methods
to minimize cost function(s) of a switched system. These
methods use a fixed mode sequence (see [19], [22]–[24])
or fixed switching instances (see [21]). In comparison, the
developed method uses an arbitrary switching sequence that
satisfies a dwell-time condition to approximate the value
functions of a finite number of continuous-time subsystems.
Unlike the aforementioned methods, this paper develops
a Lyapunov-based framework to prove convergence of a
control policy to the neighborhood of an optimal policy while
maintaining closed-loop stability. While this paper focuses
on a framework for switching between multiple ADP-based
controllers and modifying control system performance by
using different weighting matrices and dynamical models,
it does not address optimality of the trajectory of the overall
switched system.

A complication in Lyapunov-based analyses for switched
systems is the growth and discontinuity of Lyapunov func-
tions at switching instances. To overcome this issue, a
dwell-time analysis is performed to prove stability of the
overall switching sequence. The included dwell-time analysis
accounts for the worst-case growth and discontinuity between
Lyapunov functions during switching instances by explicitly
determining the minimum time required before the system
can switch to a different subsystem. In doing so, overall
stability of the system for an arbitrary switching sequence
is established.

This paper develops an ADP-based controller that follows
a switching sequence between multiple dynamical systems
and cost functionals. Section II describes the framework of
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a general ADP-based controller. Section III presents the sta-
bility analysis for one subsystem and behavior of the overall
system for an arbitrary switching sequence by developing a
dwell-time condition.

II. APPROXIMATE OPTIMAL CONTROLLER
DEVELOPMENT

Let k ∈ S, where S ⊂ N and |S| < ∞, represent a
family of switched subsystems. Consider the continuous-
time control-affine nonlinear dynamical subsystem of the kth

mode,

ẋ = fk (x (t)) + gk (x (t))u (t) , (1)

with initial condition x (0) = x0 ∈ Rn, where x : R≥0 →
Rn denotes the system state, u : R≥0 → Rm denotes the
control input, fk : Rn → Rn denotes the drift dynamics, and
gk : Rn → Rn×m is the control effectiveness. The consid-
ered class of functions satisfy the following assumptions.1

Assumption 1. The drift dynamics fk are locally Lipschitz,
f ′
k : Rn → Rn×n is continuous,2 and fk (0) = 0.

Assumption 2. The control effectiveness gk is a locally
Lipschitz function and bounded such that 0 < ∥gk (x)∥ ≤ gk
where gk ∈ R>0.

The control objective is to solve the infinite-horizon opti-
mal regulation problem for each subsystem, i.e., determine
a control policy u that minimizes the infinite horizon cost
functional, Jk : Rn × Rm → R≥0, defined as

Jk (x, u) ,
ˆ ∞

t0

rk (x (τ) , u (τ)) dτ, (2)

subject to (1) while regulating the system states of the kth

mode to the origin (i.e., x = 0), where rk : Rn×Rm → R≥0

is the instantaneous cost defined as rk (x, u) , xTQkx +
uTRku, Qk ∈ Rn×n is a constant user-defined symmetric
positive definite (PD) matrix, and Rk ∈ Rm×m is a constant
PD symmetric matrix.

Property 1. The state cost matrix Qk satisfies q
k
In ≤ Qk ≤

qkIn where q
k
, qk ∈ R>0, and In represents the n × n

identity matrix.

The infinite horizon value function (i.e., the cost to go)
for the optimal solution of the kth mode is denoted by V ∗

k :
Rn → R≥0 and given by

V ∗
k (x) = min

u(τ)∈U, τ∈R≥t

ˆ ∞

t

rk (x (τ) , u (τ)) dτ, (3)

where U ⊆ Rm denotes the action space. Provided an opti-
mal control policy exists, the value function is characterized
by the corresponding HJB equation

0 = V ∗′
k (x) (fk (x) + gk (x)u

∗) + xTQkx+ u∗TRku
∗,
(4)

1Throughout this paper, the subscript k defines the quantity or function
belonging to the kth mode of the overall system.

2The notation (·)′ denotes the partial derivative with respect to the first
argument (e.g., f ′

k (x, y) = ∂fk
∂x

(x, y)).

with the boundary condition V ∗
k (0) = 0.

Assumption 3. The value function V ∗
k is continuously

differentiable.

Provided the HJB in (4) admits a continuously differ-
entiable PD solution, then the optimal closed-loop control
policy u∗

k : Rn → Rm is

u∗
k (x) = −1

2
R−1

k gk (x)
T
(V ∗′

k (x))
T
. (5)

A. Value Function Approximation

The HJB equation in (4) requires knowledge of the optimal
value function, which, generally, is an unknown function
for nonlinear systems. Parametric methods can be used to
approximate the value function over a compact domain. To
facilitate the solution of (4), let Ω ⊂ Rn be a compact set
containing the origin. The universal function approximation
property of single-layer NNs is used to represent the value
function of the kth mode V ∗

k as

V ∗
k (x) = WT

k ϕ (x) + ϵk (x) ∀x ∈ Ω, (6)

where Wk ∈ RL is an unknown bounded vector of weights,
ϕ : Rn → RL is a user-defined vector of basis functions,3

and ϵk : Rn → R is the bounded function approximation
error. Substituting (6) into (5), the optimal control policy of
the kth mode, u∗

k, can be expressed in terms of the gradient
of the value function V ∗

k as

u∗
k (x) = −1

2
R−1

k gk (x)
(
ϕ′ (x)

T
Wk + ϵ′k (x)

T
)
. (7)

Property 2. [4], [25], [26] There exists a set of constants
that bound the unknown weight vector Wk, the user-defined
basis vector ϕ, and approximation error ϵk, from above such
that ∥Wk∥ ≤ W̄k, supx∈Ω ∥ϕ (x)∥ ≤ ϕ̄, supx∈Ω ∥ϕ′ (x)∥ ≤
ϕ̄′, supx∈Ω ∥ϵk (x)∥ ≤ ϵ̄k, supx∈Ω ∥ϵ′k (x)∥ ≤ ϵ̄′k for all k,
where W̄k, ϕ̄, ϕ̄

′, ϵ̄k, ϵ̄
′
k ∈ R>0.

Since the ideal weights are unknown, a parametric es-
timate, called a critic weight vector Ŵc,k ∈ RL, is sub-
stituted to calculate the optimal value function estimate
V̂k : Rn × RL → R, where

V̂k

(
x, Ŵc,k

)
= ŴT

c,kϕ (x) . (8)

An actor weight vector Ŵa,k ∈ RL, is used to provide an
approximate version of (7), the approximate optimal control
policy ûk : Rn × RL → R is given by

ûk

(
x, Ŵa,k

)
= −1

2
R−1

k gk (x)
T
(
ϕ′ (x)

T
Ŵa,k

)
. (9)

B. Bellman Error

The HJB equation in (4) is equal to zero under optimal
conditions; however, substituting (8) and (9) into (4) results
in a residual term δ̂k : Rn×RL×RL → R, which is referred
to as the Bellman Error (BE), defined as

3There is no subscript k for the basis function because each mode uses
the same basis function.
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δ̂k

(
x, Ŵc,k, Ŵa,k

)
,

V̂ ′
k

(
x, Ŵc,k

)(
fk (x) + gk (x) ûk

(
x, Ŵa,k

))
+ ûk

(
x, Ŵa,k

)T

Rkûk

(
x, Ŵa,k

)
+ xTQkx, (10)

where V̂ ′
k

(
x, Ŵc,k

)
= ŴT

c,kϕ
′ (x) . The BE is indicative

of how close the actor and critic weight estimates are to
the ideal weights. By defining the mismatch between the
estimates and the ideal values as W̃c,k , Wk − Ŵc,k and
W̃a,k , Wk − Ŵa,k, substituting (6) and (9) in (4), and
subtracting from (10) yields

δ̂k =
1

4
W̃T

a,kGϕ,kW̃a,k − ωT
k W̃c,k +Ok (x) , (11)

where ωk : Rn × RL → Rn is defined as

ωk

(
x, Ŵa,k

)
, ϕ′ (x)

(
fk (x) + gk (x) û

(
x, Ŵa,k

))
,

and Ok (x) , 1
2W

T
k ϕ′ (x)Gkϵ

′T
k + 1

4Gϵ,k − ϵ′kfk (x) .
4

Remark 1. The expressions in (10) and (11) are equivalent
for the BE. However, (10) is used in implementation, while
(11) is used in the stability analysis in Section III.

C. Switched Subsystems

Let the switching signal σ : R≥0 → S indicate the active
subsystem. Let tON

k ∈ [0, t] denote the time instant when
the kth subsystem in the switching sequence is activated.
Similarly, let tOFF

k ∈ [0, t] denote the time instant when the
kth subsystem in the switching sequence is deactivated. The
dwell-time in any active mode of a subsystem is denoted by
τk ∈ R≥0. Similarly, let τ∗ ∈ R≥0 denote the minimum
dwell-time for any active mode of a subsystem.

D. Bellman Error Extrapolation

At each time instant, the BE in (10) is calculated us-
ing the control policy given by (9) evaluated using the
current system state, critic weight estimates, and actor
weight estimates to obtain the instantaneous BE denoted by
δ̂k

(
x (t) , Ŵc,k (t) , Ŵa,k (t)

)
.

A classical problem in learning-based control is explo-
ration versus exploitation. Results such as [27] add an
exploration signal to sufficiently explore the operating do-
main. However, no analytical methods exist to compute the
appropriate exploration signal. Alternatively, results such as
[7] evaluate the BE along the system trajectory and at any
desired point in the state space (i.e., so-called BE extrapo-
lation). The BE extrapolation technique provides simulation
of experience to avoid using an exploration signal.

Specifically, BE is extrapolated from a user-
specified number and location of off-trajectory points
{xi,k : xi,k ∈ Ω}Nk

i=1 , where Nk ∈ N denotes a user-
specified number of points in the compact set Ω. The

4Gk , Gϕ,k , and Gϵ,k are defined as Gk = Gk (x) ,
gk (x)R−1

k gk (x)T , Gϕ,k = Gϕ,k (x) , ϕ′ (x)Gk (x)ϕ′ (x)T , and
Gϵ,k = Gϵ,k (x) , ϵ′k (x) gk (x) ϵ′k (x)T , respectively.

data is represented by the tuple (Σc,k,Σa,k,ΣΓ,k) ,

defined as Σc,k , 1
Nk

∑Nk

i=1
ωi,k(t)
ρi,k(t)

δ̂i,k (t) , Σa,k ,
1
Nk

∑Nk

i=1

GT
σi,kŴa,k(t)ω

T
i,k(t)

4ρi,k(t)
, ΣΓ,k , 1

Nk

∑Nk

i=1

ωi,k(t)ω
T
i,k(t)

ρi,k(t)
,

where δ̂i,k (t) , δ̂k

(
xi,k (t) , Ŵc,k (t) , Ŵa,k (t)

)
,

ωi,k (t) , ωk

(
xi,k (t) , Ŵa,k (t)

)
, and ρi,k (t) =

1 + νkω
T
i,k (t) Γk (t)ωi,k (t) , νk ∈ R>0 is a user-defined

gain, and Γk : R → RL×L is a time-varying least-squares
gain matrix. Each subsystem, k, must have distinct sets of
data, gain values, and update laws.

Assumption 4. Over the compact set, Ω, a finite set of
off-trajectory points {xi,k : xi,k ∈ Ω}Nk

i=1 exists such that
0 < ck , inf

t∈R≥0
λmin {ΣΓ,k (t)} for all t ∈ R≥0, where

λmin {·} is the minimum eigenvalue.

E. Update Laws for Actor and Critic Weights

Using the instantaneous BE δ̂k (t), policy u (t),
and extrapolated BEs δ̂i,k (t), the critic and actor
weights are updated according to the following policies
while t ∈

[
tON
k , tOFF

k

)
. In the following definitions,

ηc1,k, ηc2,k, ηa1,k, ηa2,k, λk ∈ R are positive constant
learning gains, and Ŵ c,k, Ŵ c,k, Ŵ a,k, Ŵ a,k, Γk, Γk ∈ R
are upper and lower bound constants of subsystem k.5

For the development of the weight update laws, define the
following convex sets as

Πc,k ,
{
Ŵc,k ∈

[
Ŵ c,k, Ŵ c,k

]
| hc,k

(
Ŵc,k

)
≤ ξc,k

}
,

Πa,k ,
{
Ŵa,k ∈

[
Ŵ a,k, Ŵ a,k

]
| ha,k

(
Ŵa,k

)
≤ ξa,k

}
,

where hc,k : RL → R and ha,k : RL → R are smooth
functions and ξc,k, ξa,k > 0. Denote the interior of a set Π
by Π̊ and the boundary of Π by ∂Π. Observe that h′

c,k and
h′
a,k represent outward normal vectors at ∂Πc,k and ∂Πa,k,

respectively. The critic update law of the kth mode, ˙̂
Wc,k :

R≥0 → RL, is defined as
˙̂
Wc,k , proj {Φc,k}

=

{
Φc,k, Ŵc,k ∈ Π̊c,k orh

′T
c,kΦc,k ≤ 0

Cc,kΦc,k, Ŵc,k ∈ ∂Πc,k andh
′T
c,kΦc,k > 0,

(12)

where Cc,k : R≥0 → RL is defined as Cc,k ,
1 − min

(
1,

hc,k

ξc,k

)
h′
c,kh

′T
c,k

∥h′
c,k∥2 , and Φc,k , −ηc1,kΓk

ωk

ρk
δ̂k −

ηc2,kΣc,k. The actor update law of the kth mode, ˙̂
Wa,k :

R≥0 → RL, is defined as
˙̂
Wa,k , proj {Φa,k}

=

{
Φa,k, Ŵa,k ∈ Π̊a,k orh

′T
a,kΦa,k ≤ 0

Ca,kΦa,k, Ŵa,k ∈ ∂Πa,k andh
′T
a,kΦa,k > 0,

(13)

5The arguments of each function have been omitted for notional brevity.

164

Authorized licensed use limited to: Oklahoma State University. Downloaded on January 30,2021 at 18:00:23 UTC from IEEE Xplore.  Restrictions apply. 



where Ca,k : R≥0 → RL is defined as

Ca,k , 1 − min
(
1,

ha,k

ξa,k

)
h′
a,kh

′T
a,k

∥h′
a,k∥2 , and

Φa,k , −ηa1,k

(
Ŵa,k − Ŵc,k

)
− ηa2,kŴa,k +

ηc1,kG
T
σ,kŴa,kω

T
k

4ρk
Ŵc,k + ηc2,kΣa,kŴc,k. The least-squares

gain matrix update law of the kth mode, Γ̇k : R≥0 → RL×L,
is expressed as

Γ̇k ,
(
λkΓk − ηc1,k

Γkωkω
T
k Γk

ρ2k
− ηc2,kΓkΣΓ,kΓk

)
· 1{Γk≤∥Γk∥≤Γk}, (14)

where 1{·} denotes the indicator function.6 While the kth

mode is inactive, (i.e., t /∈
[
tON
k , tOFF

k

)
) :

˙̂
Wc,k (t) = 0L×1

Γ̇k (t) = 0L×L, and
˙̂
Wa,k (t) = 0L×1.

7

III. STABILITY ANALYSIS

Generally, the trajectory of a switched system can diverge
even when all the subsystems that compose the switched
system are stable. Hence, the switching signal must be
properly designed to keep the overall system stable. Before
the switching signal is designed, the stability of each sub-
system must be analyzed. In the following development, k
subsystems, each with a class of dynamics in (1), will be
analyzed with the control policy and update laws outlined in
(9), (12), (13), and (14).

A. Subsystem Stability Analysis

To facilitate the analysis, let zk ,
[
xT , W̃T

c,k, W̃
T
a,k

]T
denote a concatenated state, and let VL,k : Rn+2L ×R≥0 →
R be a candidate Lyapunov function for the kth mode be
defined as

VL,k (zk, t) = V ∗
k (x) +

1

2
W̃T

c,kΓ
−1
k (t) W̃c,k +

1

2
W̃T

a,kW̃a,k,

(15)

where k represents the active subsystem mode. Define the se-
quence of times instants at which a switching event occurs as
{tNσ

} , such that 0 < t1 < t2 < · · · < tNσ
< t < tNσ+1 and

Nσ ∈ N>0 denotes the number of switching events. Using
the positive definiteness of V ∗

k and [28, Lemma 4.3], (15)
can generally be bounded as vl,k (∥zk∥) ≤ VL,k (zk, t) ≤
vl,k (∥zk∥) using class K functions vl,k, vl,k : R≥0 → R≥0.
For the subsequent analysis, the following more restrictive
assumption is required.

Assumption 5. The optimal value function V ∗
k (x) can be

bounded by the square of the norm of its argument times a
positive constant, i.e.,
β1,k ∥x∥2 ≤ V ∗

k (x) ≤ β2,k ∥x∥2 , ∀k ∈ S, β1,k, β2,k ∈ R≥0.
(16)

6Each ∥Γk (t)∥ is bounded from above and below by some user-defined
saturation gains, Γk and Γk , respectively. Using (14) ensures that Γk ≤
∥Γk (t)∥ ≤ Γk for all t ∈ R>0 and k ∈ S, where Γk ∈ R>0. Ŵc,k and
Ŵa,k are updated according to an orthogonal projection operator.

7The update laws will not update a subsystem k’s weight estimates or
least-squares matrix unless subsystem k is active.

Remark 2. It is known that the value function of a classical
linear-quadratic-regulator problem is quadratic and can be
bounded from above and below by a quadratic function, as in
(16) [29]. Assumption 5 may not be valid for some nonlinear
systems. Future efforts will seek to generalize the following
development without requiring this assumption.

Using Assumption 5, (15) can be bounded as α1,k ∥zk∥2 ≤
VL,k (zk, t) ≤ α2,k ∥zk∥2 , where α1,k, α2,k ∈ R≥0 are
positive constants. To facilitate the analysis, the notation (·)
is defined as (·) , supx∈Ω (·). Using (14), the normalized
regressors ωk

ρk
and ωi,k

ρi,k
can be bounded as supt∈R≥0

∥∥∥ωk

ρk

∥∥∥ ≤
1

2
√

νkΓk

for all x ∈ Ω and supt∈R≥0

∥∥∥ωi,k

ρi,k

∥∥∥ ≤ 1

2
√

νkΓk

for all xi ∈ Ω and k ∈ S. The matrices Gk and Gϕ,k

can be bounded as supx∈Ω ∥Gk∥ ≤ λmax

{
R−1

k

}
g2k and

supx∈Ω ∥Gϕ,k∥ ≤
(
ϕ′gk

)2
λmax

{
R−1

k

}
, respectively, for all

k ∈ S, where λmax {·} denotes the maximum eigenvalue.
Remark 3. Using the projection operator from the
critic update law in (12) and [30, Lemma E.1],
−W̃T

c,k (t) Γ
−1
k (t)

˙̂
Wc,k (t) is bounded from above as

− W̃T
c,k (t) Γ

−1
k (t)

˙̂
Wc,k (t)

= −W̃T
c,k (t) Γ

−1
k (t) proj {Φc,k (t)}

≤ −W̃T
c,k (t) Γ

−1
k (t)Φc,k (t) .

Similarly, from the actor update law in (13) and [30, Lemma
E.1], −W̃T

a,k (t)
˙̂
Wa,k (t) is bounded from above as

−W̃T
a,k (t)

˙̂
Wa,k (t) = −W̃T

a,k (t) proj {Φa,k (t)}
≤ −W̃T

a,k (t)Φa,k (t) .

To facilitate the subsequent analysis, let
lk ∈ R>0 be defined as lk , 2ā2

k

ηa1,k+ηa2,k
+

3(ηc1,k+ηc2,k)
2

8νkΓkηc2,kck
∥Ok (x)∥

2
+ 1

4∥Gϵ,k∥ + 1
2ηa2,k∥Wk∥

2
,where

āk , 1
2λmax

{
R−1

k

}
∥ϕ′∥∥Gk∥∥Wk∥

(
∥ϕ′∥∥Gk∥ +

∥ϵ′k∥ +
ηc1,k+ηc2,k

4
√

νkΓk

∥ϕ′∥∥Gk∥∥Wk∥
)
, and Λk ,

min
k∈S

{
1
2 q̄k,

1
16 (ηa1,k + ηa2,k) ,

1
12ηc2,kck

}
, where q̄k is

defined in Property 1. Furthermore, define R ∈ R>0 as the
radius of a ball BR centered at the origin, where BR ⊂ Ω.

Theorem 1. Provided Assumptions 1-5 hold, the weight
update laws in (12)-(14) are used, and the gain conditions

ηa1,k + ηa2,k >
1√
νkΓk

(ηc1,k + ηc2,k) ∥Wk∥ ∥Gϕ,k∥,

(17)

ck >
3 (ηc1,k + ηc2,k)

2 ∥Wk∥2 ∥Gϕ,k∥
2

16νkΓk (ηa1,k + ηa2,k) ηc2,k
+

3ηa1,k
ηc2,k

, (18)

α2,k

α1,k

√
2lk
Λk

< R, (19)

are satisfied, the system state x (·) , the value function
weight estimate error W̃c,k (·) , and the control policy weight
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estimate error W̃a,k (·) , are uniformly ultimately bounded
(UUB). Hence, the error between the stabilizing control
policy for each mode ûk (·) in (9) and its respective optimal
control policy u∗

k (·) in (5) is UUB.

Proof: Taking the time derivative of the Lyapunov
function in (15), the fact d

dtΓ
−1 = Γ−1Γ̇Γ−1, along with

Assumptions 1-5 and the sufficient conditions in (17)-(19)
yields V̇L,k (zk (t) , t) ≤ − Λk

α2,k
VL,k (zk (t) , t) + lk for all

k ∈ S and t ∈
[
tON
k , tOFF

k

)
, where lk ∈ R>0. [28, Theorem

4.18] can be invoked to conclude that zk is UUB such that
lim supt→∞ ∥zk∥ ≤ α2,k

α1,k

√
2lk
Λk

. Since zk ∈ L∞, it follows

that x, W̃c,k, W̃a,k ∈ L∞, then ûk ∈ L∞.

Remark 4. The condition in (17) can be satisfied by in-
creasing ηa2,k and νk, and selecting a penalty weight matrix
Rk such that λmax

{
R−1

k

}
is small. Selecting a Rk with a

large minimum eigenvalue and a large gain νk will also help
satisfy the gain condition in (18). The condition in (18) can
be satisfied by selecting off-trajectory points that increase
the minimum eigenvalue of each ck , inft∈R≥0

{ΣΓ,k (t)} .8
Provided the basis functions used for approximation are
selected such that ϕ

′
, ϵk, and ϵ′k are small, and ηa2,k,

λmax {Rk}, νk, and ck are selected sufficiently large, then
the sufficient condition in (19) can be satisfied.

B. Dwell-Time Analysis

Theorem 1 indicates that each subsystem is UUB. How-
ever, this does not account for switching between subsystems.
To ensure that the system is stable, a dwell-time must
be designed to switch between subsystems. Furthermore,
switching between control policies may result in instanta-
neous growth when switching between Lyapunov functions.9

Hence, continuity is not guaranteed between Lyapunov func-
tions VL,k, across all subsystems.

Theorem 2. The switched system consisting of a family of
subsystems with the dynamics in (1) with a properly designed
dwell-time, τ ∈ R ensures that the states, critic estimate
errors, and actor estimate errors will converge to a neigh-
borhood of the origin in the sense that VL,σ(t)

(
zσ(t) (t) , t

)
≤

VL,B for all t ≥ T, where VL,B ∈ R is the maximum
ultimate bound for all subsystems, and T ∈ R≥0 is the
time required to reach the ultimate bound VL,B , provided
a minimum dwell-time τ∗ is satisfied.

Proof: From Theorem 1, the derivative of the Lyapunov
function of the kth subsystem can be bounded from above
by

V̇L,k (zk (t) , t) ≤ − Λk

α2,k
VL,k (zk (t) , t) + lk, ∀k ∈ S, t ≥ 0.

(20)

8The minimum eigenvalue of each ΣΓ,k (t) can be increased by collecting
redundant data, i.e., selecting N ≫ L for each subsystem.

9V ∗
k+1 (x) , corresponding to mode k + 1, may be larger than V ∗

k (x)
corresponding to mode k. Similarly, the actor and critic weight errors could
be larger in magnitude while in mode k + 1 than in mode k.

Based on (20), the region Dk, which represents the re-
gion within the ultimate bound of the Lyapunov func-
tion of the kth subsystem, is defined as Dk ,{
zk : ∥zk∥ ≤ α2,k

α1,k

√
2lk
Λk

}
. The union of the individual re-

gions, Dk, is denoted as Dk ,
⋃

k∈S Dk. The value of
VL,k (zk (t) , t) due to switching inside of the region Dk

is bounded from above by VL,k (zk (t) , t) ≤ VL,B ,
max
k∈S

{
2lkα

3
2,k

Λkα2
1,k

}
.

Generally, switching between control policies may re-
sult in instantaneous growth of the Lyapunov function.
In this case, there is instantaneous growth between Lya-
punov functions at the switching instances. Following
[31], the scalar multiple that defines the maximum ra-
tio of the discontinuities in the Lyapunov function is de-

fined as µ ,
{

sup
k∈S

{β2,k}∥x(0)∥2+sup
k∈S

{∆k}

inf
k∈S

{∆k}

}
, where ∆k ,

Γ−1
k

∥∥∥Ŵ c,k − Ŵ c,k

∥∥∥2 +
∥∥∥Ŵ a,k − Ŵ a,k

∥∥∥2 , such that the
inequalities VL,i ≤ µVL,j VL,j ≤ µVL,i, ∀i ̸= j hold, where
i, j ∈ S index any two subsystems. Note that ∆k can be
calculated for each mode since Ŵ c,k, Ŵ c,k, Ŵ a,k, Ŵ a,k,
and Γk are user-selected. β2,k can be selected sufficiently
large to satisfy Assumption 5. Since the initial condition of
the state x (0) is known, µ can be calculated.

Following the development from [32], the magnitude of
VL,k (zk (t) , t) for any k, satisfies the bound

VL,k (zk (t) , t) ≤ max
{
VL,1 (z1 (0) , 0)µ

Nσe−ζ0t, VL,B

}
,

(21)

where Nσ ∈ {n|n ∈ N, 0 < n < ∞} is the total number of
switches during [0, t) , and ζ0 , inf

k∈S

{
Λkα1,k

2α2,k

}
∈ R>0 is

a constant. The inequality in (21) is true for an arbitrary
sequence of switches provided that the subsequently defined
minimum dwell-time condition is satisfied. A desired decay
rate, ζ∗, can be determined such that VL,k (zk (t) , t) ≤
max

{
VL,1 (z1 (0) , 0) e

−ζ∗t, VL,B

}
, where ζ∗ ∈ (0, ζ0) is

an arbitrarily selected decay rate that satisfies the inequality
µNσe−ζ0t ≤ e−ζ∗t. A minimum dwell-time (i.e., the mini-
mum amount of time a single mode must be active before
switching to another mode to maintain system stability)

can be determined as τ∗ =
ln(µNσ )
ζ0−ζ∗ . Since ζ∗ ∈ (0, ζ0) ,

then ζ0 − ζ∗ > 0. Since µ ≥ 1, ζ0 − ζ∗ > 0, Nσ ∈
{n|n ∈ N, 0 < n < ∞} then τ∗ > 0, i.e., the dwell-time
will always be positive. Since the number of switches is
finite, the number of switches is bounded from above by
Nσ ≤ t

τ∗ , t ∈
[
tON
Nσ

, tON
Nσ+1

)
, hence, τ∗ is a minimum dwell-

time. The time, T ∈ R≥0, required to reach the region Dk

for the initial condition VL (z1 (0) , 0) is

T =

T ≥
ln

(
VL,B

VL,1(zk(0),0)

)
ζ∗ if VL,1 (z1 (0) , 0) > VL,B

T = 0 if VL,1 (z1 (0) , 0) ≤ VL,B .

(22)

Hence, the system state, actor weight estimates, and critic
weight estimates will converge to a neighborhood of the
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origin in the sense that VL,σ(t) (zk (t) , t) ≤ VL,B for all
t ≥ T provided that the minimum dwell-time condition is
met.
Remark 5. Under Assumptions 1-3, the optimal value func-
tion can be shown to be the unique positive definite solution
of the HJB equations. In this paper, the approximation of
the positive definite solution to the HJB is guaranteed by ap-
propriately selecting initial weight estimates and Lyapunov-
based update laws [33].

IV. CONCLUSION

A set of online approximate optimal controllers are devel-
oped for an arbitrary sequence of subsystems. Each controller
is proven to regulate the state to within a neighborhood of
the origin. Furthermore, the control policies are shown to
converge to the neighborhood of the optimal policy using a
Lyapunov-based analysis, while switching between different
dynamic models and cost matrices. Future research will focus
on generalizing the result to broader classes of systems.
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