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Online inverse reinforcement learning with limited data

Ryan Self, S M Nahid Mahmud, Katrine Hareland and Rushikesh Kamalapurkar

Abstract— This paper addresses the problem of online inverse
reinforcement learning for systems with limited data and
uncertain dynamics. In the developed approach, the state and
control trajectories are recorded online by observing an agent
perform a task, and reward function estimation is performed
in real-time using a novel inverse reinforcement learning ap-
proach. Parameter estimation is performed concurrently to help
compensate for uncertainties in the agent’s dynamics. Data
insufficiency is resolved by developing a data-driven update
law to estimate the optimal feedback controller. The estimated
controller can then be queried to artificially create additional
data to drive reward function estimation.

I. INTRODUCTION

Based on the premise that the most succinct representation
of the behavior of an entity is its reward structure [1], this
paper aims to recover the reward (or cost) function of a
demonstrator by monitoring its state and control trajectories.
Reward function estimation is performed in the presence of
modeling uncertainties for situations with limited data via
inverse reinforcement learning (IRL) [1], [2].

While IRL in an offline setting has a rich history of
literature [1]-[11], little work has been done to address IRL
in an online setting. The limited data provided by a single
demonstration is a significant challenge that has hampered
the development of online IRL.

Preliminary results on online IRL are available for linear
systems, in results such as [12] and [13], and for nonlinear
systems, in results such as [14] and [15]. However, [12]
and [14] exploit access to demonstrator’s feedback policy,
[13] requires exact model knowledge, and [15] exploits
identical disturbances to provide sufficient excitation. The
main contribution of this paper is the development of a
novel method for reward function estimation for an agent
in situations where estimation of the demonstrator’s optimal
feedback law is less data-intensive than direct estimation of
its reward function.

The novelty in the technique developed in this paper is
a recursive model-based IRL approach which facilitates the
use of off-trajectory state-action pairs. A majority of IRL
methods are trajectory-driven and model-free. As a result,
the trajectories need to be sufficiently information-rich for
reward function estimation. The technique developed in this
paper is model-based, and as a result, once a model is

The authors are with the School of Mechanical and Aerospace
Engineering, Oklahoma State University, Stillwater, OK, USA.
{rself,nahid.mahmud, katrine.hareland,
rushikesh.kamalapurkar}@okstate.edu. This research
was supported, in part, by the National Science Foundation (NSF)
under award number 1925147. Any opinions, findings, conclusions, or
recommendations detailed in this article are those of the author(s), and do
not necessarily reflect the views of the sponsoring agencies.

978-1-7281-7447-1/20/$31.00 ©2020 IEEE

learned, arbitrary state-action pairs can be used for IRL
as long as the action is the optimal action for that state.
In [12] and [14], the off-trajectory state-action pairs are
generated under the assumption that the learner either knows
the demonstrator’s optimal feedback law or can query the
demonstrator to find out what the optimal action would be at
a given off-trajectory state. In this paper, we develop a novel
IRL approach that relaxes the aforementioned assumption.

The key idea in this paper is to estimate the optimal
feedback controller of the agent online, and use that estimate
to artificially create off-trajectory data to drive reward func-
tion estimation. In the authors’ previous work [14], reward
function estimation is performed directly using the agent’s
observed trajectories. Instead, in this paper, the trajectory
information is used to estimate the optimal feedback con-
troller. This controller is parameterized as a neural network
and estimated using a concurrent learning update law. The
estimated controller is simultaneously queried to create off-
trajectory data which is then used for reward function esti-
mation via IRL. Since the optimal controller is estimated
using a neural network, the controller can be estimated
independent of the modeling uncertainty. In the developed
approach, a parameter estimator and two update laws for
estimation of the optimal feedback controller and reward
function are utilized simultaneously to achieve convergence
of the unknown reward function weights to a neighborhood
of their true values.

The paper is organized as follows: Section II explains the
notation used throughout the paper. Section III details the
problem formulation. Section IV shows how to estimate the
optimal controller. Section V explains the IRL algorithm.
Section VI shows a simulation example and Section VII
concludes the paper.

II. NOTATION

The set of positive integers excluding O is denoted by N.
For a € R, R>, denotes the interval [a, c0), and R, denotes
the interval (a, o). If @ € R™ and b € R"™, then [a; b] denotes

the concatenated vector € R™*", The notations I,, and

a
b
0,, denote the n X n identity matrix and the zero element of
R™, respectively. Whenever it is clear from the context, the

subscript n is suppressed.

III. PROBLEM FORMULATION

Consider an agent with the dynamics

&= f(z,u), (D
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where z : R>7, — R"™ is the state, u : R>7, — R™ is the
control, f : R™ x R™ — R™ is a continuously differentiable
function, and T € R denotes the initial time.

Assume that the agent under observation is using a policy
which minimizes the performance index

Hanut) = [ rattinut) )i @)
0

where z(-; 2o, u(-)) is the trajectory of the agent generated
by the optimal control signal wu(-), starting from the initial
condition x( and initial time 7. The main objective of the
paper is to estimate the unknown reward function, r, using
state-action pairs.

The following assumptions are used throughout the rest of
this paper.

Assumption 1. The unknown reward function r is quadratic
in the control, i.e.,

r(z,u) = Q(x) + u” Ru, 3)

where R € R™*™ (s a positive definite matrix, such that
R = diag([r1, - ,7m])-

Assumption 2. The state and control trajectories are
bounded such that z(t) € X, u(t) € U for some compact
sets X CR™ and U C R™.

The continuous function () can be represented using L €
N basis functions as Q(x) = (W) oq(x) + eq(x), where
W = [q1,- - ,qL}T are ideal reward function weights, o :
R™ — R are known continuously differentiable features,
and eg : R™ — R is the approximation error. Given any
constant € € R, there exists L € N such that eq satisfies
sup,cx lle(@)]| < Eg. and sup, . [ Vaeq()| < & [16],
[17].

Assumption 3. The dynamics for the agent are affine in
control.

The dynamics can be represented using P € N basis
functions as

&= fo(x,u) + QTa(x,u) + e(z,u), ())

where f° : R™ x R™ — R" denotes the continuously
differentiable nominal dynamics, 7 is a parameterized
estimate of the uncertain part of the dynamics, where 6 €
RP*™ is a matrix of unknown constant parameters and
o : R" x R™ — RP are known continuously differentiable
features, and ¢ : R™ x R™ — R"™ denotes the function
approximation error. Given any constant € € Ry, there
exist p € N such that sup(, ,ye(xxu) ll€ (@, u)|| < € and
SUP (5 wye () Ve (@, u) || <e

Under the premise that the observed agent makes optimal
decisions, the state and control trajectories, z(-) and wu(-),
satisfy the Hamilton-Jacobi-Bellman (HJB) [18] equation

(20 (971 ) 0 ) =0.% € Rom,
(&)

where the unknown optimal value function is V* : R” — R
and H : R x R®™ x R™ — R is the Hamiltonian, defined
as H(x,p,u) := p’ f(z,u) +r(z,u). The goal of IRL is to
estimate the reward function, .

To aid in the estimation of the reward function, let Vo
R” x RF — R, (a:, Wv) — Wxoy (z) be a parameterized

estimate of the optimal value function V'*, where WV e RFP
are the estimates of the ideal value function weights W7y,
and oy : R® — R? are known continuously differentiable
features. Let ey : R” — R, defined as ey (z) = V*(z) —
(W{‘})T oy (z), be the resulting approximation error. Given
any constant €y € Ry, there exists P € N such that ey
satisfies sup,cy |lev(2)]| < €v, and sup,cy ||Vaev(z)| <
€y . Using Wv, WQ, and WR, which are the estimates of
Wy, W5, and Wi = [r1,--- ,rm]T, respectively, in (5),
the inverse Bellman error § : R® x R™ x REFPHm 4 R s
obtained as

4] (x, u, W) :W‘;( [Viov] (x) )f(x, u) + W(goQ (x)

+Wiou (u), (©6)
where o, (u) = [u}, -+, u2 ].

For brevity of presentation, it is assumed that a parameter
estimator that satisfies the following properties is available.
For examples of such parameter estimators, see [14], [19].

Assumption 4. [20, Assumption 2] A compact set © C R?
such that 0 € © is known a priori. The estimate 0 : R>7, —
RP are updated based on a switched update law of the form

0= f5.(0(1), 1),

0(Ty) = 0y € ©, where s € N denotes the switching
index and {fg, : RP X R>py, — RP},en denotes the
family of continuously differentiable functions. The dynam-
ics of the parameter estimation error 6 : R>r, — RP,

defined as 0(t) := 0 — O(t), can be expressed as O(t) =
fo. (0 —0(t),t). Furthermore, there exists a continuously
differentiable function Vy : RP X R>1, — R that satisfies

) <4 () <5}

([VéVe] (9, t)) (—fes (9 — 4, t)) + Wga(ft)

<ol +|e],

and

forall s € Nt € R>r,, and 6 € RP, where Vg, Vo : R>o —
R>q are class K functions, K € Ry is an adjustable
parameter, and D € R+ is a positive constant.

Utilizing the parameter estimates 0, the inverse Bellman
error in (6) can be approximated as

5 (m, u, W, é) =W ([Vwav] (z) )Y(m, u,0) + WgaQ ()
+ Wiou (u), 9
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where Y (z,u,0) := f°(z,u)+0T o (2, u) and 0 are estimates
of unknown parameters. Rearranging, (7) becomes

5 (m,u,W’,é) = (W’)TU’ (m,u,é) ,
where W/ = [WV; WQ; WR} and o’ (m,u, é)
[(I[Vmav] (z) )Y(a:, u,0); g (x) ;04 (u)}

n the following, the parameter estimator is executed
synchronously with IRL and in real-time.

®)

IV. OPTIMAL POLICY ESTIMATION

Since a large majority of optimal control problems are
aimed at driving the state to a set-point or an error signal to
zero, information content of the state and control trajectories
can quickly decay to zero rendering them unable to provide
usable data. More specifically, once the states converge,
newer data points from the agent’s trajectory will simply
provide zero, or near-zero, values for both the states (or
errors) and the controls. As a result, the reward function
estimate may never converge. In addition, even if sufficient
excitation exists to estimate the unknown reward function
directly, artificially generated state-action pairs can help
accelerate the estimation by providing additional data points.
Motivated by the observation that knowledge of the optimal
controller can be leveraged to artificially create additional
data to drive IRL, this section develops a process for finding
an estimate of the optimal controller.

A. Policy Estimator Design

The closed-form nonlinear optimal controller correspond-
ing to the reward structure in (2) is

* 1 —1 T * r
(@) = 5B (Vuf] @) (Va7 T@) . ©
where u* := [uy, us, - ,um,]?. To facilitate estimation, u*
is represented as

— W*

u

’U,*(J?) _( )TUu (.Z‘) +€u(x)7 (10)
where W, € REX™ is a matrix of unknown ideal constant
parameters, o, R® — RX are known continuously
differentiable features, and €, : R™ — R™ is the resulting
approximation error. Given any constant €, € Ry, there
exists ' € N such that ¢, satisfies sup,cy || ()] < €,
and sup,cy [|Vaeu ()] < €.

Collecting state and control signals over time instances,
t1,t2,- - ,tar, stored in a history stack, denoted as H", (10)
can be formulated into the matrix form

_Eu_EaWu :EaWu_Aua (11)

where = Wl (t);uT (to);- - s uT (tar)],
5, o (2(t)); 07 (w(t2)); -+ 501 (a(tar))], and
Ay = e (@(t1))ieg (@(t2)); - - sel (x(tar))]. The weight
estimation error is defined as Wu =Wy - Wu, where Wu
is the estimate of W .

Using (11), a recursive least-squares update law to esti-

mate the unknown weights is designed as

W = a,T,27 (-2, - 2,0W,) |

2y

12)
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where a,, € Ry is a constant adaptation gain, and I';, :
R>q — REXE s the least-squares gain updated using the
update law

I"u = ﬂuru - OéuFuEZEaFua (13)

where 3, € Ry is the forgetting factor.

B. Analysis

The time-varying history stack, H", is called full rank,
uniformly in ¢, if there exists a k > 0 such that V¢t € R>7,,

0<k<Amin {SL()E(t)} - (14)

Using arguments similar to [21, Corollary 4.3.2], it can be
shown that if Awin {I';' (0)} > 0, and if H* is full rank,
uniformly in ¢, then the least squares gain matrix satisfies

L i <Ty(t) <T,lk,VteRsy, (15)

where ', and T, are positive constants.

To facilitate the following analysis, using (11) and (12),
the dynamics for the weight estimation error can be described
by )

W, = —a,[y 5L (20Wu - Au> . (16)
Theorem 1. If ‘H" is full rank, uniformly in t, then t —
W, (t) is ultimately bounded.

Proof. For brevity, the details of the proof has been omitted
(see [22, Theorem 1]). O]

V. INVERSE REINFORCEMENT LEARNING

In this section, the optimal feedback estimator developed
in this previous section is utilized to create a data-set of
estimated, near-optimal state-action pairs to drive IRL.

A. Approximate inverse Bellman error

Consider a time instance, ¢;. For each time %;, select an
arbitrary state, denoted by x;, and let 4; := W (t;)o, (2;) be
the estimate of the optimal controller ] at state z; and time
t;. The approximated inverse Bellman error, when evaluated
at the arbitrarily selected state and at time ?;, using the
estimates of the model and the optimal controller, is given
by

T
5//(tz‘,$¢,ﬁi)= (W’(ti)) a’(ti,xi,ﬁi), (17)

where W (t;) = {Wv(ti);WQ(ti);WR(ti)} and

o' (tiywisie) = | ([Vaov] (@) ) (@i, s)
07 (), )i 0 () 0 (i) |

Since all positive multiples of a reward function result in
the same optimal controller and optimal state trajectories,
given state-action pairs, the reward function can only be
identified up to a scale. As a result, one of the reward
function weights can be arbitrarily assigned. In the following,
the first element of WR is assumed to be known.
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The approximate inverse BE in (17) can then be expressed
as

T
8"t x,;) = (W(tz)) o (ti, i, ) +rioy (G;),  (18)

where W(t;) = {Wv(ti);WQ(ti);Wg(ti)}, the vector

Wg denotes WR with the first element removed, oy (i)
denotes the jth element of the vector o, (1;), the vector o,
denotes o, with the first element removed, and

0" (i) = [ [Vaov)(a) ) (£ )

+ 07 ()0 (i, 0)); 00 () 10 (@) |- (19)

The closed-form nonlinear optimal controller correspond-
ing to the reward structure in (2) provides the relationship

—2Ru* (z;) = ([Vuf] (x;) )T( [Veov] (2:) )TW;
@) (Ve @)

Utilizing estimates (¢;) and data pairs (;,4;) in (20),
([VaV](@))u (@)
uating (18) and (20) at time instances {t;}X ;, and stacking
the results in a matrix form, we get

—SW -8, =XW - A.

(20)

subtracting H | z;, from (18), eval-

2L

IIAI (21), the weight estimation error is defined as W =Ww+*—
W, W is the estimate of W*,

i [ (t1,.731,’u,1) UT(tN,«TNyaN)]a
Su1 = o ;1(ﬁ1)%"‘§0u1(aN)]a and
A= [Am) At Bs(tn); Antn)]

where

o1 () = [r1ou (G14) 5 2r18145 0(m—1)x1]

¢ T
o=|0 l:ome? |:2d1ag([0u12>:n~1 Um7, ) ]
G = ([Vaov] (@ >)(([ 1) (@) +07 (1) (Vo] (@

T

As(t) == 2R + ([Vuol (@) 0(t)([Vuov] (@ >) W;
+(Vur @ >)+9T< )([vuou >)) (Woev] (@)
+ ([ ( [Viov] )WV,

Bon(t) 1= (o) = (i) Wi+ ev(z) + ol
(1 o)~ o)) (1Veov @) W3
ol i) (IVeov] (@) W5

+ (07 @) + (i) (1Vaov] () W5,

and 7;; is the jth element of ;.

xzv z

+ (9T (o(xs,u)) —
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A history stack, denoted as H!RL, is a set of ordered

pairs of parameter estimates, 6(t;), and data pairs, (z;, ;),
collected over time instances ti,%s,...,ty into matrices

DIDINEH N

Due to the fact that the residual errors A can be decreased
by improving the quality of the control and the parameter
estimates stored in /7L, a purging technique is incorpo-
rated in the following to remove poor estimates @ and 0
from H'fL. During the transient phase of the control and
parameter estimators, the estimates @ and 6 are likely to be
less accurate and the resulting values of W are likely to be
poor. Purging facilitates usage of better estimates as they
become available.

The developed purging technique utilizes two history
stacks, a main history stack and a transient history stack,
labeled HIEL and GIEL, respectively. As soon as GIRL ig
full and sufficient dwell time has elapsed since the last purge
(see Section V-B in [22]), H/RL is emptied and GIFE is
copied into HIRL.

The recursive update law for estimation of the unknown
weights is then designed as

W = arsT (fEW — Sul) . (22)
In (22), o € Ry is a constant adaptation gain and I" :
Ry — REHPFM=UX(L+P+m=1) jg the least-squares gain
tuned using the update law

I = A — al'S73T, (23)

where 8 € Ry is the forgetting factor.

B. Analysis

The time-varying history stack, H'?L | is called full rank,

uniformly in ¢, if there exists a ¢ > 0 such that Vt € R>r,

0< 0 < Amin {2%)2@)} . (24)

Using arguments similar to [21, Corollary 4.3.2], it can be
shown that if Ayin {T'7 (Tp)} > 0, and if #/ %L is full rank,
uniformly in ¢, then the least squares gain matrix satisfies

Clpipim1 <T () <Tlpipim—1,Yt € Rspy, (25)

where I and T are positive constants.

To facilitate the following Lyapunov analysis, using (22),
the dynamics for the weight estimation error can be described
by

W= —arsT (iW — A) . (26)

The stability result is summarized in the following theo-

rem.

Theorem 2. If HIRL s full rank, uniformly in t, then t —
W (t) is ultimately bounded.

Proof. For brevity, the details of the proof has been omitted
(see [22, Theorem 2]). L]
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Fig. 1: Trajectory tracking error.

VI. SIMULATION

To demonstrate the performance of the developed method
by comparing weight estimates with their true values, a linear
optimal trajectory tracking problem with known optimal
controller and optimal value function is selected for the
simulation study [23], [24].

Consider an agent with the linear dynamics

o 1] [0
ol vl

where the unknown parameters are #; = —0.5,0, = —0.5,
and 63 = 1. The parameter estimation technique is utilized
to satisfy Assumption 4 developed in [19].

The trajectory the agent is attempting to follow is gener-
ated from the linear system

. |0 1

Tq = 2 0 Xq.
The optimal control problem is to minimize the cost func-
tional

Heaut) = [~ (et g 3] etwr+ 10002 ar

To

27)

(28)

subject to the error dynamics

. [o 1 0
‘= [—0.5 —0.5} et H H

where e = ¢ — x4, ft = u — ug, and ug = [—1.5, 0.5] xq.
The resulting ideal reward function weights are (Q =
diag([Wq,, Wq,]) = diag([1l, 1]) and R = 10. The
optimal value function to be estimated is V* = Wy, e? +
WV26§ + WV36162, where VVV1 = 1.82,WV2 = 2.30, and
Wy, = 1.83. The optimal controller is given by p =
—[0.092, 0.230]e, resulting in the ideal weights W,
—0.091 and W, = 0.230.

The learning gains selected for the two simulations are:
B =0.5,a=001/50,5, =2a,=1,M =50, N =50 and
a step size of 0.005s.

(29)
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Fig. 2: Reward and value function weight estimation errors
without feedback extrapolation.
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Fig. 3: Optimal feedback controller estimation error.

A. IRL without Feedback Extrapolation

The first simulation utilizes the state and control trajecto-
ries directly for IRL similar to [14], and does not estimate the
optimal controller for additional data. Fig. 2 shows reward
and value function estimation errors without queried data.

As seen in Fig. 2, the reward and value function estimates
do not converge to the ideal values. In fact, the estimates
do not change much at all. Once the trajectory tracking
errors converge to zero (within 15s in Fig. 1), and H/TF is
purged to remove transient, erroneous parameter estimates,
the remaining error trajectories, and hence the data points in
HIEL  are near zero. Since the weights in Fig. 2 are esti-
mated using H!7F, the large estimation errors demonstrated
in Fig. 2 are to be expected.

B. IRL with Feedback Extrapolation

The second simulation shows the results of the novel
control-estimation-based technique developed in this paper,
with artificially generated state-action pairs. Utilizing the
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Fig. 4: Reward and value function weight estimation errors
with feedback extrapolation.

estimate of the optimal policy, estimates of the optimal con-
troller, fi;, corresponding to states e;, randomly selected in
the set [—1, 1] x [—1, 1], are produced. The pairs (e;, fi;) are
then iteratively collected in H/?¥ and IRL is implemented
using the update law in (22).

Fig. 3 shows the estimation error for the optimal feedback
controller, and Fig. 4 shows the reward and value function
weight estimation errors.

As seen in Fig. 4, the new IRL approach estimates
the ideal values of the reward and value function weights
online. Though the tracking errors of the system dynamics
have already converged at around 15s (see Fig. 1), due to
the non-zero artificially generated state and control values
available through feedback policy estimation, the developed
IRL method is able to estimate the reward and value function
weights.

VII. CONCLUSION

This paper develops a new approach to performing reward
function estimation online in situations with limited data.
The approach utilizes a concurrent learning update law to
estimate the optimal feedback policy of the agent, online.
This estimate is synchronously utilized to artificially create
additional data to facilitate reward and value function es-
timation. Theoretical guarantees are provided for ultimate
boundedness of the reward and value function weight esti-
mation errors using Lyapunov theory. A simulation example
is presented that demonstrates the benefit of the developed
method when compared with a previous IRL technique
implemented without queried data.

Future work will include an analysis of the performance
of the developed approach for systems with unmeasurable
states and the effect of noise on optimal control estimation.
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