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‘We show that a continuous potential ¢ can be constructively
determined from the knowledge of the Dirichlet—to—Neumann
map for the Schrédinger operator —A, + ¢ on a conformally
transversally anisotropic manifold of dimension > 3, provided
that the geodesic ray transform on the transversal manifold
is constructively invertible. This is a constructive counterpart
of the uniqueness result of [12]. A crucial role in our recon-
struction procedure is played by a constructive determination
of the boundary traces of suitable complex geometric optics
solutions based on Gaussian beams quasimodes concentrated
along non-tangential geodesics on the transversal manifold,
which enjoy uniqueness properties. This is achieved by apply-
ing the simplified version of the approach of [33] to our setting.
We also identify the main space introduced in [33] with a stan-
dard Sobolev space on the boundary of the manifold. Another
ingredient in the proof of our result is a reconstruction for-
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mula for the boundary trace of a continuous potential from
the knowledge of the Dirichlet—to—-Neumann map.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n > 3
with smooth boundary OM. Let us consider the Dirichlet problem for the Laplace—
Beltrami operator —A, = —A,

—Au=0 in M,
(1.1)

ulonr = f.

Here and in what follows M™ = M\ &M. For any f € Hz (OM), the problem (1.1) has a
unique solution u € H(M™*). Associated to (1.1), we define the Dirichlet-to-Neumann
map Agpo : H%(GM) — H_%(aM), formally given by Agof = 0,ulanr, where 0, is the
unit outer normal to OM. If ¢ : M — M is a diffeomorphism satisfying ¥|gpr = I then
Ayrgo = Ng 0, see [28].

The anisotropic Calderén problem concerns the question of whether the equality
Ag 0 = Ay, o implies that go = 1*g; where ¢p : M — M is a diffeomorphism such
that 9|gasr = I. This problem is solved for real-analytic metrics in [28], [27], [26], see also
[16], while it remains open in the smooth category, in dimensions n > 3. The correspond-
ing two dimensional problem, with an additional obstruction arising from the conformal
invariance of the Laplacian, is settled in [27].

A powerful method for studying the anisotropic Calderén problem on genuinely non-
analytic manifolds, where the metric is of special form, is introduced in the work [10]. The
method is based on the technique of Carleman estimates with limiting Carleman weights.
The notion of a limiting Carleman weight for the Laplacian was introduced and applied
to the Calderén problem in the Euclidean setting in [19]. An important result of [10]
states that on a simply connected open manifold, the existence of a limiting Carleman
weight is equivalent to the existence of a parallel unit vector field for a conformal multiple
of the metric. Locally, the latter condition is equivalent to the fact that the manifold
is conformal to the product of a Euclidean interval and some Riemannian manifold of
dimension n — 1. Following [10], [12], we have the following definitions.

Definition 1.1. Let (M, g) be a smooth compact oriented Riemannian manifold of dimen-
sion n > 3 with smooth boundary oM.
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(i) (M,g) is called transversally anisotropic if (M, g) CC (T, g) where T'= R x My,
g = e®go, (R, e) is the Euclidean line, and (M, go) is a compact (n—1)—dimensional
manifold with boundary, called the transversal manifold.

(ii) (M, g) is called conformally transversally anisotropic (CTA) if (M, cg) is transver-
sally anisotropic, for some smooth positive function c.

(iif) (M, g) is called admissible if (M, g) is CTA and the transversal manifold (Mo, go) is
simple, meaning that for any p € Mp, the exponential map exp, with its maximal
domain of definition in 7, My is a diffeomorphism onto My, and M, is strictly
convex.

An interesting special case of the anisotropic Calderén problem is such a problem in
a fixed conformal class. Since any conformal diffeomorphism fixing the boundary must
be the identity map, there is no obstruction to uniqueness arising from isometries in
this problem, see [29]. The uniqueness for the anisotropic Calderén problem in a fixed
conformal class was obtained in [10] in the case of admissible manifolds. Thanks to
the simplicity of the transversal manifold, the proof relies on a construction of complex
geometric optics solutions by means of a global WKB method, and the injectivity of the
attenuated geodesic ray transform on simple manifolds. A reconstruction procedure for
the uniqueness result of [10] was given in [18].

Dropping the simplicity assumption on the transversal manifold, the anisotropic
Calderén problem in a fixed conformal class on a general CTA manifold was studied in
[12]. Here the global uniqueness was established under the assumption that the geodesic
ray transform on the transversal manifold (My,go) is injective. In this case, a global
WKB approach no longer seems possible, and the complex geometric optics solutions
are obtained via a Gaussian beams quasimode construction. We refer to [11], [24] for
the study of the linearized anisotropic Calderén problem on transversally anisotropic
manifolds.

The goal of this note is to provide a reconstruction procedure for the uniqueness
results of [12]. To state our results, let us first give the following definition.

Definition 1.2. We say that the geodesic ray transform on the transversal manifold
(Mo, go) is constructively invertible if any function f € C(My) can be reconstructed
from the knowledge of its integrals over all non-tangential geodesics in My. Here a unit
speed geodesic 7 : [0, L] — M is called non-tangential if 4(0),4(L) are non-tangential
vectors on My and y(t) € M{™ for all 0 < t < L.

Qur first result is as follows.

Theorem 1.3. Let (M,g) be a given CTA manifold and assume that the geodesic ray
transform on the transversal manifold (Mg, go) is constructively invertible. If 0 < ¢ €
C*(M) then from the knowledge of Acy o one can constructively determine c.
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An inverse problem closely related to the anisotropic Calderén problem is the inverse
boundary problem for the Schrodinger equation, which we shall proceed to discuss next.
Let ¢ € C(M), and consider Dirichlet problem

A+ =0 in M™,

ulonr = f.

In what follows assume that 0 is not a Dirichlet eigenvalue of —A + ¢ in M so that
—A+q: (H*>N H})(M) — L?*(M) is bijective. Under this assumption, for any f €
Hz(OM), the problem (1.2) has a unique solution u € H'(M™). Associated to (1.2),
we define the Dirichlet-to-Neumann map Ay 4 : H 2(OM) — H~z(OM) by

<Aquf’ k>H7%(3M),H%(3M) = /(<du? dv>g =+ quv)d‘/j(] (13)
M

Here k € H2(OM), v € HY(M™) is such that v|ops = k, and (+,-)g is the pointwise
scalar product in the space of 1-forms.
Our second result is as follows.

Theorem 1.4. Let (M, g) be a given CTA manifold and assume that the geodesic ray
transform on the transversal manifold (My, go) is constructively invertible. Let ¢ € C'(M)
be such that 0 is not a Dirichlet eigenvalue of —A +q in M. Then the knowledge of Ay 4
determines q constructively.

Remark 1.5. The constructive invertibility of the geodesic ray transform is known in the
following cases, in particular:

e (Mpy, go) is a simple Riemannian surface. In this case, there is a Fredholm type inver-
sion formula established in [35], which leads to the exact inversion in the constant
curvature case, see [35], and its small perturbations, see [21]. See also [30], [31].

e (Mpy, go) is a Riemannian surface with strictly convex boundary, no conjugate points,
and the hyperbolic trapped set (these conditions are satisfied in negative curvature,
in particular). In this case, a Fredholm type inversion formula was obtained in [15].
The inversion formula becomes exact in a neighborhood of a constant negatively
curved metric.

e (Mpy, go) is of dimension n > 3, has a strictly convex boundary and is globally foliated
by strictly convex hypersurfaces. In this setting, a layer stripping type algorithm for
reconstruction was developed in [39)].

Remark 1.6. Theorem 1.3 and Theorem 1.4 are valid in the case of admissible manifolds in
particular, thereby providing an alternative proof of the reconstruction results established
in [18]. Furthermore, Theorem 1.4 improves the regularity assumption on the potential
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in the corresponding result of [18] as it holds for a continuous potential whereas the
corresponding result of [18] requires that the potential should be smooth.

Following the pioneering works [32], [34], we know that the crucial step in the recon-
struction procedure of a potential from the corresponding Dirichlet—to-Neumann map
consists of constructively determining the boundary traces of suitable complex geomet-
ric optics solutions. To the best of our knowledge, there exist two approaches to the
reconstruction of such boundary traces. The first one is due to [32] in the Euclidean
setting, where suitable complex geometric optics solutions are constructed globally on
all of R", enjoying uniqueness properties characterized by decay at infinity. The sec-
ond one is due to [33], where the complex geometric optics solutions are constructed
by means of Carleman estimates on a bounded domain, and the notion of uniqueness
is obtained by restricting the attention to solutions of minimal norm. A common point
of both approaches is that the boundary traces of the complex geometric optics solu-
tions in question are determined as unique solutions of well posed integral equations on
the boundary of the domain, involving the Dirichlet—to-Neumann map along with other
known quantities. The approach of [32] was extended to the case of admissible manifolds
in [18] for the Schrodinger equation, see also [7] for the magnetic Schrodinger case in a
cylindrical setting. The approach of [33], which was developed for the Calderén problem
with partial data, was extended to admissible manifolds in [3], also in the partial data
case.

In this note, we give a simplified presentation of the method of [33] in the full data
case, for manifolds admitting limiting Carleman weights. We also point out that the
space H(OM) introduced in [33], where the main boundary integral equation is solved,
agrees with the standard Sobolev space H ™= (OM).

We proceed next to discuss the ideas of the proof of Theorem 1.3 and Theorem 1.4.
First we observe that Theorem 1.3 follows from Theorem 1.4 along exactly the same
lines as in [18], and therefore only Theorem 1.4 will be proved. In doing so, we shall rely
on complex geometric optics solutions constructed on general CTA manifolds, based on
Gaussian beams quasimodes along non-tangential geodesics in M. Such solutions were
constructed in [12] without any notion of uniqueness involved. In this note, following the
method of [33], we refine this construction somewhat and obtain complex geometric optics
solutions enjoying uniqueness properties. Another ingredient in the proof of Theorem 1.4
is a reconstruction formula for ¢|gops from the knowledge of the Dirichlet—to-Neumann
map Ay 4 which is performed in Appendix A. This is precisely the result which allows us
to improve the regularity of potential in the result of [18].

Finally, we would like to point out that similarly to the reconstructions results of [18],
in the reconstruction procedure developed in this note, we make no claims regarding
its practicality, our purpose merely being to show that all the steps in the proof of the
uniqueness result of [12] can be carried out constructively.

The plan of this paper is as follows. Section 2 gives a presentation of the method of
[33] in the full data case, for manifolds admitting a limiting Carleman weight. Section 3
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is devoted to the construction of complex geometric optics solutions enjoying unique-
ness properties and to the proof of Theorem 1.4. Appendix A contains a reconstruction
formula for the boundary traces of a continuous potential from the knowledge of the
Dirichlet—to—Neumann map.

2. The Nachman—Street argument on manifolds admitting a limiting Carleman weight

The discussion in this section can be regarded as a simplified version of the con-
structive approach of [33] to determining boundary traces of complex geometric optics
solutions, in the full data case, in the setting of compact manifolds with boundary ad-
mitting a limiting Carleman weight. We also identify the space H(9M) of [33], where the
main boundary integral equation is posed, with the standard Sobolev space H —3 (OM).

Let (M,g) be a smooth compact Riemannian manifold of dimension n > 3 with
smooth boundary dM. Let us consider the semiclassical Laplace—Beltrami operator
—h%A, = —h?A on M, where h > 0 is a small semiclassical parameter. Assume, as
we may, that (M,g) is embedded in a compact smooth Riemannian manifold (N, g)
without boundary of the same dimension, and let U be open in N such that M C U.

Let ¢ € C*°(U;R) and let us consider the conjugated operator

P, =eh(=h?A)e™F = —h2A — |Vp|? + 2(Vp, hV) + hAgp, (2.1)
with the semiclassical principal symbol
pe = €7 — |do]® + 2i(¢, dp) € C=(T*V). (22)

Here and in what follows we use (-,-) and | - | to denote the Riemannian scalar product
and norm both on the tangent and cotangent space.

Following [19], [10], we say that ¢ € C°°(U;R) is a limiting Carleman weight for
—h?A on (U, g) if dp # 0 on U, and the Poisson bracket of Rep,, and Imp,, satisfies,

{Repy,,Imp,} =0 when p, =0.

We refer to [10] for a characterization of Riemannian manifolds admitting limiting Car-
leman weights.

Our starting point is the following Carleman estimates for —h?A, established in [10],
see also [22].

Proposition 2.1. Let ¢ € C®(U;R) be a limiting Carleman weight for —h?A on (U, g).
Then for all 0 < h < 1, we have

h||u||L2(]V[) < C”P@uHLz(M), C >0, (2.3)

for all u € C§°(M™).
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Note that if ¢ is a limiting Carleman weight for —h?A then so is —¢. Let P7 be the
formal L?(M)-adjoint of P,. We have P; = P_,. Let us also introduce the following
closed subspace of L?(M),

Ker(P,) = {u € L*(M) : P,u =0},
so that we have
L*(M) = Ker(P,) @ (Ker(P,))*.

Following [33], we shall now proceed to construct Green’s operator for P,. To that
end, we have the following solvability result.

Proposition 2.2. Let ¢ € C°(U;R) be a limiting Carleman weight for —h*A on (U, g).

Then for all 0 < h < 1 and any v € L*(M), there is a unique solution u € (Ker(P,))*
of the equation

Pou=v in M™, (2.4)

Furthermore, u satisfies the bound

C
lull L2 ary < EHUHLZ(M), (2.5)
for all 0 < h < 1.

Proof. Let v € L?(M) and let us first show the existence of a solution to (2.4) in the
space (Ker(P,))*. To that end, consider the following linear functional

L:P;C(M™) - C, L(Piw) = (w,v)2(m)-

By the Carleman estimate (2.3) for P}, the map L is well-defined. Let w € Cg°(M™").
Then by using the Carleman estimate (2.3) for P} again, we get

. o
|L(Pyw)| < E||P¢w\|L2(M)HU||L2(M)-
By continuity, L extends to a linear continuous functional on the closed subspace
P:Cg°(M™) C L?(M). By the Riesz representation theorem, there is therefore a unique
u € P;C§° (M) such that
L(g) = (gau)LQ(M)v ge PgCgO(Mint),

and u satisfies the bound (2.5). In particular, for any w € C§°(M™), we have
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L(P;w) = (wvv)LQ(JVI) = (P;wvu)LZ(M),

showing that P,u = v. Furthermore, we clearly have (P;Cg°(M int))+ = Ker(P,), which
is equivalent to

PO (M™) = (Ker(P,))*. (2.6)

To see the uniqueness, let u, @ € (Ker(P,))* be solutions to (2.4). Then u—u € Ker(P,)N

(Ker(P,)* = {0}. ©
Following [6], we introduce the Hilbert space
HA(M) ={u € L*(M): Au € L*(M)},
the maximal domain of the Laplacian, equipped with the norm
||UH§{A(M) = ||U||%2(M) + ”Au”%%M)'

We have the following result on the existence of Green’s operators, see [33, Theorem
3.2].

Theorem 2.3. Let p € C*°(U;R) be a limiting Carleman weight for —h*A on (U, g).
Then for all 0 < h < 1, there exists a linear continuous operator G, : L*(M) — L?(M)
such that

i) P,G, =1 on L*(M),

ii) ||G<,OH£(L2 (), 2y = O(h™1),
(iii)

) G

)

ch L*(M) — e® Ha(M),
(iv) GI, =Gy,
(v) GoP, =1 on C§°(M™).

Proof. We follow [33] and present the proof for the completeness and convenience of the
reader. First we define the following solution operator to the equation (2.4),

H, : L*(M) - PrCe (™) = (Ker(P,)", H,(v) = u,

where u € P5Cg°(M™) is the unique solution to the equation (2.4), see Proposition 2.2.
It is clear that H, satisfies the properties (i)-(iii) of Theorem 2.3. However, to achieve
the property (iv) we shall make a suitable modification of H,.

In doing so, let 1 — 7, be the orthogonal projection onto P;Cge(M™t) C L*(M).
Then we claim that 7, is the orthogonal projection onto Ker(P,). Indeed, we have

Ran(r,) = (Ker(ﬂsa))Lv
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and therefore, it suffices to show that
Ker(m,) = (Ker(P,))*.
This follows from the fact that
Ker(m,) = Ran(l — 7,) = W

and (2.6). This completes the proof of the claim.
Let

We claim that

Indeed, first, we have
T_yme =0, Tomp = (1—m_y)(mpH,)" =0.
As Ran(l —7,) = W, to prove (2.8) it suffices to show that
T;P;w = T_wP;w = H_¢P;w,
for all w € C§°(M™). To see (2.9), we first observe that for any = € L2(M),
(ToPyw, m—px) 2y = (HyPyw, (1 — m_g)m—px) r2(ar) = 0,
and

(H,wP;w,ﬂ',@x)Lz(M) = (W,V,H,WP;IUJ)LQ(M) =0.

(2.7)

(2.9)

As Ran(1—-7_,) = P,C3° (M), to complete the proof of (2.9) it remains to check that

(T Pyw, Ppg) 2y = (H-p Pyw, Ppg) r2(ar)

(2.10)

for all g € C§°(M™"). Integrating by parts, and using that P_,H_, = 1 on L*(M), we

get

(H-pPyw, Pog) 2y = (P-pH_ o Pow, g) 2y = (Pow, g)r2(ar)-

On the other hand, we obtain that

(2.11)



10 A. Feizmohammadi et al. / Journal of Functional Analysis 281 (2021) 109191

(T;P;ﬂ% Papg)L2(M) = (H:;P;wv (1- 7Ho)Pgag)LQ(z\Ar) (2.12)
= (w,P@Hg,P@g)Lz(M) = (P;w,g)Lz(M).

It follows from (2.11) and (2.12) that (2.10) holds. This completes the proof of (2.8).
Finally, let us define

G,=H,+n,H* G_wzH_¢+7r_¥,H:,.

%3]

It is clear that G 1, satisfies all the properties (i)—(iii) in Theorem 2.3. To see the property
(iv), using (2.7) and (2.8), we get

Go=Ho+H ,mp= T, +Hom )" +Hop =T o =G,
To see the property (v), letting f, g € C§°(M™"), we obtain that
(Gq:Pgoﬂ 9)L2(M) = (PtpfaG—apg)L2(M) = (f, P—LpG—Lpg)LZ(M) (f, )L?(M
This completes the proof of Theorem 2.3. O

Let v : C*®(M) — C*(0M), v(u) = ulsp be the trace map. It is shown in [6], see
also [13, Section 26.2], that the trace map 7 extends to a continuous map

v Ha(M) — H™2(OM). (2.13)

We claim that the map + in (2.13) is surjective. This follows from the fact that if
g € H™2(OM), there exists a unique v € L2(M) such that —Au = 0 in M and v(u) = g,
see [13, Theorem 26.3]. Furthermore, we have

lullz2 ) < Cllgll -5 ougy (2.14)
see [13, Theorem 26.3].
Remark. The space
H(OM) = {v(u) 1 u € HA(M)} C H™ 2 (M)
was introduced in [33]. The discussion above shows that in fact we have

H(OM) = H™ 2 (OM).

Let ¢ € L>°(M) and let us assume from here on that 0 is not a Dirichlet eigenvalue
of —A + g, so that —A + ¢ : (H>N H})(M™) — L?(M) is bijective. Setting

by :={u € L*(M): (—=A+q)u=0} C Hr(M),



A. Feizmohammadi et al. / Journal of Functional Analysis 281 (2021) 109191 11

we claim that the trace map
v by — H™2 (M)

is bijective. Indeed, to see the surjectivity of ~, let g € H*%((?M). By [13, Theorem
26.3], there exists u € L?(M) such that —Au = 0 in M and ~y(u) = g. As 0 is not a
Dirichlet eigenvalue of —A + ¢, the Dirichlet problem,

{(—A +qv=qu in M0
v(v) =0,

has a unique solution v € (H? N H})(M™). Letting w = u — v € L?(M), we see that
w € by and y(w) = g. Note also that

el any < Clgll - gar (2.15)

To see the injectivity of v, let u € b, be such that y(u) = 0. Then u € (H? N H})(M™?),
see [6], and therefore, u = 0. This completes the proof of the claim.

Next we shall define suitable single layer operators associated to the Green operator
G,. To that end, we first note that the trace map

v e HA(M) — e H™ (M) = H™ 2 (OM)

is continuous. Thus, it follows from Theorem 2.3 (iii) that the map

oGy, : L*(M) — H™2 (M)
is continuous. Thus, the L?-adjoint

(yoGy)*: Hz(OM) — L*(M)
is also continuous. Let h € Hz(OM). We claim that

P_,((yoGy,)*h) =0 in D'(M™). (2.16)
To see the claim let f € C§°(M™). Using Theorem 2.3 (v), we get
(P-ol(30 G ), Prcany = (s (50 Gl Pl ) oapy o onry = O

showing (2.16). Now (2.16) implies that for any h € Hz (M), (YoGy)*h € e " HA(M),
and therefore, the map

®

(Yo Gyu)* : H2 (OM) — e~ % Ha(M)
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is bounded. Thus, the map
vo(yoGy,)*: HZ(OM) — H™%(dM)
is well defined and bounded. Its L?-adjoint
(vo(yoGe)") - HE(OM) = H™*(OM)
is bounded. We define the single layer operator by
S, =e F(yo(yoGy)*)er € LIH?(OM), H 2 (OM)). (2.17)

Using the definition (1.3) of the Dirichlet—to-Neumann map, for f,k € H2 (M), we
get
(g = 8001y a1k oy = | 02020V (2.18)

M

where u1,us € HY(M™) are such that

—A =0 i Mint
( + q)u1 m ) (219)
Ui ‘BM == f7
and
—Au; =0 in Mt
"2 o 7 (2.20)
u2|aM = /C.

We claim that A, ; — Ay o extends to a linear continuous map H~2(OM) — Hz(OM).
Indeed, it follows (2.14) and (2.15) that

[((Agia = R0 012y onny b onn | < Clutllezan lzll 2an

< Ul g3 oy ¥l -3 omey

and therefore, by density of H2 (M) in H2(OM), we see that
”(Ag#] 90)f||H2 (M) — C||fHH—§ BM)
The claim follows. Combining the claim with (2.14), (2.15), we see that the integral

identity (2.18) extends to all f,k € H—2(OM) with the corresponding solutions u; € by,
ug € by, and we obtain that
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(gis = M) F) 3 oy - honry = | 12020 (2.21)
M

Now consider the map S,(Ag,q — Ago) € L(H2(OM), H"2(OM)). Let
Py=~"1:H 3(0M) = b, (2.22)
be the Poisson operator. We claim that
Se(Agqg—Ago) =yoe h OG«:OG% ogqoPy (2.23)

in the sense of linear continuous maps: H_%(E)M) — H_%((?M). Indeed, let f, k €
C>°(OM) and note that in view of (2.16), the function e® (y o G,)*e "k € L2(M) is
harmonic. Then using (2.21) and (2.17), we get
_¥ P
(yoeTroGyoeh ogoPyf, k)H*%(E)M),H% (OM)

=((voGy)oef oqoPuf.e™ ") g o0 1d onny

= (g0 Pyfsef (v 0 Gyp) e T k) r2an)
= ((Ag,q —Ago)fivo el (yo G@)*e_%k)H%(aM),H’%(SM)

= (Se(Aga = A0.0)FK) -4 (oar) 113 onry’
Thus, (2.23) follows.
Proposition 2.4. Let k, f € Hfé(aM). Then
(1+ hQS«J(Ag,q —Ago))k=f (2.24)
if and only if
(1+e % oGyoehh?q)Pyk = Pof. (2.25)

Proof. Assume first that (2.24) holds. Applying —h?A to the left hand side of (2.25)
and using Theorem 2.3 (i), we get

(=h2A)(1 + e 0 Gy oeh h2q)P,k = 0.
Furthermore, using (2.23) and (2.24), we see that
yl+eho Gy o e%hQQ)qu =k +h?Sp(Agq — Ago)k = f.

Hence, (2.25) follows. Assume now that (2.25) holds. Then taking trace in (2.25), we
obtain (2.24). O
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Proposition 2.5. The map 1 4+ h?S,(Ag.q — Ago) : H~2(OM) — H™2(0M) is a linear
homeomorphism for all 0 < h < 1.

Proof. First by Theorem 2.3 (ii), for all 0 < h < 1, the map
1+ h%e hoGuoehg=e"h(1+h2Gyq)ek : L2(M) — L*(M)

is a linear homeomorphism. Hence, for all 0 < h < 1 and any v € L?(M), there exists a
unique u € L?(M) such that

(1+h% % oGuoekqu=n.
If v € by then
0= —h2Au+ (—h2A)(e™F 0 Gy, 0 et h?qu) = (—h>A + h%q)u,
and therefore, u € b,. Thus, for all 0 < h < 1, the map
1+ h%e hoGuoehqg:b, — by

is an isomorphism. As P, : H *%(8M ) — by is an isomorphism, by Proposition 2.4, we
get the claim of Proposition 2.5. O

3. Proof of Theorem 1.4

Assume first that (M, g) is transversally anisotropic, i.e. ¢ = 1, so that g = e &
go. Assume also that (M, g), and therefore (My, go), are known, as is the Dirichlet—
to-Neumann map Ay ;. We would like to provide a reconstruction procedure of ¢ from
this data.

Our starting point is the integral identity (2.21) valid for all u; € by and ug € by. We
shall next construct u; and us as special complex geometric optics solutions. To that
end, we shall need the following result from [12] concerning existence of Gaussian beam
quasimodes, concentrating along non-tangential geodesics in M.

Theorem 3.1 ([12]). Let (My, go) be a compact oriented manifold with smooth boundary,
let v : [0, L] = My be a non-tangential geodesic, and let X € R. For any K > 0, there is
a family of functions vs € C*°(My), where s = % + 1A, and 0 < h < 1, such that

1(=2gy = 8*)vsllz2(asy) = ORT),  vsllz2(ase) = O(D), (3.1)
as h — 0, and for any ¢ € C(My), one has

L

tim [ foPudvy, = [P o) (3.2)
My

0



A. Feizmohammadi et al. / Journal of Functional Analysis 281 (2021) 109191 15

Remark. It follows from the proof of Theorem 3.1 in [12] that vs are explicit functions of
Gaussian type which can be constructed from the knowledge of the manifold (M, go).

Let us write x = (x1,2’) for local coordinates in R x My. The function ¢(z) = 1 is
a limiting Carleman weight for —h?A, see [10]. It follows from (3.1), since vy = vs(z’),
that

le™* (= Ag)e* s r2(are) = O(RF),  le (= Ag)e™ vyl 12(arg) = O(RF),  (3.3)

as h — 0.
We are interested in harmonic functions us € L?(M) of the form,

Uy = esr1 (”Us + ’72), (34)

where v, is the Gaussian beam quasimode from Theorem 3.1, and 75 is a remainder term
to be constructed. Now wus is harmonic if and only if 7 satisfies

P_ ey = —eAT1emso (B2 Aty (3.5)
Looking for a solution of (3.5) in the form 75 = e‘i’\$1G_¢rg, we see that
Py = —eP1TSTL (L2 A )y,
It follows from (3.3) that [ra||r2(ar) = O(h¥+?2), and therefore, by Theorem 2.3 (ii),
P2l 2ary = O(RSHY), (3.6)

as h — 0, for K > 0.
We next construct complex geometric optics solutions u; € by in the form,

up = ug + e U, (3.7)
where ug € L?(M) is a harmonic function of the form,
ug = e~ " (vg + 7). (3.8)
Here 7 satisfies the equation
Pe M5y = —e TSt (R A )e 5y, (3.9)
and we can take

’770 — eiAmlero’ ro = _6—7.)\:61 srl( hQA) —smlUS.
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It follows from (3.3) and Theorem 2.3 (ii) that
170l L2(ar) = O(RRHY), (3.10)
as h — 0, for K > 0. To find the remainder 77 in (3.7), we should solve the equation
(=A+q)(uo +€e°'711) =0,
which is equivalent to
(P, + h*q)e ™17 = —h2e qug. (3.11)
Looking for a solution 7 of (3.11) in the form
r = ei)‘mlerl, r € L2(M), (3.12)
we see that ry should satisfy
(I 4+ h%qG,)r1 = —h2e® quy. (3.13)

It follows from Theorem 2.3 (ii) that the equation (3.13) has a unique solution r; €
L?(M) such that

Ir1llz2ary = O(W?)lle R uoll L2 (ary = O(R?)le™ A (vg + Fo) | 2ar) = O(R?),
as h — 0. Here we have used (3.8), (3.1), and (3.10). Hence,
1712 (ar) = O(h), (3.14)
as h — 0. We have therefore constructed u; € b, of the form
w1 = ug + e*%G@rl, (3.15)
where 71 € L?(M) is the unique solution of (3.13).
We shall next show that the boundary traces of u; can be reconstructed from the
knowledge of Ay 4. To that end, we claim that u; satisfies
(I + h%e™ % Guqe® yuy = uo. (3.16)
Indeed, applying G, to (3.13) and multiplying by e~ , we get
e R Gury + e Th2G,(qG ) = —h%e R Gyet quo. (3.17)

Adding wug to the both sides of (3.17), and using (3.15), we obtain (3.16) as claimed.
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Note that the harmonic function ug given by (3.8) is an explicit function which is
constructed from the knowledge of (M, g). In particular, up|oas is also known. By Propo-
sition 2.4, f = uilom € Hz (OM) satisfies the boundary integral equation,

(1 + hQSw(Aqu - Ag,O))f = U0|8M~ (3-18)

Here the operator in the left hand side and the function in the right hand side are known,
and by Proposition 2.5, for all 0 < h <« 1, we can construct f as the unique solution to
(3.18).

It follows from the discussion above together with the integral identity (2.21), that
from the knowledge of our data, we can reconstruct the integrals

/qulu_ngg, (3.19)
M
with uy, us given by (3.7), (3.4), respectively. Thus, using (3.4), (3.7), (3.8), we conclude
from (3.19) that we can reconstruct
/qe_%’\””1 (vs + To + 71) (U5 + T2)dx1dVy,, (3.20)
M

for all 0 < h < 1. Using also (3.1), (3.6), (3.10), (3.14), we observe that (3.20) is of the
form

/qe_%)‘””1 lvs|2dz1dV,, + O(h), (3.21)
M

as h — 0. It will now be convenient to extend the domain of integration in (3.21) to all
of T =R x My. To that end, we extend ¢ to a function in Co(7T™") in such a way that
qlr\ar is known. This can be done by determining ¢ on dM from the knowledge of A, 4
and Ay in a constructive way, see Theorem A.1. Hence, it follows from (3.21) that the
boundary data allows us to reconstruct

/6_21“7‘1 /q(ml,m’)|vs(x')|2d%odw1 + O(h). (3.22)
R My
Taking the limit as h — 0 in (3.22) and using (3.2), we are able to reconstruct

L L

/ —21>\ﬂ?1/e—2)\t .131,'}/ :/ ZA ’y _ZAtdt, (323)

0 0

for any A € R and any non-tangential geodesic v in M. Here
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-~ / —iA 4
gz’ = /e AT (2, 2")dxy .
R

The integral in the right hand side of (3.23) is the attenuated geodesic ray transform of
q(2X, ) with constant attenuation —2A\.

Setting A = 0 in (3.23), we recover the geodesic ray transform of ¢(0,-). Using the
constructive invertibility assumption for the geodesic ray transform on M,, we deter-
mine ¢(0,-) in M. Differentiating (3.23) with respect to A and letting A = 0, as we
know ¢(0, -), we constructively determine the geodesic ray transform of 9,g(0, ). Using
again the constructive invertibility assumption, we constructively recover (0, -) in Mj.
Continuing in the same fashion, we constructively determine the derivatives 95g(0,-) in
My for all £ > 0. We have therefore determined the Taylor series of the entire function
A= g(A2’) at A = 0. Inverting the one-dimensional Fourier transform, we complete the
reconstruction of ¢ in R x My in the case ¢ = 1.

The argument explained in [18, Section 4] allows us to remove the simplifying assump-
tion ¢ = 1. This completes the proof of Theorem 1.4.
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Appendix A. Boundary reconstruction for a continuous potential

The purpose of this appendix is to provide a reconstruction formula for the boundary
values of a continuous potential g from the knowledge of the Dirichlet—to—-Neumann map
for the Schrodinger operator —A 4 ¢ on a smooth compact Riemannian manifold of
dimension n > 2 with smooth boundary. The boundary determination of a continuous
potential is known, see [17, Appendix] for the case n = 2, and [23, Appendix C] for an
extension of this result to the case n > 3, see also [2]. We refer to [1], [4], [5], [20], [38], [8],
[9], for the boundary determinations/reconstructions of conductivity as well as first order
perturbations of the Laplacian. The approach of [17, Appendix] uses a family of functions,
whose boundary values have a highly oscillatory behavior while becoming increasingly
concentrated near a given point on the boundary of M, proposed in [4], [5], as well as
Carleman estimates for the conjugated Laplacian with a gain of two derivatives in order
to convert such functions into solutions of Schrédinger equations. This approach does not
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appear to be constructive, as the boundary traces of these solutions are not determined in
this approach. Not being aware of any reference for the constructive determination of the
boundary values of a continuous potential from boundary measurements, and also, since
we need this result for the proof of Theorem 1.4, we present a reconstruction formula
here. Let us remark that in the case of smooth potentials, the entire Taylor series at the
boundary can be determined from the knowledge of the Dirichlet—to—Neumann map by
means of a constructive procedure, see [10, Section 8], [37], [25].
Our boundary reconstruction result is as follows.

Theorem A.1. Let (M, g) be a compact smooth Riemannian manifold of dimension n > 2
with smooth boundary. Let ¢ € C(M) and assume that 0 is not a Dirichlet eigenvalue
of —A+ q in M. For each point xo € OM, there exists an explicit family of functions
vy € C®(M), 0 < XA < 1, such that

q(xo) = 2}\%<(Aqu - Ag’o)(UA‘aM)’H‘3M>H7%(BM),H%((')M).

Proof. Our starting point is the integral identity (2.18) which we write as follows,
[tV = (A = 20085 o0y sk onry (A1)
M

where u,v € H*(M™*) are solutions to

—A =0 i Mint
(A +q)u in : (A2)
ulom = f,
and
~Av=0 in M™
v m ’ (A.3)
vlonm = f.

Next we shall follow [4], [5], constructing an explicit family of functions vy, whose
boundary values have a highly oscillatory behavior as A — 0, while becoming increasingly
concentrated near a given point on the boundary of M. To that end, we let xg € OM
and let (z1,...,%,) be the boundary normal coordinates centered at xg so that in these
coordinates, ro = 0, the boundary OM is given by {z, = 0}, and M™ is given by
{z,, > 0}. We have, see [28],

g(z' zy) Z Jop(®)dro0drs + (do,)?, (A.4)
a,f=1

and we may also assume that the coordinates #’ = (x1,...,2,_1) are chosen so that
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g*?(2',0) =6 + O(|2']"), 1<a,B<n-—1, (A.5)

see [36, Chapter 2, Section 8, p. 56].

Notice that in the local coordinates, T,,0M = R™~! equipped with the Euclidean
metric. The unit tangent vector 7 is then given by 7 = (7/,0) where 7/ € R*~1 |7/| = 1.
Associated to the tangent vector 7 is the covector &/, = Zg;i 9op(0)75 =7, € Ty OM.

Let n € C§°(R™; R) be such that supp (1) is in a small neighborhood of 0, and

/ n(a',0)%da’ = 1. (A.6)

Rn—1

Let 3 < a < 3. Following [5], [23, Appendix C], in the boundary normal coordinates,
we set

va(x) = )\_a(ﬂé_l)_%n</\%)e%(7/"”/+m”), 0< Ak, (A.7)
so that vy € C°(M), with supp (vy) in O(A*) neighborhood of 2y = 0. Here 7’ is viewed
as a covector. A direct computation shows that

loallzz(ar) = O(1), (A.8)

as A — 0, see also [23, Appendix CJ.
Next we would like to construct v,u € H!(M™) of the form

v=vx+T1, Uu=uvy+r], (A.9)

solving (A.3) and (A.2), and so that 71 and ro have decaying L? norms as A — 0. The
idea of [17, Appendix], see also [23, Appendix C], was to use Carleman estimates with a
gain of two derivatives to accomplish this. However, here for the reconstruction purposes
we need to know the boundary traces v|gar and ulgar, see (A.1). To achieve this, following
[4], [5], see also [22, Appendix], we shall obtain r; € H}(M™") as the solution to the
Dirichlet problem,

“Ary = Avy i MM
" o ’ (A.10)
7’1|3M =0.
Similarly, we shall find ro € H}(M™") as the solution to the Dirichlet problem,
(A +q)ra = —(=Avy +quy) in M™, (A11)
T’2|3M = 0

Note that in [5], see also [22, Appendix], one shows that |71|| 2y = O(1), which is not
enough for the determination of the potential ¢ on M. To get an improved bound for
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I71]|22(ar), we use the estimate of Theorem A.2 below with s = £ +¢, 0 <& < 1/2 to be
chosen fixed. We have

HTl”L?(M) S H?“1||H1/2+E(Mim) S CHA’UA”Hf?,/ers(Mim). (A.12)

To estimate ||[Avy||-3/2+<(ppme) We use interpolation,

1/2+ 1/2—
10l z-s/2sc(ariey < 180328y B0 522 (g (A13)

see [14, Theorem 7.22, p. 189]. Using the following bounds, established in [23, Appendix
Cl,

[AVAll -2 (arimey = O(ATFT), é <a< %7
[Avslla-sarmny = OA™), Z<a<s,
we get from (A.13) that
| AV gr-3/2+e (aginey = OAT*HH/272),
Choosing o = 1/3 and ¢ = 1/12, see that
180 7 -525- iy = O12). (A14)
Therefore, it follows from (A.12) and (A.14) that
7122 (ary = OA12), (A.15)

as A — 0.
In view of (A.11), using the estimate of Theorem A.3 below with s = 1 +¢, ¢ = 1/12,
we obtain that

H?"Q”LQ(M) S H?"2||H1/2+5(Mint) S C(HAUA”H*B/Q«FE(Mint) + ||q'l))\||H—l(Mint)). (A].G)

To bound ||qux|[g—1(arimey we first note that as ¢ € C(M), using a partition of unity
argument together with a regularization in each coordinate patch, we get that there
exists ¢, € C§°(M™), 7 > 0, such that

g = arlleeary = 0(1),  llarlleeary = O1),  [IVarllLeoan = O™, (A.17)

as 7 — 0. Letting ¢ € C§°(M™*) and using (A.17), we obtain that

< 0r0(1)Oxs0 (DIl z2an. (A.18)

' = auvav,
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Setting

VeV 1

[ — _. = /. / )
= e Qngb V, ¢=1- 2" +ixy,,

we have Lex (7 #'+izn) — \=1ex (72" +izn) {ging (A.7), the fact that the transpose L =
—L and integrating by parts, we get

‘ / GroaidV,
M
a(n—1)

T3

a(n—=1) 1

=)\ 2z "2

z (! iz
[ arin((5 )5 gt e

€ L7z +ix
R R R B
M

Note that the worst growth in A in (A.19) occurs when L falls on ¢, or 7. Choosing

(A.19)

7 = A%, and using the Cauchy—Schwarz inequality, those two terms are bounded by
O )[4| 2 (ar)- Hence, it follows from (A.18) and (A.19) that

llquallz-1(ariney = o(1), (A.20)
as A — 0. Thus, we see from (A.16), (A.14), and (A.20), that
721l 22 (ar) = o(1), (A.21)
as A — 0.

Substituting v and v given by (A.9) into the integral identity (A.1), and taking the
limit A — 0, we get

lim <(Ag,q - Ag,O)(UA‘BM)7H|BM> = lim (Il + -[2)7 (A22)

A—0 H™2(OM),H3 (M) 350

where

L = /q\wldeg, I, = /q(w—l+mz+r—1rz)dvg.
M M

In view of (A.15), (A.21), and (A.8), we have
[I2| = o(1), (A.23)

as A — 0. Using (A.7), (A.6), the fact that ¢ is continuous, and making the change of
variables 3’ = f—;, Yn = 5=, We get
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oo

lim I; = lim /q()\o‘y',)\yn)nQ(y',Al_ayn)e_Qy"'|g(/\ay’,/\yn)|1/2dy'dyn
A—0 A—0

Rn-1 0
n 1 (A.24)
= Olg(0)? [ & dy, = 3q(0)
0
It follows from (A.22), (A.23), (A.24) that
li A A Ty _ ! 0
Lim ((Ag,q = Ag0)(alons) Txlom) -3 a1k oary = 59(0)

This completes the proof. 0O

In the course of the proof of Theorem A.1 we need the following result, see [13, Section
54.2].

Theorem A.2. Let (M, g) be a compact smooth Riemannian manifold of dimension n > 2
with smooth boundary. Let s > 1/2, F € H*"2(M™), f € H*"Y2(0M). Then the
Dirichlet problem

—Au=F in MM,
u|8]\/[ = f7
has a unique solution uw € H*(M™*) and moreover,
1wl s (ariney < CUF (| zs-2arimey + 1 f | me-1720001)-
We also need a similar result for the Dirichlet problem for the Schrédinger equation.

Theorem A.3. Let (M, g) be a compact smooth Riemannian manifold of dimension n > 2
with smooth boundary, and q € L™ (M). Assume that 0 is not a Dirichlet eigenvalue of
~A,+q Let 1/2 < s < 2, F € H2(M™), f € H*"'/2(OM). Then the Dirichlet
problem

{(—A—l—q)u =F in MM,

u|8M = f7
has a unique solution uw € H*(M™) and moreover,
ullmrs(armey < C[F (| me-2(armey + | fllmo-1/20n1))-
Proof. Consider the operators

A HS(M™Y — H72(M™) x H=Y2(0M), u— ((—A+ q)u, ulonr),
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Ao 0 H¥(M™) — HS72(M™) x H7Y2(0M), u s (—Au,ulonr),
and
Q: H*(M™) — H*72(M™) x H"Y2(dM), u— (qu,0).

It follows from [13, Section 54.2], cf. Theorem A.2, that Ay is an isomorphism. The
operator () is compact, as the operator H*(M™) > v+ qu € H*~2(M™) is compact.
The later follows from the fact that the operator H*(M™) > u + qu € L?*(M) is
continuous and the embedding L?(M) C H*~2(M™*) is compact provided s < 2. Hence,
A = Ao+ Q is Fredholm of index zero, and as 0 is not a Dirichlet eigenvalue of —A,+g¢,
A is an isomorphism. O
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