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We show that a continuous potential q can be constructively 
determined from the knowledge of the Dirichlet–to–Neumann 
map for the Schrödinger operator −Δg + q on a conformally 
transversally anisotropic manifold of dimension ≥ 3, provided 
that the geodesic ray transform on the transversal manifold 
is constructively invertible. This is a constructive counterpart 
of the uniqueness result of [12]. A crucial role in our recon-
struction procedure is played by a constructive determination 
of the boundary traces of suitable complex geometric optics 
solutions based on Gaussian beams quasimodes concentrated 
along non-tangential geodesics on the transversal manifold, 
which enjoy uniqueness properties. This is achieved by apply-
ing the simplified version of the approach of [33] to our setting. 
We also identify the main space introduced in [33] with a stan-
dard Sobolev space on the boundary of the manifold. Another 
ingredient in the proof of our result is a reconstruction for-
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mula for the boundary trace of a continuous potential from 
the knowledge of the Dirichlet–to–Neumann map.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension n ≥ 3
with smooth boundary ∂M . Let us consider the Dirichlet problem for the Laplace–
Beltrami operator −Δg = −Δ,

{
−Δu = 0 in M int,

u|∂M = f.
(1.1)

Here and in what follows M int = M \∂M . For any f ∈ H
1
2 (∂M), the problem (1.1) has a 

unique solution u ∈ H1(M int). Associated to (1.1), we define the Dirichlet–to–Neumann 
map Λg,0 : H 1

2 (∂M) → H− 1
2 (∂M), formally given by Λg,0f = ∂νu|∂M , where ∂ν is the 

unit outer normal to ∂M . If ψ : M → M is a diffeomorphism satisfying ψ|∂M = I then 
Λψ∗g,0 = Λg,0, see [28].

The anisotropic Calderón problem concerns the question of whether the equality 
Λg1,0 = Λg2,0 implies that g2 = ψ∗g1 where ψ : M → M is a diffeomorphism such 
that ψ|∂M = I. This problem is solved for real-analytic metrics in [28], [27], [26], see also 
[16], while it remains open in the smooth category, in dimensions n ≥ 3. The correspond-
ing two dimensional problem, with an additional obstruction arising from the conformal 
invariance of the Laplacian, is settled in [27].

A powerful method for studying the anisotropic Calderón problem on genuinely non-
analytic manifolds, where the metric is of special form, is introduced in the work [10]. The 
method is based on the technique of Carleman estimates with limiting Carleman weights. 
The notion of a limiting Carleman weight for the Laplacian was introduced and applied 
to the Calderón problem in the Euclidean setting in [19]. An important result of [10]
states that on a simply connected open manifold, the existence of a limiting Carleman 
weight is equivalent to the existence of a parallel unit vector field for a conformal multiple 
of the metric. Locally, the latter condition is equivalent to the fact that the manifold 
is conformal to the product of a Euclidean interval and some Riemannian manifold of 
dimension n − 1. Following [10], [12], we have the following definitions.

Definition 1.1. Let (M, g) be a smooth compact oriented Riemannian manifold of dimen-
sion n ≥ 3 with smooth boundary ∂M .
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(i) (M, g) is called transversally anisotropic if (M, g) ⊂⊂ (T int, g) where T = R ×M0, 
g = e ⊕g0, (R, e) is the Euclidean line, and (M0, g0) is a compact (n −1)–dimensional 
manifold with boundary, called the transversal manifold.

(ii) (M, g) is called conformally transversally anisotropic (CTA) if (M, cg) is transver-
sally anisotropic, for some smooth positive function c.

(iii) (M, g) is called admissible if (M, g) is CTA and the transversal manifold (M0, g0) is 
simple, meaning that for any p ∈ M0, the exponential map expp with its maximal 
domain of definition in TpM0 is a diffeomorphism onto M0, and ∂M0 is strictly 
convex.

An interesting special case of the anisotropic Calderón problem is such a problem in 
a fixed conformal class. Since any conformal diffeomorphism fixing the boundary must 
be the identity map, there is no obstruction to uniqueness arising from isometries in 
this problem, see [29]. The uniqueness for the anisotropic Calderón problem in a fixed 
conformal class was obtained in [10] in the case of admissible manifolds. Thanks to 
the simplicity of the transversal manifold, the proof relies on a construction of complex 
geometric optics solutions by means of a global WKB method, and the injectivity of the 
attenuated geodesic ray transform on simple manifolds. A reconstruction procedure for 
the uniqueness result of [10] was given in [18].

Dropping the simplicity assumption on the transversal manifold, the anisotropic 
Calderón problem in a fixed conformal class on a general CTA manifold was studied in 
[12]. Here the global uniqueness was established under the assumption that the geodesic 
ray transform on the transversal manifold (M0, g0) is injective. In this case, a global 
WKB approach no longer seems possible, and the complex geometric optics solutions 
are obtained via a Gaussian beams quasimode construction. We refer to [11], [24] for 
the study of the linearized anisotropic Calderón problem on transversally anisotropic 
manifolds.

The goal of this note is to provide a reconstruction procedure for the uniqueness 
results of [12]. To state our results, let us first give the following definition.

Definition 1.2. We say that the geodesic ray transform on the transversal manifold 
(M0, g0) is constructively invertible if any function f ∈ C(M0) can be reconstructed 
from the knowledge of its integrals over all non-tangential geodesics in M0. Here a unit 
speed geodesic γ : [0, L] → M0 is called non-tangential if γ̇(0), γ̇(L) are non-tangential 
vectors on ∂M0 and γ(t) ∈ M int

0 for all 0 < t < L.

Our first result is as follows.

Theorem 1.3. Let (M, g) be a given CTA manifold and assume that the geodesic ray 
transform on the transversal manifold (M0, g0) is constructively invertible. If 0 < c ∈
C∞(M) then from the knowledge of Λcg,0 one can constructively determine c.
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An inverse problem closely related to the anisotropic Calderón problem is the inverse 
boundary problem for the Schrödinger equation, which we shall proceed to discuss next. 
Let q ∈ C(M), and consider Dirichlet problem{

(−Δ + q)u = 0 in M int,

u|∂M = f.
(1.2)

In what follows assume that 0 is not a Dirichlet eigenvalue of −Δ + q in M so that 
−Δ + q : (H2 ∩ H1

0 )(M) → L2(M) is bijective. Under this assumption, for any f ∈
H

1
2 (∂M), the problem (1.2) has a unique solution u ∈ H1(M int). Associated to (1.2), 

we define the Dirichlet–to–Neumann map Λg,q : H 1
2 (∂M) → H− 1

2 (∂M) by

〈Λg,qf, k〉
H− 1

2 (∂M),H
1
2 (∂M)

=
∫
M

(〈du, dv〉g + quv)dVg. (1.3)

Here k ∈ H
1
2 (∂M), v ∈ H1(M int) is such that v|∂M = k, and 〈·, ·〉g is the pointwise 

scalar product in the space of 1-forms.
Our second result is as follows.

Theorem 1.4. Let (M, g) be a given CTA manifold and assume that the geodesic ray 
transform on the transversal manifold (M0, g0) is constructively invertible. Let q ∈ C(M)
be such that 0 is not a Dirichlet eigenvalue of −Δ + q in M . Then the knowledge of Λg,q

determines q constructively.

Remark 1.5. The constructive invertibility of the geodesic ray transform is known in the 
following cases, in particular:

• (M0, g0) is a simple Riemannian surface. In this case, there is a Fredholm type inver-
sion formula established in [35], which leads to the exact inversion in the constant 
curvature case, see [35], and its small perturbations, see [21]. See also [30], [31].

• (M0, g0) is a Riemannian surface with strictly convex boundary, no conjugate points, 
and the hyperbolic trapped set (these conditions are satisfied in negative curvature, 
in particular). In this case, a Fredholm type inversion formula was obtained in [15]. 
The inversion formula becomes exact in a neighborhood of a constant negatively 
curved metric.

• (M0, g0) is of dimension n ≥ 3, has a strictly convex boundary and is globally foliated 
by strictly convex hypersurfaces. In this setting, a layer stripping type algorithm for 
reconstruction was developed in [39].

Remark 1.6. Theorem 1.3 and Theorem 1.4 are valid in the case of admissible manifolds in 
particular, thereby providing an alternative proof of the reconstruction results established 
in [18]. Furthermore, Theorem 1.4 improves the regularity assumption on the potential 
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in the corresponding result of [18] as it holds for a continuous potential whereas the 
corresponding result of [18] requires that the potential should be smooth.

Following the pioneering works [32], [34], we know that the crucial step in the recon-
struction procedure of a potential from the corresponding Dirichlet–to–Neumann map 
consists of constructively determining the boundary traces of suitable complex geomet-
ric optics solutions. To the best of our knowledge, there exist two approaches to the 
reconstruction of such boundary traces. The first one is due to [32] in the Euclidean 
setting, where suitable complex geometric optics solutions are constructed globally on 
all of Rn, enjoying uniqueness properties characterized by decay at infinity. The sec-
ond one is due to [33], where the complex geometric optics solutions are constructed 
by means of Carleman estimates on a bounded domain, and the notion of uniqueness 
is obtained by restricting the attention to solutions of minimal norm. A common point 
of both approaches is that the boundary traces of the complex geometric optics solu-
tions in question are determined as unique solutions of well posed integral equations on 
the boundary of the domain, involving the Dirichlet–to–Neumann map along with other 
known quantities. The approach of [32] was extended to the case of admissible manifolds 
in [18] for the Schrödinger equation, see also [7] for the magnetic Schrödinger case in a 
cylindrical setting. The approach of [33], which was developed for the Calderón problem 
with partial data, was extended to admissible manifolds in [3], also in the partial data 
case.

In this note, we give a simplified presentation of the method of [33] in the full data 
case, for manifolds admitting limiting Carleman weights. We also point out that the 
space H(∂M) introduced in [33], where the main boundary integral equation is solved, 
agrees with the standard Sobolev space H− 1

2 (∂M).
We proceed next to discuss the ideas of the proof of Theorem 1.3 and Theorem 1.4. 

First we observe that Theorem 1.3 follows from Theorem 1.4 along exactly the same 
lines as in [18], and therefore only Theorem 1.4 will be proved. In doing so, we shall rely 
on complex geometric optics solutions constructed on general CTA manifolds, based on 
Gaussian beams quasimodes along non-tangential geodesics in M0. Such solutions were 
constructed in [12] without any notion of uniqueness involved. In this note, following the 
method of [33], we refine this construction somewhat and obtain complex geometric optics 
solutions enjoying uniqueness properties. Another ingredient in the proof of Theorem 1.4
is a reconstruction formula for q|∂M from the knowledge of the Dirichlet–to–Neumann 
map Λg,q which is performed in Appendix A. This is precisely the result which allows us 
to improve the regularity of potential in the result of [18].

Finally, we would like to point out that similarly to the reconstructions results of [18], 
in the reconstruction procedure developed in this note, we make no claims regarding 
its practicality, our purpose merely being to show that all the steps in the proof of the 
uniqueness result of [12] can be carried out constructively.

The plan of this paper is as follows. Section 2 gives a presentation of the method of 
[33] in the full data case, for manifolds admitting a limiting Carleman weight. Section 3
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is devoted to the construction of complex geometric optics solutions enjoying unique-
ness properties and to the proof of Theorem 1.4. Appendix A contains a reconstruction 
formula for the boundary traces of a continuous potential from the knowledge of the 
Dirichlet–to–Neumann map.

2. The Nachman–Street argument on manifolds admitting a limiting Carleman weight

The discussion in this section can be regarded as a simplified version of the con-
structive approach of [33] to determining boundary traces of complex geometric optics 
solutions, in the full data case, in the setting of compact manifolds with boundary ad-
mitting a limiting Carleman weight. We also identify the space H(∂M) of [33], where the 
main boundary integral equation is posed, with the standard Sobolev space H− 1

2 (∂M).
Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 with 

smooth boundary ∂M . Let us consider the semiclassical Laplace–Beltrami operator 
−h2Δg = −h2Δ on M , where h > 0 is a small semiclassical parameter. Assume, as 
we may, that (M, g) is embedded in a compact smooth Riemannian manifold (N, g)
without boundary of the same dimension, and let U be open in N such that M ⊂ U .

Let ϕ ∈ C∞(U ; R) and let us consider the conjugated operator

Pϕ = e
ϕ
h (−h2Δ)e−

ϕ
h = −h2Δ − |∇ϕ|2 + 2〈∇ϕ, h∇〉 + hΔϕ, (2.1)

with the semiclassical principal symbol

pϕ = |ξ|2 − |dϕ|2 + 2i〈ξ, dϕ〉 ∈ C∞(T ∗U). (2.2)

Here and in what follows we use 〈·, ·〉 and | · | to denote the Riemannian scalar product 
and norm both on the tangent and cotangent space.

Following [19], [10], we say that ϕ ∈ C∞(U ; R) is a limiting Carleman weight for 
−h2Δ on (U, g) if dϕ �= 0 on U , and the Poisson bracket of Re pϕ and Im pϕ satisfies,

{Re pϕ, Im pϕ} = 0 when pϕ = 0.

We refer to [10] for a characterization of Riemannian manifolds admitting limiting Car-
leman weights.

Our starting point is the following Carleman estimates for −h2Δ, established in [10], 
see also [22].

Proposition 2.1. Let ϕ ∈ C∞(U ; R) be a limiting Carleman weight for −h2Δ on (U, g). 
Then for all 0 < h � 1, we have

h‖u‖L2(M) ≤ C‖Pϕu‖L2(M), C > 0, (2.3)

for all u ∈ C∞
0 (M int).
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Note that if ϕ is a limiting Carleman weight for −h2Δ then so is −ϕ. Let P ∗
ϕ be the 

formal L2(M)–adjoint of Pϕ. We have P ∗
ϕ = P−ϕ. Let us also introduce the following 

closed subspace of L2(M),

Ker(Pϕ) = {u ∈ L2(M) : Pϕu = 0},

so that we have

L2(M) = Ker(Pϕ) ⊕ (Ker(Pϕ))⊥.

Following [33], we shall now proceed to construct Green’s operator for Pϕ. To that 
end, we have the following solvability result.

Proposition 2.2. Let ϕ ∈ C∞(U ; R) be a limiting Carleman weight for −h2Δ on (U, g). 
Then for all 0 < h � 1 and any v ∈ L2(M), there is a unique solution u ∈ (Ker(Pϕ))⊥
of the equation

Pϕu = v in M int. (2.4)

Furthermore, u satisfies the bound

‖u‖L2(M) ≤
C

h
‖v‖L2(M), (2.5)

for all 0 < h � 1.

Proof. Let v ∈ L2(M) and let us first show the existence of a solution to (2.4) in the 
space (Ker(Pϕ))⊥. To that end, consider the following linear functional

L : P ∗
ϕC

∞
0 (M int) → C, L(P ∗

ϕw) = (w, v)L2(M).

By the Carleman estimate (2.3) for P ∗
ϕ, the map L is well-defined. Let w ∈ C∞

0 (M int). 
Then by using the Carleman estimate (2.3) for P ∗

ϕ again, we get

|L(P ∗
ϕw)| ≤ C

h
‖P ∗

ϕw‖L2(M)‖v‖L2(M).

By continuity, L extends to a linear continuous functional on the closed subspace 
P ∗
ϕC

∞
0 (M int) ⊂ L2(M). By the Riesz representation theorem, there is therefore a unique 

u ∈ P ∗
ϕC

∞
0 (M int) such that

L(g) = (g, u)L2(M), g ∈ P ∗
ϕC

∞
0 (M int),

and u satisfies the bound (2.5). In particular, for any w ∈ C∞
0 (M int), we have



8 A. Feizmohammadi et al. / Journal of Functional Analysis 281 (2021) 109191
L(P ∗
ϕw) = (w, v)L2(M) = (P ∗

ϕw, u)L2(M),

showing that Pϕu = v. Furthermore, we clearly have (P ∗
ϕC

∞
0 (M int))⊥ = Ker(Pϕ), which 

is equivalent to

P ∗
ϕC

∞
0 (M int) = (Ker(Pϕ))⊥. (2.6)

To see the uniqueness, let u, ̃u ∈ (Ker(Pϕ))⊥ be solutions to (2.4). Then u −ũ ∈ Ker(Pϕ) ∩
(Ker(Pϕ))⊥ = {0}. �

Following [6], we introduce the Hilbert space

HΔ(M) = {u ∈ L2(M) : Δu ∈ L2(M)},

the maximal domain of the Laplacian, equipped with the norm

‖u‖2
HΔ(M) = ‖u‖2

L2(M) + ‖Δu‖2
L2(M).

We have the following result on the existence of Green’s operators, see [33, Theorem 
3.2].

Theorem 2.3. Let ϕ ∈ C∞(U ; R) be a limiting Carleman weight for −h2Δ on (U, g). 
Then for all 0 < h � 1, there exists a linear continuous operator Gϕ : L2(M) → L2(M)
such that

(i) PϕGϕ = I on L2(M),
(ii) ‖Gϕ‖L(L2(M),L2(M)) = O(h−1),
(iii) Gϕ : L2(M) → e

ϕ
h HΔ(M),

(iv) G∗
ϕ = G−ϕ,

(v) GϕPϕ = I on C∞
0 (M int).

Proof. We follow [33] and present the proof for the completeness and convenience of the 
reader. First we define the following solution operator to the equation (2.4),

Hϕ : L2(M) → P ∗
ϕC

∞
0 (M int) = (Ker(Pϕ))⊥, Hϕ(v) = u,

where u ∈ P ∗
ϕC

∞
0 (M int) is the unique solution to the equation (2.4), see Proposition 2.2. 

It is clear that Hϕ satisfies the properties (i)–(iii) of Theorem 2.3. However, to achieve 
the property (iv) we shall make a suitable modification of Hϕ.

In doing so, let 1 − πϕ be the orthogonal projection onto P ∗
ϕC

∞
0 (M int) ⊂ L2(M). 

Then we claim that πϕ is the orthogonal projection onto Ker(Pϕ). Indeed, we have

Ran(πϕ) = (Ker(πϕ))⊥,
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and therefore, it suffices to show that

Ker(πϕ) = (Ker(Pϕ))⊥.

This follows from the fact that

Ker(πϕ) = Ran(1 − πϕ) = P ∗
ϕC

∞
0 (M int)

and (2.6). This completes the proof of the claim.
Let

Tϕ = Hϕ(1 − π−ϕ), T−ϕ = H−ϕ(1 − πϕ). (2.7)

We claim that

T ∗
ϕ = T−ϕ. (2.8)

Indeed, first, we have

T−ϕπϕ = 0, T ∗
ϕπϕ = (1 − π−ϕ)(πϕHϕ)∗ = 0.

As Ran(1 − πϕ) = P ∗
ϕC

∞
0 (M int), to prove (2.8) it suffices to show that

T ∗
ϕP

∗
ϕw = T−ϕP

∗
ϕw = H−ϕP

∗
ϕw, (2.9)

for all w ∈ C∞
0 (M int). To see (2.9), we first observe that for any x ∈ L2(M),

(T ∗
ϕP

∗
ϕw, π−ϕx)L2(M) = (H∗

ϕP
∗
ϕw, (1 − π−ϕ)π−ϕx)L2(M) = 0,

and

(H−ϕP
∗
ϕw, π−ϕx)L2(M) = (π−ϕH−ϕP

∗
ϕw, x)L2(M) = 0.

As Ran(1 −π−ϕ) = PϕC∞
0 (M int), to complete the proof of (2.9) it remains to check that

(T ∗
ϕP

∗
ϕw,Pϕg)L2(M) = (H−ϕP

∗
ϕw,Pϕg)L2(M) (2.10)

for all g ∈ C∞
0 (M int). Integrating by parts, and using that P−ϕH−ϕ = 1 on L2(M), we 

get

(H−ϕP
∗
ϕw,Pϕg)L2(M) = (P−ϕH−ϕP

∗
ϕw, g)L2(M) = (P ∗

ϕw, g)L2(M). (2.11)

On the other hand, we obtain that
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(T ∗
ϕP

∗
ϕw,Pϕg)L2(M) = (H∗

ϕP
∗
ϕw, (1 − π−ϕ)Pϕg)L2(M)

= (w,PϕHϕPϕg)L2(M) = (P ∗
ϕw, g)L2(M).

(2.12)

It follows from (2.11) and (2.12) that (2.10) holds. This completes the proof of (2.8).
Finally, let us define

Gϕ = Hϕ + πϕH
∗
−ϕ, G−ϕ = H−ϕ + π−ϕH

∗
ϕ.

It is clear that G±ϕ satisfies all the properties (i)–(iii) in Theorem 2.3. To see the property 
(iv), using (2.7) and (2.8), we get

G∗
ϕ = H∗

ϕ + H−ϕπϕ = (Tϕ + Hϕπ−ϕ)∗ + H−ϕ − T−ϕ = G−ϕ.

To see the property (v), letting f, g ∈ C∞
0 (M int), we obtain that

(GϕPϕf, g)L2(M) = (Pϕf,G−ϕg)L2(M) = (f, P−ϕG−ϕg)L2(M) = (f, g)L2(M).

This completes the proof of Theorem 2.3. �
Let γ : C∞(M) → C∞(∂M), γ(u) = u|∂M be the trace map. It is shown in [6], see 

also [13, Section 26.2], that the trace map γ extends to a continuous map

γ : HΔ(M) → H− 1
2 (∂M). (2.13)

We claim that the map γ in (2.13) is surjective. This follows from the fact that if 
g ∈ H− 1

2 (∂M), there exists a unique u ∈ L2(M) such that −Δu = 0 in M and γ(u) = g, 
see [13, Theorem 26.3]. Furthermore, we have

‖u‖L2(M) ≤ C‖g‖
H− 1

2 (∂M)
, (2.14)

see [13, Theorem 26.3].

Remark. The space

H(∂M) = {γ(u) : u ∈ HΔ(M)} ⊂ H− 1
2 (∂M)

was introduced in [33]. The discussion above shows that in fact we have

H(∂M) = H− 1
2 (∂M).

Let q ∈ L∞(M) and let us assume from here on that 0 is not a Dirichlet eigenvalue 
of −Δ + q, so that −Δ + q : (H2 ∩H1

0 )(M int) → L2(M) is bijective. Setting

bq := {u ∈ L2(M) : (−Δ + q)u = 0} ⊂ HΔ(M),
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we claim that the trace map

γ : bq → H− 1
2 (∂M)

is bijective. Indeed, to see the surjectivity of γ, let g ∈ H− 1
2 (∂M). By [13, Theorem 

26.3], there exists u ∈ L2(M) such that −Δu = 0 in M int and γ(u) = g. As 0 is not a 
Dirichlet eigenvalue of −Δ + q, the Dirichlet problem,{

(−Δ + q)v = qu in M int,

γ(v) = 0,

has a unique solution v ∈ (H2 ∩ H1
0 )(M int). Letting w = u − v ∈ L2(M), we see that 

w ∈ bq and γ(w) = g. Note also that

‖w‖L2(M) ≤ C‖g‖
H− 1

2 (∂M)
. (2.15)

To see the injectivity of γ, let u ∈ bq be such that γ(u) = 0. Then u ∈ (H2 ∩H1
0 )(M int), 

see [6], and therefore, u = 0. This completes the proof of the claim.
Next we shall define suitable single layer operators associated to the Green operator 

Gϕ. To that end, we first note that the trace map

γ : e
±ϕ
h HΔ(M) → e

±ϕ
h H− 1

2 (∂M) = H− 1
2 (∂M)

is continuous. Thus, it follows from Theorem 2.3 (iii) that the map

γ ◦Gϕ : L2(M) → H− 1
2 (∂M)

is continuous. Thus, the L2–adjoint

(γ ◦Gϕ)∗ : H 1
2 (∂M) → L2(M)

is also continuous. Let h ∈ H
1
2 (∂M). We claim that

P−ϕ((γ ◦Gϕ)∗h) = 0 in D′(M int). (2.16)

To see the claim let f ∈ C∞
0 (M int). Using Theorem 2.3 (v), we get

(P−ϕ((γ ◦Gϕ)∗h), f)L2(M) = (h, (γ ◦Gϕ)Pϕf)
H

1
2 (∂M),H− 1

2 (∂M)
= 0,

showing (2.16). Now (2.16) implies that for any h ∈ H
1
2 (∂M), (γ ◦Gϕ)∗h ∈ e−

ϕ
h HΔ(M), 

and therefore, the map

(γ ◦Gϕ)∗ : H 1
2 (∂M) → e−

ϕ
h HΔ(M)
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is bounded. Thus, the map

γ ◦ (γ ◦Gϕ)∗ : H 1
2 (∂M) → H− 1

2 (∂M)

is well defined and bounded. Its L2–adjoint

(γ ◦ (γ ◦Gϕ)∗)∗ : H 1
2 (∂M) → H− 1

2 (∂M)

is bounded. We define the single layer operator by

Sϕ = e−
ϕ
h (γ ◦ (γ ◦Gϕ)∗)∗e

ϕ
h ∈ L(H 1

2 (∂M), H− 1
2 (∂M)). (2.17)

Using the definition (1.3) of the Dirichlet–to–Neumann map, for f, k ∈ H
1
2 (∂M), we 

get

〈(Λg,q − Λg,0)f, k〉
H− 1

2 (∂M),H
1
2 (∂M)

=
∫
M

qu1u2dVg, (2.18)

where u1, u2 ∈ H1(M int) are such that

{
(−Δ + q)u1 = 0 in M int,

u1|∂M = f,
(2.19)

and {
−Δu2 = 0 in M int,

u2|∂M = k.
(2.20)

We claim that Λg,q−Λg,0 extends to a linear continuous map H− 1
2 (∂M) → H

1
2 (∂M). 

Indeed, it follows (2.14) and (2.15) that∣∣〈(Λg,q − Λg,0)f, k〉
H− 1

2 (∂M),H
1
2 (∂M)

∣∣ ≤ C‖u1‖L2(M)‖u2‖L2(M)

≤ C‖f‖
H− 1

2 (∂M)
‖k‖

H− 1
2 (∂M)

,

and therefore, by density of H 1
2 (∂M) in H− 1

2 (∂M), we see that

‖(Λg,q − Λg,0)f‖
H

1
2 (∂M)

≤ C‖f‖
H− 1

2 (∂M)
.

The claim follows. Combining the claim with (2.14), (2.15), we see that the integral 
identity (2.18) extends to all f, k ∈ H− 1

2 (∂M) with the corresponding solutions u1 ∈ bq, 
u2 ∈ b0, and we obtain that
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〈(Λg,q − Λg,0)f, k〉
H

1
2 (∂M),H− 1

2 (∂M)
=

∫
M

qu1u2dVg. (2.21)

Now consider the map Sϕ(Λg,q − Λg,0) ∈ L(H− 1
2 (∂M), H− 1

2 (∂M)). Let

Pq = γ−1 : H− 1
2 (∂M) → bq (2.22)

be the Poisson operator. We claim that

Sϕ(Λg,q − Λg,0) = γ ◦ e−ϕ
h ◦Gϕ ◦ eϕ

h ◦ q ◦ Pq (2.23)

in the sense of linear continuous maps: H− 1
2 (∂M) → H− 1

2 (∂M). Indeed, let f, k ∈
C∞(∂M) and note that in view of (2.16), the function e

ϕ
h (γ ◦ Gϕ)∗e−ϕ

h k ∈ L2(M) is 
harmonic. Then using (2.21) and (2.17), we get

(γ ◦ e−ϕ
h ◦Gϕ ◦ eϕ

h ◦ q ◦ Pqf, k)
H− 1

2 (∂M),H
1
2 (∂M)

= ((γ ◦Gϕ) ◦ eϕ
h ◦ q ◦ Pqf, e

−ϕ
h k)

H− 1
2 (∂M),H

1
2 (∂M)

= (q ◦ Pqf, e
ϕ
h (γ ◦Gϕ)∗e−

ϕ
h k)L2(M)

= ((Λg,q − Λg,0)f, γ ◦ eϕ
h (γ ◦Gϕ)∗e−

ϕ
h k)

H
1
2 (∂M),H− 1

2 (∂M)

= (Sϕ(Λg,q − Λg,0)f, k)
H− 1

2 (∂M),H
1
2 (∂M)

.

Thus, (2.23) follows.

Proposition 2.4. Let k, f ∈ H− 1
2 (∂M). Then

(1 + h2Sϕ(Λg,q − Λg,0))k = f (2.24)

if and only if

(1 + e−
ϕ
h ◦Gϕ ◦ eϕ

h h2q)Pqk = P0f. (2.25)

Proof. Assume first that (2.24) holds. Applying −h2Δ to the left hand side of (2.25)
and using Theorem 2.3 (i), we get

(−h2Δ)(1 + e−
ϕ
h ◦Gϕ ◦ eϕ

h h2q)Pqk = 0.

Furthermore, using (2.23) and (2.24), we see that

γ(1 + e−
ϕ
h ◦Gϕ ◦ eϕ

h h2q)Pqk = k + h2Sϕ(Λg,q − Λg,0)k = f.

Hence, (2.25) follows. Assume now that (2.25) holds. Then taking trace in (2.25), we 
obtain (2.24). �
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Proposition 2.5. The map 1 + h2Sϕ(Λg,q − Λg,0) : H− 1
2 (∂M) → H− 1

2 (∂M) is a linear 
homeomorphism for all 0 < h � 1.

Proof. First by Theorem 2.3 (ii), for all 0 < h � 1, the map

1 + h2e−
ϕ
h ◦Gϕ ◦ eϕ

h q = e−
ϕ
h (1 + h2Gϕq)e

ϕ
h : L2(M) → L2(M)

is a linear homeomorphism. Hence, for all 0 < h � 1 and any v ∈ L2(M), there exists a 
unique u ∈ L2(M) such that

(1 + h2e−
ϕ
h ◦Gϕ ◦ eϕ

h q)u = v.

If v ∈ b0 then

0 = −h2Δu + (−h2Δ)(e−
ϕ
h ◦Gϕ ◦ eϕ

h h2qu) = (−h2Δ + h2q)u,

and therefore, u ∈ bq. Thus, for all 0 < h � 1, the map

1 + h2e−
ϕ
h ◦Gϕ ◦ eϕ

h q : bq → b0

is an isomorphism. As Pq : H− 1
2 (∂M) → bq is an isomorphism, by Proposition 2.4, we 

get the claim of Proposition 2.5. �
3. Proof of Theorem 1.4

Assume first that (M, g) is transversally anisotropic, i.e. c = 1, so that g = e ⊕
g0. Assume also that (M, g), and therefore (M0, g0), are known, as is the Dirichlet–
to–Neumann map Λg,q. We would like to provide a reconstruction procedure of q from 
this data.

Our starting point is the integral identity (2.21) valid for all u1 ∈ bq and u2 ∈ b0. We 
shall next construct u1 and u2 as special complex geometric optics solutions. To that 
end, we shall need the following result from [12] concerning existence of Gaussian beam 
quasimodes, concentrating along non-tangential geodesics in M0.

Theorem 3.1 ([12]). Let (M0, g0) be a compact oriented manifold with smooth boundary, 
let γ : [0, L] → M0 be a non-tangential geodesic, and let λ ∈ R. For any K > 0, there is 
a family of functions vs ∈ C∞(M0), where s = 1

h + iλ, and 0 < h ≤ 1, such that

‖(−Δg0 − s2)vs‖L2(M0) = O(hK), ‖vs‖L2(M0) = O(1), (3.1)

as h → 0, and for any ψ ∈ C(M0), one has

lim
h→0

∫
|vs|2ψdVg0 =

L∫
e−2λtψ(γ(t))dt. (3.2)
M0 0
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Remark. It follows from the proof of Theorem 3.1 in [12] that vs are explicit functions of 
Gaussian type which can be constructed from the knowledge of the manifold (M0, g0).

Let us write x = (x1, x′) for local coordinates in R ×M0. The function ϕ(x) = x1 is 
a limiting Carleman weight for −h2Δ, see [10]. It follows from (3.1), since vs = vs(x′), 
that

‖e−sx1(−Δg)esx1vs‖L2(M0) = O(hK), ‖esx1(−Δg)e−sx1vs‖L2(M0) = O(hK), (3.3)

as h → 0.
We are interested in harmonic functions u2 ∈ L2(M) of the form,

u2 = esx1(vs + r̃2), (3.4)

where vs is the Gaussian beam quasimode from Theorem 3.1, and r̃2 is a remainder term 
to be constructed. Now u2 is harmonic if and only if r̃2 satisfies

P−ϕe
iλx1 r̃2 = −eiλx1e−sx1(−h2Δ)esx1vs. (3.5)

Looking for a solution of (3.5) in the form r̃2 = e−iλx1G−ϕr2, we see that

r2 = −eiλx1e−sx1(−h2Δ)esx1vs.

It follows from (3.3) that ‖r2‖L2(M) = O(hK+2), and therefore, by Theorem 2.3 (ii),

‖r̃2‖L2(M) = O(hK+1), (3.6)

as h → 0, for K > 0.
We next construct complex geometric optics solutions u1 ∈ bq in the form,

u1 = u0 + e−sx1 r̃1, (3.7)

where u0 ∈ L2(M) is a harmonic function of the form,

u0 = e−sx1(vs + r̃0). (3.8)

Here r̃0 satisfies the equation

Pϕe
−iλx1 r̃0 = −e−iλx1esx1(−h2Δ)e−sx1vs, (3.9)

and we can take

r̃0 = eiλx1Gϕr0, r0 = −e−iλx1esx1(−h2Δ)e−sx1vs.



16 A. Feizmohammadi et al. / Journal of Functional Analysis 281 (2021) 109191
It follows from (3.3) and Theorem 2.3 (ii) that

‖r̃0‖L2(M) = O(hK+1), (3.10)

as h → 0, for K > 0. To find the remainder r̃1 in (3.7), we should solve the equation

(−Δ + q)(u0 + e−sx1 r̃1) = 0,

which is equivalent to

(Pϕ + h2q)e−iλx1 r̃1 = −h2e
ϕ
h qu0. (3.11)

Looking for a solution r̃1 of (3.11) in the form

r̃1 = eiλx1Gϕr1, r1 ∈ L2(M), (3.12)

we see that r1 should satisfy

(I + h2qGϕ)r1 = −h2e
ϕ
h qu0. (3.13)

It follows from Theorem 2.3 (ii) that the equation (3.13) has a unique solution r1 ∈
L2(M) such that

‖r1‖L2(M) = O(h2)‖eϕ
h u0‖L2(M) = O(h2)‖e−iλx1(vs + r̃0)‖L2(M) = O(h2),

as h → 0. Here we have used (3.8), (3.1), and (3.10). Hence,

‖r̃1‖L2(M) = O(h), (3.14)

as h → 0. We have therefore constructed u1 ∈ bq of the form

u1 = u0 + e−
ϕ
h Gϕr1, (3.15)

where r1 ∈ L2(M) is the unique solution of (3.13).
We shall next show that the boundary traces of u1 can be reconstructed from the 

knowledge of Λg,q. To that end, we claim that u1 satisfies

(I + h2e−
ϕ
h Gϕqe

ϕ
h )u1 = u0. (3.16)

Indeed, applying Gϕ to (3.13) and multiplying by e−
ϕ
h , we get

e−
ϕ
h Gϕr1 + e−

ϕ
h h2Gϕ(qGϕr1) = −h2e−

ϕ
h Gϕe

ϕ
h qu0. (3.17)

Adding u0 to the both sides of (3.17), and using (3.15), we obtain (3.16) as claimed.
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Note that the harmonic function u0 given by (3.8) is an explicit function which is 
constructed from the knowledge of (M, g). In particular, u0|∂M is also known. By Propo-
sition 2.4, f = u1|∂M ∈ H− 1

2 (∂M) satisfies the boundary integral equation,

(1 + h2Sϕ(Λg,q − Λg,0))f = u0|∂M . (3.18)

Here the operator in the left hand side and the function in the right hand side are known, 
and by Proposition 2.5, for all 0 < h � 1, we can construct f as the unique solution to 
(3.18).

It follows from the discussion above together with the integral identity (2.21), that 
from the knowledge of our data, we can reconstruct the integrals∫

M

qu1u2dVg, (3.19)

with u1, u2 given by (3.7), (3.4), respectively. Thus, using (3.4), (3.7), (3.8), we conclude 
from (3.19) that we can reconstruct∫

M

qe−2iλx1(vs + r̃0 + r̃1)(vs + r̃2)dx1dVg0 , (3.20)

for all 0 < h � 1. Using also (3.1), (3.6), (3.10), (3.14), we observe that (3.20) is of the 
form ∫

M

qe−2iλx1 |vs|2dx1dVg0 + O(h), (3.21)

as h → 0. It will now be convenient to extend the domain of integration in (3.21) to all 
of T = R ×M0. To that end, we extend q to a function in C0(T int) in such a way that 
q|T\M is known. This can be done by determining q on ∂M from the knowledge of Λg,q

and Λg,0 in a constructive way, see Theorem A.1. Hence, it follows from (3.21) that the 
boundary data allows us to reconstruct∫

R

e−2iλx1

∫
M0

q(x1, x
′)|vs(x′)|2dVg0dx1 + O(h). (3.22)

Taking the limit as h → 0 in (3.22) and using (3.2), we are able to reconstruct

∫
R

e−2iλx1

L∫
0

e−2λtq(x1, γ(t))dt =
L∫

0

q̂(2λ, γ(t))e−2λtdt, (3.23)

for any λ ∈ R and any non-tangential geodesic γ in M0. Here
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q̂(λ, x′) =
∫
R

e−iλx1q(x1, x
′)dx1.

The integral in the right hand side of (3.23) is the attenuated geodesic ray transform of 
q̂(2λ, ·) with constant attenuation −2λ.

Setting λ = 0 in (3.23), we recover the geodesic ray transform of q̂(0, ·). Using the 
constructive invertibility assumption for the geodesic ray transform on M0, we deter-
mine q̂(0, ·) in M0. Differentiating (3.23) with respect to λ and letting λ = 0, as we 
know q̂(0, ·), we constructively determine the geodesic ray transform of ∂λq̂(0, ·). Using 
again the constructive invertibility assumption, we constructively recover ∂λq̂(0, ·) in M0. 
Continuing in the same fashion, we constructively determine the derivatives ∂k

λq̂(0, ·) in 
M0 for all k ≥ 0. We have therefore determined the Taylor series of the entire function 
λ �→ q̂(λ, x′) at λ = 0. Inverting the one-dimensional Fourier transform, we complete the 
reconstruction of q in R ×M0 in the case c = 1.

The argument explained in [18, Section 4] allows us to remove the simplifying assump-
tion c = 1. This completes the proof of Theorem 1.4.
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Appendix A. Boundary reconstruction for a continuous potential

The purpose of this appendix is to provide a reconstruction formula for the boundary 
values of a continuous potential q from the knowledge of the Dirichlet–to–Neumann map 
for the Schrödinger operator −Δ + q on a smooth compact Riemannian manifold of 
dimension n ≥ 2 with smooth boundary. The boundary determination of a continuous 
potential is known, see [17, Appendix] for the case n = 2, and [23, Appendix C] for an 
extension of this result to the case n ≥ 3, see also [2]. We refer to [1], [4], [5], [20], [38], [8], 
[9], for the boundary determinations/reconstructions of conductivity as well as first order 
perturbations of the Laplacian. The approach of [17, Appendix] uses a family of functions, 
whose boundary values have a highly oscillatory behavior while becoming increasingly 
concentrated near a given point on the boundary of M , proposed in [4], [5], as well as 
Carleman estimates for the conjugated Laplacian with a gain of two derivatives in order 
to convert such functions into solutions of Schrödinger equations. This approach does not 
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appear to be constructive, as the boundary traces of these solutions are not determined in 
this approach. Not being aware of any reference for the constructive determination of the 
boundary values of a continuous potential from boundary measurements, and also, since 
we need this result for the proof of Theorem 1.4, we present a reconstruction formula 
here. Let us remark that in the case of smooth potentials, the entire Taylor series at the 
boundary can be determined from the knowledge of the Dirichlet–to–Neumann map by 
means of a constructive procedure, see [10, Section 8], [37], [25].

Our boundary reconstruction result is as follows.

Theorem A.1. Let (M, g) be a compact smooth Riemannian manifold of dimension n ≥ 2
with smooth boundary. Let q ∈ C(M) and assume that 0 is not a Dirichlet eigenvalue 
of −Δ + q in M . For each point x0 ∈ ∂M , there exists an explicit family of functions 
vλ ∈ C∞(M), 0 < λ � 1, such that

q(x0) = 2 lim
λ→0

〈(Λg,q − Λg,0)(vλ|∂M ), vλ|∂M 〉
H− 1

2 (∂M),H
1
2 (∂M)

.

Proof. Our starting point is the integral identity (2.18) which we write as follows,∫
M

quvdVg = 〈(Λg,q − Λg,0)f, f〉
H− 1

2 (∂M),H
1
2 (∂M)

, (A.1)

where u, v ∈ H1(M int) are solutions to{
(−Δ + q)u = 0 in M int,

u|∂M = f,
(A.2)

and {
−Δv = 0 in M int,

v|∂M = f.
(A.3)

Next we shall follow [4], [5], constructing an explicit family of functions vλ, whose 
boundary values have a highly oscillatory behavior as λ → 0, while becoming increasingly 
concentrated near a given point on the boundary of M . To that end, we let x0 ∈ ∂M

and let (x1, . . . , xn) be the boundary normal coordinates centered at x0 so that in these 
coordinates, x0 = 0, the boundary ∂M is given by {xn = 0}, and M int is given by 
{xn > 0}. We have, see [28],

g(x′, xn) =
n−1∑

α,β=1

gαβ(x)dxαdxβ + (dxn)2, (A.4)

and we may also assume that the coordinates x′ = (x1, . . . , xn−1) are chosen so that
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gαβ(x′, 0) = δαβ + O(|x′|2), 1 ≤ α, β ≤ n− 1, (A.5)

see [36, Chapter 2, Section 8, p. 56].
Notice that in the local coordinates, Tx0∂M = Rn−1, equipped with the Euclidean 

metric. The unit tangent vector τ is then given by τ = (τ ′, 0) where τ ′ ∈ Rn−1, |τ ′| = 1. 
Associated to the tangent vector τ ′ is the covector ξ′α =

∑n−1
β=1 gαβ(0)τ ′β = τ ′α ∈ T ∗

x0
∂M .

Let η ∈ C∞
0 (Rn; R) be such that supp (η) is in a small neighborhood of 0, and∫

Rn−1

η(x′, 0)2dx′ = 1. (A.6)

Let 1
3 ≤ α ≤ 1

2 . Following [5], [23, Appendix C], in the boundary normal coordinates, 
we set

vλ(x) = λ−α(n−1)
2 − 1

2 η

(
x

λα

)
e

i
λ (τ ′·x′+ixn), 0 < λ � 1, (A.7)

so that vλ ∈ C∞(M), with supp (vλ) in O(λα) neighborhood of x0 = 0. Here τ ′ is viewed 
as a covector. A direct computation shows that

‖vλ‖L2(M) = O(1), (A.8)

as λ → 0, see also [23, Appendix C].
Next we would like to construct v, u ∈ H1(M int) of the form

v = vλ + r1, u = vλ + r2, (A.9)

solving (A.3) and (A.2), and so that r1 and r2 have decaying L2 norms as λ → 0. The 
idea of [17, Appendix], see also [23, Appendix C], was to use Carleman estimates with a 
gain of two derivatives to accomplish this. However, here for the reconstruction purposes 
we need to know the boundary traces v|∂M and u|∂M , see (A.1). To achieve this, following 
[4], [5], see also [22, Appendix], we shall obtain r1 ∈ H1

0 (M int) as the solution to the 
Dirichlet problem, {

−Δr1 = Δvλ in M int,

r1|∂M = 0.
(A.10)

Similarly, we shall find r2 ∈ H1
0 (M int) as the solution to the Dirichlet problem,{

(−Δ + q)r2 = −(−Δvλ + qvλ) in M int,

r2|∂M = 0.
(A.11)

Note that in [5], see also [22, Appendix], one shows that ‖r1‖L2(M) = O(1), which is not 
enough for the determination of the potential q on ∂M . To get an improved bound for 
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‖r1‖L2(M), we use the estimate of Theorem A.2 below with s = 1
2 + ε, 0 < ε < 1/2 to be 

chosen fixed. We have

‖r1‖L2(M) ≤ ‖r1‖H1/2+ε(M int) ≤ C‖Δvλ‖H−3/2+ε(M int). (A.12)

To estimate ‖Δvλ‖H−3/2+ε(M int) we use interpolation,

‖Δvλ‖H−3/2+ε(M int) ≤ ‖Δvλ‖1/2+ε
H−1(M int)‖Δvλ‖1/2−ε

H−2(M int), (A.13)

see [14, Theorem 7.22, p. 189]. Using the following bounds, established in [23, Appendix 
C],

‖Δvλ‖H−2(M int) = O(λ−α+1), 1
3 ≤ α ≤ 1

2 ,

‖Δvλ‖H−1(M int) = O(λ−α), 1
3 ≤ α ≤ 1

2 ,

we get from (A.13) that

‖Δvλ‖H−3/2+ε(M int) = O(λ−α+1/2−ε).

Choosing α = 1/3 and ε = 1/12, see that

‖Δvλ‖H−3/2+ε(M int) = O(λ1/12). (A.14)

Therefore, it follows from (A.12) and (A.14) that

‖r1‖L2(M) = O(λ1/12), (A.15)

as λ → 0.
In view of (A.11), using the estimate of Theorem A.3 below with s = 1

2 + ε, ε = 1/12, 
we obtain that

‖r2‖L2(M) ≤ ‖r2‖H1/2+ε(M int) ≤ C(‖Δvλ‖H−3/2+ε(M int) + ‖qvλ‖H−1(M int)). (A.16)

To bound ‖qvλ‖H−1(M int) we first note that as q ∈ C(M), using a partition of unity 
argument together with a regularization in each coordinate patch, we get that there 
exists qτ ∈ C∞

0 (M int), τ > 0, such that

‖q − qτ‖L∞(M) = o(1), ‖qτ‖L∞(M) = O(1), ‖∇qτ‖L∞(M) = O(τ−1), (A.17)

as τ → 0. Letting ψ ∈ C∞
0 (M int) and using (A.17), we obtain that∣∣∣∣ ∫ (q − qτ )vλψdVg

∣∣∣∣ ≤ oτ→0(1)Oλ→0(1)‖ψ‖L2(M). (A.18)

M
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Setting

L = ∇φ · ∇
i|∇φ|2 = 1

2i∇φ · ∇, φ = τ ′ · x′ + ixn,

we have Le
i
λ (τ ′·x′+ixn) = λ−1e

i
λ (τ ′·x′+ixn). Using (A.7), the fact that the transpose Lt =

−L and integrating by parts, we get

∣∣∣∣ ∫
M

qτvλψdVg

∣∣∣∣ = λ−α(n−1)
2 − 1

2

∣∣∣∣ ∫
M

qτψη

(
x

λα

)
e

i
λ (τ ′·x′+ixn)|g(x)|1/2dx

∣∣∣∣
= λλ−α(n−1)

2 − 1
2

∣∣∣∣ ∫
M

L

(
qτψη

(
x

λα

)
|g(x)|1/2

)
e

i
λ (τ ′·x′+ixn)dx

∣∣∣∣. (A.19)

Note that the worst growth in λ in (A.19) occurs when L falls on qτ or η. Choosing 
τ = λα, and using the Cauchy–Schwarz inequality, those two terms are bounded by 
O(λ1−α)‖ψ‖L2(M). Hence, it follows from (A.18) and (A.19) that

‖qvλ‖H−1(M int) = o(1), (A.20)

as λ → 0. Thus, we see from (A.16), (A.14), and (A.20), that

‖r2‖L2(M) = o(1), (A.21)

as λ → 0.
Substituting u and v given by (A.9) into the integral identity (A.1), and taking the 

limit λ → 0, we get

lim
λ→0

〈(Λg,q − Λg,0)(vλ|∂M ), vλ|∂M 〉
H− 1

2 (∂M),H
1
2 (∂M)

= lim
λ→0

(I1 + I2), (A.22)

where

I1 =
∫
M

q|vλ|2dVg, I2 =
∫
M

q(vλr1 + vλr2 + r1r2)dVg.

In view of (A.15), (A.21), and (A.8), we have

|I2| = o(1), (A.23)

as λ → 0. Using (A.7), (A.6), the fact that q is continuous, and making the change of 
variables y′ = x′

α , yn = xn , we get
λ λ
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lim
λ→0

I1 = lim
λ→0

∫
Rn−1

∞∫
0

q(λαy′, λyn)η2(y′, λ1−αyn)e−2yn |g(λαy′, λyn)|1/2dy′dyn

= q(0)|g(0)|1/2
+∞∫
0

e−2yndyn = 1
2q(0).

(A.24)

It follows from (A.22), (A.23), (A.24) that

lim
λ→0

〈(Λg,q − Λg,0)(vλ|∂M ), vλ|∂M 〉
H− 1

2 (∂M),H
1
2 (∂M)

= 1
2q(0)

This completes the proof. �
In the course of the proof of Theorem A.1 we need the following result, see [13, Section 

54.2].

Theorem A.2. Let (M, g) be a compact smooth Riemannian manifold of dimension n ≥ 2
with smooth boundary. Let s > 1/2, F ∈ Hs−2(M int), f ∈ Hs−1/2(∂M). Then the 
Dirichlet problem {

−Δu = F in M int,

u|∂M = f,

has a unique solution u ∈ Hs(M int) and moreover,

‖u‖Hs(M int) ≤ C(‖F‖Hs−2(M int) + ‖f‖Hs−1/2(∂M)).

We also need a similar result for the Dirichlet problem for the Schrödinger equation.

Theorem A.3. Let (M, g) be a compact smooth Riemannian manifold of dimension n ≥ 2
with smooth boundary, and q ∈ L∞(M). Assume that 0 is not a Dirichlet eigenvalue of 
−Δg + q. Let 1/2 < s < 2, F ∈ Hs−2(M int), f ∈ Hs−1/2(∂M). Then the Dirichlet 
problem {

(−Δ + q)u = F in M int,

u|∂M = f,

has a unique solution u ∈ Hs(M int) and moreover,

‖u‖Hs(M int) ≤ C(‖F‖Hs−2(M int) + ‖f‖Hs−1/2(∂M)).

Proof. Consider the operators

A : Hs(M int) → Hs−2(M int) ×Hs−1/2(∂M), u �→ ((−Δ + q)u, u|∂M ),
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A0 : Hs(M int) → Hs−2(M int) ×Hs−1/2(∂M), u �→ (−Δu, u|∂M ),

and

Q : Hs(M int) → Hs−2(M int) ×Hs−1/2(∂M), u �→ (qu, 0).

It follows from [13, Section 54.2], cf. Theorem A.2, that A0 is an isomorphism. The 
operator Q is compact, as the operator Hs(M int) � u �→ qu ∈ Hs−2(M int) is compact. 
The later follows from the fact that the operator Hs(M int) � u �→ qu ∈ L2(M) is 
continuous and the embedding L2(M) ⊂ Hs−2(M int) is compact provided s < 2. Hence, 
A = A0 +Q is Fredholm of index zero, and as 0 is not a Dirichlet eigenvalue of −Δg + q, 
A is an isomorphism. �
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