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1. Introduction

Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary, and let us start by 
considering conductivity functions

γ : Ω ×C ×Cn → C,

that satisfy the following two assumptions:

(H1) 0 < γ(·, 0, 0) ∈ C∞(Ω),
(H2) the map C × Cn � (ρ, μ) → γ(·, ρ, μ) is holomorphic with values in the Hölder 

space C1,α(Ω) for some α ∈ (0, 1).

Given a conductivity function γ as above, we consider the boundary value problem{
∇ · (γ(x, u,∇u)∇u) = 0 in Ω,

u = f on ∂Ω.
(1.1)

Arguing as in [26, Appendix B], we see that under the assumptions (H1) and (H2), there 
exist δ > 0 and C > 0 such that given any

f ∈ Bδ(∂Ω) := {f ∈ C2,α(∂Ω) : ‖f‖C2,α(∂Ω) < δ},

the problem (1.1) has a unique solution u = uf ∈ C2,α(Ω) satisfying ‖u‖C2,α(Ω) < Cδ. 
We define the Dirichlet-to-Neumann map associated with (1.1) via the mapping

Λγ(f) = (γ(x, u,∇u)∂νu)|∂Ω, (1.2)

where f ∈ Bδ(∂Ω), u = uf , and ν is the unit outer normal to ∂Ω.
Our inverse problem can now be cast as follows: does the knowledge of the Dirichlet-

to-Neumann map Λγ uniquely determine a general quasilinear conductivity γ? Note that 
if the conductivity is assumed to be independent of u and ∇u, then this is the well known 
Calderón problem for isotropic conductivities introduced in [5], which is motivated by ap-
plications where one is interested in determining the isotropic conductivity of a medium 
Ω by applying voltage on the boundary ∂Ω and subsequently measuring the induced cur-
rent flux on ∂Ω. This problem, which is also called the Electrical Impedance Tomography 
(EIT) problem, see [47], has many applications in different scientific branches including 
medical imaging by improving the early detection of breast cancer, see [49], as well as in 
seismology and geophysical exploration, see [48].

In this paper we consider the EIT problem in the more general context where the 
unknown conductivity is not only depending on the space variable x ∈ Ω but that it also 
depends on the solution and its gradient. This corresponds to a general formulation of 
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the Calderón problem, where the space-dependent conductivity function is replaced by 
a more general quasilinear term. Beside these motivations, we recall that the recovery of 
a general quasilinear conductivity corresponds to an open problem whose investigation 
started in [43,44], see also [38, Section 1.1] for more details.

In this paper we give an affirmative answer to the Calderón problem for quasilinear 
conductivities that satisfy (H1), (H2). Precisely, we prove the following theorem as our 
first main result.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary. Assume 
that γ1, γ2 : Ω ×C ×Cn → C satisfy (H1) and (H2). Suppose that there holds:

Λγ1(f) = Λγ2(f), ∀ f ∈ Bδ(∂Ω). (1.3)

Then,

γ1 = γ2 in Ω ×C ×Cn.

Let us proceed to describe the main ideas of the proof of Theorem 1.1. Since γ1 and 
γ2 satisfy (H2), letting λ = (ρ, μ) = (λ0, λ1, . . . , λn) ∈ C×Cn, we may write by Taylor’s 
formula,

γj(x, λ) =
∞∑
k=0

1
k!γ

(k)
j (x, 0;λ, . . . , λ︸ ︷︷ ︸

k times

), x ∈ Ω, j = 1, 2. (1.4)

Here γ(k)
j (x, 0) is the kth differential of the holomorphic function λ 
→ γj(x, λ) at λ = 0, 

which is a symmetric tensor of rank k, given by

γ
(k)
j (x, 0;λ, . . . , λ) =

n∑
j1,...,jk=0

(∂λj1
. . . ∂λjk

γj)(x, 0)λj1 . . . λjk , x ∈ Ω. (1.5)

The power series in (1.4) converges in C1,α(Ω) topology. First, performing the first 
order linearization of the Dirichlet problem (1.1) and the Dirichlet–to–Neumann map 
(1.2), we obtain inverse boundary problems for the linear conductivity equations with 
conductivities 0 < γj(x, 0) ∈ C∞(Ω), and relying on [45, Theorem 0.1], we conclude 
γ1(·, 0) = γ2(·, 0) in Ω. Using the mth order linearization of (1.1) and (1.2), m ≥ 2, we 
reduce the proof of the equality of tensors of rank m − 1,

γ
(m−1)
1 (·, 0) = γ

(m−1)
2 (·, 0) in Ω,

to the completeness property of certain anisotropic products of solutions to the linearized 
equation, claimed in Proposition 1.2 below. The idea of higher order linearizations was 
introduced in the context of wave equations in [32] and later adapted to elliptic equations 
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in [13,35], see also [43,44] for a second order linearization technique. In the statement of 
Proposition 1.2, π(m +1) stands for the set of all distinct permutations of {1, . . . , m +1}. 
Also, given any two vectors v, w ∈ Cn, the notation v ·w stands for the bilinear extension 
to Cn of the Euclidean inner product on Rn, i.e. v · w =

∑n
j=1 vjwj .

Proposition 1.2. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary. Let 
0 < γ0 ∈ C∞(Ω). Let m ∈ N and let T be a continuous function on Ω with values in the 
space of symmetric tensors of rank m. Suppose that

∑
(l1,...,lm+1)∈π(m+1)

n∑
j1,...,jm=0

∫
Ω

T j1...jm(x)(ul1 ,∇ul1)j1 . . . (ulm ,∇ulm)jm

∇ulm+1 · ∇um+2dx = 0,

(1.6)

for all ul ∈ C∞(Ω) solving ∇ · (γ0∇ul) = 0 in Ω, l = 1, . . . , m + 2. Then T vanishes 
identically on Ω. Here (ul, ∇ul)j, j = 0, 1, . . . , n, stands for the jth component of the 
vector (ul, ∂x1ul, . . . , ∂xn

ul), and in particular, (ul, ∇ul)0 = ul.

In the case when m = 1, the proof of Proposition 1.2 basically follows from a polar-
ization trick and the fact that

span{γ0∇v1 · ∇v2 : vj ∈ C∞(Ω),∇ · (γ0∇vj) = 0, j = 1, 2}

is dense in L2(Ω), see [27, Proposition 3.1]. In the case when m ≥ 2, we observe that there 
are at least four solutions in the integral identity (1.6), and we shall use crucially this 
observation. To explain the idea, let m = 2. We pick any point p ∈ Ω, and any vectors 
ζ, ̃ζ ∈ Cn such that ζ · ζ = ζ̃ · ζ̃ = 0, Re ζ = Re ζ̃, |Re ζ| = 1, and Im ζ, Im ζ̃ are linearly 
independent, and test (1.6) against two complex geometric optics (CGO) solutions, whose 
amplitudes are localized near the two dimensional plane passing through the point p and 
spanned by Re ζ, Im ζ, and two more CGO solutions, whose amplitudes are localized near 
the two dimensional plane passing through the point p and spanned by Re ζ, Im ζ̃, see 
[15] for similar ideas. Thus, the product of amplitudes of four such solutions is localized 
to the ray

{x ∈ Rn : x = p + tRe ζ, t ∈ R},

leading to the fact that the Fourier transform of the function

t 
→
n∑

j1,j2=1
T j1j2(p + tRe ζ)ζj1 ζ̃j2

along this ray vanishes. Taking t = 0, recalling that p ∈ Ω is arbitrary, and making 
suitable choices for vectors ζ and ζ̃, we show that the tensor T = 0 in Ω.
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Let us remark that the proof of the well-posedness of the Dirichlet problem (1.1)
as well as of holomorphic dependence of the solution uf on the boundary data f ∈
Bδ(∂Ω), which is crucial for the higher order linearizations, is established by means of 
the implicit function theorem for holomorphic maps between complex Banach spaces, see 
[26, Appendix B]. Next, we would like to consider quasilinear conductivities γ(x, ρ, μ)
which no longer depend holomorphically on ρ and μ. In doing so, we have proved in 
Theorem B.1 the well-posedness of the Dirichlet problem (1.1) relying on the implicit 
function theorem for C∞ maps between real Banach spaces, and in view of Theorem B.1, 
we first assume that the function γ : Ω×R ×Rn → R satisfies the following conditions:

(A1) 0 < γ(·, 0, 0) ∈ C∞(Ω),
(A2) the map R × Rn � (ρ, μ) → γ(·, ρ, μ) is C∞ with values in the Hölder space 

C1,α(Ω; R) for some α ∈ (0, 1).

Thanks to Theorem B.1, under the assumptions (A1) and (A2), there exist δ > 0 and 
C > 0 such that given any

f ∈ Bδ(∂Ω,R) := {f ∈ C2,α(∂Ω;R) : ‖f‖C2,α(∂Ω;R) < δ},

the problem (1.1) admits a unique solution u = uf ∈ C2,α(Ω; R) satisfying ‖u‖C2,α(Ω;R) <

Cδ. Associated to (1.1), we define the Dirichlet-to-Neumann map Λγ as in (1.2). Our 
second main result is as follows.

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary. Assume 
that γ1, γ2 : Ω ×R ×Rn → R satisfy (A1) and (A2). If

Λγ1(f) = Λγ2(f) ∀ f ∈ Bδ(∂Ω;R),

then for all |α| ≥ 0, we have

∂α
ρ,μγ1(·, 0, 0) = ∂α

ρ,μγ2(·, 0, 0) in Ω.

The proof of Theorem 1.3 follows along the same lines as the proof of Theorem 1.1, 
and therefore, will be omitted. We should only remark that all the integral identities 
obtained in the proof will be valid for real valued solutions to the linearized conductivity 
equation

∇ · (γ(x, 0, 0)∇u) = 0 in Ω. (1.7)

As γ(x, 0, 0) is real valued, given a complex valued solution u to (1.7), we have Reu
and Imu are also solutions to (1.7), and therefore, all the integral identities extend to 
complex valued solutions, see [36, Lemma 2.1].
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Finally, let us consider conductivities γ(x, ρ, μ) which are smooth in ρ but real analytic 
in μ, and in this case we shall show that we can recover the entire conductivity as in 
Theorem 1.1. Specifically, let γ : Ω ×R ×Rn → R satisfy the following conditions:

(B1) 0 < γ(·, ·, 0) ∈ C∞(Ω ×R),
(B2) the map R × Rn � (ρ, μ) → γ(·, ρ, μ) is C∞ with values in the Hölder space 

C1,α(Ω; R) for some α ∈ (0, 1). Moreover, for each (x, ρ) ∈ Ω × R, the map Rn �
μ 
→ γ(x, ρ, μ) ∈ R is real analytic.

Let ρ ∈ R and consider the boundary value problem

{
∇ · (γ(x, u,∇u)∇u) = 0 in Ω,

u = ρ + f on ∂Ω.
(1.8)

It is established in Theorem B.1 that under the assumptions (B1) and (B2), for each 
ρ ∈ R, there exist δρ > 0 and Cρ > 0 such that when

f ∈ Bδρ(∂Ω,R) := {f ∈ C2,α(∂Ω;R) : ‖f‖C2,α(∂Ω;R) < δρ},

the problem (1.8) has a unique solution u = uρ,f ∈ C2,α(Ω; R) satisfying ‖u −
ρ‖C2,α(Ω;R) < Cρδρ. Associated to (1.8), we define the Dirichlet-to-Neumann map as 
follows

Λγ(ρ + f) = (γ(x, u,∇u)∂νu)|∂Ω, (1.9)

where ρ ∈ R, f ∈ Bδρ(∂Ω; R), and u = uρ,f . Our third main result is as follows.

Theorem 1.4. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary. Assume 
that γ1, γ2 : Ω ×R ×Rn → R satisfy (B1) and (B2). If

Λγ1(ρ + f) = Λγ2(ρ + f) ∀ρ ∈ R, ∀ f ∈ Bδ(∂Ω;R). (1.10)

Then,

γ1 = γ2 in Ω ×R×Rn.

Remark 1.5. Comparing Theorem 1.4, where there is no analyticity assumption in ρ
for γj(x, ρ, μ), with Theorem 1.1, we note that the assumption (B1) in Theorem 1.4 is 
stronger than the corresponding assumption (H1) in Theorem 1.1, and the requirement 
(1.10) in Theorem 1.4 is stronger than the corresponding requirement (1.3) in Theo-
rem 1.1.
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The proof of Theorem 1.4 follows along the same lines as the proofs of Theorem 1.1 and 
Theorem 1.3. First, since γ1 and γ2 satisfy (B2), by Taylor’s formula, we may represent 
γj(x, ρ, μ) as the sum of a convergent power series,

γj(x, ρ, μ) =
∞∑
k=0

1
k!γ

(k)
j (x, ρ, 0;μ, . . . , μ︸ ︷︷ ︸

k times

), x ∈ Ω, ρ ∈ R, μ ∈ neigh(0,Rn), (1.11)

j = 1, 2. Here γ(k)
j (x, ρ, 0) is the kth differential of the real analytic function μ 
→

γj(x, ρ, μ) at μ = 0, which is a symmetric tensor of rank k, given by

γ
(k)
j (x, ρ, 0;μ, . . . , μ) =

n∑
j1,...,jk=1

(∂μj1
. . . ∂μjk

γj)(x, ρ, 0)μj1 . . . μjk , x ∈ Ω, ρ ∈ R.

First, performing the first order linearization of the Dirichlet problem (1.8) and the 
Dirichlet–to–Neumann map (1.9), we obtain the inverse boundary problems for the linear 
conductivity equations with conductivities 0 < γj(x, ρ, 0) ∈ C∞(Ω), and relying on [45, 
Theorem 0.1] and the observation discussed after (1.7), we conclude γ1(·, ·, 0) = γ2(·, ·, 0)
in Ω × R. Using the mth order linearization of (1.8) and (1.9), m ≥ 2, combined with 
the observation above, we reduce the proof of the equality of tensors of rank m − 1,

γ
(m−1)
1 (·, ·, 0) = γ

(m−1)
2 (·, ·, 0) in Ω ×R,

to the following density result, similar to Proposition 1.2.

Proposition 1.6. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary. Let 
0 < γ0 ∈ C∞(Ω). Let m ∈ N and let T be a continuous function on Ω with values in the 
space of symmetric tensors of rank m. Suppose that

∑
(l1,...,lm+1)∈π(m+1)

n∑
j1,...,jm=1

∫
Ω

T j1...jm(x)∂xj1
ul1 . . . ∂xjm

ulm∇ulm+1 · ∇um+2dx = 0,

for all ul ∈ C∞(Ω) solving ∇ · (γ0∇ul) = 0 in Ω, l = 1, . . . , m + 2. Then, T vanishes 
identically on Ω.

The proof of Proposition 1.6 is contained in the proof of Proposition 1.2. Therefore, 
the proof of Proposition 1.6 and Theorem 1.4 will be omitted.

Before closing the introduction, let us review some of the previous literature on the 
Calderón problem. There have been numerous studies on the Calderón problem for linear 
conductivities with the work [45] being one of the first major contributions. Here the 
authors establish uniqueness in dimensions three and higher for smooth conductivities in 
a linear equation and thus give an affirmative answer to the problem stated by Calderón 
in [5]. They also introduce the main strategy for treating this problem that has appeared 
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in almost all of the works on the subject that is based on the construction of CGO 
solutions. Since the original work of [45], the Calderón problem has received a lot of 
attention and different extensions of the work of [45] have been considered thus far. 
This includes results in dimension two [3,39], results with less regular conductivities 
[1,17], results with measurements restricted to some portion of the boundary [4,21,25]
and results in the setting of Riemannian manifolds [12,16,34,28].

In contrast to the above mentioned results, the recovery of nonlinear conductivities has 
received less attention. One of the first important contribution devoted to this problem, 
can be found in [43] where the author adapts a first order linearization idea near constant 
functions to derive a uniqueness result. We mention that the linearization idea was 
introduced by [22] for parabolic equations and considered in [23,24] for elliptic equations. 
The results of [43] correspond to the recovery of conductivities of the form γ(x, u), 
x ∈ Ω, u ∈ R, depending on the space variable and the solution of the non-linear 
equation. This work has been extended by [44] who considered more general second 
order nonlinear terms still depending only on the space variable and the solution of the 
non-linear equation.

In [18], the authors considered the recovery of matrix valued quasilinear terms of the 
form A(x, ∇u) appearing in an elliptic equation of the form ∇ ·A(x, ∇u) = 0 in dimension 
two. In our context, the result of [18] can be seen as the recovery of conductivities of the 
form γ(x, ∇u), x ∈ Ω, depending on the space variable and the gradient of the solution of 
the nonlinear equation. More recently, the works of [11,38,42] have been devoted to the 
recovery of nonlinear conductivities independent of the space variable. The first work 
dealing with the recovery of conductivities the form γ(x, u, ω · ∇u), x ∈ Ω, ω ∈ Rn, 
|ω| = 1, can be found in [26]. This work, which is based on the higher order linearization 
approach initiated by [32], considers not only the recovery of some class of conductivities 
having the dependency with respect to the space variable, the solution and its derivative, 
but it is also stated with data restricted to some arbitrary portion of the boundary.

Without being exhaustive, we mention also the works of [6,9,10,7,8] devoted to the 
recovery of similar type of nonlinear terms for certain classes of elliptic nonlinear equa-
tions and the works of [13,29–31,35–37,33] devoted to inverse problems for semilinear 
elliptic equations.

The paper is organized as follows. In Section 2 we show that Theorem 1.1 follows 
from the completeness property of Proposition 1.2 via the method of higher order lin-
earizations. In Section 3 we give a brief review of the classical complex geometric optics 
solutions to the linear conductivity equation, achieving good remainder estimates in 
C1(Ω), and accommodating specific choices of the amplitudes. We also present the proof 
of the construction of such solutions in Appendix A for the convenience of the reader. In 
Section 4 we use complex geometric optics solutions of Section 3 to establish the com-
pleteness property of Proposition 1.2. Finally, Appendix B contains the well-posedness 
of the Dirichlet problem for our conductivity equations in the case of boundary data 
close to a constant one and for real valued solutions.
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2. Proof of Theorem 1.1. Reduction to a completeness problem via linearization

The main aim of this section is to show that Theorem 1.1 indeed follows from the 
method of higher order linearization together with the completeness property of Propo-
sition 1.2.

Let ε = (ε1, . . . , εm) ∈ Cm, m ≥ 1, and let f1, . . . , fm ∈ C∞(∂Ω). In view of (1.4), 
(1.5), the Dirichlet problem (1.1) for conductivity γj with the boundary data f = ε1f1 +
· · · + εmfm can be written as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (γj(x, 0)∇uj)

+∇ ·
(∑∞

k=1
1
k!
∑n

j1,...,jk=0(∂λj1
. . . ∂λjk

γj)(x, 0)

(uj ,∇uj)j1 . . . (uj ,∇uj)jk∇uj

)
= 0 in Ω,

uj = ε1f1 + · · · + εmfm on ∂Ω,

(2.1)

with j = 1, 2. Here and in what follows (uj , ∇uj)jl stands for the jlth component of 
the vector (uj , ∂x1uj , · · · , ∂xn

uj), and in particular, (uj , ∇uj)0 = uj . Arguing as in [26, 
Appendix B], we see that for all |ε| sufficiently small, the problem (2.1) has a unique 
small solution u(·; ε) ∈ C2,α(Ω), which is holomorphic in ε in a neighborhood of ε = 0, 
and moreover, Λγj

(ε1f1 + · · · + εmfm), depends holomorphically on ε.
We use induction argument on m ≥ 1 to show that the equality

Λγ1(ε1f1 + · · · + εmfm) = Λγ2(ε1f1 + · · · + εmfm), (2.2)

for all |ε| sufficiently small and all f1, . . . , fm ∈ C∞(∂Ω), implies that

γ
(m−1)
1 (x, 0) = γ

(m−1)
1 (x, 0), x ∈ Ω. (2.3)

To proceed, using (1.4), (1.5), we write (2.2) as follows

(γ1(x, 0)∂νu1)|∂Ω − (γ2(x, 0)∂νu2)|∂Ω

+
( ∞∑

k=1

1
k!

n∑
j1,...,jk=0

(∂λj1
. . . ∂λjk

γ1)(x, 0)(u1,∇u1)j1 . . . (u1,∇u1)jk∂νu1

)∣∣∣∣
∂Ω

−
( ∞∑

k=1

1
k!

n∑
j1,...,jk=0

(∂λj1
. . . ∂λjk

γ2)(x, 0)(u2,∇u2)j1 . . . (u2,∇u2)jk∂νu2

)∣∣∣∣
∂Ω

= 0.

(2.4)
First let m = 1 and consider a first order linearization of (2.1) and (2.4) to show that 

γ1(·, 0) = γ2(·, 0) in Ω. To that end, differentiating (2.1) and (2.4) with respect to ε1 and 
evaluating at ε1 = 0, we deduce that the function vj = ∂ε1uj |ε1=0 solves the problem
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{
∇ · (γj(x, 0)∇vj) = 0 in Ω,

vj = f1 on ∂Ω,
(2.5)

j = 1, 2, and that

(γ1(x, 0)∂νv1)|∂Ω = (γ2(x, 0)∂νv2)|∂Ω.

Thus, the Dirichlet–to–Neumann maps for the linear conductivity equations (2.5) coin-
cide, i.e.

Λlin
γ1(·,0) = Λlin

γ2(·,0),

where

Λlin
γj(·,0) : f1 
→ (γj(x, 0)∂νvj)|∂Ω.

Applying [45, Theorem 0.1] we conclude that

γ1(·, 0) = γ2(·, 0) =: γ0(·) in Ω, (2.6)

which gives us the basis of the induction.
Next, let m ≥ 2 and for the induction hypothesis, we assume that for k = 0, 1, . . . , m −

2,

γ
(k)
1 (x, 0) = γ

(k)
1 (x, 0), x ∈ Ω. (2.7)

We shall prove that (2.7) holds for k = m − 1. To this end, we use the method of 
higher order linearization as [32,13,35]. First, as above, applying the operator ∂εl |ε=0, 
l = 1, . . . , m, to (2.1), we get{

∇ · (γ0∇v
(l)
j ) = 0 in Ω,

v
(l)
j = fl on ∂Ω,

where v(l)
j = ∂εluj |ε=0. It follows that v(l) := v

(l)
1 = v

(l)
2 ∈ C∞(Ω) by the uniqueness and 

elliptic regularity.
Let β = (β1, . . . , βm) ∈ {0, 1, . . .}m be a multi-index with |β| =

∑m
j=1 βj . By applying 

the differential operator ∂β
ε to (2.1), first when |β| = 2, and repeatedly up to |β| = m −1, 

and using the induction hypothesis (2.7), we deduce that

∂β
ε u1|ε=0 = ∂β

ε u2|ε=0, (2.8)

for all multi-indices β with |β| ≤ m −1. Next, let us define for each j = 1, 2, the function 
wj = ∂m

ε ...ε uj |ε=0. Applying the operator ∂m
ε ...ε |ε=0 to (2.1), we see that wj satisfies
1 m 1 m
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (γ0∇wj) + ∇ ·
(

1
(m−1)!

∑
(l1,...,lm)∈π(m)

∑n
j1,...,jm−1=0

(∂λj1
. . . ∂λjm−1

γj)(x, 0)(v(l1),∇v(l1))j1 . . . (v(lm−1),∇v(lm−1))jm−1

∇v(lm)
)

= Hm in Ω,

wj = 0 on ∂Ω.

(2.9)
Here

Hm = −∇ ·
(
∂m
ε1...εm

(m−2∑
k=1

1
k!

n∑
j1,...,jk=0

(∂λj1
. . . ∂λjk

γj)(x, 0)

(uj ,∇uj)j1 . . . (uj ,∇uj)jk∇uj

)∣∣∣∣
ε=0

)
is independent of j = 1, 2 in view of (2.7) and (2.8).

Next, letting w = w1−w2 and subtracting the two equations given by (2.9) for j = 1, 2, 
we deduce that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (γ0∇w) + ∇ ·
(

1
(m−1)!

∑
(l1,...,lm)∈π(m)

∑n
j1,...,jm−1=0(

(∂λj1
. . . ∂λjm−1

γ1)(x, 0) − (∂λj1
. . . ∂λjm−1

γ2)(x, 0)
)

(v(l1),∇v(l1))j1 . . . (v(lm−1),∇v(lm−1))jm−1∇v(lm)
)

= 0 in Ω,

w = 0 on ∂Ω.

(2.10)

Applying the operator ∂m
ε1...εm |ε=0 to (2.4), and using (2.6), (2.7), and (2.8), we get

γ0(∂νw1 − ∂νw2)|∂Ω+
(

1
(m− 1)!

∑
(l1,...,lm)∈π(m)

n∑
j1,...,jm−1=0(

(∂λj1
. . . ∂λjm−1

γ1)(x, 0) − (∂λj1
. . . ∂λjm−1

γ2)(x, 0)
)

(v(l1),∇v(l1))j1 . . . (v(lm−1),∇v(lm−1))jm−1∂νv
(lm)

)∣∣∣∣
∂Ω

= 0.

(2.11)
Let v(m+1) ∈ C∞(Ω) be such that ∇ · (γ0∇v(m+1)) = 0 in Ω. Multiplying (2.10) by 
v(m+1), integrating by parts, and using (2.11), we get

∑
(l1,...,lm)∈π(m)

n∑
j1,...,jm−1=0

∫
Ω

(
(∂λj1

. . . ∂λjm−1
γ1)(x, 0) − (∂λj1

. . . ∂λjm−1
γ2)(x, 0)

)
(v(l1),∇v(l1))j1 . . . (v(lm−1),∇v(lm−1))jm−1∇v(lm) · ∇v(m+1)dx = 0,

(2.12)
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which is valid for all v(l) ∈ C∞(Ω) solving ∇ · (γ0∇v(l)) = 0 in Ω, l = 1, . . . , m + 1. By 
applying Proposition 1.2 with

T j1...jm−1(x) := (∂λj1
. . . ∂λjm−1

γ1)(x, 0) − (∂λj1
. . . ∂λjm−1

γ2)(x, 0),

we conclude that (2.3) holds. This completes the proof of Theorem 1.1.

3. Complex geometric optics solutions to the linear conductivity equation

Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary, and let 0 < γ0 ∈
C∞(Ω). Consider the linear conductivity equation

∇ · (γ0∇u) = 0 in Ω. (3.1)

The underlying idea in proving Proposition 1.2 is to construct a rich enough family of 
special solutions to (3.1) so that the integral identity (1.6), tested against these solu-
tions, forces the tensor T in the statement of the proposition to be zero. For the special 
solutions, we use the classical complex geometric optics (CGO) solutions, with some 
special choices of amplitudes, enjoying some concentration properties near two dimen-
sional planes, in the spirit of [15]. Let us remark that CGO solutions were introduced 
in [5] for the case γ0 = 1 and developed further for arbitrary positive γ0 in [45], see 
[12] for generalization of CGO solutions in the context of certain classes of Riemannian 
manifolds.

As we have to work with products of more than four solutions and their first order 
derivatives, we need to use CGO solutions with good estimates for the remainder terms 
in C1(Ω). The construction of such solutions to the conductivity equation (3.1) is known, 
and is stated in the following lemma. We give a very simple proof of it in Appendix A
for the convenience of the reader and to be able to accommodate our choice of the 
amplitudes, see also [2], [13, Proposition 2], [35], [31].

Lemma 3.1. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with C∞ boundary and suppose 
that 0 < γ0 ∈ C∞(Ω). Let Ω̃ ⊂ Rn be a bounded open set with C∞ boundary such that 
Ω ⊂⊂ Ω̃ and let us extend γ0 to Ω̃\Ω so that the extension still denoted by γ0 ∈ C∞(Ω̃). 
Let 0 �= ζ ∈ Cn be such that ζ · ζ = 0, and a ∈ C∞(Ω̃) satisfy the transport equation

ζ · ∇a = 0 in Ω̃. (3.2)

Then for λ > 0 large enough, the conductivity equation (3.1) has solutions Uλζ ∈ C∞(Ω)
of the form

Uλζ(x) = eλζ·xγ
−1/2
0 (a(x) + rλζ(x)) (3.3)

where
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‖rλζ‖C1(Ω) = O(λ−1), λ → ∞. (3.4)

Let ζ ∈ Cn be such that ζ · ζ = 0 and |Re ζ| = |Im ζ| = 1. When proving Proposi-
tion 1.2, we shall work with CGO solutions (3.3) with the amplitudes a which depend 
on a given point p ∈ Ω and which concentrate near the two dimensional plane, pass-
ing through p and spanned by Re ζ and Im ζ, in the spirit of [15]. To construct such 
amplitudes, let us fix σ ∈ R, δ ∈ (0, 1) and let {ωj}n−2

j=1 be an orthonormal set satisfying

ωj · Re ζ = ωj · Im ζ = 0, for j = 1, 2, . . . , n− 2.

Let χ ∈ C∞
0 (R; [0, 1]) be chosen so that χ(t) = 1 for |t| ≤ 1

2 and χ(t) = 0 for |t| ≥ 1. We 
define a via

a(x) = eiσζ·(x−p)
n−2∏
j=1

χ

(
ωj · (x− p)

δ

)
.

We have that a ∈ C∞(Rn) and ζ · ∇a = 0 in Rn.
Let us finally remark that supp (a) is contained in a δ-neighborhood of the two plane, 

passing through the point p, spanned by the vectors Re ζ and Im ζ. Indeed, letting 
Πζ = span{Re ζ, Im ζ} be the plane, passing through the origin, spanned by Re ζ and 
Im ζ, and letting x ∈ supp (a), we get

dist(x− p,Πζ) =

√√√√n−2∑
j=1

(ωj · (x− p))2 ≤
√
nδ, (3.5)

showing the claim.

4. Proof of Proposition 1.2

4.1. Proof of Proposition 1.2 in the case m = 1

In this case the integral identity (1.6) has the form

0 =
∑

(l1,l2)∈π(2)

n∑
j=0

∫
Ω

T j(x)(ul1 ,∇ul1)j∇ul2 · ∇u3dx

=
∑

(l1,l2)∈π(2)

∫
Ω

T 0(x)ul1∇ul2 · ∇u3dx +
∑

(l1,l2)∈π(2)

n∑
j=1

∫
Ω

T j(x)∂xj
ul1∇ul2 · ∇u3dx,

(4.1)
which holds for all ul ∈ C∞(Ω), l = 1, 2, 3, solving

∇ · (γ0∇u) = 0 in Ω. (4.2)
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First letting u2 = 1 into (4.1), we get∫
Ω

T 0(x)∇u1 · ∇u3dx = 0, (4.3)

for all u1, u3 ∈ C∞(Ω) solving (4.2). Using the fact that

span{γ0∇v1 · ∇v2 : vj ∈ C∞(Ω),∇ · (γ0∇vj) = 0, j = 1, 2} (4.4)

is dense in L2(Ω), see [27, Proposition 3.1], we obtain from (4.3) that

T 0 = 0 in Ω. (4.5)

Hence, in view of (4.5), the identity (4.1) becomes

∑
(l1,l2)∈π(2)

n∑
j=1

∫
Ω

T j(x)∂xj
ul1∇ul2 · ∇u3dx = 0, (4.6)

for all ul ∈ C∞(Ω), l = 1, 2, 3, solving (4.2). Setting u1 = u2 in (4.6), we deduce that

∫
Ω

n∑
j=1

T j∂xj
u1∇u1 · ∇u3 dx = 0. (4.7)

Let v, w ∈ C∞(Ω) be solutions to (4.2), and let us choose u1 = v + w and u3 = v. It 
follows from (4.7) that

0 =
∫
Ω

n∑
j=1

T j∂xj
v∇v · ∇v dx +

∫
Ω

n∑
j=1

T j∂xj
v∇w · ∇v dx

+
∫
Ω

n∑
j=1

T j∂xj
w∇v · ∇v dx +

∫
Ω

n∑
j=1

T j∂xj
w∇w · ∇v dx.

(4.8)

The first, second, and fourth terms in (4.8) must vanish by (4.7), and consequently, we 
get ∫

Ω

n∑
j=1

T j∂xj
w∇v · ∇v dx = 0, (4.9)

for all v, w ∈ C∞(Ω) solving (4.2). Finally, by polarization of (4.9), we obtain that

∫ n∑
j=1

T j∂xj
w∇v1 · ∇v2 dx = 0, (4.10)
Ω
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for all v1, v2, w ∈ C∞(Ω) solving (4.2). Using the fact that (4.4) is dense in L2(Ω), see 
[27, Proposition 3.1], we conclude from (4.10) that

n∑
j=1

T j∂xj
w = 0 in Ω, (4.11)

for all w ∈ C∞(Ω) solving (4.2).
We want to use CGO solutions to show that (4.11) implies that (T 1, . . . , Tn) is iden-

tically zero. To that end, letting ζ ∈ Cn be such that ζ · ζ = 0 and |Re ζ| = |Im ζ| = 1, 
by Lemma 3.1 for all λ > 0 large enough, the conductivity equation (4.2) has solutions 
of the form

Uλζ = eλζ·xγ
−1/2
0 (1 + rλζ) ∈ C∞(Ω), (4.12)

with ‖rλζ‖C1(Ω) = O(λ−1), as λ → ∞. Substituting Uλζ given by (4.12) into (4.11), and 
multiplying by λ−1, we see that

n∑
j=1

T j ζj = 0 in Ω. (4.13)

Let ξ ∈ Rn be an arbitrary unit vector and choose η ∈ Rn such that |η| = 1 and ξ ·η = 0. 
Thus, the vector

ζ = ξ + iη

satisfies ζ · ζ = ζ · ζ = 0. Hence, in view of (4.13), we conclude that

2
n∑

j=1
T jξj =

n∑
j=1

T j(ζj + ζj) = 0 in Ω. (4.14)

It follows from (4.5), (4.14) that T = (T 0, T 1, . . . , Tn) = 0 in Ω. This completes the 
proof of Proposition 1.2 in the case m = 1.

4.2. Proof of Proposition 1.2 in the case m = 2

When m = 2, the integral identity (1.6) has the form

0 =
∑

(l1,l2,l3)∈π(3)

n∑
j,k=0

∫
Ω

T jk(x)(ul1 ,∇ul1)j(ul2 ,∇ul2)k∇ul3 · ∇u4dx

=
∑

(l ,l ,l )∈π(3)

∫
T 00(x)ul1ul2∇ul3 · ∇u4dx (4.15)
1 2 3 Ω
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+ 2
∑

(l1,l2,l3)∈π(3)

n∑
j=1

∫
Ω

T 0j(x)ul1∂xj
ul2∇ul3 · ∇u4dx

+
∑

(l1,l2,l3)∈π(3)

n∑
j,k=1

∫
Ω

T jk(x)∂xj
ul1∂xk

ul2∇ul3 · ∇u4dx,

which holds for all ul ∈ C∞(Ω), l = 1, . . . , 4, solving (4.2).
First letting u3 = u2 = 1 in (4.15), we get∫

Ω

T 00(x)∇u1 · ∇u4dx = 0, (4.16)

for all u1, u4 ∈ C∞(Ω) solving (4.2). Note that the identity (4.16) is the same as (4.3), 
and arguing as above, we conclude that

T 00 = 0 in Ω. (4.17)

Next using (4.17) and letting u3 = 1 in (4.15), we obtain that

∑
(l1,l2)∈π(2)

∫
Ω

n∑
j=1

T 0j(x)∂xj
ul1∇ul2 · ∇u4dx = 0, (4.18)

for all u1, u2, u4 ∈ C∞(Ω) solving (4.2). Note that the identity (4.18) is the same as 
(4.6), and therefore, arguing as above, we get

(T 01, . . . , T 0n) = 0 in Ω. (4.19)

In view of (4.17) and (4.19), the identity (4.15) becomes

∑
(l1,l2,l3)∈π(3)

n∑
j,k=1

∫
Ω

T jk(x)∂xj
ul1∂xk

ul2∇ul3 · ∇u4dx = 0, (4.20)

for all ul ∈ C∞(Ω), l = 1, . . . , 4 solving (4.2). Here we do not have a straightforward 
analogue of the identity (4.10) that we obtained via polarization in the previous section. 
On the other hand, identity (4.20) contains four solutions to the linear conductivity 
equation and we can use a different approach by using CGO solutions corresponding to 
different vectors to obtain pointwise information about the tensor T . We start with a 
definition.

Definition 4.1 (Admissible pairs of vectors). We define A as the set of all pairs of vectors 
(ζ, ̃ζ) ∈ Cn ×Cn that satisfy the following properties:
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(i) ζ · ζ = ζ̃ · ζ̃ = 0,
(ii) Re ζ = Re ζ̃,
(iii) Im ζ̃ /∈ {t Im ζ : t ∈ R}.

To introduce suitable CGO solutions, we let p ∈ Ω, (ζ, ̃ζ) ∈ A, |Re ζ| = |Re ζ̃| = 1, 
σ ∈ R, δ ∈ (0, 1), and define orthonormal sets {ωj}n−2

j=1 and {ω̃j}n−2
j=1 that satisfy

ωj · Re ζ = ωj · Im ζ = 0, for j = 1, 2, . . . , n− 2, (4.21)

and

ω̃j · Re ζ̃ = ω̃j · Im ζ̃ = 0, for j = 1, 2, . . . , n− 2. (4.22)

Let χ ∈ C∞
0 (R; [0, 1]) be such that χ(t) = 1 for |t| ≤ 1

2 and χ(t) = 0 for |t| ≥ 1. We set

a(x) = eiσζ·(x−p)
n−2∏
j=1

χ

(
ωj · (x− p)

δ

)
, (4.23)

and

ã(x) = eiσζ̃·(x−p)
n−2∏
j=1

χ

(
ω̃j · (x− p)

δ

)
. (4.24)

We have a, ̃a ∈ C∞(Rn), and

ζ · ∇a = ζ̃ · ∇ã = 0 in Rn.

By Lemma 3.1, for all λ > 0 large enough, the conductivity equation (4.2) has solutions 
Uλζ , U−λζ , Uλζ̃ , U−λζ̃ ∈ C∞(Ω) of the form

U±λζ(x) = e±λζ·xγ0(x)− 1
2 (a(x) + r±λζ(x)) ,

U±λζ̃(x) = e±λζ̃·xγ0(x)− 1
2

(
ã(x) + r±λζ̃(x)

)
,

(4.25)

where

‖r±λζ‖C1(Ω) = O(λ−1), ‖r±λζ̃‖C1(Ω) = O(λ−1), (4.26)

as λ → ∞. Note that since (ζ, ̃ζ) ∈ A and |Re ζ| = |Re ζ̃| = 1, we have

ζ · ζ̃ = 1 − Imζ · Imζ̃ > 0. (4.27)

Let
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u1 = Uλζ , u2 = U−λζ , u3 = Ũλζ̃ , u4 = Ũ−λζ̃ . (4.28)

Substituting (4.28), (4.25), into the integral identity (4.20), multiplying by λ−4, λ → ∞, 
and using (4.26), (4.27), we get

(ζ · ζ̃)
∫
Ω

n∑
j,k=1

T jkζj ζ̃kγ
−2
0 (aã)2dx = 0,

and therefore,

∫
Ω

n∑
j,k=1

T jkζj ζ̃kγ
−2
0 Fdx = 0. (4.29)

Here

F (x) = (a(x)ã(x))2 = ei2σ(ζ+ζ̃)·(x−p)
n−2∏
j=1

χ

(
ωj · (x− p)

δ

)2

χ

(
ω̃j · (x− p)

δ

)2

,

δ ∈ (0, 1) and σ ∈ R.
We claim that in view of the fact that (ζ, ̃ζ) ∈ A, we have supp (F ) is contained in a 

δ–neighborhood of the ray

{x ∈ Rn : x = p + tRe ζ, t ∈ R}. (4.30)

Indeed, letting x be in supp (F ) and letting

Πζ = span{Re ζ, Im ζ}, Πζ̃ = span{Re ζ, Im ζ̃},

be the two dimensional planes, passing through the origin, spanned by Re ζ, Im ζ, and 
Re ζ, Im ζ̃, respectively, we have in view of (3.5),

dist(x− p,Πζ) ≤
√
nδ, dist(x− p,Πζ̃) ≤

√
nδ. (4.31)

Using (4.31) and

dist(x− p,Πζ) = |x− p− ((x− p) · Re ζ)Re ζ − ((x− p) · Im ζ)Im ζ|, (4.32)

and the corresponding expression for dist(x − p, Πζ̃), we get

|((x− p) · Im ζ)Im ζ − ((x− p) · Im ζ̃)Im ζ̃| ≤ 2
√
nδ. (4.33)

Since the vectors Im ζ and Im ζ̃ are linearly independent, we see from (4.33) that
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|((x− p) · Im ζ)Im ζ| ≤ Cδ, |((x− p) · Im ζ̃)Im ζ̃| ≤ Cδ,

where C > 0 depends on the angle between Im ζ and Im ζ̃, and n. This together with 
(4.31), (4.32), gives that

|x− p− ((x− p) · Re ζ)Re ζ| ≤ (C +
√
n)δ,

showing the claim.
Multiplying (4.29) by δ−(n−1) and taking the limit as δ → 0, we deduce that

∫
R

n∑
j,k=1

ei4σtγ−2
0 (p + tRe ζ)T jk(p + tRe ζ)ζj ζ̃k dt = 0,

where we have extended T and γ0 to all of Rn by setting them to be zero outside Ω. 
Since the latter expression holds for all σ ∈ R we can use inverse Fourier transform in 
σ to obtain that the integrand above should vanish for all t and in particular at t = 0. 
Finally, since p ∈ Ω is arbitrary, we conclude that

n∑
j,k=1

T jkζj ζ̃k = 0 in Ω, (4.34)

for all (ζ, ̃ζ) ∈ A, |Re ζ| = |Re ζ̃| = 1.
Now let ξ ∈ Rn be arbitrary such that |ξ| = 1. As n ≥ 3, there are η, μ ∈ Rn such 

that

|η| = |μ| = 1, ξ · η = ξ · μ = η · μ = 0. (4.35)

Since (ξ + iη, ξ ± iμ) ∈ A, it follows from (4.34) that

T̃ (ξ + iη, ξ ± iμ) = 0 in Ω,

where T̃ is the rank two tensor with coefficients T jk, j, k = 1, . . . , n. Therefore, by 
linearity,

T̃ (ξ + iη, ξ) = 0 in Ω.

Changing η to −η, by linearity, we get

T̃ (ξ, ξ) = 0 in Ω. (4.36)

Since ξ ∈ Rn is arbitrary vector, |ξ| = 1, by linearity and polarization of (4.36), we 
conclude that
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T̃ (ξ, ξ̃) = 0 in Ω, ξ, ξ̃ ∈ Rn. (4.37)

Hence, it follows from (4.17), (4.19), and (4.37) that T = 0 in Ω. This completes the 
proof of Proposition 1.2 in the case m = 2.

4.3. Proof of Proposition 1.2 in the case m ≥ 3

Here we shall proceed by induction on m. To that end, we assume that Proposition 1.2
holds for m − 1, and we shall prove that it holds for m.

First letting um+1 = um = · · · = u2 = 1 in (1.6), we see that T 0...0 = 0. Using that 
T 0...0 = 0 and letting um+1 = um = · · · = u3 = 1 in (1.6), we show that the tensor of 
rank one with coefficients T j0...0, j = 1, . . . , n, is equal to zero. Proceeding in the same 
way and finally letting um+1 = 1, by the induction hypothesis, we get that the tensor of 
rank m − 1, whose coefficients are T j1...jm−10, j1, . . . , jm−1 = 1, . . . , n, is equal to zero. 
In view of all of these, the integral identity (1.6) becomes

∑
(l1,...,lm+1)∈π(m+1)

n∑
j1,...,jm=1

∫
Ω

T j1...jm(x)∂xj1
ul1 . . . ∂xjm

ulm∇ulm+1 · ∇um+2dx = 0,

(4.38)
for all ul ∈ C∞(Ω), l = 1, . . . , m +2, solving (4.2). To show that the identity (4.38) implies 
that the tensor of rank m with coefficients T j1...jm , j1, . . . , jm = 1, . . . , n, vanishes in Ω, 
we shall first prove the following result.

Lemma 4.2. Assume that the integral identity (4.38) holds for all ul ∈ C∞(Ω), l =
1, . . . , m + 2, solving (4.2). Then

n∑
j1,...,jm=1

T j1...jmζj1ζj2 . . . , ζjm−1 ζ̃jm = 0 in Ω, (4.39)

for all (ζ, ̃ζ) ∈ A, |Re ζ| = |Re ζ̃| = 1, where A is as in Definition 4.1.

Proof. To prove (4.39) we shall use suitable CGO solutions to (4.2) defined as in the 
proof of Proposition 1.2 in the case m = 2. To that end, we let p ∈ Ω, (ζ, ̃ζ) ∈ A, 
|Re ζ| = |Re ζ̃| = 1, σ ∈ R, δ ∈ (0, 1), and let {ωj}n−2

j=1 and {ω̃j}n−2
j=1 be orthonormal sets 

that satisfy (4.21) and (4.22), respectively. Taking λ > 0 sufficiently large, we set

u1 = u2 = . . . = um−1 = Uλζ , um = U−(m−1)λζ , um+1 = Uλζ̃ , um+2 = Ũ−λζ̃ ,

(4.40)
where Uλζ , Uλζ̃ , U−λζ̃ ∈ C∞(Ω) are given by (4.25) and U−(m−1)λζ ∈ C∞(Ω) is given by

U−λ(m−1)ζ(x) = e−(m−1)λζ·xγ0(x)− 1
2
(
a(x) + r−λ(m−1)ζ(x)

)
, (4.41)
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where a ∈ C∞(Rn) is defined by (4.23), and

‖r−λ(m−1)ζ‖C1(Ω) = O(λ−1), (4.42)

as λ → ∞. The existence of such CGO solutions follows from Lemma 3.1.
Substituting (4.40), (4.25), (4.41), into the integral identity (4.38), multiplying by 

λ−(m+2), λ → ∞, and using (4.26), (4.27), (4.42), we get

(ζ · ζ̃)
∫
Ω

n∑
j1,...,jm=1

T j1...jmζj1ζj2 . . . , ζjm−1 ζ̃jmγ
− (m+2)

2
0 amã2dx = 0,

and therefore,

∫
Ω

n∑
j1,...,jm=1

T j1...jmζj1ζj2 . . . , ζjm−1 ζ̃jmγ
− (m+2)

2
0 Fdx = 0. (4.43)

Here

F (x) = am(x)ã2(x) = eiσ(mζ+2ζ̃)·(x−p)
n−2∏
j=1

χ

(
ωj · (x− p)

δ

)m

χ

(
ω̃j · (x− p)

δ

)2

,

δ ∈ (0, 1) and σ ∈ R. As (ζ, ̃ζ) ∈ A, we have supp (F ) is contained in a δ–neighborhood 
of the ray (4.30), cf. the discussion after (4.30).

Multiplying (4.43) by δ−(n−1) and taking the limit as δ → 0, we deduce that

∫
R

n∑
j1,...,jm=1

ei(m+2)σtγ
− (m+2)

2
0 (p + tRe ζ)

T j1...jm(p + tRe ζ)ζj1ζj2 . . . , ζjm−1 ζ̃jm dt = 0,

(4.44)

where we have extended T j1...jm and γ0 to all of Rn by setting them to be zero outside 
Ω. Now (4.39) follows from (4.44), cf. the discussion before (4.34). �
Remark 4.3. When m ≥ 3, one cannot conclude from (4.39) directly that T j1...jm = 0
for all j1, . . . , jm = 1, . . . , n. Indeed, taking T j1...jm = δj1j2 for all j3, . . . , jm = 1, . . . , n, 
we see that (4.39) holds, as ζ · ζ = 0.

Hence, to show that T j1...jm = 0 for all j1, . . . , jm = 1, . . . , n, we shall rely on the two 
lemmas below.

Lemma 4.4. Assume that the integral identity (4.38) holds for all ul ∈ C∞(Ω), l =
1, . . . , m + 2, solving (4.2). Then we have
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n∑
j1,...,jm=1

T j1...jmζj1 ζ̃j2 ∂xj3
u . . . ∂xjm

u = 0 in Ω, (4.45)

for all (ζ, ̃ζ) ∈ A, |Re ζ| = |Re ζ̃| = 1, and all u ∈ C∞(Ω) solving (4.2).

Proof. We shall prove this lemma by induction. To that end, letting (ζ, ̃ζ) ∈ A, |Re ζ| =
|Re ζ̃| = 1, and letting u ∈ C∞(Ω) satisfy (4.2), we assume that the following holds

n∑
j1,...,jm=1

T j1...jmζj1 . . . ζjs ζ̃js+1∂xjs+2
u . . . ∂xjm

u = 0 in Ω, (4.46)

for s = m − 1, . . . , k + 1, with some 1 ≤ k ≤ m − 2. Note that (4.46) with s = m − 1
corresponds to (4.39) and is the basis for the induction. We shall prove that (4.46) holds 
for s = k. In doing so we test the integral identity (4.38) with suitable choice of CGO 
solutions to the linear conductivity equation (4.2) and use (4.46). Specifically, taking 
λ > 0 sufficiently large, we set

u1 = u2 = . . . = uk = Uλζ , uk+1 = U−λkζ , uk+2 = Uλζ̃ , um+2 = U−λζ̃ , (4.47)

while

uk+3 = · · · = um+1 = u. (4.48)

Here Uλζ , Uλζ̃ , U−λζ̃ ∈ C∞(Ω) are given by (4.25) and U−λkζ ∈ C∞(Ω) is given by (4.41)
with (m − 1) being replaced by k.

Substituting (4.47), (4.48), (4.25), (4.41), into the integral identity (4.38), multiplying 
by λ−(k+3), letting λ → ∞, and using (4.26), (4.27), (4.42), we get

cm,k (ζ · ζ̃)
∫
Ω

n∑
j1,...,jm=1

γ
− (k+3)

2
0 F T j1...jmζj1 . . . ζjk ζ̃jk+1∂xjk+2

u . . . ∂xjm
u dx

︸ ︷︷ ︸
I

+ dm,k

∫
Ω

n∑
j1,...,jm=1

γ
− (k+3)

2
0 F T j1...jmζj1 . . . ζjk+1 ζ̃jk+2∂xjk+3

u . . . ∂xjm
u∇u · ζ̃ dx

︸ ︷︷ ︸
II

= 0

(4.49)
with some non-zero constants cm,k and dm,k that only depend on m and k. Here, the 
function F is given by

F (x) = ak+1(x)ã2(x)

= eiσ((k+1)ζ+2ζ̃)·(x−p)
n−2∏
j=1

χ

(
ωj · (x− p)

δ

)k+1

χ

(
ω̃j · (x− p)

δ

)2

,
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δ ∈ (0, 1) and σ ∈ R. It follows from (4.46) with s = k + 1 that II in (4.49) vanishes and 
we conclude that I must also vanish, i.e.

∫
Ω

n∑
j1,...,jm=1

γ
− (k+3)

2
0 F T j1...jmζj1 . . . ζjk ζ̃jk+1∂xjk+2

u . . . ∂xjm
u dx = 0. (4.50)

Multiplying (4.50) by δ−(n−1) and taking the limit as δ → 0, we observe that

∫
R

n∑
j1,...,jm=1

eiσt(k+3)γ
− (k+3)

2
0 (p + tRe ζ)T j1...jm(p + tRe ζ)

ζj1 . . . ζjk ζ̃jk+1∂xjk+2
u(p + tRe ζ) . . . ∂xjm

u(p + tRe ζ) dt = 0,

(4.51)

where we have extended T j1...jm and γ0 to all of Rn by setting them to be zero outside 
Ω. As above, cf. the discussion before (4.34), we conclude from (4.51) that

n∑
j1,...,jm=1

T j1...jmζj1 . . . ζjk ζ̃jk+1∂xjk+2
u . . . ∂xjm

u = 0 in Ω. (4.52)

This shows that (4.46) holds for s = k. The proof of Lemma 4.4 is completed by setting 
s = 1 in (4.46). �
Lemma 4.5. Assume that (4.45) holds for all (ζ, ̃ζ) ∈ A, |Re ζ| = |Re ζ̃| = 1, and all 
u ∈ C∞(Ω) solving (4.2). Then the tensor T̃ = 0 in Ω, where T̃ is the tensor of rank m
with coefficients T j1...jm , j1, . . . , jm = 1, . . . , n.

Proof. First, arguing as after (4.34), we conclude from (4.45) that

n∑
j1,j2,j3,...,jm=1

T j1j2j3...jmξ
(1)
j1

ξ
(2)
j2

∂xj3
u . . . ∂xjm

u = 0 in Ω, (4.53)

for all ξ(1), ξ(2) ∈ Rn. Next via polarization of (4.53), see [46], we obtain that

n∑
j1,j2,j3,...,jm=1

T j1j2j3...jmξ
(1)
j1

ξ
(2)
j2

∂xj3
u3 . . . ∂xjm

um = 0 in Ω, (4.54)

for all u3, . . . , um ∈ C∞(Ω) solving (4.2).
Letting λ > 0 sufficiently large, ζ(j) ∈ Cn be such that ζ(j) · ζ(j) = 0, |Re ζ(j)| =

|Im ζ(j)| = 1, j = 3, . . . , m, we set

uj = Uλζ(j) = eλζ
(j)·xγ

−1/2
0 (1 + rλζ(j)) ∈ C∞(Ω), j = 3, . . . ,m, (4.55)
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with ‖rλζ(j)‖C1(Ω) = O(λ−1), as λ → ∞.
Substituting (4.55) into (4.54), and multiplying by λ−(m−2), we see that

n∑
j1,j2,j3,...,jm=1

T j1j2j3...jmξ
(1)
j1

ξ
(2)
j2

ζ
(3)
j3

. . . ζ
(m)
jm

= 0 in Ω. (4.56)

Let ξ ∈ Rn be arbitrary such that |ξ| = 1, and choose η ∈ Rn such that |η| = 1 and 
ξ · η = 0. Letting ζ = ξ + iη, using that ζ · ζ = ζ · ζ = 0 and linearity, we get from (4.56)
that

T̃ (ξ(1), ξ(2), 2ξ, . . . , 2ξ) = T̃ (ξ(1), ξ(2), ζ + ζ, . . . , ζ + ζ) = 0 in Ω. (4.57)

By linearity and polarization of (4.57), we conclude that T̃ = 0 in Ω. �
Lemma 4.5 completes the proof of Proposition 1.2 in the case m ≥ 3.
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Appendix A. Proof of Lemma 3.1

While Lemma 3.1 is known, see [2], [13, Proposition 2], [35], [31], we shall present here 
a very simple proof of it for the convenience of the reader. In doing so we shall use the 
approach of [19] which is based on Fourier series, see also [41], extending it to get good 
remainder estimates in an arbitrary Sobolev space Hm(Ω). First we have, see [45],

−γ
−1/2
0 ◦ Lγ0 ◦ γ

−1/2
0 = −Δ + q, q = Δγ

1/2
0

γ
1/2
0

∈ C∞(Ω), (A.1)

where the conductivity operator Lγ0 is defined as follows Lγ0 := ∇ · (γ0∇·). We would 
like to construct CGO solutions to the Schrödinger equation

(−Δ + q)u = 0 in Ω, (A.2)

of the form
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uλζ(x) = eλζ·x(a(x) + rλζ(x)), (A.3)

where λ > 0 is a large parameter, 0 �= ζ ∈ Cn is independent of λ such that ζ · ζ = 0, a
is a smooth amplitude, and r is the remainder term. Then it follows from (A.1) that

Uλζ(x) = eλζ·xγ
−1/2
0 (a(x) + rλζ(x))

are CGO solutions to (3.1). Substituting (A.3) into (A.2), we get

e−λζ·x(−Δ + q)eλζ·x(a(x) + rλζ(x)) = 0 in Ω,

and therefore, setting r = rλζ , we have

(−Δ − 2λζ · ∇ + q)r = −(−Δ − 2λζ · ∇ + q)a in Ω. (A.4)

To solve (A.4) we assume for simplicity that Ω ⊂ Q := [−π, π]n. Note that everything 
works without this extra assumption if we replace Ω by its image under the map Rn �
x 
→ κx ∈ Rn for some sufficiently small fixed κ > 0. First we shall solve

(−Δ − 2λζ · ∇)r = f in Q, (A.5)

where f ∈ L2(Q). Writing ζ = ω1 + iω2, ω1, ω2 ∈ Rn, we see that ω1 · ω2 = 0 and 
|ω1| = |ω2| =: α. We may assume without loss of generality that ω1 = αe1 and ω2 = αe2, 
where e1 and e2 are the first two vectors in the standard basis of Rn. Thus, (A.5) becomes

(−Δ − 2λα∂x1 − 2iλα∂x2)r = f in Q. (A.6)

Letting vl(x) = ei(l+
1
2 e1)·x, l ∈ Zn, and noting that (vl) forms an orthonormal basis in 

L2(Q, dx/(2π)n), see [41], we have

f =
∑
l∈Zn

flvl,

where fl = (f, vl)L2(Q) = (2π)−n
∫
Q
fvldx, ‖f‖2

L2(Q) =
∑

l∈Zn |fl|2. Looking for a solu-
tion r of (A.6) in the form r =

∑
l∈Zn rlvl, we are led to the following equation,

plrl = fl, pl =
(
l + 1

2e1

)2

− i2λα
(
l1 + 1

2

)
+ 2λαl2, l ∈ Zn.

Using that |Impl| ≥ λα and letting rl := fl/pl, we get |rl| ≤ |fl|/(λα). Thus, ‖r‖L2(Q) ≤
1
λα‖f‖L2(Q).

Now if f ∈ Hm(Q), m ≥ 0, where Hm(Q) is the Sobolev space, equipped with the 
norm
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‖f‖2
Hm(Q) = ‖(1 − Δ)m/2f‖2

L2(Q) =
∑
l∈Zn

(
1 +

∣∣∣∣l + 1
2e1

∣∣∣∣2)m

|fl|2,

we see that ‖r‖Hm(Q) ≤ 1
λα‖f‖Hm(Q).

Now letting f ∈ Hm(Ω) and extending it continuously to Hm(Q), we have constructed 
the solution r ∈ Hm(Ω) to the equation

(−Δ − 2λζ · ∇)r = f in Ω (A.7)

satisfying

‖r‖Hm(Ω) ≤
C

λ
‖f‖Hm(Ω). (A.8)

We denote by Gλζ the solution operator

Gλζ : Hm(Ω) → Hm(Ω), f 
→ r,

where r is the solution to (A.7) that we have just constructed. It follows from (A.8) that

‖Gλζ‖Hm(Ω)→Hm(Ω) = O(λ−1), λ → ∞.

To solve (A.4), first let a ∈ C∞(Ω) be any solution of the transport equation

ζ · ∇a = 0 in Ω. (A.9)

Then it follows from (A.4) and (A.9) that we would like to find r such that

(−Δ − 2λζ · ∇ + q)r = −(−Δ + q)a in Ω. (A.10)

Note that (−Δ + q)a ∈ Hm(Ω). Looking for a solution r of (A.10) in the form r = Gλζ r̃, 
we get that r̃ should solve the equation

(I + qGλζ)r̃ = −(−Δ + q)a in Ω. (A.11)

As q ∈ C∞(Ω), we have ‖qGλζ‖Hm(Ω)→Hm(Ω) = O(λ−1), as λ → ∞. Then by Neumann 
series, for λ > 0 sufficiently large, we see that (A.11) has a solution r̃ ∈ Hm(Ω) such that 
‖r̃‖Hm(Ω) = O(1)‖(−Δ + q)a‖Hm(Ω). Therefore, ‖r‖Hm(Ω) = O(λ−1)‖(−Δ + q)a‖Hm(Ω), 
as λ → ∞.

Performing the above construction on a bounded open set Ω̃ with C∞ boundary such 
that Ω ⊂⊂ Ω̃, using elliptic regularity and the Sobolev embedding Hm(Ω) ⊂ C1(Ω), 
m > n/2 + 1, we complete the proof of Lemma 3.1.
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Appendix B. Well-posedness of the Dirichlet problem for a quasilinear conductivity 
equation

The purpose of this appendix is to show the well-posedness of the Dirichlet problem 
for a quasilinear conductivity equation without analyticity assumptions. The argument 
is standard and is given here for completeness and convenience of the reader, see [35, 
Proposition 2.1] for similar arguments in the case of semilinear elliptic equations.

Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary. Let k ∈ N ∪ {0}
and 0 < α < 1 and let Ck,α(Ω) be the standard Hölder space on Ω, see [20]. We write 
Cα(Ω) = C0,α(Ω).

Let ρ ∈ R and consider the Dirichlet problem for the following isotropic quasilinear 
conductivity equation, {

∇ · (γ(x, u,∇u)∇u) = 0 in Ω,

u = ρ + f on ∂Ω.
(B.1)

We assume that the function γ : Ω ×R ×Rn → R satisfies the following conditions:

(A1) 0 < γ(·, ρ, 0) ∈ C∞(Ω), for ρ ∈ R,
(A2) the map R × Rn � (ρ, μ) → γ(·, ρ, μ) is C∞ with values in the Hölder space 

C1,α(Ω; R) for some α ∈ (0, 1).

We have the following result.

Theorem B.1. Let ρ ∈ R be fixed. Then under the above assumptions, there exist δ > 0, 
C > 0 such that for any f ∈ Bδ(∂Ω; R) := {f ∈ C2,α(∂Ω; R) : ‖f‖C2,α(∂Ω;R) < δ}, the 
problem (B.1) has a solution u = uλ,f ∈ C2,α(Ω; R) which satisfies

‖u− ρ‖C2,α(Ω;R) ≤ C‖f‖C2,α(∂Ω;R).

The solution u is unique within the class {u ∈ C2,α(Ω; R) : ‖u − ρ‖C2,α(Ω;R) < Cδ} and 
the map

Bδ(∂Ω;R) → C2,α(Ω;R), f 
→ u,

is C∞. Furthermore, the map

Bδ(∂Ω;R) → C1,α(Ω;R), f 
→ ∂νu|∂Ω (B.2)

is also C∞.

Proof. Following [35, Proposition 2.1], we shall make use of the implicit function theorem 
for C∞ maps between real Banach spaces, see [40, Theorem 10.6]. In doing so, we let
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B1 = C2,α(∂Ω;R), B2 = C2,α(Ω;R), B3 = Cα(Ω;R) × C2,α(∂Ω;R).

Consider the map,

F : B1 ×B2 → B3, F (f, u) = (∇ · (γ(x, u,∇u)∇u), u|∂Ω − ρ− f). (B.3)

First we claim that F has the mapping property (B.3). Indeed, as C1,α(Ω; R) is an 
algebra under pointwise multiplication, see [20, Theorem A.7], we only need to see 
that γ(x, u, ∇u) ∈ C1,α(Ω; R). This follows from the fact that if v ∈ C∞(R) and 
w ∈ C1,α(Ω; R) then the composition v ◦ w ∈ C1,α(Ω; R), see [20, Theorem A.8].

Let us check that the map F in (B.3) is C∞. To that end, it suffices to check that the 
map

C2,α(Ω;R) � u 
→ γ(x, u,∇u) ∈ C1,α(Ω;R) (B.4)

is C∞. In doing so, letting λ = (ρ, μ) ∈ R ×Rn, we Taylor expand γ(x, ·) at λ0,

γ(x, λ0 + λ) =
∑

|β|≤N

(∂β
λγ)(x, λ0)

β! λβ + Rλ0,λ, (B.5)

where the remainder Rλ0,λ is given by

Rλ0,λ := (N + 1)
∑

|β|=N+1

λβ

β!

1∫
0

(1 − t)N (∂β
λγ)(x, λ0 + tλ)dt, (B.6)

N ≥ 0. Therefore, to prove that the map (B.4) is C∞, letting λ0 = (u(x), ∇u(x)), 
u ∈ C2,α(Ω; R), be fixed, and letting λ = (h(x), ∇h(x)), h ∈ C2,α(Ω; R), in (B.5) and 
(B.6), we have to check that the map

C2,α(Ω;R) � u 
→ (∂β
λγ)(x, u,∇u) ∈ C1,α(Ω;R) (B.7)

is continuous for all |β| ≥ 0, and

R(u,∇u),(h,∇h) = o((h,∇h)N ) in C1,α(Ω;R), (B.8)

as h → 0 in C1,α(Ω; R). The continuity of the map (B.7) follows from the fact that if 
v ∈ C∞(R) then the map C1,α(Ω; R) � w 
→ v ◦ w ∈ C1,α(Ω; R) is continuous, see [20, 
Theorem A.8]. Now for ‖(h, ∇h)‖C1,α(Ω;R) ≤ 1, we have ‖(∂β

λγ)(x, u(x) + th(x), ∇u(x) +
t∇h(x))‖C1,α(Ω;R) ≤ C(u), uniformly in t ∈ (0, 1), where C(u) > 0 is a constant which 
depends on u. Therefore,

‖R(u,∇u),(h,∇h)‖C1,α(Ω;R) ≤ C‖(h,∇h)‖N+1
1,α ,
C (Ω;R)
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showing (B.8).
Note that F (0, ρ) = 0 and the partial differential ∂uF (0, ρ) : B2 → B3 is given by

∂uF (0, ρ)v = (∇ · (γ(x, ρ, 0)∇v), v|∂Ω).

Writing the equation ∇ · (γ(x, ρ, 0)∇v) = 0 as Δv +∇(log γ(x, ρ, 0)) · ∇v = 0, and using 
(A1), we see from [14, Theorem 6.15] that the map ∂uF (0, ρ) : B2 → B3 is a linear 
isomorphism.

An application of the implicit function theorem, see [40, Theorem 10.6 and Remark 
10.5], shows that there exists δ > 0 and a unique C∞ map S : Bδ(∂Ω; R) → C2,α(Ω; R)
such that S(0) = ρ and F (f, S(f)) = 0 for all f ∈ Bδ(∂Ω; R). Letting u = S(f) and 
using that S is Lipschitz continuous and S(0) = ρ, we have

‖u− ρ‖C2,α(Ω;R) ≤ C‖f‖C2,α(∂Ω;R).

Since the operation of taking the normal derivative and restricting it to the boundary is 
a linear map C2,α(Ω; R) → C1,α(∂Ω; R), (B.2) follows. �
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