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1. Introduction

Let 2 C R™, n > 3, be a bounded open set with C'* boundary, and let us start by
considering conductivity functions

7:QxCxC"—C,
that satisfy the following two assumptions:

(H2) the map C x C™ 3 (p, ) — (-, p, 1) is holomorphic with values in the Holder
space C1*(Q) for some a € (0, 1).

Given a conductivity function v as above, we consider the boundary value problem
V- (y(z,u, Vu)Vu) =0 in Q, (L1)
u=f on 0. '

Arguing as in [26, Appendix B], we see that under the assumptions (H1) and (H2), there
exist 6 > 0 and C > 0 such that given any

f € Bs(99) := {f € C>*(99) : ||f|lc>.(00) < 5},

the problem (1.1) has a unique solution u = uy € C*%(Q) satisfying [ull g2.0 @) < C6.
We define the Dirichlet-to-Neumann map associated with (1.1) via the mapping

A’Y(f) = (7(x7 Uu, vu>auu)|8§27 (12)

where f € B;(09), u = us, and v is the unit outer normal to <.

Our inverse problem can now be cast as follows: does the knowledge of the Dirichlet-
to-Neumann map A, uniquely determine a general quasilinear conductivity v? Note that
if the conductivity is assumed to be independent of v and Vu, then this is the well known
Calderén problem for isotropic conductivities introduced in [5], which is motivated by ap-
plications where one is interested in determining the isotropic conductivity of a medium
Q by applying voltage on the boundary 92 and subsequently measuring the induced cur-
rent flux on 9. This problem, which is also called the Electrical Impedance Tomography
(EIT) problem, see [47], has many applications in different scientific branches including
medical imaging by improving the early detection of breast cancer, see [49], as well as in
seismology and geophysical exploration, see [48].

In this paper we consider the EIT problem in the more general context where the
unknown conductivity is not only depending on the space variable = € Q2 but that it also
depends on the solution and its gradient. This corresponds to a general formulation of
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the Calderén problem, where the space-dependent conductivity function is replaced by
a more general quasilinear term. Beside these motivations, we recall that the recovery of
a general quasilinear conductivity corresponds to an open problem whose investigation
started in [43,44], see also [38, Section 1.1] for more details.

In this paper we give an affirmative answer to the Calderén problem for quasilinear
conductivities that satisfy (H1), (H2). Precisely, we prove the following theorem as our
first main result.

Theorem 1.1. Let Q C R™, n > 3, be a bounded open set with C*° boundary. Assume
that 1,72 : 2 x C x C™ — C satisfy (H1) and (H2). Suppose that there holds:

Ay (f) = A (f), Y f e Bs(09). (1.3)
Then,
=7 in QxCxC"
Let us proceed to describe the main ideas of the proof of Theorem 1.1. Since v; and

2 satisfy (H2), letting A = (p, 1) = (Ao, A1, .-, An) € C x C™, we may write by Taylor’s
formula,

oo
N0 .
v (@, ) :Z—'*yj (2,0;\,...,A), €, j=12. (1.4)
k=0 & k times

Here q/j(-k)(z, 0) is the kth differential of the holomorphic function A — 7;(x, A) at A =0,
which is a symmetric tensor of rank k, given by

n

y;k)(x,O; A A) = Z (O, -+ On;, 1) (@ 0) Ay o Ay, @ € QL (1.5)

Jiseeje=0

The power series in (1.4) converges in C1®(Q) topology. First, performing the first
order linearization of the Dirichlet problem (1.1) and the Dirichlet—to—Neumann map
(1.2), we obtain inverse boundary problems for the linear conductivity equations with
conductivities 0 < v;(z,0) € C*(€Q), and relying on [45, Theorem 0.1], we conclude
Y1(+,0) = v2(+,0) in Q. Using the mth order linearization of (1.1) and (1.2), m > 2, we
reduce the proof of the equality of tensors of rank m — 1,

WPIL0) ="V (,0) in @

to the completeness property of certain anisotropic products of solutions to the linearized
equation, claimed in Proposition 1.2 below. The idea of higher order linearizations was
introduced in the context of wave equations in [32] and later adapted to elliptic equations
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in [13,35], see also [43,44] for a second order linearization technique. In the statement of
Proposition 1.2, 7(m+1) stands for the set of all distinct permutations of {1,...,m+1}.
Also, given any two vectors v, w € C", the notation v-w stands for the bilinear extension

to C™ of the Euclidean inner product on R™, i.e. v-w = >_"

j=1 vjwj.

Proposition 1.2. Let Q@ C R™, n > 3, be a bounded open set with C*° boundary. Let
0<v €C>®(Q). Let m € N and let T be a continuous function on Q with values in the
space of symmetric tensors of rank m. Suppose that

n

> > /le“'j"‘ (@) (wy, Vu)jy - - - (w,,,, V),

(1ol 1) €T (MAL) J1erdm =0 (1.6)

Vulm+1 - Vtpqodx =0,

for all u; € C=(Q) solving V - (voVu) = 0in Q, 1 =1,...,m + 2. Then T vanishes
identically on Q. Here (u;,Vu)j, j = 0,1,...,n, stands for the jth component of the
vector (uy, O, Uiy - . ., O, up), and in particular, (u;, Vu)o = u;.

In the case when m = 1, the proof of Proposition 1.2 basically follows from a polar-
ization trick and the fact that

span{yoVv; - Vug : v; € C*(Q),V - (70Vv;) = 0,7 = 1,2}

is dense in L2(12), see [27, Proposition 3.1]. In the case when m > 2, we observe that there
are at least four solutions in the integral identity (1.6), and we shall use crucially this
observation. To explain the idea, let m = 2. We pick any point p € 2, and any vectors
¢,(eC™suchthat (- ¢ =C-(=0,Re¢ =Re(, |Re¢| =1, and Im ¢, Im C are linearly
independent, and test (1.6) against two complex geometric optics (CGO) solutions, whose
amplitudes are localized near the two dimensional plane passing through the point p and
spanned by Re ¢, Im ¢, and two more CGO solutions, whose amplitudes are localized near
the two dimensional plane passing through the point p and spanned by Re(, Im Z , see
[15] for similar ideas. Thus, the product of amplitudes of four such solutions is localized
to the ray

{z e R":x =p+1tRe(, t € R},
leading to the fact that the Fourier transform of the function

tes Y T2 (p+tRe ()G,

J1,92=1

along this ray vanishes. Taking ¢ = 0, recalling that p € Q is arbitrary, and making
suitable choices for vectors ( and ¢, we show that the tensor 7' =0 in €.
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Let us remark that the proof of the well-posedness of the Dirichlet problem (1.1)
as well as of holomorphic dependence of the solution uy on the boundary data f €
Bs(02), which is crucial for the higher order linearizations, is established by means of
the implicit function theorem for holomorphic maps between complex Banach spaces, see
[26, Appendix B]. Next, we would like to consider quasilinear conductivities v(z, p, i)
which no longer depend holomorphically on p and p. In doing so, we have proved in
Theorem B.1 the well-posedness of the Dirichlet problem (1.1) relying on the implicit
function theorem for C*° maps between real Banach spaces, and in view of Theorem B.1,
we first assume that the function v : Q x R x R™ — R satisfies the following conditions:

(A2) the map R x R™ > (p,u) — (-, p,p) is C* with values in the Holder space
CH2(Q;R) for some o € (0,1).

Thanks to Theorem B.1, under the assumptions (A1) and (A2), there exist § > 0 and
C > 0 such that given any

f € Bs(OLR) := {f € C**(OLR) : || fllc2e(oar) <6},
the problem (1.1) admits a unique solution u = uy € C**({%; R) satisfying [ull c2.0@r) <
C6. Associated to (1.1), we define the Dirichlet-to-Neumann map A, as in (1.2). Our

second main result is as follows.

Theorem 1.3. Let 2 C R™, n > 3, be a bounded open set with C'°° boundary. Assume
that y1,7v2 : @ x R x R® — R satisfy (A1) and (A2). If

A’Yl(f):A’Y2(f) V f € Bs(0¢4R),
then for all |a] > 0, we have
9% ,m(-0,0) =95 72(-,0,0) in Q.
The proof of Theorem 1.3 follows along the same lines as the proof of Theorem 1.1,
and therefore, will be omitted. We should only remark that all the integral identities

obtained in the proof will be valid for real valued solutions to the linearized conductivity
equation

V- (v(2,0,0)0Vu) =0 in Q. (1.7)
As v(x,0,0) is real valued, given a complex valued solution u to (1.7), we have Reu

and Imu are also solutions to (1.7), and therefore, all the integral identities extend to
complex valued solutions, see [36, Lemma 2.1].
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Finally, let us consider conductivities y(x, p, 1) which are smooth in p but real analytic
in p, and in this case we shall show that we can recover the entire conductivity as in
Theorem 1.1. Specifically, let v : Q x R x R® — R satisfy the following conditions:

(B1) 0 <~(-,-,0) € C=(Q x R),

(B2) the map R x R™ > (p,u) — (-, p, ) is C°° with values in the Holder space
CH(;R) for some a € (0,1). Moreover, for each (z,p) € Q x R, the map R" >
w— y(z,p,u) € R is real analytic.

Let p € R and consider the boundary value problem

{v (@, u, Vu)Vu) =0 in©, (1.8)

u=p+f on 2.

It is established in Theorem B.1 that under the assumptions (B1) and (B2), for each
p € R, there exist §, > 0 and C, > 0 such that when

f € Bs, (0Q,R) := {f € C**(O%R) : ||fllc2e@0r) < Ip},
the problem (1.8) has a unique solution u = wu,; € C?%(Q;R) satisfying |ju —

Ploze@r) < Cpdp. Associated to (1.8), we define the Dirichlet-to-Neumann map as
follows

Ay(p+ f) = (v(@,u, Vu)dyu)|sq, (1.9)
where p € R, f € Bs, (0S5 R), and u = u,, . Our third main result is as follows.

Theorem 1.4. Let Q@ C R™, n > 3, be a bounded open set with C* boundary. Assume
that 1,72 : 2 x R x R® — R satisfy (B1) and (B2). If

Mn(ot F)= Ao+ ) YoeR, ¥fe Bs(0%R) (1.10)
Then,
=7 in QxR xR"™

Remark 1.5. Comparing Theorem 1.4, where there is no analyticity assumption in p
for v;(z, p, ), with Theorem 1.1, we note that the assumption (B1) in Theorem 1.4 is
stronger than the corresponding assumption (H1) in Theorem 1.1, and the requirement
(1.10) in Theorem 1.4 is stronger than the corresponding requirement (1.3) in Theo-
rem 1.1.
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The proof of Theorem 1.4 follows along the same lines as the proofs of Theorem 1.1 and
Theorem 1.3. First, since y; and 7, satisfy (B2), by Taylor’s formula, we may represent
7v;(z, p, ) as the sum of a convergent power series,

o0
1 . .
@) =Y 5 @i ), @ €Q pER, p€neigh(0,R"), (111)
k=0 Y

k times

j = 1,2. Here vj(k)

v;(z, p, ) at p = 0, which is a symmetric tensor of rank k, given by

(z,p,0) is the kth differential of the real analytic function p —

n

k
'yj(- )(x,p,O;u, cey ) = Z Oy, - Oy Vi) (@, 0 O)pagy -y, € pER.
F1segi=1

First, performing the first order linearization of the Dirichlet problem (1.8) and the
Dirichlet—to-Neumann map (1.9), we obtain the inverse boundary problems for the linear
conductivity equations with conductivities 0 < v;(z, p,0) € C*°(Q), and relying on [45,
Theorem 0.1] and the observation discussed after (1.7), we conclude v1(-,+,0) = ¥2(-, -, 0)
in Q@ x R. Using the mth order linearization of (1.8) and (1.9), m > 2, combined with
the observation above, we reduce the proof of the equality of tensors of rank m — 1,

m—1 m—1 .
W0 =29"0(0) i QxR,
to the following density result, similar to Proposition 1.2.

Proposition 1.6. Let 2 C R™, n > 3, be a bounded open set with C°° boundary. Let
0 <7 €C>®(). Let m € N and let T be a continuous function on Q with values in the
space of symmetric tensors of rank m. Suppose that

n

Z Z /le“'jm ($)51j1U11 e O ug, Vg, Vg podx = 0,

(15 lmg1)Em(mA1) G1,eim =15

for all u; € C=(Q) solving V - (voVu) = 0in Q, 1 = 1,...,m + 2. Then, T vanishes
identically on 2.

The proof of Proposition 1.6 is contained in the proof of Proposition 1.2. Therefore,
the proof of Proposition 1.6 and Theorem 1.4 will be omitted.

Before closing the introduction, let us review some of the previous literature on the
Calderén problem. There have been numerous studies on the Calderén problem for linear
conductivities with the work [45] being one of the first major contributions. Here the
authors establish uniqueness in dimensions three and higher for smooth conductivities in
a linear equation and thus give an affirmative answer to the problem stated by Calderén
in [5]. They also introduce the main strategy for treating this problem that has appeared
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in almost all of the works on the subject that is based on the construction of CGO
solutions. Since the original work of [45], the Calderén problem has received a lot of
attention and different extensions of the work of [45] have been considered thus far.
This includes results in dimension two [3,39], results with less regular conductivities
[1,17], results with measurements restricted to some portion of the boundary [4,21,25]
and results in the setting of Riemannian manifolds [12,16,34,28].

In contrast to the above mentioned results, the recovery of nonlinear conductivities has
received less attention. One of the first important contribution devoted to this problem,
can be found in [43] where the author adapts a first order linearization idea near constant
functions to derive a uniqueness result. We mention that the linearization idea was
introduced by [22] for parabolic equations and considered in [23,24] for elliptic equations.
The results of [43] correspond to the recovery of conductivities of the form ~(x,u),
z € Q, u € R, depending on the space variable and the solution of the non-linear
equation. This work has been extended by [44] who considered more general second
order nonlinear terms still depending only on the space variable and the solution of the
non-linear equation.

In [18], the authors considered the recovery of matrix valued quasilinear terms of the
form A(x, Vu) appearing in an elliptic equation of the form V-A(x, Vu) = 0 in dimension
two. In our context, the result of [18] can be seen as the recovery of conductivities of the
form v(z, Vu), z € Q, depending on the space variable and the gradient of the solution of
the nonlinear equation. More recently, the works of [11,38,42] have been devoted to the
recovery of nonlinear conductivities independent of the space variable. The first work
dealing with the recovery of conductivities the form y(z,u,w - Vu), z € Q, w € R,
|w| = 1, can be found in [26]. This work, which is based on the higher order linearization
approach initiated by [32], considers not only the recovery of some class of conductivities
having the dependency with respect to the space variable, the solution and its derivative,
but it is also stated with data restricted to some arbitrary portion of the boundary.

Without being exhaustive, we mention also the works of [6,9,10,7,8] devoted to the
recovery of similar type of nonlinear terms for certain classes of elliptic nonlinear equa-
tions and the works of [13,29-31,35-37,33] devoted to inverse problems for semilinear
elliptic equations.

The paper is organized as follows. In Section 2 we show that Theorem 1.1 follows
from the completeness property of Proposition 1.2 via the method of higher order lin-
earizations. In Section 3 we give a brief review of the classical complex geometric optics
solutions to the linear conductivity equation, achieving good remainder estimates in
C1(Q), and accommodating specific choices of the amplitudes. We also present the proof
of the construction of such solutions in Appendix A for the convenience of the reader. In
Section 4 we use complex geometric optics solutions of Section 3 to establish the com-
pleteness property of Proposition 1.2. Finally, Appendix B contains the well-posedness
of the Dirichlet problem for our conductivity equations in the case of boundary data
close to a constant one and for real valued solutions.
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2. Proof of Theorem 1.1. Reduction to a completeness problem via linearization

The main aim of this section is to show that Theorem 1.1 indeed follows from the
method of higher order linearization together with the completeness property of Propo-
sition 1.2.

Let € = (e1,...,em) € C™, m > 1, and let fi,..., frn € C(09Q). In view of (1.4),
(1.5), the Dirichlet problem (1.1) for conductivity 7; with the boundary data f =1 f1 +
-+ 4+ &m fm can be written as follows,

V- (75(z,0)Vuy)
v (z“’ LS (O, -0, )(,0)

(2.1)
(ug, Vug)j, - - (ug, Vuj)jkvuj> =0 inQ,

Uj=51f1+"'+5mfm on 01},

with j = 1,2. Here and in what follows (uj, Vu;);, stands for the jjth component of
the vector (u;,0p, U, - ,0g,u;), and in particular, (u;, Vu;j)o = u;. Arguing as in [26,
Appendix B], we see that for all |e| sufficiently small, the problem (2.1) has a unique
small solution u(-;&) € C*%(Q2), which is holomorphic in € in a neighborhood of & = 0,

and moreover, A, (€1f1 + - + €mfm), depends holomorphically on e.
We use induction argument on m > 1 to show that the equality

A“/l(glfl +--+ 5mfm) = A'y2(€1f1 +---+ Emfm)v (22)
for all || sufficiently small and all f1,..., f € C°°(9N), implies that
W @0 = %"V (@0), zeq (2:3)
To proceed, using (1.4), (1.5), we write (2.2) as follows

(71(2,0)0,u1)lae — (y2(x,0)0,uz)|on

oo 1 n
+ (Z o Z (D2, « - Ox;, 1) (2, 0)(ur, Vur)j, . (ua, Vul)jka,,ul)
k=1 j

J1se-Jk=0 I]9)
o0 1 n
— (Z y Z (8>\j1 . 8/\J'k ’)/2)(1‘, 0)(UQ, VU,Q)jl . (UQ, VUQ)jka,ﬂLQ) =0.
k=1"j1,...,jx=0 o0
(2.4)

First let m = 1 and consider a first order linearization of (2.1) and (2.4) to show that
71(+,0) = v¥2(+,0) in Q. To that end, differentiating (2.1) and (2.4) with respect to e1 and
evaluating at €; = 0, we deduce that the function v; = J;, uj|s, =0 solves the problem
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V- (y(2,0)Vv;) =0 in Q,
v; = fi on 0},

7 =1,2, and that

(71(z,0)0,v1)[00 = (v2(x,0)9,v2) |00

Thus, the Dirichlet—to-Neumann maps for the linear conductivity equations (2.5) coin-
cide, i.e.

lin _ Alin
Ao = Aoy

where
A}Yi;(',o) chie ('yj(xﬂo)auvj)bﬂ'

Applying [45, Theorem 0.1] we conclude that

7 (-0) = (-,0) = () in €, (2.6)

which gives us the basis of the induction.
Next, let m > 2 and for the induction hypothesis, we assume that for k = 0,1,...,m—
2,

Y (,0) = 4 (2,0), zeq. (2.7)

We shall prove that (2.7) holds for & = m — 1. To this end, we use the method of
higher order linearization as [32,13,35]. First, as above, applying the operator O, |c=o,
l=1,...,m, to (2.1), we get

V-(ovel)=0
v](»l) =fi on 0§,

where U](-l) = 0. uj|c=0. It follows that v() = vgl) = vgl) € C*(Q) by the uniqueness and
elliptic regularity.

Let 8= (B1,---,Bm) €{0,1,...} be a multi-index with |3| = Z;”:l ;. By applying
the differential operator 92 to (2.1), first when |3| = 2, and repeatedly up to |3| = m—1,

and using the induction hypothesis (2.7), we deduce that
Puy|e—o = 0%z, (2.8)

for all multi-indices 8 with |3] < m —1. Next, let us define for each j = 1, 2, the function

m

wj =0 . ujle=o. Applying the operator 97 _ |.—o to (2.1), we see that w; satisfies
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V- (’Yoij) + V- <(mi1)! Z(ll,...,lm)ETr(m) Z;‘Ll,.“,jm,lzo
(On,, - 2O, i) (@, 0)(v(h), Vv(ll))jl oo (w1, Vv(lmfl))jm_l

Vv(l"")> =H,, in Q,

is independent of j = 1,2 in view of (2.7) and (2.8).
Next, letting w = w; —ws and subtracting the two equations given by (2.9) for j = 1, 2,

we deduce that

V. (’YOVUJ) +V- (ﬁ Z(ll,.“,lm)ew(m) Z;‘LI,...,jm,lzo
((8Ah e 8,\jm_l")/1)(l’, 0) - (8,\],1 cee (9,\jm_172)(1‘, 0)) (210)
(v, Vo)), ...<v<lm—1>,w<lm—1>>jm1w<lm>) —0 mo,
w=20 on 0f).

Applying the operator 97 _ |.—o to (2.4), and using (2.6), (2.7), and (2.8), we get

1 n
VO(ayUH — 8yw2)89+<m Z ' Z
(l1,..lm)Em(M) J1s- 3 Jm—1=0
((a/\j1 . .8Ajm7171)(x, 0) — ((9)\j1 PN 3)\jm71’yg)(l‘, 0))
(v(ll)’ Vv(ll))jl . (v(lmfl)’ vv(lml))jmlayv(lm)> =0.
o0
(2.11)

Let v(™+1) € C>(Q) be such that V - (yoVo(™*Y) = 0 in Q. Multiplying (2.10) by
v+ Cintegrating by parts, and using (2.11), we get

3 3 / (s, 05, 7)(@,0) = (Bs, .05, 7)(x,0))
(ll,.“,lm)eﬂ'(m) J1se-3Jm—1=0 Q

(U(ll)’ Vv(ll))jl B .(,U(l'm—l)7 vv(lm—l)) ) g y(mAl) gy — 0,

Im—1
(2.12)
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which is valid for all v € C°°(Q) solving V - (yvoVo) =0in Q, 1 =1,...,m + 1. By
applying Proposition 1.2 with
TIrIm=1(g) := (O

.8,\jm7171)(x, 0) — ((‘%\j1 .. .3>\jm7172)(x, 0),

g1t

we conclude that (2.3) holds. This completes the proof of Theorem 1.1.
3. Complex geometric optics solutions to the linear conductivity equation

Let © C R™, n > 3, be a bounded open set with C'>° boundary, and let 0 < 7y €

C*(9). Consider the linear conductivity equation
V- (%Vu)=0 in Q. (3.1)

The underlying idea in proving Proposition 1.2 is to construct a rich enough family of
special solutions to (3.1) so that the integral identity (1.6), tested against these solu-
tions, forces the tensor T in the statement of the proposition to be zero. For the special
solutions, we use the classical complex geometric optics (CGO) solutions, with some
special choices of amplitudes, enjoying some concentration properties near two dimen-
sional planes, in the spirit of [15]. Let us remark that CGO solutions were introduced
in [5] for the case 79 = 1 and developed further for arbitrary positive 7o in [45], see
[12] for generalization of CGO solutions in the context of certain classes of Riemannian
manifolds.

As we have to work with products of more than four solutions and their first order
derivatives, we need to use CGO solutions with good estimates for the remainder terms
in C1(Q). The construction of such solutions to the conductivity equation (3.1) is known,
and is stated in the following lemma. We give a very simple proof of it in Appendix A
for the convenience of the reader and to be able to accommodate our choice of the
amplitudes, see also [2], [13, Proposition 2], [35], [31].

Lemma 3.1. Let Q C R™, n > 3, be a bounded open set with C*° boundary and suppose
that 0 < 9 € C*(Q). Let Q C R™ be a bounded open set with C*> boundary such that

Q cC Q and let us extend Yo to Q\Q so that the extension still denoted by vo € COO(SNI).
Let 0 # ¢ € C™ be such that (- (=0, and a € C°°(§~2) satisfy the transport equation

¢-Va=0 in Q. (3.2)

Then for A > 0 large enough, the conductivity equation (3.1) has solutions Uy € C>(€2)
of the form

Unc(z) = %52 (a(x) +rac(@)) (3.3)

where
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Iracllor@ = OA™Y), A= oo (3.4)

Let ¢ € C™ be such that (- ¢ = 0 and |Re ¢| = |Im (| = 1. When proving Proposi-
tion 1.2, we shall work with CGO solutions (3.3) with the amplitudes a which depend
on a given point p € 2 and which concentrate near the two dimensional plane, pass-
ing through p and spanned by Re ¢ and Im¢, in the spirit of [15]. To construct such
amplitudes, let us fix 0 € R, § € (0,1) and let {w; }?;12 be an orthonormal set satisfying

wj-Re(=w; - Im¢{=0, forj=1,2,...,n—2.

Let x € C§°(R;[0,1]) be chosen so that x(t) =1 for || < 3 and x(t) = 0 for [¢t| > 1. We
define a via

a(z) = e'¢ @) ﬁx(w—j ' (z p)).

j=1

We have that a € C*°(R"™) and ¢ - Va =0 in R™.

Let us finally remark that supp (a) is contained in a d-neighborhood of the two plane,
passing through the point p, spanned by the vectors Re( and Im (. Indeed, letting
II; = span{Re(,Im ¢} be the plane, passing through the origin, spanned by Re( and
Im ¢, and letting « € supp (a), we get

dist(z — p, 1) = | Y (w; - (& = p))* < v/, (3.5)

showing the claim.
4. Proof of Proposition 1.2
4.1. Proof of Proposition 1.2 in the case m =1

In this case the integral identity (1.6) has the form

0= > Z/Tﬂ )(ur,, Vg, ) Vg, - Vugda

(ll,lz)Eﬂ'(Q 7=0 Q

= Z /TO x)ug, Vg, - Vusdr + Z Z/TJ )0z, uy, Vuy, - Vusdz,

(I1,02)Em(2) (11,02)€m(2) =1 {
(4.1)
which holds for all u; € C*°(2), | = 1,2, 3, solving

V-(3%Vu)=0 in Q. (4.2)
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First letting ug = 1 into (4.1), we get

/ T°(x)Vuy - Vuzdz = 0, (4.3)
Q

for all uy,uz € C>°(Q2) solving (4.2). Using the fact that
span{yoVu; - Vug : v; € C°(Q),V - (v0Vv;) = 0,5 = 1,2} (4.4)
is dense in L?(Q), see [27, Proposition 3.1], we obtain from (4.3) that
=0 in Q. (4.5)

Hence, in view of (4.5), the identity (4.1) becomes

Z Z/ )0z, ur, Vuy, - Vugdr = 0, (4.6)

(11,12)671'(2 j=1 Q

for all u; € C>®(Q), 1 = 1,2,3, solving (4.2). Setting u; = uy in (4.6), we deduce that

/ZTjaxju1Vu1 - Vug dz = 0. (4.7)

o J=t

Let v,w € C*(£) be solutions to (4.2), and let us choose u; = v + w and uz = v. It
follows from (4.7) that

:/ZTjamijv-Vvdx—&—/ZTjaxijw~Vvdm

j=1 j=1
¢ ¢ (4.8)

—|—/ZTjaxjwVv-Vvdz—F/ZTj@xjwVw-Vvdx.
qQ J=1 Q

Jj=1

The first, second, and fourth terms in (4.8) must vanish by (4.7), and consequently, we
get

/Z 170, wVv - Vudr = 0, (4.9)
j=1
for all v,w € C°() solving (4.2). Finally, by polarization of (4.9), we obtain that

ZTjaxjwVUl -Vugdr =0, (4.10)
Q J=1
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for all vy, vy, w € C®(Q) solving (4.2). Using the fact that (4.4) is dense in L2(), see
[27, Proposition 3.1], we conclude from (4.10) that

Y TI0,,w=0 in Q (4.11)

Jj=1

for all w € C>(Q) solving (4.2).

We want to use CGO solutions to show that (4.11) implies that (T?,...,T") is iden-
tically zero. To that end, letting ¢ € C™ be such that (- ¢ =0 and |Re(| = |Im(| = 1,
by Lemma 3.1 for all A > 0 large enough, the conductivity equation (4.2) has solutions
of the form

U)\C = eAC'w’yo_l/z(l + 7“)() e C™ (ﬁ), (4.12)
with [|racllor ) = O(A™1), as A — oco. Substituting Uy given by (4.12) into (4.11), and
multiplying by A~!, we see that

Y T¢G=0 in Q (4.13)
j=1

Let £ € R™ be an arbitrary unit vector and choose n € R™ such that |n| =1 and £-n = 0.
Thus, the vector

¢=&+1n
satisfies ¢ - ¢ = (- ¢ = 0. Hence, in view of (4.13), we conclude that
2) TG = TV +¢)=0 in Q (4.14)
j=1 j=1

It follows from (4.5), (4.14) that T = (T°,T',...,T™) = 0 in Q. This completes the
proof of Proposition 1.2 in the case m = 1.

4.2. Proof of Proposition 1.2 in the case m = 2
When m = 2, the integral identity (1.6) has the form
0= > > /Tjk(x)(ulnVuzl)j(ulwvula)kv% - Vuydz
(l1,l2,13)€m(3) 4,k=0 ()

= Z T (2)up, ug, Vg, - Vugdr (4.15)
(l1,l2,13)€m(3)
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+2 Z Z/TOj(x)ullawj up, Vg, - Vugdz

(I1,l2,l3)€m(3) 4=1

* Z Z Tk (.’L')az] Uy Oy w1, Vg, - Vugdr,
(I1,l2,l3)€m(3) 4,k=1 ¢

which holds for all u; € C*®(Q), 1 =1,...,4, solving (4.2).
First letting us = ug = 1 in (4.15), we get

/ T%(2)Vuy - Vugdr = 0, (4.16)
Q

for all uy,us € C(Q) solving (4.2). Note that the identity (4.16) is the same as (4.3),
and arguing as above, we conclude that

T =0 in Q. (4.17)

Next using (4.17) and letting ug = 1 in (4.15), we obtain that

Z Z T% ()0, w, Vuy, - Vugdz = 0, (4.18)

(1 l2)en(2) g J=1

for all uy,uz,us € C®(Q) solving (4.2). Note that the identity (4.18) is the same as
(4.6), and therefore, arguing as above, we get

(T°,...,T"")=0 in Q. (4.19)

In view of (4.17) and (4.19), the identity (4.15) becomes

Z Z /Tjk(x)[“)mjullBnguqul3 - Vugdr =0, (4.20)

(I1,l2,l3)em(3) 4,k=1 ¢

for all u; € C>®(Q), 1 = 1,...,4 solving (4.2). Here we do not have a straightforward
analogue of the identity (4.10) that we obtained via polarization in the previous section.
On the other hand, identity (4.20) contains four solutions to the linear conductivity
equation and we can use a different approach by using CGO solutions corresponding to
different vectors to obtain pointwise information about the tensor T. We start with a
definition.

Definition 4.1 (Admissible pairs of vectors). We define A as the set of all pairs of vectors

(¢,¢) € C™ x C™ that satisfy the following properties:
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(ii) Re¢ = Reg,
(iii) Im¢ ¢ {¢tIm¢ : t € R}.

To introduce suitable CGO solutions, we let p € Q ¢, ¢) e A |Re (| = |Re(| = 1,

o €R, ¢ € (0,1), and define orthonormal sets {w;}_; 2 and {w; 17, 2 that satisfy
wj-Re(=w; - Im(=0, forj=12,...,n—2, (4.21)
and
@;-ReC=@;-Im{ =0, forj=1,2,...,n—2. (4.22)

Let x € C5°(R; [0, 1]) be such that x(t) =1 for [¢| < 1 and x(t) = 0 for || > 1. We set

) = e ﬁx(“—j =), (.23
and
a(z) = ¢S @=p) :if[j X(W) (4.24)

We have a,a € C*°(R"), and
(-Va=(-Va=0 in R"

By Lemma 3.1, for all A > 0 large enough, the conductivity equation (4.2) has solutions

U/\C7U—>\C7U>\(7U S Coo( ) of the form

Usac(z) = e (2) 77 (a(2) + raxe(z)),

(4.25)
Usyele) = e55050(2) 7 (al@) +7p,6(@))
where
Ireacller@ = OO, Irpydller@ = O™, (4.26)
as A — oo. Note that since (¢,¢) € A and [Re¢| = |Re(| = 1, we have
¢-C=1-Im¢ Im¢ > 0. (4.27)

Let
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Uy = U)\<, Uy = U*)\C’ us = U)\E’ Uy = U )\E' (428)

Substituting (4.28), (4.25), into the integral identity (4.20), multiplying by A=%, A\ — oo,
and using (4.26), (4.27), we get
~ n ) ~
€0 [ 30 TG Gag e o

& dk=1

and therefore,

Q/ ;31 TI%¢; Gy 2 Fda = 0. (4.29)
Here
F(2) = (a(e)i(@))? = 27+ H (2rbmny (Bteny,

5 €(0,1) and o € R.
We claim that in view of the fact that (¢, () € A, we have supp (F') is contained in a
d—neighborhood of the ray
{reR":z=p+tRe(, t € R}. (4.30)
Indeed, letting « be in supp (F) and letting

IT; = span{Re(,Im(}, II; = span{ReC,ImZ}7

be the two dimensional planes, passing through the origin, spanned by Re(, Im (, and
Re(, Im (, respectively, we have in view of (3.5),

dist(z — p,I¢) < v/nd, dist(z — p, IIz) < Vné. (4.31)
Using (4.31) and
dist(z — p, 1) = [z —p— ((z —p) - ReQJRe ( — ((z — p) - Im ()Im (], (4.32)
and the corresponding expression for dist(z — p, IT~ ) we get
(@ = p) - I )Im ¢ = ((z = p) - Im )Im (] < 2V/né. (4.33)

Since the vectors Im ¢ and Imgare linearly independent, we see from (4.33) that
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[(z —p) - ImQ)Im¢| < O3, |((z —p) - Im)Im (]| < C,

where C' > 0 depends on the angle between Im ¢ and Im E , and n. This together with
(4.31), (4.32), gives that

|z —p— ((z — p) - ReQ)Re (| < (O + v/n)s,

showing the claim.
Multiplying (4.29) by 6=(~1) and taking the limit as § — 0, we deduce that

3 702 (p + tRe Q) T (p + tRe ) G dt = 0,
R dk=1

where we have extended T and -y to all of R™ by setting them to be zero outside (.
Since the latter expression holds for all 0 € R we can use inverse Fourier transform in
o to obtain that the integrand above should vanish for all ¢ and in particular at ¢ = 0.
Finally, since p € Q is arbitrary, we conclude that

n
> TG =0 in Q (4.34)
k=1
for all (¢,¢) € A, [Re¢] = |Re(| = 1.
Now let £ € R™ be arbitrary such that |{] = 1. As n > 3, there are n, u € R™ such
that

Il =1lul=1, & n=& pn=n-p=0. (4.35)
Since (€ +in, & £iu) € A, it follows from (4.34) that
T(E+in,E+ip)=0 in €,

where T is the rank two tensor with coefficients Ti% j k = 1,...,n. Therefore, by
linearity,

TE+in,§) =0 in Q.
Changing n to —n, by linearity, we get
T(,€) =0 in Q. (4.36)

Since & € R™ is arbitrary vector, |{| = 1, by linearity and polarization of (4.36), we
conclude that



20 C.I. Carstea et al. / Advances in Mathematics 391 (2021) 107956

T(€8§=0 in Q &EeR™ (4.37)

Hence, it follows from (4.17), (4.19), and (4.37) that T = 0 in Q. This completes the
proof of Proposition 1.2 in the case m = 2.

4.8. Proof of Proposition 1.2 in the case m > 3

Here we shall proceed by induction on m. To that end, we assume that Proposition 1.2
holds for m — 1, and we shall prove that it holds for m.

First letting w41 = Uy, = --- = us = 1 in (1.6), we see that T°+0 = 0. Using that
790 = 0 and letting wm41 = Um = -+~ = uz = 1 in (1.6), we show that the tensor of
rank one with coefficients 7799, j = 1,... n, is equal to zero. Proceeding in the same

way and finally letting u,,+1 = 1, by the induction hypothesis, we get that the tensor of
rank m — 1, whose coefficients are T71 - Jm-10_ 4, 45 . =1,...,n, is equal to zero.
In view of all of these, the integral identity (1.6) becomes

n

Z Z /le'“jm ()0, wiy - - Oy, ur,, Vur, - Vg podz =0,
(U1, bmyr)€m(mA41) 1, dm=1 ¢
(4.38)
foralluy; € C=(Q),1 =1,...,m+2, solving (4.2). To show that the identity (4.38) implies
that the tensor of rank m with coefficients T91-Jm 4y, ... j,, =1,...,n, vanishes in Q,
we shall first prove the following result.

Lemma 4.2. Assume that the integral identity (4.38) holds for all w; € C®(Q), | =
1,...,m+2, solving (4.2). Then

n

Z le...jmgjlcjz._.7@%1@.7”:0 in Q, (4.39)

J1sedm=1
for all (¢,C) € A, |Re¢| = |Re(| = 1, where A is as in Definition /.1.

Proof. To prove (4.39) we shall use suitable CGO solutions to (4.2) defined as in the
proof of Proposition 1.2 in the case m = 2. To that end, we let p € Q, ((, E)
Re¢| = |[Rel|=1,0 €R,d € (0,1), and let {wj};-’; and {w;}72] 2 be orthonormal sets
that satisfy (4.21) and (4.22), respectively. Taking A > 0 sufficiently large, we set

U =Ug = ... =Up-1=Ux;, Un= Uf(mfl)/\Q Um+1 = U}fv Um+2 = U—AZ’
(4.40)
where Uxe, Uyz, U_\; € C% (Q) are given by (4.25) and U_(;,_1)xc € C*(Q) is given by

e~ (M=DACz 2 (a(m) + r,A(m,l)C(az)) , (4.41)

U_xm-1)¢c(w) = Yo ()
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where a € C*°(R") is defined by (4.23), and

[ xm-1¢ller@) = O™, (4.42)

as A — 0o. The existence of such CGO solutions follows from Lemma 3.1.
Substituting (4.40), (4.25), (4.41), into the integral identity (4.38), multiplying by
A=(m+2) "\ 5 00, and using (4.26), (4.27), (4.42), we get

~ n o ~ _(m+2)
(€0 / Z T2 9m G Gy ooy Ginea G Yo a"a*dr = 0,

Q JisnJm=1

and therefore,

S TG GG Gy R = 0. (4.43)
Q J1seesdm=1
Here
F(z) = a™(z)a*(z) = i (m¢+20)-(z—p) nl:f (wﬂ' (z _p>>m (‘“NJJ‘ (= —p)>2
11 5 (=)

9 €(0,1) and 0 € R. As ((,() € A, we have supp (F') is contained in a d—neighborhood
of the ray (4.30), cf. the discussion after (4.30).
Multiplying (4.43) by 6~(®~1) and taking the limit as § — 0, we deduce that

n (m+2)

Z elm+2aty 2 () 4 tRe ()
R j17---7jnL:1 (4.44)

le'”j"" (p + tRe C)le <j2 ey ij,—lz-jm dt =0,

where we have extended 771-Jm and =, to all of R" by setting them to be zero outside
Q. Now (4.39) follows from (4.44), cf. the discussion before (4.34). O

Remark 4.3. When m > 3, one cannot conclude from (4.39) directly that 77iJm = 0
for all j1,...,4m = 1,...,n. Indeed, taking T71Jm = §; ;. for all js,...,5m = 1,...,n,
we see that (4.39) holds, as - ¢ = 0.

Hence, to show that 771-+Jm = 0 for all ji,...,jm = 1,...,n, we shall rely on the two
lemmas below.

Lemma 4.4. Assume that the integral identity (4.38) holds for all w; € C®(Q), | =
1,...,m+2, solving (4.2). Then we have
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n
Z lemijjl gjz a'ﬂjgu T amjmu =0 in &, (4.45)

Jis--dm=1

for all (¢,C) € A, |Re¢| = |Re(| =1, and all u € C®(Q) solving (4.2).

Proof. We shall prove this lemma by induction. To that end, letting ({,¢) € A, |Re(| =
|Re(| = 1, and letting u € C*°(Q) satisfy (4.2), we assume that the following holds

S TG GG Oy e 0y u=0 in (4.46)

J1sesjm=1

fors=m—1,...,k+ 1, with some 1 < k < m — 2. Note that (4.46) with s =m — 1
corresponds to (4.39) and is the basis for the induction. We shall prove that (4.46) holds
for s = k. In doing so we test the integral identity (4.38) with suitable choice of CGO
solutions to the linear conductivity equation (4.2) and use (4.46). Specifically, taking
A > 0 sufficiently large, we set

Uy =U2 = ... =UL = U)@, uk+1 = U_)\kg, Uk+2 = UAE, um+2 = U_)\E, (447)
while
Ugt3 =+ = Umi1 = U. (4.48)

Here Uxe, U, 7, U_,¢ € C*>(Q) are given by (4.25) and U_ ¢ € C°°(Q) is given by (4.41)
with (m — 1) being replaced by k.

Substituting (4.47), (4.48), (4.25), (4.41), into the integral identity (4.38), multiplying
by A~ (*+3) etting A — oo, and using (4.26), (4.27), (4.42), we get

n (k+3)

Cm (C- E) / Z Yo ® Fle"'ijjl e Cjk@Hl@zMHu oo Oy, udx
Q Jisenjm=1

I

n (k+3)

+ dm,lc/ Z '7(; 2 FlemijJ& s Cjk+1<jk+26

u...8$jmuVu~§~“dm:O

Tik+3
Q Jienim=1

11
(4.49)

with some non-zero constants ¢, and d,,  that only depend on m and k. Here, the
function F is given by

F(z) = a**(2)d%(x)

_io((k+1)¢+20)-(z—p) = wj - (z —p) mH wj - (z —p) ?
=e H X 7{; X S ’

j=1
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5 € (0,1) and o € R. It follows from (4.46) with s = k+ 1 that IT in (4.49) vanishes and
we conclude that I must also vanish, i.e.

n (k+3)

Z 707 2 Fle"'ijjl . Cjkéjkﬂazjk“u . (9wjmudx =0. (450)
Q J1seesjm=1

Multiplying (4.50) by 6~("~1) and taking the limit as § — 0, we observe that

n (h+3)
Y. N (p o tRe )T (p + tRe()
R Jiesdm=1 (4.51)

C Cjk C]k+1 w;k+2 (p +tRe C) :er (p +tRe C) dt =

where we have extended T71~Jm and ~y, to all of R™ by setting them to be zero outside
Q. As above, cf. the discussion before (4.34), we conclude from (4.51) that

n

> le...jmgjl...gjk@k“a%wu...a%u:o in Q. (4.52)

Jiseeim=1

This shows that (4.46) holds for s = k. The proof of Lemma 4.4 is completed by setting
s=1in (4.46). O

Lemma 4.5. Assume that (4.45) holds for all (¢,() € A, Re (| = Re(| = 1, and all
u e C°°(Q) solving (4.2). Then the tensor T = 0 in Q, where T is the tensor of rank m
with coefficients TP Im Gy, .. jm =1,...,n

Proof. First, arguing as after (4.34), we conclude from (4.45) that

Z T]1]2]3 Jmé— 1)&- 2)8173 L. ai’fjmu = 0 in Q, (453)

15325735 Jm=1
for all ¢, £ ¢ R™. Next via polarization of (4.53), see [46], we obtain that

n

Z Tj1j2j3...jmf 1)5 2)89J _awjm U =0 in Q, (4.54)

iz U
J1,325935- 3 Jm=1

for all ug, ..., u, € C®(Q) solving (4.2).
Letting )\ > 0 sufficiently large, (/) € C™ be such that ¢U) - ¢W) = 0, |[Re¢W)| =
Im¢W)|=1,5=3,...,m, we set

ACD o — )
uj = Uy = e A6 1/2(1+7"A<<]))6C Q), j=3,...,m, (4.55)
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with ||TA<(]') ||Cl(ﬁ) = O(A_l), as A — oo.
Substituting (4.55) into (4.54), and multiplying by A~("~2) we see that

So pidinedngDe@e® M —0 i Q. (4.56)
J1,J2,J35-:Jm=1
Let £ € R™ be arbitrary such that || = 1, and choose n € R™ such that || = 1 and
€-n=0. Letting ¢ = & + 4, using that ¢ -¢ = ¢ - = 0 and linearity, we get from (4.56)
that

T(EW,6®,2¢,...,20) = T(EW.£2,¢+ (... (+O =0 in Q. (4.57)
By linearity and polarization of (4.57), we conclude that T =0in Q. O

Lemma 4.5 completes the proof of Proposition 1.2 in the case m > 3.
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Appendix A. Proof of Lemma 3.1

While Lemma 3.1 is known, see [2], [13, Proposition 2], [35], [31], we shall present here
a very simple proof of it for the convenience of the reader. In doing so we shall use the
approach of [19] which is based on Fourier series, see also [41], extending it to get good
remainder estimates in an arbitrary Sobolev space H™ (). First we have, see [45],

— - A [9)
i 1/20L70070 1/2:—A+q, q= Yo e C™(Q), (A.1)

where the conductivity operator L., is defined as follows L., := V - (V). We would
like to construct CGO solutions to the Schréodinger equation

(—A+q@u=0 in Q, (A.2)

of the form
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urc(z) = X% (a(x) + rag(x)), (A.3)

where A > 0 is a large parameter, 0 # ( € C™ is independent of A such that (- (=0, a
is a smooth amplitude, and r is the remainder term. Then it follows from (A.1) that

Usc(w) = X795 (a(@) + ra¢ (@)
are CGO solutions to (3.1). Substituting (A.3) into (A.2), we get
e N (A + @) (a(z) +rac(z)) =0 in Q,
and therefore, setting r = r)¢, we have
(A =2X-V4+q@r=—(-A—-2X-V+¢ga in Q. (A4)

To solve (A.4) we assume for simplicity that Q C @ := [—m, 7|™. Note that everything
works without this extra assumption if we replace €2 by its image under the map R™ >
z — kx € R” for some sufficiently small fixed x > 0. First we shall solve

(A =2)X-V)r=f in Q, (A.5)
where f € L?(Q). Writing ¢ = w; + iws, wi,ws € R™, we see that w; - we = 0 and

|w1| = |we| =: @. We may assume without loss of generality that w; = ce; and we = aes,
where e; and ey are the first two vectors in the standard basis of R™. Thus, (A.5) becomes

(—A =2 ad,, — 2idady,)r=f in Q. (A.6)

Letting vy(z) = e/(t2¢0)% | € 7™ and noting that (v;) forms an orthonormal basis in
L2(Q,dxz/(2m)™), see [41], we have

F=> fw,

lezZn

where fi = (f,v)r2) = (2m)™" fQ fodz, ||f||%2(Q) = >",ezn | i Looking for a solu-
tion r of (A.6) in the form r =37, ;. rv;, we are led to the following equation,

1 \? 1
mri=fi, p= (l + 261) - 22/\Ol<11 + 2) +2X\aly, 1€ Z™.

Using that [Imp;| > A and letting r; := fi/pi, we get |ry| < |fi]/(Aa). Thus, [|r||p2(g) <

s lfllz2 @)
Now if f € H™(Q), m > 0, where H™(Q) is the Sobolev space, equipped with the

norm
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2\ m
) |fil?,
we see that ||r||gm () < = || fllam(Q)-
Now letting f € H™() and extending it continuously to H™(Q), we have constructed
the solution r € H™ () to the equation

1
1 gy = 10— A" fBagy = S (1 n ’z b
leZn

(A =2X-V)r=f in Q (A7)

satisfying

Il < Sl o (A8)
We denote by G ¢ the solution operator
Gxaxc : H™(Q) - H™(Q), [,
where r is the solution to (A.7) that we have just constructed. It follows from (A.8) that
IGxcllam@)—smm@ = OAT), A — oo
To solve (A.4), first let a € C*°(2) be any solution of the transport equation

(-Va=0 in €. (A.9)

Then it follows from (A.4) and (A.9) that we would like to find r such that
(A =2X-V+q@Qr=—(—-A+¢qa in Q. (A.10)

Note that (—A +¢)a € H™(2). Looking for a solution r of (A.10) in the form r = Gx¢T,
we get that 7 should solve the equation

(I+qGr)F=—(—A+q)a in Q. (A.11)

As ¢ € C>(Q), we have laGxcll am @)= Hm @) = O(A71), as A — 0o. Then by Neumann
series, for A > 0 sufficiently large, we see that (A.11) has a solution 7 € H™ () such that
7]l z7m (@) = ODII(—A + g)al| gm (). Therefore, [|r||gm) = ON(=A +q)al| zm (q),
as A — 00.

Performing the above construction on a bounded open set Q with C*® boundary such
that Q cC €, using elliptic regularity and the Sobolev embedding H™(Q) ¢ C*(9),
m >n/2+ 1, we complete the proof of Lemma 3.1.
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Appendix B. Well-posedness of the Dirichlet problem for a quasilinear conductivity
equation

The purpose of this appendix is to show the well-posedness of the Dirichlet problem
for a quasilinear conductivity equation without analyticity assumptions. The argument
is standard and is given here for completeness and convenience of the reader, see [35,
Proposition 2.1] for similar arguments in the case of semilinear elliptic equations.

Let & C R™, n > 2, be a bounded open set with C* boundary. Let k¥ € N U {0}
and 0 < o < 1 and let C*%(Q) be the standard Hélder space on (2, see [20]. We write
C(Q) = C"(Q).

Let p € R and consider the Dirichlet problem for the following isotropic quasilinear
conductivity equation,

{V'(v(x,u,VU)W)—O in - Q, (B.1)

u=p+f on Of.
We assume that the function 7 : Q x R x R™ — R satisfies the following conditions:

(A1) 0 < (- p,0) € C>(Q), for p € R,
(A2) the map R x R™ > (p,u) — (-, p,p) is C* with values in the Holder space
Ch(;R) for some o € (0,1).

We have the following result.
Theorem B.1. Let p € R be fized. Then under the above assumptions, there exist 6 > 0,

C > 0 such that for any f € Bs(04R) := {f € C**(O%R) : | fllczeoar) < 0}, the
problem (B.1) has a solution u = uy ¢ € C?*(Q;R) which satisfies

lu=pllcza@r) < Cllfllcze@or)-

The solution u is unique within the class {u € C%*(Q;R) : [ju — pllcze@ry < C6} and
the map

Bs(09;R) — C**(Q;R), f > u,
is C*°. Furthermore, the map
Bs(0Q;R) — CH*(Q;R),  f + Oyulan (B.2)
is also C°.

Proof. Following [35, Proposition 2.1], we shall make use of the implicit function theorem
for C*° maps between real Banach spaces, see [40, Theorem 10.6]. In doing so, we let
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By = C**(0;R), By = C**(Q;R), Bz =CYQR) x C**(0Q;R).
Consider the map,
F:B; X By — Bz, F(f,u)=(V-(y(z,u, Vu)Vu),uloa — p — f). (B.3)

First we claim that F' has the mapping property (B.3). Indeed, as C»*(€;R) is an
algebra under pointwise multiplication, see [20, Theorem A.7], we only need to see
that v(z,u, Vu) € CH¥(Q;R). This follows from the fact that if v € C*(R) and
w € CL%(Q;R) then the composition v o w € CH¥(Q;R), see [20, Theorem A.8].

Let us check that the map F' in (B.3) is C°°. To that end, it suffices to check that the
map

C%*(LR) 3 u — y(x,u, Vu) € CH*(Q;R) (B.4)
is C*°. In doing so, letting A = (p, u) € R x R™, we Taylor expand y(z,-) at A,
a7 T, A
’y(.’L‘,)\o + )\) = Z ()"Y)ﬂ%o)/\ﬁ + Ry x, (B.5)
IBI<N '
where the remainder Ry, is given by

1

Rya=(N+1) Y ﬁ/(l—t)N(afy)(x,)\o+t)\)dt, (B.6)
IBl=N+1 """ g

N > 0. Therefore, to prove that the map (B.4) is C*°, letting \g = (u(x), Vu(z)),
u € C?*(Q;R), be fixed, and letting A = (h(z), Vh(z)), h € C*>*(;R), in (B.5) and
(B.6), we have to check that the map

CP (G R) 3 u s (997) (2, u, Vu) € CH(Q;R) (B.7)
is continuous for all || > 0, and

R(u,Vu),(h,Vh) = O((h‘7 vh)N) in CLQ(Q;R)’ (BS)
as h — 0 in C1*(Q;R). The continuity of the map (B.7) follows from the fact that if
v € C*°(R) then the map C1*(Q;R) > w — vow € CH*(;R) is continuous, see [20,
Theorem A.8]. Now for |[(h, VA)|[c1.o@r) < 1, we have H(@f'y)(:c,u(a:) +th(z), Vu(z) +

tVh(@))lcre@r) < C(u), uniformly in ¢ € (0,1), where C'(u) > 0 is a constant which
depends on u. Therefore,

IR vw. 00wl @r) < Ol VIR G o .
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showing (B.8).
Note that F'(0, p) = 0 and the partial differential 9,,F (0, p) : By — Bs is given by

O F (0, p)v = (V- (y(z, p,0)Vv),v|50)-

Writing the equation V - (y(z, p,0)Vv) = 0 as Av+ V(logvy(z, p,0)) - Vo = 0, and using
(A1), we see from [14, Theorem 6.15] that the map 0,F(0,p) : By — Bs is a linear
isomorphism.

An application of the implicit function theorem, see [40, Theorem 10.6 and Remark
10.5], shows that there exists § > 0 and a unique C*° map S : Bs(9;R) — C%(; R)
such that S(0) = p and F(f,S(f)) = 0 for all f € Bs(9Q;R). Letting u = S(f) and
using that S is Lipschitz continuous and S(0) = p, we have

u = pllc2.a@r) < Cllfllczeoor).-

Since the operation of taking the normal derivative and restricting it to the boundary is
a linear map C?(Q; R) — C(9%; R), (B.2) follows. O
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