This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2021.3094874, IEEE

Transactions on Radiation and Plasma Medical Sciences

Reinforcement Learning with Safe Exploration for
Adaptive Plasma Cancer Treatment
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Abstract—Cold Atmospheric Plasma (CAP) jet is an ionized
gas with a rich combination of reactive oxygen/nitrogen species,
charged particles, and photons. By both in vitro and in vivo exper-
iments, it has been demonstrated that CAP can be successfully
utilized in cancer treatments. However, the therapeutic effects
of CAP depend on various factors such as plasma discharge
voltage, gas composition, treatment duration, and type of cancer
cells. This paper presents an adaptive plasma system, where
the CAP treatment conditions are adjusted online depending on
the actual cancer cell response. In particular, we utilize safe Q-
learning to schedule CAP cancer treatment autonomously while
prohibiting excessive treatments caused by large uncertainties.
As it is capable of learning the dynamic characteristics of the
particular cancer cell under treatments in situ, we can treat
cancer successfully without the complete prior knowledge of
cancer characteristics, where the uncertainties of the learned
dynamics are carefully accounted. The efficacy of the proposed
algorithm is illustrated by numerical examples with an empirical
cancer dynamic model constructed from in vitfro experiments.

I. INTRODUCTION

Cold atmospheric plasma (CAP) jet is generated by ion-
ization that is initialized when noble gas, such as helium and
argon, pass through an electric field. In particular, CAP or non-
thermal plasma jet refers to the case when the ion temperature
is close to the room temperature [1]. There has been increasing
interests in CAP specifically for potential application in cancer
treatments. It is studied that the rich environments of reactive
species, charged particles, photons, and UV, provided by CAP
jet trigger cell death pathway selectively for cancer cells while
leaving healthy cells unharmed. This has been illustrated by
both in vitro and in vivo under various conditions [2]. The
CAP jet is capable of eliminating cancer cells in vitro and
reducing the size of tumor in vivo [3], [4].

However, there are several challenges remaining to achieve
safe and reliable CAP cancer treatments. First, the therapeutic
effectiveness of CAP treatment depends on various param-
eters affecting plasma generation, such as plasma discharge
voltage, ionized gas composition, and gas flow rate. They are
further affected by the environment, including the ambient
temperature and composition of atmosphere. Next, cancer
cells may exhibit different responses depending on their type
or status even when exposed to the same CAP treatments.
Finally, the underlying biochemical mechanism behind the
interaction between living cells and CAP is not completely
understood yet. As such, there is no clear guideline regarding
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how to schedule CAP cancer treatments. It is impractical and
inefficient to develop an optimal treatment plan via exhaustive
trial-and-errors.

To address these, the concept of adaptive plasma has been
proposed in [5]. One of the desirable feature is that the
composition and the intensity of reactive species generated
by CAP can be changed promptly. Therefore, it is possible to
control the CAP parameters such that the therapeutic effects
are customized in real-time according to the actual response
of the cancer cell under treatments. This is to introduce
feedback control mechanism into CAP cancer therapy so that
the desired outcome of treatment can be reached even under
uncertain modeling in cancer responses to CAP and potential
perturbation caused by the environment.

On the one hand, in [6], [7], model predictive control
(MPC) is introduced to an atmospheric pressure plasma jet
(APPJ) testbed to control the plasma dose delivery where
the interaction between the plasma jet and the substrate is
studied. Recently, in [8], the linear parameter-varying (LPV)
framework incorporated with the model predictive control is
presented to provide a data-driven method of controlling the
nonlinear APPJ thermal plasma dose. In [9], a learning-based
stochastic model predictive control strategy is proposed for ref-
erence tracking of stochastic linear systems with additive state-
dependent uncertainty, where the state-dependent uncertainty
model is adjusted online to reduce plant-model mismatch of
APPIJ.

For CAP cancer treatments, an empirical dynamic model is
constructed to represent the evolution of cancer cell viability
under several treatment conditions. Next, MPC is applied to
address the discrepancy between the actual cancer cell viability
and the corresponding value predicted by the mathematical
model [5], [10]. While it is illustrated that the presented MPC
for adaptive plasma can handle a modest level of uncertainties,
its performance is directly affected by the accuracy of the
model, and it is not capable of adjusting the mathematical
model online. In other words, there is no improvements in
adaptivity or performance based on the prior experience.
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The main objective of this paper is to address such issues.
More specifically, we aim to develop adaptive plasma frame-
work that is continuously learning about the dynamic charac-
teristics of the particular cancer cell under treatments, so that
the treatment is adapted to the prior cancer cell responses. Ma-
chine learning (ML) provides advanced computational tools to
recognize patterns with given data and to generalize them [11].
In particular, reinforcement learning (RL) is a goal-direct
approach that allows an agent to learn how to perform a task
through maximizing a numerical reward signal for a dynamic
system modeled as a Markov decision process [12]. The agent
can construct the knowledge of reaching the designed goal
through multiple interactions with the environment, thereby
eliminating the need to developing an exact mathematical
model in prior.

These two features of reinforcement leaning, namely gain-
ing performance through experience and avoiding the need
for exact models, are particularly advantageous in adaptive
plasma for cancer treatments, where it is infeasible to construct
an accurate dynamic model from first principles and there
are greater variabilities in dynamic characteristics. However,
successful implementation of reinforcement learning often
requires numerous training episodes, and during the learn-
ing process the treatments are planned randomly, which are
appropriate neither in in vitro nor in vivo experiments for
CAP cancer treatments where the safety is utmost. Due to
the stochastic nature of the cell dynamics, the results of the
actual CAP treatments might not be well aligned with the best
prediction, thereby causing safety concerns.

To address these, we propose to synergistically integrate
an empirical dynamic model with safe reinforcement learn-
ing. First, an empirical model for cancer cell response is
constructed according to a set of in vitro experiments [13],
which provides the temporal response of cancer cell viability
for several CAP treatments. These data are incorporated into
a Gaussian process [14] that can generalize the data beyond
the particular treatment conditions chosen in the experiments
while accounting the level of uncertainties. Next, CAP cancer
treatment is modeled as a Markov decision process, to which
safe Q-learning is applied. Initially, the action-value function
in Q-learning is pre-trained with a large number of data
generated by the empirical model. Later, it is updated in situ
with the actual response in a simulated environment. This
procedure is illustrated in Figure 1. This approach inherits
the desirable properties of Q-learning while taking the full
advantage of the prior knowledge represented by the empirical
model.

Further, the issues of safety are addressed as follows. To
avoid the potential harmful outcomes, reinforcement learning
has been extended with various formulations of risks [15],
[16]. For instance, in [17], [18] the cost function of rein-
forcement learning is augmented with additional risk-related
terms to prevent adverse consequences. In [19], [20], a teacher-
learner framework is implemented where the teacher can
provide advices for potential risky situation, and the learner
interacts with the actual environment while taking advices.
Furthermore, [21], [22] utilize the uncertainty provided by the
Gaussian process to safely explore the environment.

In this paper, the prior knowledge of the cancer dynamics
constructed from the empirical model is constantly updated
based on the actual response. Specifically, while updating the
action-value function during the interaction with the cancer, we
update the Gaussian process model with the newly acquired
data so that the predicted mean of the Gaussian process model
may accurately represent the actual dynamics. The desirable
feature is that the confidence level of the current model is
also adjusted through the framework of Gaussian process.
Consequently, we can assess the risk of each planned treatment
in probabilistic sense. Utilizing these, we present one of safe
reinforcement learning techniques in CAP. In particular, we
consider the safety in th exploration process, where risky
treatments that have a higher probability of excessive outcomes
are excluded. Interestingly, as more data become available
through the course of treatments, the uncertainties in the
model reduce. Since the risk is formulated by accounting
such uncertainties, the safety concerns diminish and more
aggressive treatments can be planned through the treatments.
In short, the proposed approach takes the full advantage of
reinforcement learning where in the adaptive CAP treatment
while addressing the safety issues of the exploration process.

Our approach should be distinguished from a series of work
[6], [71, [8], [9], [23], [24], [25], [26], where the MPC strategy
and ML algorithms are applied to regulate various parameters
of a device generating CAP, such that substrate temperature,
plasma current, and power. Instead we focus on the cellular
response to CAP and the control of cancer cell viabilities.

This paper is organized as follows. In Section II, an
empirical model for cancer dynamics is formulated using
Gaussian process, in Section III, reinforcement learning for
adaptive plasma is introduced with numerical examples, and
in Section IV, the safe reinforcement learning is discussed
with numerical simulations, followed by conclusions.

II. EMPIRICAL CANCER DYNAMICS WITH GAUSSIAN
PROCESS

A. In Vitro Experiments

The temporal evolution of cancer cell viability after CAP
treatment has been presented in [13]. Two types of cancer
cells, namely U87 (glioblastoma) and MDA-MB-231 (breast
adenocarcinoma) are treated with CAP for varying conditions,
and the corresponding viability is measured repeatedly over 48
hours using RealTime-Glo MT Cell Viability Assay to evaluate
the effectiveness of each treatment. In particular, the plasma
treatment duration is varied from O to 180 seconds, and the
discharge voltage is changed between 3.16kV and 3.71kV.
The cell viability is measured at every 10 minutes up to the
first hour, and later, it is measured at 6, 12, 24, 48 hours.

This paper utilizes the data set for U87 with the discharge
voltage of 3.16kV, where the cell viabilities at the above
time instances are given for five treatment durations At in
{0, 30,60, 90,180} seconds.

B. Gaussian Process

Throughout this paper, we focus on controlling the plasma
treatment duration to reduce the cancer cell viability to a pre-
scribed desired level. The experimental data provide valuable
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insight into cancer cell response to CAP for varying treatment
conditions. However, to utilize it for adaptive plasma, the data
should be generalized such that the cancer cell viability can
be predicted for an arbitrary treatment duration that is not in
the data set.

In [10], the viability is assumed to evolve according to a
particular ordinary differential equation,

v =vF(t,v;c),

where v € R is the viability, F' : R2*P is a prescribed real-
valued function that is dependent on the time ¢, the current
viability v, and free parameters ¢ € RP. The parameters are
chosen such that the discrepancy between the experimental
data and the numerical results from the above model is
minimized for each treatment duration in the data set. Then,
they are linearly interpolated for a given arbitrary treatment
duration. While this successfully models the experimental re-
sults in [10], its reliability, especially in generalization through
interpolation of parameters, greatly depends on how the form
of F' is selected in a heuristic manner.

In this paper, we utilize Gaussian process to formulate
a dynamic model [14]. A Gaussian process is a stochastic
process, defined such that any finite number of collection
is jointly Gaussian. More specifically, consider a real-valued
function g(z) : R™ — R dependent on the input vector
x € R™ We do not have an analytic expression of g(x).
Instead, the sample values g; of g(x;) can be measured at a set
of inputs z; € {x1,x9,...,2 N} up to an additive, independent
noise, as given by

gi ~ g(x;) + €, (D

with €5, ~ N(0,07,), which denotes the Gaussian distri-
bution with the mean 0, and the covariance U;i. The ob-
jective is to model g(z) using the given data set D =
{(l'ivgivo'gi)}iGL...N-

A Gaussian process is completely described by its second-
order statistics. By defining a mean function m(z) : R” — R
and a positive-definite covariance function K(z,z’) : R™ x
R™ — R, which is referred to as kernel, the corresponding
Gaussian process is denoted by

g(x) ~ GP(m(x), K(z,z")). 2

For the given mean function, kernel, and data, the regression
to evaluate the function g for an arbitrary input is completed as
follows. Define g, x, and m(x) € RY be the concatenation of
gi» x; and m(z;) fori € {1,..., N}, respectively. Also, let the
matrix K(x,x) € RV*Y be defined such that its i, j-th ele-
ment is K (z;, z;), and let ¥ = diaglo? ..., 00, ] € RNV,
From the definition of the Gaussian process, g is distributed
according to

g ~ N(m(x),K(x,x) + Xg). 3)

Let g. € R be a sample value when z =

Gaussian with g as
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Fig. 2: Gaussian process regression of U87 for discharge
voltage U = 3.16 kV with varying treatment durations At
in seconds: (a) At = 0.0 (b) At = 30.0 (¢) At = 60.0 (d)
At = 75.0 (e) At = 90.0 (f) At = 180.0. The variable ¢
in the horizontal axis represents the time after treatment in
hours, and v in the vertical axis indicates the normalized cell
viability.

Therefore, from the conditional distribution of joint Gaussian
distributions, the regression equation for g, is

9«|D, s ~ ./\/(m* + Kix (Kxx + Eg)il(g —my),
K** - K*X(Kxx + Zg)ilKX*)’ (5)

where the subscripts for m and K denote the input arguments,
e.g., Kix = K(z,,x) € RV,

In short, for a given input and output data of an unknown
function, its output for an arbitrary input is constructed by (5).
The desirable feature is that a Gaussian process may represent
an arbitrary function explicitly without the need for training
or numerical optimization required for common multi-layer
neural networks. The uncertainties are represented by Gaussian
distributions that are provided by various properties, which can
be utilized to simplify the required mathematical analysis.

C. Empirical Cancer Dynamics

We utilize a Gaussian process to formulate an empiri-
cal dynamic model, which generalizes the experimental data
beyond particular treatment durations considered in [13].
First, a Gaussian process is formulated, where the input
is composed of the treatment duration At and the time ¢,
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Fig. 3: Empirical Gaussian process model for the viability 48
hours after treatment with various initial cell viability 7y and
treatment duration At. Figure (a) and (b) provide the predicted
mean values pu, and predicted standard deviation values o,
for all pairs of (rg, At). Figure (c) illustrates the predicted
viability 48 hours after the treatment with respect to treatment
duration At for the cases ro = {1.00,0.75,0.50,0.25}.

o

and the output is the corresponding cell viability v. The
data set is composed of the treatment durations At €
{0,30,60,90,180} in seconds and the cell viability v mea-
sured at {0,%,2,...,32,1,6,12,24,48} in hours, where four
measurements are available for each At.

The prior mean function is m(z) = 0, and the kernel is

chosen as squared-exponential function, given by
2 1 T
K(z;,x;) = 0% exp(—a(mi —xj) M(x; — ;) (6)

where M = diag([l1,l2]) 72 € R**2, and 0 = [l1,l2,0f] € R?
is the hyper-parameter vector defined by the length-scale 1, l2
and the variance oy. The hyper-parameters are estimated by
the training data as follows. For the given data x and the

hyper-parameter 6, the marginal distribution of g is given by
g ~ N(0,K(x,x) + Xg), and its log likelihood is

1
log p(g; %, 0) = — glog 2 —  log det(K + %)
1 _
- ggT(K +3g) '8 (7)

The optimal hyper-parameters are obtained by maximizing the
above log likelihood. This can be interpreted as selecting the
most probable hyper-parameters for the given data set.

The corresponding cell viability predicted by the Gaussian
process is illustrated in Figure 2, which includes five treatment
durations in the data set along with the experimental results,
and one treatment duration At = 75 that is not in the data set
to illustrate the capability of generalization.

Next, we take the experimental results with no treatment,
i.e., At = 0.0 as a control group, to evaluate the effectiveness
of CAP treatment. We introduce the following cell viability

ratio 7 as the ratio of cell viability v of a treatment group to
the control group.
’I”(t; At) _ 'Utreatment(t; At)’
Ucontrol(t)

®)

for ¢t € [0,48].

In the adaptive plasma treatment problem formulated in the
next section, it is assumed that the treatment is repeated at
every 48 hours. Since the initial cell viability is normalized
to v(0) = 1.0 for all the experimental data, the initial cell
viability ratio is rg = r(¢ = 0) = 1.0 for all experimental re-
sults. However, for multiple treatments, the initial cell viability
ratio at the second or the later treatments may be less than one.
We assume that the effects of the subsequent CAP treatments
are identical to the first treatment such that the viability ratio
is reduced in the same manner as the first treatment. More
explicitly, it is assumed that for any ¢ > 0,

r(t; At,rg = ¢) = cr(t; At,rg = 1).

Let ry € R be the cell viability ratio 48 hours after the
treatment. Through the Gaussian process and the above gen-
eralization, now we have the following probabilistic empirical
model:

p(rylro, At) ~ N (s, 02), )

which describes the distribution of the final cell viability ratio,
for a given initial cell viability ratio and a treatment duration.
This is given as a Gaussian distribution with the mean p, and
the variance o, computed by (3). It is further illustrated in
Figure 3.

III. REINFORCEMENT LEARNING FOR ADAPTIVE PLASMA

In this section, CAP cancer treatment is formulated as a
Markov decision process, to which reinforcement learning is
applied for adaptive plasma cancer treatments. Furthermore,
we consider a realistic case where the actual cancer cell re-
sponse does not exactly follow the empirical model of the pre-
ceding section, and we present how the reinforcement learning
mitigates such modeling errors and disturbances. Additionally,
to prevent potentially risky treatments, the safe action selection
is studied with Gaussian process model learning.

A. Markov Decision Process Formulation

The adaptive CAP treatment problem considered in this
paper is formulated as follows. Assuming that CAP treatment
is repeated at every 48 hours, and the objective is to determine
the optimal treatment duration At such that the cancer cell
viability is reduced to a prescribed desired level, namely
rq € R.

Since CAP cancer treatments are performed on a discrete
time step, the process of treatment can be formulated into a
Markov decision process (MDP). In a discrete-time MDP, at
given time step tj, an agent at the state S takes an action
Ay so that it is transferred to another state Sy, at the next
time step tx41 while receiving a reward Ry ;. The accumu-
lated reward is referred to as a goal Gy, and the transition
between states are governed by the state transition probability
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Fig. 4: Reward signals for various target states

P(Sk+1]Sk, Ax) that describes the probability distribution of
the state at the next step, given the current state and the chosen
action.
For adaptive CAP treatments, the components of MDP can
be chosen as follow:
e State S: cell viability ratio r, where the desired target r4
can be expressed as sq
e Action A: treatment duration At for each treatment
o Transition Probability p(Sk+1|Sk, Ax): constructed by
p(rylro, At) in (3)
e Reward R: it is designed such that the reward is increased
as Sy is closer to sq

More specifically, the reward is chosen as

Riy1 = R(sa, Sk+1)

13 x e(—%) —25
— 6 % (|D,| —0.02), if D, € (—00, —0.02]
13 x e=355) — 2.5, if D, € (—0.02, —0.005]
={ 115, if D, € (—0.005, 0]
13 x e(~581) — 2.5, if D, € (0,0.02]
13 x e(~581) — 2.5
— 6 x (|D,| —0.02), otherwise

where D, = Sk41 — s4 is the difference value between state
at time step try; and desired target state. As illustrated in
Figure 4 for several values of desired target states sq, the
reward has the peak value when the state, i.e. cell viability
ratio, after the current treatment, namely Sj1, is equal to its
desired value sg4, and it gradually decreases as the discrepancy
between Si1 and sy increases.

The accumulated reward is referred to as the goal, which is
defined as

(o)
Gy = Z'YZRH-k—i-lv
i=0
where 0 < v < 1 is a discount rate. While it is formulated
for ¢+ — oo, here we consider a finite time execution of
MDP, where the treatment stops as the cell viability ratio is
sufficiently close to the target.
For a given current cell viability ratio or the state Sy, the
treatment duration or the action Ay is selected by a policy

7(Sk, Ar) = p(Ax|Sk),

TABLE I: Procedure for Q-learning

1: procedure Q-LEARNING UPDATE ITERATION

2 Initialize Q(S, A) randomly for all (S, A) pairs

3 Let Q(S,A) = 0.0 for S < s4

4: repeat

5: Sk = So where Sp is chosen randomly with Sp > s4
6.

7

8

repeat
Choose action Ay, from Q(Sy, :) using e-greedy method
Obtain new state Si41 and reward Ry, by
performing action Ay
9: Q(Sk; Ar) = Q(Sk, Ax)
Ry 147 max Q(Sk+1,a) =Q(Sk, Ar)]

10: Sk =S k+1
11: until Si < sy
12: until Episode number reaches designed maximum

13: end procedure

which specifies the probability distribution of the action when
in the state S}, from which the actual action is sampled. Under
the presented MDP formulation of the adaptive CAP treatment,
the objective is to find the optimal policy, namely 7* that
maximizes the expected goal of the treatment.

B. Q-learning

In Q-learning [12], the above problem is addressed by
introducing the action-value function, or the Q-function:

o0
Q™ (Sk, Ak) = E[> V' Ritki1|S = S, A = Ay,
i=0
which describes the expected prospective goal, when the
current state is S = S; and the current action is A = Ay,
assuming that all of the prospective actions are chosen ac-
cording to the given policy .

The core idea of Q-learning is that the action-value function
for the optimal policy can be learned online by experiences.
Suppose that at the current state Sy, an action Ay is chosen,
which makes the state transferred to Sj; while generating a
reward Ry ;. From this experience, the action-value function
is updated according to

Q(Sk, Ax) = Q(Sk, Ar)
+ a[Ry41 + 7 max Q(Sk+1,a) — Q(Sk, Ar)],
(10)

where o > 0 is learning rate indicating learning speed. As
shown in [27], any random action-value function asymptoti-
cally converges to the optimal action-value function, denoted
by @Q* through the above iteration.

Once the action-value function is optimized, the optimal
policy can be formulated. For example, for the deterministic
greedy method, we have

A} = argmax Q*(Sk, a).

These procedures are summarized at Table 1.
To implement the Q-learning for the CAP treatment, the
state space and the action space are discretized as follows:

o State Space S ranges from 0.01 to 1.50 with 150 grids
e Action Space A ranges from 0.0 to 180.0 with 121 grids
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Fig. 5: Q-learning evaluation with respect to the episode
number with varying target states sy: (a) cumulative reward
per episode (b) Q-functions relative difference

We consider three desired cancer viability ratio, or desired
target states sg € [0.13,0.25,0.50]. To numerically simulate
each episode for training, the new state Sy is sampled from
(3) for a given Sy and Ay.

The progress of Q-learning iteration is presented in Figure 5.
As shown in Figure 5(a), the cumulative reward per episode
increases as () converges to the optimal action-value function
Q*. Also in Figure 5(b), the relative difference of () between
the current Q-functions and the Q-functions from previous
episode decreases, implying the convergence.

The resulting optimal action-value function and the corre-
sponding deterministic greedy optimal policies are illustrated
in Figure 6. This can serve as the baseline treatment plan to
reduce the cancer cell viability ratio to a desired level for the
given current viability ratio.

C. Adaptive Learning with Modeling Errors

Although the above reinforcement learning with the empir-
ical dynamics can provide a guide on how to administer CAP
treatments, it is unlikely that the actual responses of cancer
cells under treatments behave exactly same as the empirical
model. While Q-learning will eventually adapted to the actual
dynamics, it may take plenty of episodes until convergences.
Here, we address it by utilizing the Q-function optimized for
the empirical dynamics to initialize the Q-function for the
actual dynamics. Instead of choosing the action determinis-
tically using the greedy policy, the action is sampled through
the softmax function such that the reinforcement learning can
explore the actions beyond the specific optimal action for the
empirical model.

Here, we assume that the actual cell dynamics is considered
as the empirical dynamics with a random unknown pertur-
bation A. Since the empirical dynamics is modeled with a
Gaussian process, it is natural to model the perturbation with
a normal distribution. More specifically, for any state-action
pair (s,a),

A(s,a) ~ N(pa(s,a),0(s,a)), (11)

where the mean and the variance of the perturbation are chosen
as a function of the current state and the action as follows.

pa(s,a) = 30.(s,a),
oa(s,a) = 0.
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Fig. 6: Optimal Q-functions (left column) and optimal policies
(right column) for the empirical dynamics with varying target
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Fig. 7: Perturbation table for all state-action pairs

In other words, the mean value is shifted by the threefold of
the standard deviation of the empirical model.
Now the actual cell dynamics is given by

gPactual (57 a) = gPempirical(37 a) + A(57 a) (12)

The sample values of the perturbation are illustrated in Fig-
ure 7, and when the current state is .S, = 1, the distribution of
the new state Sy, for varying actions is presented in Figure 8.

We apply the Q-learning to the actual dynamics with three
desired state of s; € [0.13,0.25,0.50]. During the training,
for every time step tp, the action A is chosen from a
probability distribution that is numerically computed through
the softmax function. For any action a € A, with Q-function,
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Fig. 8: Comparison between empirical dynamics and actual
dynamics with S = 1.00

the probability of being selected can be seen as follows.

Q(Sk,a)—max Q(Sk,:)
( Q(S 7—a')fmax Q)(S Dy (13)
Zall a; EA exp( ko p LAL )

where the temperature parameter 7 controls the sensitivity
of the probability distribution to Q-function. The resulting
optimal Q-function and the deterministic greedy policy for the
actual dynamics are given in Figure 9. It is shown that both
of the Q-functions and the optimal policies are adapted to the
actual dynamics by interacting with them.

As discussed above, a more important question is how fast
the Q-function is adjusted for the actual environment. To ex-
amine the adaptive learning speed, an independent Q-learning,
i.e. the control group, is carried out for the actual dynamics,
after choosing the initial Q-function randomly. The learning
speed of both cases are illustrated in Figure 10, where the
reward and the discrepancy of the Q-function from its optimal
values are given with respect to the number of episodes, for
three cases of the desired state. It is shown that initializing
the Q-function with the value optimized for the empirical
dynamics along with the softmax policy improved the reward
and the convergence rate substantially. In particular, the reward
is quickly increased to the optimal range with a small number
of episodes compared against the random initialization which
requires numerous iterations. These verify that the knowledge
gained from the empirical model can be strategically utilized
in the actual dynamics through reinforcement learning.

exp

p(alSk) =

IV. REINFORCEMENT LEARNING WITH SAFE
EXPLORATION

As is discussed in Section III-C, during the adaptive learning
progress, the reinforcement learning agent would select actions
through the softmax function that provides the probabilities
of each action to be selected in the action space. However,
in the actual CAP treatment, due to safety concerns, actions
that may cause undesirable and unrecoverable results or that
have large uncertainties in the outcome should be avoided.
For instance, while treatments with large durations At may
cause the cell viability ratio r reach the desired level ry
quickly, the actual resulting » may descend to a lower level
than r; due to the stochastic nature of the cell dynamics,
especially when there is large uncertainties in the prediction
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Fig. 9: Optimal Q-functions (left column) and optimal policies
(right column) for the actual cancer dynamics with varying
target states sq: (a)(b) sq4 = 0.13 (c)(d) sq = 0.25 (e)(f) sq =
0.50. In the right column of figures, the optimal policies for
the empirical dynamics (blue) are compared with those for the
actual cancer dynamics (red).

of the cell viability ratio after the treatment. Such excessive
actions can be considered risky as there is a non-trivial
chance for unsafe results. In particular, this is problematic
especially during the initial phase of the Q-learning, while
the initial Q-function optimized for the empirical dynamics
is adapted to the actual cancer dynamics. In this section, we
present safe reinforcement learning strategies where the cancer
dynamics model is also updated to the actual dynamics in the
probabilistic framework, and unsafe actions are excluded by
accounting the uncertainties in the learned dynamic model.

A. Safe Action Selection

Throughout this paper, the cancer dynamics in response to
CAP treatments is represented by a Gaussian process, as illus-
trated in Figure 3 for the empirical dynamics and in Figure 8
for the actual dynamics. To account the uncertainties of the Q-
learning in safe action selection, the empirical dynamics is also
updated throughout the cancer treatment. More specifically, the
Gaussian process representing the actual cancer dynamics is
initialized with the empirical Gaussian process, and at each
treatment, the corresponding pair of the selected action and
the resulting state is added to the data set of the Gaussian
process. This is desirable as the data set is expanded the
learned model converges toward the actual dynamics, and we
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Fig. 10: Convergence of Q-learning for the actual cancer
dynamics represented by the reward (left column) and the Q-
function error (right column) with respect to the number of
episodes with varying target states sq: (a)(b) sq = 0.13 (c)(d)
sq = 0.25 (e)(f) sq = 0.50. The red dash curve that was
initialized by the optimal Q-function of the empirical dynamics
exhibits substantially faster convergence against the random
initialization denoted by the blue curves.

can further access the confidence in the learned model as
the Gaussian process provides the standard deviation of the
prediction. For example, over the range of states and actions
where new data points are acquired, the standard deviation
will be small, or in the visualization of Figure 8, the shaded
region will be thinner. Therefore, for each treatment duration
selection, we can predict the resulting viability ratio for the
actual cancer dynamics with an expected level of confidence,
and the prediction becomes more accurate as the treatment is
repeated.

This learned dynamic model is utilized in safe action
selection as follows. The safe treatment is declared as the
treatment where the ratio of the state after the treatment Sy 1
to the state before the treatment S} is not too excessive. In
the preceding numerical simulation, the safe range of the ratio
Sk+1/Sk is chosen as [0.3,1.1], i.e., the cell viability ratio
after treatment should not exceed 110% of the current cell
viability ratio and it should not become lower than 30%. The
specific bound of the ratio can be adjusted as desired. For the
current state Sj, the above dynamic model represented by a
Gaussian process provides the predictive mean u(Sy,a) and
the standard deviation o (S, a) for the new state Sy at each

N ,
iT 0015 ;’ﬂsM
- = &
=08 T &
% = (g‘ﬁ
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@ Z 001"
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7 £ .
[P T / safe action selection
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Fig. 11: At S = 1.00, with target state s; = 0.13, the safe
region and all possible safe actions are given on the left. On the
right figure, the blue circle markers represent probabilities of
actions being selected when the safe action selection strategy is
implemented, where the red dot markers represent the regular
softmax probabilities of action selection.

action a. The corresponding set of feasible action is defined
as the Safe Action Space as follows.

Asafe(Sk) ={a € A|p(Sk,a) — 20(Sk,a) > 0.35k
w(Sk,a) + 20(Sk,a) < 1.1S5;}.

In other words, for any action a in Ay, fe, the prescribed ratio
of the state Syi1/Sk is guaranteed to be satisfied with the
probability of 0.95. When integrated with the above dynamics
learning, the safe action set is enlarged over the course of the
treatment as the standard deviation of the prediction o (s, a) is
reduced.

During the Q-learning, the action is selected using the soft-
max function as presented in (13), but using the safe action set
Asaqfe instead of all of the possible actions. For example, when
the current state is Sy = 1.00 and the target state is sq = 0.13,
the safe actions and the safe action selection probabilities are
presented in Figure 11. In particular, Figure 11(a) illustrates
how the safe action space is formulated, and Figure 11(b)
shows the resulting action selection probability compared with
the regular Q-learning, where it is observed that risky actions
are properly disregarded.

The procedure for the Q-learning with the dynamics learn-
ing and the safe action selection is summarized in Table II.

B. Safe Reinforcement Learning for CAP

The proposed safe Q-learning is compared against the regu-
lar Q-learning presented in Section III-B, using the simulated
actual dynamics shown in Figure 8. For both cases, the Q-
function is initialized with the Q-function optimized for the
empirical dynamics, and the desired target states are varied in
sq € [0.13,0.25,0.50].

After a 201-episode learning, the change of the Q-function,
i.e., the difference between the empirical optimal Q-function
and the updated Q-functions, are illustrated in Figure 12,
where the figures on the left column are for the Q-learning
with safe action selection and the figures on the right column
are for the regular Q-learning.

It is observed that the safe Q-learning updates the Q-
function within the safe region, while the regular Q-learning
updates Q-functions in the whole action space. As shown in
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TABLE II: Procedure for Q-learning with dynamics learning
and safe action selection

1: procedure SAFE Q-LEARNING UPDATE ITERATION

2: Initialize Q(S, A) with empirical optimal Q-function for all
(S, A) pairs

Number of Taken Actions
Number of Taken Actions

3: Initialize Gaussian process model with empirical Gaussian o %0 e A(.,?(?n A120 150 180 o % e A(.,f?fn 4120 150180
process model

4: repeat @ ®
5: Sk = So where Sy is chosen randomly with Sp > s4 10° B ot nction sclection
6: repeat é | —w/o safe action selection|
7: Determine safe action set Agq fe(Sk) through g

the Gaussian process model g
8: Choose action Ay, from Q(S, Asafe(Sk)) using &

softmax method 5
9: Obtain new state S341 and reward Ryq by ”%

performing action Ay “
10: Q(SlmAk:) :Q(Sk7Ak:) 10

+a[Rk+1+’y max Q(Sps1,a)—Q(Sk, Ap)] 0 30 60 ACL?& 44120 150 180
a

11: Update the Gaussian process model with (©)

data < Sk, Ak, Sky1 > . . . . . 5
12: Sk = Sk41 Fig. 13: Histogram of actions taken during learning with
13: until 5 < sq _ ) varying target states sq: (a) sq = 0.13 (b) sq = 0.25 (c)
14: until Episode number reaches designed maximum

sq4 = 0.50. The blue histograms represent the actions taken
with safe Q-learning and the orange histograms represent the
actions taken with regular Q-learning.

15: end procedure
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Fig. 14: Progression of the cumulative reward per episode for
40 . . . .
- . = 0s the safe Q-learning (solid lines with markers), and the regular
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os0 100 150 ! o0 100 150 Figure 13 for the histogram of all actions taken, the regular
State S State S . . . .
© d Q-learning implemented all of possible actions. Whereas no

excessive action is selected for the safe Q-learning.

More importantly, the magnitude of Q-function changes in
the safe Q-learning is greater than the regular Q-learning cases,
since by limiting the number of actions that can be selected,
the Q-function is updated more often in the safe region for the
same number of episodes, thereby accelerating the learning.
Consequently, the cumulative reward per episode, representing
the evaluation of the learning progress, is consistently greater

© ® for the proposed safe Q-learning, as illustrated in Figure 14.
Fig. 12: Q-function changes after 201 episodes of learning for Next, we evaluate the accuracy of the learned dynamic
Q-learning with safe action selection (left column) and with 0del as follows. First, the prediction error in the safe
regular Q-learning (right column) for varying target states sq: region, i.e., the differences between the mean of the actual
(a)(b) sq = 0.13 (c)(d) sa = 0.25 (e)(f) sq4 = 0.50. dynamics and the mean value predicted by the Gaussian
process decreases as is shown in Figure 15. Next, for target
state s4 = 0.13, the learned dynamics at episode number
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Fig. 16: Progress of learned model with target state sq = 0.13,
when evaluating at S = 1.00. Figure (a)-(d) represent the
progress at episode number [1,3,5,61]. The predicted mean
(orange circle curve) and predicted 20 bound (orange shaded
area) are compared with the empirical dynamics (black solid
curve and black shaded area) and the actual dynamics (blue
dash curve and blue shaded area), where the safe region (gray
green shaded area) and target state (red dash line) are included
in the figures.

[1,3,5,61] are illustrated in Figure 16. It is shown that as
the treatments progress, the learned dynamic model converges
to the actual dynamics, and also the uncertainties in the
prediction visualized by the 20 bounds decrease over time.

Finally, we present 16 random treatment scenarios for the
target cell viability ratio of ry, = 0.13, as illustrated in
Figure 17 where the evolution of the viability ratio over time
and the viability ratio after the period of 48 hour are given
for both of the regular Q-learning and the safe Q-learning.
As shown in Figure 17(a), the regular Q-learning may cause
the cancer cell viability ratio to be unexpectedly increased
over the first two treatment periods, thereby causing larger
treatment errors. Whereas the safe Q-learning exhibits more
regularized results consistent with the treatment goal as given
in Figure 17(b).

Cell Viability Ratio r
Cell Viability Ratio r

192 240

15 15
- T s
05 Q - T . 05 — —
,,,,,,,,,,,, ﬁ,,,g,,,%,,,i ,,,,,%”” S S
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Fig. 17: Figure (a) and (b) represent the time-evolution of
cell viability ratio, where the regular Q-learning (left column)
is compared with the safe Q-learning (right column) for the
target cell viability ratio r4 = 0.13. Figure (c) and (d) are the
time-evolution of the box plot for cell viability ratio error.

In short, the proposed safe Q-learning is composed of the
synergistic integration of learning the actual cancer dynamics
with a Gaussian process and selecting the safe actions with
a probabilistic guarantee. It is illustrated that the proposed
approach avoids excessive risky treatments while accelerating
the learning process.

V. CONCLUSIONS

This paper studies safe reinforcement learning for adaptive
cancer treatments with cold atmospheric plasma (CAP). First,
an empirical model is constructed to represent the cancer cell
response to various CAP treatment conditions. A set of data
constructed through in vitro experiments is learned through
a Gaussian process, which is capable of generalizing the
cancer response for arbitrary conditions beyond the specific
treatments considered in the experiment. Next, the CAP cancer
treatment is formulated as a Markov decision process, to
which a reinforcement learning is applied to find the optimal
treatment plan to reduce the cell viability ratio of cancer to
a desired level. It is shown that Q-learning is capable of
generating an optimal policy for the empirical dynamics, and
it can be quickly adapted to the actual dynamics. Finally, by
utilizing a Gaussian process, a safe Q-learning is proposed
to prevent exceedingly aggressive treatments with greater
uncertainties.

Future directions include incorporating various treatment
conditions beyond the treatment durations, such as the dis-
charge voltage or the gas composition of the plasma jet.
However, directly adopting a Gaussian process for such
higher-dimensional inputs is challenging due to the potential
difficulties associated with repeating experiments with live
cancer cells. Also, safety in reinforcement learning can be
addressed beyond the exploration process considered in this
paper. Another interesting direction will be utilizing real-time
diagnostics, such as electrochemical impedance measurement
in [28], for in vivo experiments. Also, we are investigating
the proposed adaptive plasma framework with the explicit
consideration of selectivity to avoid any harm to healthy cells.
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