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RESUME

Nous considérons un probléme inverse avec données au bord, pour une équation des
ondes élastiques non-linéaire étudiée précédemment dans 'article [1]. Sous certaines
hypothéses géométriques, nous prouvons que tous les parameétres constitutifs de
I’équation peuvent étre déterminés de maniére unique a partir de données au bord.
La preuve fait appel & une linéarisation au deuxiéme ordre ainsi qu’a des faisceaux
gaussiens.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider the initial boundary value problem for the quasilinear elastic wave equation

p% -V -S(z,u)=0, (t,x)€ (0,T)xQ,
u(t,x) = f(t,x), (t,z) € (0,T) x 09, (1)

u(0,x) = %U(O,x) =0, zel

* Corresponding author at: Department of Mathematics, University of Washington, Seattle, WA 98195, USA.
E-mail addresses: gunther@math.washington.edu (G. Uhlmann), iasjzhai@ust.hk (J. Zhai).

https://doi.org/10.1016/j.matpur.2021.07.005
0021-7824/© 2021 Elsevier Masson SAS. All rights reserved.


https://doi.org/10.1016/j.matpur.2021.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/matpur
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matpur.2021.07.005&domain=pdf
mailto:gunther@math.washington.edu
mailto:iasjzhai@ust.hk
https://doi.org/10.1016/j.matpur.2021.07.005

G. Uhlmann, J. Zhai / J. Math. Pures Appl. 153 (2021) 114-136 115

Here © C R3 is a bounded domain with smooth boundary 9€2. We denote z = (x1, 72, 23) to be the Cartesian
coordinates. Then we can write the displacement vector as u = (u1, uz, u3) under the Cartesian coordinates.
The stress tensor S has the form

8 ~ auz
Sz] —)\Emmdl] + Agana + 2M <€ij + gjna—xn>

+ JZ/glngjn + %(2&?””6@‘ + 5mngmn5ij) + ngmmgnn(sij + O(U3),

(2)

where ¢ is the strain tensor defined as

1 (0w Ou; | Ouy Ouy,
€”(u> n 2 (6$] + 8331 + al‘l 8$]> ’

and ¢ is the linearized strain tensor

A,H()_l 8’&1_’_8’[1,]
i\ = 2 8xj 81‘1 '

By using the notation O(u?) we are considering the small displacement asymptotics. The functions
M), w(@), p(x), o (x), B(x), € (x)

are all smooth on Q. The parameters \ and u are called Lamé moduli and p is the density. This model is
widely used and can be found in [2,3,1].

In this article, we study the inverse problem of recovering the elastic parameters A, u, p, &7, B, € from
displacement-to-traction map

Az f —v-S(x,u)lor) <00

where v is the exterior normal unit vector to 0f2.
The well-definedness of A for small f is guaranteed by the well-posedness of (1) with small boundary
data:

Proposition 1 (/1, Theorem 2]). Assume f € C™([0,T] x 02),m > 3 is supported away from t = 0. Then
there exists eg > 0 such that for || f|lcm < €q there exists a unique solution

ue ﬁ C*([0,T]; Wm=R2)((0,T] x ).

k=0

Denote S = ST + SV, where ST is the linearized stress

and
A+ B Ou,, Ou Ouyy, Ou B Ou,y, Ou ou,y, Ou;
S @) =5 B B2y 0 T o, 92,09 T 2 By, 02 00 T P, 0
o Ou; Oum, Oy, Ou
4 Oz, Oz +O+B)G - 0%y, Oz

i ? % Oy, Oty N Ou; Ouj — Ou; Oup, + O
a Ox; Ox; 0%y 0Ty, Oxp O '
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The linear elastic wave equation reads

p?;TZ —V-SEx,u) =0, (t,x)€(0,T)xQ,
u(t,z) = f(t,x), (t,x)€ (0,T) x 09, (3)

0
u(0,2) = Eu(O,x) =0, ze.
We denote the Dirichlet-to-Neumann map for the above linear elastic wave equation as

All‘n . f Sy SL(QJ,U)|(O,T)><BQ.

The S- and P-wavespeeds are related with the Lamé moduli A, ¢ and the density p in the following way
\/ﬁ A+ 20
cs ==, cp=y|]——.
p P

w>0, 3\+2u>0o0nQ.

We will assume

Then cp > cg in Q. Denote the Riemannian metrics associated with P/S- wave speeds to be
-2
gp/s = CP/SdSQ,

where ds? is the Euclidean metric. Then P- and S-waves travel along geodesics in the Riemannian manifolds
(€2, gp) and (£, gs) respectively. Let diamp,5(£2) be the diameter of (2 with respect to gp,5. More precisely,

diamp,g(€2) = sup{lengths of all geodesics in (2, gp/s)}

For the inverse problem, one can first recover the Dirchlet-to-Neumann map A" for the linear elastic
wave equation (3) by first order linearization of A (cf. [1])

9 A (e)lemo = A" (f).

Oe

It was shown in [4] that from A'" one can recover the scattering relation associated to the wave speeds cp
and cg. Using the result of [5] one can determine cg and cp if the foliation condition is satisfied for both
metrics gp/g and T' is larger than diamg(€2). For a more precise statement see [6, Theorem 1.4]. Recall
that a Riemannian manifold (M, g) satisfies the foliation condition if it can be foliated by strictly convex
hypersurfaces [7]. The foliation condition is satisfied for (€2,gp/s), for instance, if 0Q is strictly convex
(with respect to gp/s) and the wave speeds cp/g increase with depth. They are also satisfied under some
additional conditions on the curvature (see [8,9]), if 2 is simply connected. As pointed out in [6] the foliation
condition is a natural generalization of the Herglotz [10] and the Wieckert-Zoeppritz [11] conditions. The
foliation condition allows for conjugate points. If the boundary is strictly convex for gp,g and there are
no conjugate points for gp,g, the uniqueness of cp and cs was shown by Rachele in [12]. One can in fact
determine the three parameters A, i1, p, assuming further cp # 2cg except at isolated points in {2, under the
foliation condition [13] or the no conjugate points condition (an extra curvature condition is needed) [14].
We summarize the results for the linear elastic wave equation (3) in the following.
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Proposition 2. Assume T > max{diamg(Q2),diamp(Q)}, 0 is strictly convex with respect to gp;s, and
either of the following conditions holds

1. (Q,gp/s) has no conjugate points;
2. (Q,9p/s) satisfies the foliation condition.

Then A"™ uniquely determines £ and % in Q. Assume further that A = 2 only at isolated points in Q. When
condition (1) is satisfied, assume also that (Q, gp) is negatively curved. Then p is uniquely determined.

Remark 1. Notice that when (€2, gp/5) has no conjugate points, an extra curvature condition on (2, gp)
is needed for the unique determination of p. This is due to the fact that the injectivity (up to natural
obstructions) of the related tensor tomography problem is established only under extra curvature conditions.
The curvature condition can be relaxed using the results of [15-17].

In this paper we mainly focus on the determination of the nonlinear elastic parameters <7, 2, % . In [1], the
authors proved the uniqueness of &7 and 4, by analyzing the nonlinear interactions of distorted plane waves.
The approach originated from [18], and has been successfully used to study inverse problems for nonlinear
hyperbolic equations [19-23]. We will present an alternative approach to the proof of the uniqueness of </
and %, and further extend to the uniqueness of . Our work is still based on the higher order linearization
utilized in aforementioned work, but instead of distorted plane waves we will use Gaussian beams. We note
here that Gaussian beams have been used to study various inverse problems [24-30]. We emphasize here
that Gaussian beams can be constructed allowing conjugate points.

We summarize the main theorem of this article here:

Theorem 1. Assume T > 2 max{diamg(Q2),diamp(2)}, OQ is strictly convex with respect to gpss, and
etther of the following conditions holds

L. (R, 9p/s) has no conjugate points;
2. (0, g9p/s) satisfies the foliation condition.

Assume \, i, p can be recovered from A¥™. Then A determines \, u, p, </, B, € in Q uniquely.

The rest of this paper is organized as follows. In Section 2, we carry out the second order linearization of
the displacement-to-traction map and derive an integral identity, from which we can recover the parameters
of interest. In Section 3, we construct Gaussian beam solutions to linear elastic wave equation, for both P-
and S-waves. Finally, Section 4 is devoted to the proof of the main theorem.

2. Second-order linearization of displacement-to-traction map

We will apply the higher order linearization technique introduced in [18] to the displacement-to-traction
map A, and arrive at an integral identity which could be used for the recovery of the parameters. The
linearization of A itself has already been used in [1]. Higher order linearization of Dirichlet-to-Neumann map
and the resulted integral identities for semilinear and quasilinear elliptic equations are used [31-36,28,37].
Assume u solves (1) with Dirichlet boundary value

f=eaf®+ef®.

Denote u?), j = 1,2 to be the solution to the linearized elastic wave equation with boundary value f@),
ie.,
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24,() ,
Ou —V-Sta,u9)y =0, (t,2)e(0,T)xQ,

P o
w) = fO) . on (0,T) x 09, (4)

(0, 1) = %uu)(o,z) =0, zeq.

(92

. 2 . .
Applying ﬁ to (1), we obtain the equation for /12 = 861862’“‘61:6220-

2
O 2 _y. Stz ) =v .G, u®), (t,z) € (0,T) x Q,

Por
U (t, ) =0, (t,z) e (0,T) x 9, (5)

U (0,z) = %L{(lz)(o,x) =0, zeq.

Here

(1) 5, (2) (1) o, (2)
Ouy,’ Oug, 555 + L@c?um Oun, 5
0Ty Oxp 0x, O0xm

(1) g, (2)
Gi;(uM, u®) =(\ + B) %1;”‘ %”Tmaij 26

g (2w 007 oud oul\ o (oul oud o ouly)
ox,, Ox; oz, Ox; ox,, Ox; ox,, Ox;

4

ouly 8u2(-2) ou'D 8u§1)
A+ ) ( 0%y, Ox; 0%y, Ox; (6)

(st % 8u%) 8ug) Ou%) au%{) 8ul(-1) augg) 8ul(-2) 3“5»1)
4 Ox; Ox; Ox; Ox; 0xy O, 0Ly OTm

ou 0  oul® ouly
O Oxj  Oxyy Oz |

We note that

2
P A fD 4 e f D)oo = v SEUID) 4 v G, u®).
861862

Assume v solves the initial boundary value problem for the backward elastic wave equation

82
Pt =V SE(w)y =0, (t,z)€(0,T)xQ,
o(t,x) =g, (t,z) € (0,T) x 0%, (7)

(T, z) = %U(T,x) =0, ze.

Using integration by parts, we get

T

2

// 0 Alerfi +eafa)ley=ea=0 — V- G(u(1)7u(2)) gdSdt
861862

0 99

T
://V~SL(Z/{(12))gdet

0 09
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/ (v SSE Uy + cvut? w) dzdt
Q
32
(pﬁu(”) — V-G, u(g))) v+ CVUY : Vo dzdt

2
/pu(lz)a—v — V-G, u®)w + vyt : Vo dadt
)

2

0 900

/V -GV u?y dadt.
Q

Here we use the notation A: B = ZZ =1 A;i;jB;; for matrices A and B.
Therefore, the displacement-to-traction map determines

82
// (861862 flf )+62f(2 )‘61 62—0) gdSdt

T

——//V G(u, (2))vdxdt+//I/-G(u(l),u(2))gd5dt

Q 0 00

T

Il
—

/ G(VuM, vu?® Vo) dadt,
0 Q

where

G(VuV, vu® Vo)

=\ 4+ 2)(VuY : Vu®)(V - 0) + 24(V - u)(V - PNV - 0) + B(VuD - VTP (V - 0)

+ % ((V M) (Vu® V) + (V- u@)(VuD VTU))

L (00 0u) ou® ul) ou,
4 \ Oz, Oxy 0%y, Oz | Ox;

+ (A +B) ((V WY(Vu® : Vo) + (V- u®)(Vu® Vv))

N +,;z% ouy ou | ou ou) | oud 0¥ | ou? oul
H Ox; Ox; Ox; Ox; 0xy, 0T, 0x,y, O,

+

Oul(-l) Ou%) 8ul(-2) 8u£,?> ov;

Ory Ox;  Oxy, Ox; ) Oz,

Here we use the notation V7u = (Vu)T.

pthU—V G(u (1),u(2))v—u(12)v-SL(v)dxdt—l—//V~SL(U)Z/{(12) dSdt

119
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We will construct special solutions u™), u(?), v for the linear elastic wave equation and recover the param-
eters o/, B, % from the integral (8). We emphasize here that the solutions will be constructed with known
coefficients A, i, p in the linearized equation.

3. Gaussian beam solutions

Denote
M =10,T] x Q.

We note that M can be viewed as a Lorentzian manifold with metric —d¢? + gp or —dt? + gg.
In this section, we will construct Gaussian beam solutions u to the linear elastic wave equation

0%y

pW—VSL(fE,U):O, (t,x)G(O,T)xQ,

, (10
u(0,2) = Eu(o,x) =0, zeq,

of the form
u(t, ) = e?BPa(t, z) + R,(t, z),

with a large parameter g. The phase function ¢ is complex-valued. The principal term eiW(t’“’)a(t,x) is
concentrated near a null geodesic ¢ in (M, —dt* + gp/s). The remainder term R, will vanish as ¢ — +oo.
For the construction of term e¢#(:®)q(t, z), we consider the equation

2
p% —V-S8Ez,u)=0
in an extended domain (NZ, such that Q@ cC Q. The parameters A, u, p are extended smoothly to Q. Also
denote M = [0,7] x €.

We want to mention here that by assuming 7' > 2 max{diamg(2), diamp ()}, we have implicitly assumed
that (2, gp,g) is non-trapping, i.e., every geodesic hits the boundary in finite time. Meanwhile, if (22, gp,5)
has no conjugate points and is simply connected, or satisfies the foliation condition, then (€2, gp/g) is non-
trapping (cf. [38, Proposition 3.31] and [8, Lemma 2.1]).

Fermi coordinates. We introduce Fermi coordinates in a neighborhood of the null geodesic 9. Assume
9(t) = (¢t,v(t)), where ~ is a unit-speed geodesic in the Riemannian manifold (ﬁ,g), where g = gp/g is of
interest to us. Assume ¥ passes through a point (tg,z¢) € M, i.e. tg € (0,T) and v(ty) = o € §2, and 9 joins
two points (t_,y(t-)) and (t4+,v(t+)) where t_,t; € (0,T) and v(t—),v(t+) € 9Q. Extend ¥ to M such
that y(t) is well defined on [t_ —€,t4 + €] C (0,T) with € a small constant. We will follow the construction
of the coordinates in [27]. See also [20], [22].

Choose aw, az such that {§(to), ag, a3} forms an orthonormal basis for T, 2. Let s denote the arc length
along v from z5. We note here that s can be positive or negative, and (¢t + s,v(to + s)) = ¥(to + s). For
k=23, let ex(s) € Ty(t,45) 2 be the parallel transport of oy along v to the point y(to + s).

Define the coordinate system (y! = s,y?,y?) through F; : R3 — Q:

f1(87y27y3) = exp'y(t0+s) (y2€2(8) + y363(3)) .

In the new coordinates, we have
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3

gh = (dy')?, and 2

Plo=0,1<i,j,k<3.
oy’ =i

Y

J=1

Then the Euclidean metric g of R? takes the form

ge= Y ’gidy'dy.

1<4,5<3
The Christoffel symbols then have the form
oc Oc Jc
T - B _ sa —1 1 _ -1
Fop=-—c PR Iy =105 75 I'a By
(11)
« :_c—l af dc 1—\1 _ —1@
11 ayﬁV 11 Os .

Here o, € {2,3} and ¢ = cp/s.
On the Lorentzian manifold (M, —dt? + g), near the null geodesic ¥ : (t_ — Sty +5) — M where
9(t) = (t,7(t)), we introduce the Fermi coordinates,
0 L 1 1

Z:T:_t_t +87 z:r:__t+t +87 ZJ:J7:2;3
\/5( 0+s) \/5( 0+s) v, J

Denote 7+ = v/2(t+ — tp). Then on ¥ we have g = —dt? + g satisfying

Gy,

3
Jle = 2drdr + Z(dzj)2 and 5t |y

Jj=2

=0, 0<14,5,k <3

0

We will use the notations z = (7,2') = (1 = 20,7 = 21, 2”") and y = (s = y*, /).

Construction of Gaussian beams. We will construct approximate Gaussian beam of order N of the form
u, = ae'??

with

N

N+1
z/
o= ). atr)=x (E) Y ot
k=0

k=0

in a neighborhood of ¥,

—~ € €
V={(r,7)eM|re|r. — —,r. + —], |¢| < 6}.

(ne) e Mirelr - r+ =L 171 <8)
Here § > 0 is a small parameter. The smooth function y : R — [0, +00) satisfies x(t) = 1 for [¢t| < § and

x(t) = 0 for |t| > 5. We refer to [29] for more details. We denote ag = a = (a1,a2,a3) and a; = b =
(b1, b2,b3). We note here that an extra term ay.; is needed here to achieve order N approximation, in
compare with the solution constructed in [29]. The parameter ¢ is small such that a|;—g = a|;=7 = 0.

In a neighborhood of ¥, we calculate
~ 1 I 0
Erelug) =5 (arse + ak)e’® + 507 (buse + besi)e

1. ; 1. ;
+ §1Q(ak90;l + agp; k)e? + §l(bk90;€ + bep; k)ee?,
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and
oij(ug) == Sz'Lj (ug) :)‘ekegkfeij + 2uE;;
=Ac 29" i gij + 2uE;,
=io(Aar g™ gij + paie,; + pajp,)e?
+ (Makwg™ gij + INbkpg™ gij + (i + aj.i) + ip(bi,; + bjp.i))e'?
+0(0™h).
We proceed to calculate
Oijim =0moi; — U ong — 17 o
= — 0 (Narpyeg™ gij + pai, + pajeq)pme’®?
+ 100m (Aakp.eg* gij + paip; + pajpi)e®?
+1i0 (Aareg® gi; + plai; + ajii) + ik gi; +1n(bigy; + bi0yi)) eime'®?
— 1007, (Aarpig" gnj + pang;; + pajp.)e??
- iQF?m()‘ak@;lgugm + Hanp + Maicp;n)eigv +0O(1),

and

(V-5%)i = Uij;j =0ijmg’ "2
R Y L i
+ioc™? (0i(Narpug™) + Aar g™ Omgis g™ + Om(paip,; + pajp.i)g’™) €9
+ipc™? ()\ak;egkf(p;i + p(aij + aji)e.mg®™ + iAbk‘p;égke@;i
+ i'u(bi(p%j(p?mgjm + ‘F’;ibj‘?’;mgjm)) e'e?
—i0c T T2, g™ (Nakp.0g* gnj + tanp.j + pajp.n)e?
—i0c*T,,9™ (Nak@09™ gni + panp.i + paip:,)e'®? + O(1).

We also calculate
02 (up)i = — 0%(0rp)?a;e®? — 0(0yp)?b;e'?? + 1007 pa;e'?? + 2ip(0yp)dpa;e®® + O(1).

In a neighborhood of ¥, we can write

N
p@fug —-V- SL(uQ) = ¢lo¥ <g211 + Z o T + O(QN)> ,
k=0

where
I = —p(dp)’a + (A + p){a, Vo) Vo + u| Ve *a,
or component-wisely

(Zh)i = —p(0sp)?a; + Aajpag’c 20 + paip e 2g?" + pajp.g cp v,
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and

(Za)i =p(0} )ai + 2pBrpdra; + ip(Drp)?b;
— ¢p? (0:(Nar ;™) + Aarp,0g™ 0mgii g™ + Om (pais; + pajesi)g’™)
—cp® (Nareg® o, + paij + aj.i) 0mg®™ + Nk g™ 0. + ip(bipje.mg™™ + .0 0mg®™))
+ 09" cp (Aarpug® gnj + pane;; + pajp.n)
+ 179" cp? (Aakp.g" gni + panp. + paiomn).-

We will construct the phase function ¢ and the amplitude a such that

o°
62,’_®Ik =0on ¥ (13)
for © = (0,01,04,03) with |©| < N and k= 1,2,--- , N+ 2. The detailed construction will be given later.
Assume that (13) is satisfied, we construct the remainder term R,. We let R, be the solution to the

following initial boundary value problem

aQRQ L o Q
/0 8t2 7VS (I’RQ)*ng (t,x)G(O,T)X 9
R, =0, on (0,T)x 00, (14)

R,(0,z) = %Rg(o,x) =0, zel.
Here
F, = —pdiuy, +V - S*(uy,),
in a neighborhood of ¥. By (13) and [29, Lemma 2], we have

| Foll erecary < Co™ X,

where K = W—&—l.

By Lo estimates for second order hyperbolic equation, we have
[ Roll 1 (ary < CNEpll x(ary-
We can take N large enough and use Sobolev imbedding to obtain
|Rollwsary = O™ '?). (15)

We remark here that u = u, + R, solves the equation (3) with

f:ug

[0,T1x0Q-
3.1. Construction of the phase

We will construct phase function ¢ = ¢p/g such that

Spp = (A +2u)|Vep|* — p(dpp)?,
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or

Sps = u|Ves> — p(drps)?

vanishes on ¥ up to order N. In terms of Fermi coordinates z = (20 = 7, 21, 22, 2%) for dp/s = —dt? + gp/s
we need
a@
az—@(&PP/s)(Ta 0)=0 (16)
for © = (0,@1, @2,93) with |@| S N.
Notice that (16) is equivalent to
e

=0.

@@Sﬁu dwe)g, 5

Thus the phase function ¢ can be constructed as in [29] of the form

Here for each k, ¢y is a complex valued homogeneous polynomial of degree k with respect to the variables
2%, i =1,2,3. In this paper, we will use the explicit forms of g, 1, @2, which will be constructed below.

Following the lines in [27], one can take

—0 7T7—t+t0+8
®0 ) ¥1 \/§ )

and

1<4,5<3
Here H is a symmetric matrix with SH(7) > 0.
The matrix H satisfies a Ricatti type ODE,
d
TH+HCH+D=0,7¢ (7 - ;m + %), H(0) = Hy, with SHy > 0, (17)

where C, D are matrices with C1; =0, Cy; =2,i=2,3, C;; =0, i # j and D;; = i(@%g“).

.

Lemma 1 (/27, Lemma 8.2]). The Ricatti equation (17) has a unique solution. Moreover the solution H is
symmetric and S(H (7)) > 0 for all 7 € (1 — §,74 + ). For solving the above Ricatti equation, one has

where Y (7) and Z(7) solve the ODEs

Lym=czm), ) =%,
L2y = DY (), 2(0) = Vi = HoXo,

In addition, Y (1) is non-degenerate.
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Lemma 2 (/27, Lemma 3.3]). The following identity holds:
det(S(H(7))|det (Y (1)) = co
with ¢y independent of T.
We see that the matrix Y (1) satisfies

d2 d
—SY+CDY =0, Y(0)=Yo, —Y(0)=CVi. (18)

3.2. Construction of the amplitude for P-waves

We consider the Lorentzian manifold (M, —dt*> + gp) and ¥ is a null-geodesic in it. For P-waves, the
polarization vector a should be in parallel with the wave vector Vi on o). Denote ¢ = ¢p and take

a=ApVo. (19)

Component-wisely, the gradient of ¢ has the form

1
o= —=, @ialy=0.
<P,1|19 \/§ P |19
By (19), we have
lo = - lg =0
a Ap, aq ,

and

Iy = (—p(3rp)? + (A +21) |V *) ApV .

By the construction of the phase function ¢, we have (13) satisfied for k = 1.
Next, we proceed to construct Ap. Let us first consider the equation (13) with k =2, © =0 and ¢ = 1.
On ¥, we calculate

1
V2

2p(0p) (Orar) = —\/§P (%

p(0F)ar = —=p(07 ) Ap,

0%
OtAp + AP@) )
1
ip(Jup)*bi = Sipbr,

1
O1(Aarpieg™) = Z0s(AAp) + \/_/\AP

Aagp.0g" 0mgrjg’™ = 0,

Om (a1 + pajpa)g’™ = Os(nAp) + 2\/51“413 S+ V2udp Z P aaya’

1 D¢ _ (‘3c
e e = (fA Gor 50 + 5 Ancp! PZ ayaay >
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' 0? Oc
p(ar; + aj)emg’™ = (0 Ap + \/§Apa—sf — ApepllP

. . . o
INokpieg o1 + (b1 0m g™ + i1bioimg™) = A+ 20y,

n mj 3 _ C
7,9 (Aak@ieg™ gnj + panp,; + pajpm) = (GA+mep 5 -Ap,
n _mj Kkt 1 1 8Cp
079" (Nar@.09" gni + pang,i + paip.,) = —(5/\ +p)cp s Ap.

Then we obtain the following equation on ¥:

1 _ 2
7 <p3?<p— cp” A+ 2)02¢ — cp? (A + 2p) § Gy > Ap
-2 824)0 4/’ -2
1 _38 P 1
1
+i§b1 [p—cp?(A+2u)] =0.

CI_;.QGS(A + QM)AP

Since (:132()\ +2u) = p, by can not be determined at this step, but will be determined from lower order
asymptotics. Notice that on 9,

3
_ B 92
P02 o — (A +2u)0%0 — PN 2w) S 2o E

= ayaaya
=p (@% 2o — Z ayaay )

=pUgp
Z aya 83/

=—pIr(CH) =

(20)

_pgiT log(det(Yp(7))),

and, using % + % = 28%,

V26 (A + 2N)AP

0%p 8290
=~ Vadr (as2 * 888t>

0
=—2pAp—(0s
pAP5-(0s%)
=0.
Then we arrive at the transport equation for the amplitude Ap on ¥,

0Ap " 1 6()\ + 2,[},) ol Ocp " 1 adet(Yp>
or A+2p  O7 P or det(Yp) O1

2 Ap =0, (21)
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or equivalently

62 In [A% det(Yp)cp' (A + 2p)] = 0.
-

Then we can take
Ap(r) = Cdet(Yp(T))_l/QCp(T, 0)_1/2p(7, 0)_1/2,

with some constant c.
Next we consider (13) for k = 2 and ¢ = o = 2,3 and obtain an equation for b,, « = 2,3 on the null
geodesic ¥

0Ap
0z«

i(p— g Wba — 5" (A +20) == + (i, Apls) = 0. (22)
We can get an expression for b, on 9.

Substituting the expression for b, into the equation (13) with k = 2 and |©] = 1 and i = 1, we end up
with a transport equation for %A p on 9, from which we can determine the value of %A p. Then using
again (22), we can determine b,. Finally, the equation (13) with £k = 2 and |©| = 1 and a = 2,3 gives us
the value of (%—Zba on ¥. Continuing with this process, we can have (13) satisfied with £k = 2 and |©] < N.

The lower order terms ag, k =1,2,--- | N+ 1 in the amplitude a can be constructed as in [29] such that
(13) is satisfied for all k =2,--- , N +2 and |0| < N. We note here that (ay+1)1 can take any value, while
(aN+1)a, @ = 2,3 need to be determined.

3.3. Construction of the amplitude for S-waves

Let us now consider a null geodesic ¥ in the Lorentzian manifold (M, —dt? + gs). Denote ¢ = ¢gs. In the
Fermi coordinates,

©i1lo = . ©.ale =0, for a =2,3.

G-

Now

Iy = (Sp)a+ (A + p)la, Vo) Ve

For S-waves, the polarization vector a should be perpendicular to the wave vector Vo on ¢. In order for
(13) to hold, we also need

89

@(& V)ls =0, (23)

for © = (0,01,02,03) with |©] < N. For this we take
a= Age

with e = (e, e2, e3) satisfying |e| = 1 on ) and

a@
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First we construct such vector e. Without loss of generality, we can fix an a € {2,3} and let
eilo, ealo =1, ewly =0, for o' #a.
The equation (24) with |©] = 1 implies

1 Oey 0%
i 0] 9 25
20 T ko 0 on (25)
for k € {1,2,3}. Successively we can obtain, from (24) for |©| > 2, equations for 61 that will be determined.
From now on, we just assume e has already been chosen.

We first consider (13) for k = 2 and ¢ = a. We calculate

p(02¢)an = p(82p)As,

deq
20(5%%0)(@%) = —\/iﬂatAs - ﬁ@“s%:

. L
ip(9r)%by = §1pba,
82(,0 1 861
o (Narp.eg™t) = A —MMg—
9o (Aarp;eg™ ) S By oye + NG Sy’
Aak@;lgkeamgajgj7n =0
. 1 1 Oe 82<p
Om (G, 0.0)g’ " = —=0s(nA — A== As | =
(Baa @y + 1a;pia)g N (. S)+\/—u S D + pnAs 952 ayaay Zayﬁayﬁ

Aak;égkego;a = 07
0Ag ey, Oe; ,1 aCSA )
S

. 1
. . gm _ _* [ Y28 g4 _
(o + ajia) Pimg \/5“ ( D5 +As—- Js AS@ w2 s

. . ; ; 1,
iNbkpseg™ ro + ii1(bapyjPim g™ + Piabipimg’™) = Sittba,

T7,.9" (Narg.eg" gnj + panp,j + pa;e.,) =0,

1 Jdc
ke -~ _,0cs
79" (Aak@:09" gna + 11000 + paapm) = \/EMCS e — Ag.

Then we obtain the following equation on ¥

3

82
pOip — e’ udlp — cg ”Za

yPoyPs As

dea | 5 Deq _
_\/_< © == s ) As — V2(pdiAs + cg?udsAs)

1 _50c 1 0 1 _
ﬁﬂcsg as s = 5032 8MAS + Siba(p — c5°n)

o2 1 0a Pe
e (\/iay“ T ooy )

Since p — c§2u =0, by can not be determined at this step. Notice
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1 ey 0%
— 4 T,
V2 0y * ayeaye

on ¥ by setting k = « in (25) and

Similar to (20), we have

_ 9
PO} — e ude — cg MZ 8yﬁay5 = —p log(det(Ys(7))).

Thus we end up with the following equation for the amplitude Ag on ¥:

28A5 |:1 ou _10cs 1 ddet(Ys) Ag = 0. (26)

or Tlpor % or Tde(vs)  or
The above equation is similar to the equation for Ap (21). Therefore we can take
Ags(1) = cdet(Ys (7)) 2¢s(r,0)7 2 p(r,0)71/2,

with some constant c.

By calculation, we find that the equation Zo = 0 for ¢ = o/ always holds on 1, with arbitrary choice of
bar.

Next we consider the equation (Zz); = 0 for ¢ = 1. We obtain the following equation on the null geodesic

)

1 dAg
Silp =5 (A +2m)b1 — 5 (A + )5 + (¢, Asly) = 0. (27)

aoz

Substitute the expression for by into the equation (13) with k =2, |©] =1 and ¢ = 1. We will end up with
a transport equation for (;9?) Ag on ¢, from which we can determine the value of 59 Ag. Then using again

(27), we can determine by. Finally, the equation (13) with £ = 2 and |©| = 1 gives us the value of b1 on
9.

Similar as for P-waves, we can construct lower order terms in the amplitude a such that (13) is satisfied.
4. Proof of the main theorem

We will prove the uniqueness of &7, #, € from the displacement-to-traction A in this section. For the
determination of &7, %, we will have a pointwise recovery in the interior Q). With & and % determined,
certain type of weighted ray transform of ¢ (along any geodesic in (£, gp)) can be obtained from A. Under
some geometric conditions, the weighted ray transform is invertible.

4.1. Determination of &/ and H$B

We introduce the notations

LM ={(r,€) € T;M, 7 = G ¢},
LM = {(1,6) € Ty M, 7% = cB|¢|},

for the S-wave and P-wave light cones at a point p € M. Let us start with a lemma used in [1]:
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Lemma 3. There exist nonzero (2, ¢(0) ¢ Lgv*M, ¢ e LII,D’*M such that ¢, ¢V and ¢@ are linearly
dependent, while ¢ and ¢ are linearly independent.

For readers’ convenience, we still include the proof here.
Proof. Assume (%) = (%) ¢0)) L =1,2. We have

(r)? = cpleWP?, (r®)? = &Ie@ P,

Now we consider the vector ¢((© = a¢® 4 b¢(®). Without loss of generality, we can assume a = 1, [€(F)| = 1
for k = 1,2. In order for (¥ € L5 M, we need

(r ® 4 b7(2)) |§(1 + b§(2)|

Then we must have

20/ (N + 2p) — 2ube™ - €3 4 (X +2u) = 0.

The above equation (with b as the unknown) always has a nonzero solution. This finishes the proof of the
lemma. 0O

Fix a point zg € Q. Let p = (%,xo) e M, 0 1) @) ¢ T, 9, |€)| = 1. By Lemma 3, we can choose
€F) |k =0,1,2, such that
¢ = (cp,6W) € L) M,
¢? = (cs,6®)) € LM,
¢ = (es.€) € L7 M,

satisfying
k0C O 4+ k1 CW + ko¢® = 0. (28)

Remark 2. The only term with parameter % in (9) is €(V-u™M)(V-u))(V -v). If any of the three solutions

u™ u® v represents S-wave, this term will essentially vanish. Thus for the recovery of €, we need to take
u™M u® v all representing P-waves. However, one can not choose three vectors in LZI,) *M , such that they
are linearly dependent but pairwise linearly independent. This explains why we need to recover % in a
different way:.

Denote 99, 9(?) to be the null geodesics in Lorentzian manifold (M, —dt? + gg) with cotangent vector
¢@ ¢ at point p, and 9 the null geodesic in Lorentzian manifold (M, —dt?+ gp) with cotangent vector
¢ at point p. We will construct solutions:

1), P

Ug is the Gaussian beam solution representing P-waves, concentrated near the null geodesic 9(!);
. u(2) 5V is the Gaussian beam solution representing SV-waves, concentrated near the null geodesic 9(?);
. vf is the Gaussian beam solution representing SV-waves, concentrated near the null geodesic 9.

(See Fig. 1.)

More specifically, denote

u(gl),p_elgm«p ()( 1)+(’)(971)), u(gz),SV elgm@ (2)(3(2 +O(p 71))
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(0,T) x 09 (0,T) x 09

Fig. 1. Illustration of the choices of 19(1), 9 and 9@,

and
va = eig"o“"m)x(o)(a(o) +0(>e™h).
By the construction of the phase functions ¢*), we can let
Ve (p) =P for k=0,1,2.
The amplitudes can be chosen such that
all(p) =¢W, a®(p) =a(p) L spanf{¢™, @},
Similar to [29, Lemma 5], we have
Lemma 4. The function
S = Iio(P(O) + ,%190(1) + KQQO(Z)

1s well-defined in a neighborhood of p and

1. S(p) =0;
2. (0:S(p), VS(p)) = 0;

a® (p)] = 1.

3. 3S(q) > cd(q,p)? for q in a neighborhood of p, where ¢ > 0 is a constant.

Proof. The first claim is trivial since each of the three phases ¢*) vanishes along 9(*). For the second claim,

one only needs to notice that

(019, V() = (c5,), (9,01, VD) = (ep, €M),  (0:p?,Ve?) = (cs,6@)

and use (28).
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For the third claim, first notice Sp™(q) > 0. We will prove 3¢ (q) + IS¢ (¢q) > cd(p,q) for some
constant ¢ > 0. Using Fermi coordinates for (M, —dt? + gg), we see that for k = 0,2,

D*SeM(X,X) >0, VX eT,M,
D*SeM (X, X) >0, VX €T,M \ span(é*)H).

Since £© and €@ are linearly independent, the claim follows. O
Now let u®), k = 1,2 to be the solution to (4) with

FO =ulPlo rcan,  fP =u? V0 11x00

and v to be the solution to (7) with

SV
g=19, |[0,T]><8§2~

We remark here that wu, (k), » lt=0 = Bt (k)’ +—0 = 0, and Usv‘t = at g V]i=r = 0 since T > 2 diamg(Q).
We will need the estimate (15) and the following ones
lu§) P llwrs, (w5 lws, (oY [lws = O("?).

Substituting f), (2, ¢ constructed above in (8), we know that the displacement-to-traction map deter-

mines

T

o ! / / G(VuM, vu?® vo)dadt

KR1KR2oK3
0

:g2/eigsx( XxPxOg@a® @ Vo) a® @ V@ a® @ Ve)dzdt + O(o1/?).
Q

First let us assume there are no conjugate points in (€, gp). Then the three null-geodesic 91, 9(2) 9(©)
intersect only at p, and thus the function x(M)xx(9) is supported in a small neighborhood of p. Denote

A:=G@a® @ Ve a® @ Vp® a® @ ve®)
with

g(a(l) ® v(p(l)7 a(2) ® VLP(Q), a(o) ® V@(O))
:@[(a(l) . V(p(l))(a@) . V(p(o))(a(o) . V<p(2)) + (3(2) ~V<p(2))(a(1) . V<p(0))(a(0) . v(p(Z))
+ @@ . v (@a® . vep@)(@a® . ve®)

o
+= <(a<2> V) a® . vp@)(@a® . vup@) 1 (a® . ve@)@® . ve®)(a® . v@<1>)>

+ A+ 2B)[(aV - VM) (@a® . a®) (V@ . V) 4 (a® . @)@l . a®)(vel) . ve)
+ @M - a®) (Ve . vp@)(@a® . ve@)] + 26 (@ . V) (@@ . V) (@® . ve®)

of
+ (u+ I)((a(l) ca®) (Ve - a@) (V@ . vu@) + (Ve . ve@) @D . a®@)@a® . ve®)
+(@® . aW)(Vp® . a®) (Ve . V@) 4 (a® . a®)(@® . vp@)(vel) . vp?)
+ (Vo - a@) (V@ . @) @a® . a) 4 (V@ . aW) (Ve . vep@)(a? .a(O))).
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By the choice of a®) =a®)(p) and £¢*), k =0,1,2 in (29). We have
A(p) =B(x0)[(aV - €M) (@@ - ) (O . @) 1 (o). @) (oD . @) (o0 . ¢2)
+ (@ O (M) . g0y (). £(2))]

+ %(IO) <(a<2> DY (@D . @) (0® . £@) 4 (oD . @) (0@ . @) (o .5<1>))

+ A+ B)(x0)[(e - €M) (@@ . @) (@ . O 4 (o). @) (@M. @O . £
+ (™ a@)(ED . @) (@O . O] 4 28 (20) (V) - €MD) (@@ . @) (@ . )

+ (u+ %)(xo)((a(l) @) (ED L @) (@ @) 4 (DL @ (oD o) (o). )
+ (@ - aM)(E@ . 0D ) L (@ o) (@M. £@)() . ¢2)
+ (W @) (@ . ) (oW . 0O 4 (6@ W) (D) . Oy (o) _a(O)))

=+ B @)e® €0 + 2+ Do) (€0 £D)(ED €O,

Apply the method of stationary phase (cf., for example, [39, Theorem 7.7.5]) to (30), we can recover

A+ 2)(w0)6® - €% + (2 + %)(xo)(é” £ (ED €O,

by taking ¢ — 4o00. This is exactly the same quantity recovered in [1] using the nonlinear interaction of
distorted plane P and SV waves. By varying £V, ¢ (£(9) will be varying accordingly), we can recover \+%
and 2u + % separately at the point zy. Since xy can be any point in {2, this completes the determination
of o/ and £ in ().

Remark 3. We only used the nonlinear interaction of P and SV waves to determine ./ and . It has already
been observed to be possible in [1], wherein nonlinear interactions of other types are analyzed as well.

Now assume ({2, gp) satisfies the foliation condition. As in [7], for any point g € 95, there exists a wedge-
shaped neighborhood O, C € of ¢ such that any geodesic in (Og4, gp) has no conjugate points. Then the
three null-geodesics ¥V, 9 9O if 9(1) < ((0,T) x O,, —dt?>+ gp), can intersect only at p (since cp > cg).
We can now recover &7 and % in Q. Then the foliation condition allows a layer stripping scheme to recover
the two parameters in the whole domain Q. For more details, we refer to [7].

4.2. Determination of €

Finally, we recover the parameter %.
Since &7 and % have already been determined, the displacement-to-traction map now gives

T

/ / (V- uV)(V - u@)(V - v)dadt. (31)
Q

0

We will construct v("), u(?) and v so that they all represent P-waves. Still use Gaussian beam solutions, now
concentrating near the same null geodesic ¥ in (M, —dt? + gp). Let
|2']

!
ug) _ ué2) — EIWX(T)(a +0(0™ ),
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—2ipp 2] -1
vy =€ X (=)@+0(e )
Let u®)| k = 1,2 to be the solution to (4) with
FO =ulMorxa0, [P =uP|01)x00
and v to be the solution to (7) with
9= Ug|[0,T]xasz-

We extend ¢ to  such that 4 = 0 in \ Q. Then the displacement-to-traction map determines

1
o / GV - uMY(V - u@)(V - v)dV
M

T++%
!/
¢ [ [ weeedEhwe a v a) T ada nar + 0
T-—5 |2[<6

with ¢ sufficiently small. Notice
(Vi a)(Vip-a)(Vip-a)lo(r) = c det Y (7)] ! (det Y (7)) "2 2 (r)p~*/2(7),

where c¢ is some constant. Thus, using method of stationary phase and Lemma 2, we have

!
i o2 [ et (B e a) (v a) (T a)har
o—+o0 )

|z"|<8

=c%(1,0)cp” 2 (7,0)p(,0) 32 (det Y (7)) /2.
ThU.S Wwe can recover

/ @ep’?(7,0)p7% (7, 0)(det Y (1)) Y/ 2dr.
9

Remember that Y solves the equation (18). By [27, Corollary 3.5],

921! _
021029 |y

0.

Thus one can take Y11 = ¢g, Y7; = Y;1 = 0. Here ¢y > 0 is independent of 7. Denote Y = (Ya/g)iﬁ:? Then
the 2 x 2 matrix Y satisfies
d2 ~ d

— Y +DY =0, Y(a)=Y, -

d-2 ?(a) = i}la

~ 3
where D, = % (825911@) s
«,=2

Now let us use some notations and definitions introduced in [40]. We will follow the lines in [28]. Assume
9(t) = (t,v(t)) where v is a geodesic in the Riemannian manifold (€2, gp). Denote
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Y(t)T = {v € Ty)Qlgp((t),v) = 0}

to be the orthogonal complement at the point (t) of . Define the (1,1)-tensor IL,; to be the projection
from T, ;)M onto 4(t)*. A (1,1)-tensor L(t) is said to be transversal if IL, ;) L(¢)IL,) = L(t). Denote Y,
to be the set of all transversal (1, 1)-tensors Y (¢) that solve the complex Jacobi equation

d2
—Y )+ K@Y (t) =
SV + K@Y () =0,

subject to the constraint that

Y (t) is non-degenerate, Y (to)Y (to) ™! is symmetric and (Y (to)Y (to)™1) > 0.

Here K = KJ’ 6?/1' ® dyj|7 is a tensor on 7y, where K]’: = Rjkeiﬁk"yl, and R is the Riemann curvature tensor.

As in [27], we now have the Jacobi weighted ray transform of the first kind (cf. [28]) of %C;Q/2p_3/2 = f
along the geodesic 7 in (£2, gp) passing through xo = v(to),

Wy = / FO/(®)) (det Y (1))~ 2d

for any ¥ € Y,.

By [28, Proposition 3], /}(,1) f uniquely determines f(zq) if (£2,gp) has no conjugate points. Therefore,
we can recover €(xg) since cp and p are already known. Here we use only the ray transform along this
single geodesic. It is possible since we have the integral of f along the geodesic with a class of weights.

If (Q, gp) satisfies the foliation condition, we can adopt a layer stripping method as previously used. One
can also directly use the invertibility of weighted geodesic ray transform with a single weight established in

[8].
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