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Evolution, history, and use of stem taper equations: a review of
their development, application, and implementation’
John Paul McTague and Aaron Weiskittel

Abstract: Stem taper equations, which predict the change in stem form from ground to tip, have become the primary
means for estimating bole volume. Stem taper equations can provide predictions with similar levels of accuracy as volume
equations, but with greater flexibility, a wider range of potential uses, and consistency between taper and volume. This
review is a synthesis of the current state of knowledge on stem taper equations and an assessment of challenges for future
model refinement. It includes the history and evolution of stem taper model forms, which have received tremendous atten-
tion and focus over the last several decades. Additional focal areas covered are (i) the use of additional covariates beyond
tree diameter at breast height (DBH) and total height; (ii) alternative statistical methods for developing stem taper equa-
tions such as parametric, semiparametric, and nonparametric approaches; (iii) key considerations for proper development,
application, and use of stem taper equations such as sample size requirements, local calibration, and evaluation; and (iv) a
synthesis of key findings, future opportunities, and ongoing challenges. Current and developing technologies such as ter-
restrial laser scanning (TLS) offer an unprecedented opportunity to measure stem form in much greater detail at signifi-
cantly lower costs and time requirements than traditional methods. Overall, continued development, refinement, and
application of stem taper equations will remain important given the critical nature of tree volume for science, accurate
inventories, and ultimately, sustainable forest management.

Key words: bole volume, stem form, forest inventory, parametric, semiparametric, nonparametric, regression.

Résumé : Les équations de défilement des tiges, qui prédisent les changements dans la forme des tiges du sol jusqu’a I’extré-
mité, sont devenues le principal moyen pour estimer le volume du tronc. Les équations de défilement des tiges peuvent
fournir des prédictions avec des niveaux de précision semblables aux équations de volume, mais avec une plus grande flexi-
bilité, un éventail d’usages potentiels plus grand et une cohérence entre le défilement et le volume. Cet article est une syn-
these de I’état actuel des connaissances sur les équations de défilement et une évaluation des défis a surmonter pour
raffiner les futurs modéles. Cela inclut I’historique et I’évolution des formes de modeles de défilement, qui a suscité beau-
coup d’intérét et recu beaucoup d’attention au cours des quelques derniéres décennies. Les zones additionnelles d’intérét
couvertes sont (i) I'utilisation de covariables additionnelles autres que le diameétre des arbres a hauteur de poitrine (dhp) et
la hauteur totale; (ii) les méthodes statistiques alternatives pour élaborer des équations de défilement des tiges telles que les
approches paramétriques, semi-paramétriques et non paramétriques; (iii) les princ ipales considérations pour le développement,
l'application et l'utilisation appropriés des équations de défilement des tiges telles que les exigences concernant la taille de
I’échantillon, la calibration locale et I’évaluation; et (iv) une synthése des principales constatations, des opportunités futures et
des défis actuels. Les technologies courantes et en voie de développement, telles que le balayage laser terrestre, offrent des oppor-
tunités sans précédents de mesurer la forme des tiges de facon beaucoup plus détaillée a des cofits significativement plus faibles
et beaucoup plus rapidement que les méthodes traditionnelles. Globalement, I’application, le raffinement et le développement
continu des équations de défilement des tiges vont demeurer importants étant donné le caractére crucial du volume des arbres
pour la science, la précision des inventaires et ultimement I’aménagement forestier durable. [Traduit par la Rédaction]|

Mots-clés : volume du tronc, forme de la tige, inventaire forestier, paramétrique, semi-paramétrique, non paramétrique,

régression.
1. Introduction form, which generally requires water displacement technique or
Tree volume, particularly merchantable volume, is a primary ~ Xylometry for true accuracy (Filho and Schaaf 1999). Conse-
attribute that strongly influences forest management and plan-  quently, tree volume estimation often relies on the application
ning. However, tree volume is difficult to measure and assess of empirically derived volume or taper equations. Because of
directly because of time and effort involved, the general require- their level of accuracy and high flexibility, stem taper equations

ment to destructively sample, and the complex nature of stem have become a standard method for estimating tree volume in
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recent decades. Stem taper equations have been discussed in
detail in various forestry textbook chapters (Weiskittel et al. 2011;
Burkhart and Tomé 2012; Kershaw et al. 2016). Although these chap-
ters address stem taper equations and their application in some
detail, the full extent of the available and current literature has yet
to be synthesized. Consequently, a comprehensive review of their
primary literature and a discussion of the evolution and use of
taper equations from both a scientific and practical perspective are
warranted.

Stem taper equations predict the absolute or relative rate of
change in the tree stem profile in either diameter inside or out-
side bark. Many model forms and potential predictors have been
used in stem taper equations, and multiple statistical approaches
and considerations for appropriate application are also worth
highlighting. Consequently, this review is divided into three pri-
mary sections: (i) the history and evolution of stem taper model
form and predictors; (ii) alternative statistical approaches for
stem taper model parameterization; and (iii) considerations for
effective development, application, and use of stem taper equa-
tions. The review concludes with a brief discussion on the current
limitations of stem taper equations and their potential future de-
velopment and application. Although stem equations are used
throughout the world, greater detail in this review is focused on
North America.

2. History and evolution of stem taper model form
and predictors

Stem taper equations predict the change in stem profile from
the ground to tree tip. Trees can be considered as a combination of
geometric shapes (e.g., cylindrical, parabolic, and conical) that vary
with species, tree age, and stand conditions. Goodwin (2009) noted
several key criteria for a taper equation, including (i) high accuracy;
(i) reliance on predictors that are easy to obtain; (iii) algebraically
integrable and invertible; (iv) continuous yet constrained to ensure
that predictions are consistent with inputs; (v) single and nonseg-
mented equation; (vi) easily localized and able to explain the
variability between trees, yet regionally applicable; (vii) logical
behavior (e.g., stem diameter > 0, = 0 at total height, and = tree
diameter at 1.3 m); (viii) integration yields total stem volume;
(ix) invertible (e.g., d = 7(h) — h = 7 (d)); and (x) applicable to a
wide range of species, stand conditions, and tree sizes. Given the
high variation in stem form, a wide variety of model forms and
predictors have been used even for certain species and regions
(Hann 1994), further highlighted in the following sections. A
brief synopsis of early efforts to predict tree taper is followed by
a greater focus on model forms used today.

2.1. Early efforts in predicting tree taper based on center of
gravity within the crown

Dating back to the late 1800s, early predictive models for
stem taper did not contain fitted coefficients, but rather relied
on the theory of stem form and taper that were inferred from
conjectures about the mechanical strength properties of tree
stems. As summarized by Anuchin (1960) regarding the theo-
ries of Metzger (1893): “If the stem is regarded as a beam of uni-
form strength, the cubed diameters of any of its sections must
be equal to the distance from those diameters to the crown’s
center of gravity”. In a review of tree stem form and develop-
ment, Larson (1963) stated that Metzger (1893) considered both
the vertical force of the stem itself and the horizontal force
imposed on the tree by wind. Anuchin (1960) stated that hori-
zontal wind force had a bearing on the stem taper within the
crown of the tree. Figure 1 provides an illustrative interpreta-
tion of stem taper below the crown’s center of gravity; however,
it appears based on the premise of a triangular crown shape.
Below the base of the live crown, upper-stem diameter is pre-
dicted as

211

Fig. 1. The d° rule of Metzger (1893) for upper-stem diameters
below the live crown, whereby the diameters cubed are
proportional to length: d3:d3:d3 =1;:1,:1;. Figure from Anuchin
(1960).
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where d, is upper-stem diameter in centimetres, d., is upper-

stem diameter at the crown base in centimetres, cl is crown

length in metres, and dist, is distance in metres from d,, to d,.
Within the crown, the stem is assumed to have conic taper, and

upper-stem diameter is computed as

- distﬁp>
(2) du - dcb (T

where distyy, is distance in metres from total height to the upper-
stem diameter d,,.
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Fig. 2. Form point is defined as the center of gravity of the crown in percentage of total height. It is measured in the field by holding a
ruler, divided in tens, and aligning the sight of the top of the ruler with total tree height and the bottom of the ruler with ground-line

diameter of the tree. Figure from Fogelberg (1953).

Larson (1963) referred to eq. 1 as the “d® rule” that follows the
hypothesis of a tree stem conforming to a beam of uniform resist-
ance to bending. Referring to Fig. 1, the cubes of upper-stem
diameters are stated to be proportional to the log lengths from
the crown’s center of gravity: d5 : dj : d3 =1;:1, :13. One considera-
tion on this hypothesis is whether the stem bole contained heart-
wood or not. Trees with heartwood, or a hollow uniform strength
beam, were stated to have the following proportionality by Kozitsin
(1909): d¢>:d35 :d3> =11: 1 1 1.

Metzger’s (1893) hypothesis certainly provoked vigorous debate,
with much of it centered on whether he had fully considered the
effect of horizontal wind pressure. Hohenadl (1924) suggested
that the diameter at any point on the stem was governed by the
weight that had to be supported at that point, and Gray (1956)
asserted that Metzger’s hypothesized tree bole resembled a cubic
paraboloid and was unnecessarily strong from a mechanical point
of view. Instead, Gray advocated that the dimensions of the main
stem conformed to those of a quadratic paraboloid. Regardless,
the influence of Metzger and the importance of the center of grav-
ity in determining stem form continued to have a strong role in for-
est measurement practices in the southern United States (US) until
the early 2000s. For example, a large forest products firm in the
southern US used a three-coefficient Hojer (1903) taper model (eq. 3)
without any fitted parameters in its volume estimation procedures:

d

H—hy
b
—_ —py xIn 71+<H71'3)
DBH ° by

(3)

where h,, is upper-stem height in metres corresponding to upper-
stem diameter d,;, H is total tree height in metres, DBH is diame-
ter at breast height (1.3 m) in centimetres, and b; are coefficients

stimated
Cander of

Grdus ¢ &.

of the Hojer (1903) taper model. Three conditions were imposed
on the taper model, thus reducing the number of free-fitted pa-
rameters to zero:

Condition Resulting expression
whenh, =H,d, =0 Inb; = by x Inby
1

whenh, =1.3, d, = DBH bp=—————

" o * T In[(by +1)/by]

H+13 dy In[1+ (B/2)]

h = ) — aft fc=—+- 77/
when hy >’ DBH afc afc In(i+ B)

where B =1/b; and afc is the absolute form class (an inside-bark
ratio) of upper-stem diameter to DBH at 50% of the height
between 1.3 m and total height. B is solved iteratively for each
tree, and it is a function of the absolute form factor. Fogelberg
(1953) suggested that the tedious determination of absolute form
class could be supplanted with the measurement of form point
(FP), which is defined as the location above ground of the center of
gravity of the crown in percentage of total height (Fig. 2). Fogelberg
(1953) asserted that form point was a convenient and reliable meth-
odology for predicting absolute form class. A simple linear function
is used to predict absolute form class: afc =(32.3 + 0.515 x FP)[100.

In summary, a single coefficient for the Hojer (1903) taper model,
B, is indirectly computed from an observed estimate of the tree’s
center of gravity. The Hojer taper model is then integrated to com-
pute cubic volume. One troubling feature among the illustrations
provided by Anuchin (1960), Gray (1956), and Fogelberg (1953) is the
lack of consistency regarding the location of the center of gravity,
or center of pressure on the crown. Given the difference in crown
shapes, their approximation of the center of gravity certainly
appears plausible, but a question arises over the repeatability of
their predictions among different field observers.
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Fig. 3. Geometrical solids with increasing values of r. The integrated stem profile results in volume = 1 (base x height), where base is

the cross-sectional area at 1.3 m. Figure from Bitterlich (1984).
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2.2. Solids of revolution

Solids of revolution represent a useful construct and introduc-
tion to stem form and taper. Although small differences exist
among authors on the treatment of the left-hand side of the taper
expression, Bitterlich (1984) defined a stem profile equation that
is mathematically consistent with the Y = Kv/X" or Y =K x X"
expression used in the standard forest mensuration textbook
(e.g., Kershaw et al. 2016):

)G

“) DBH/ \H-13

where the r exponent defines form. As demonstrated in Fig. 3,
the exponent r dictates both shape and volume of the solid.
When estimating standing tree volume of excurrent form, atten-
tion is generally focused on stems with the form ranging from a
paraboloid (r = 1) to a cone (r = 2). Rarely does an entire tree stem
resemble a neiloid (r = 3), and this shape is normally reserved for
the bottom segment of the stem bole. Integrating the d? term of
eq. 4 from 1.3 m to total height (H) provides an expression of vol-
ume above breast height (vyy):

hy=H 1
d2 dh, = Tk DBH?*(H —1.3)

5 Voh = Kk e
®) he=13 r+

where k = 7/40000. Using an expedient assumption that a
stem bole resembles a cylinder below breast height, the total
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volume (v) of a tree from ground line to total height can be
expressed as

(6) v:%xgx(H—lS)Jrgxl.B

where g is individual-tree basal area. The cylindrical form factor (ff),

1
or v/(g x H), is then computed from either T for volume above

1+ (1.3r/H)

breast height or for total volume. Knowledge of the

exponent r or form factor for a species of interest can be useful
for performing quick mental computations when conducting a
field reconnaissance; however, the use of eq. 4 is rarely satisfying
when merchandizing a stem into multiple products. Bruce and
Schumacher (1942) recognized the peril of using an erroneous
assignment of geometric shape to the stem and suggested the
computation of tree stem volume by graphing the stem profile
and then using a planimeter to compute area and volume. This
reticence to assign a tree to a solid of revolution form may par-
tially explain why use of the Mesavage (1947) cubic-foot volume
tables still lingers in the southern US. The Mesavage tables
require the user to provide an estimate of form class ((d, inside
bark at 5.3 m/DBH) x 100). Mesavage (1947) provides an estimate
of taper at the midpoint of the first 4.9 m log by DBH and form
class. Cubic volume inside bark is then computed for the first
4.9 m log using the Huber volume formula (v=L x g,,, where L is

<. Published by NRC Research Press
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Table 1. Overview of the primary parametric stem taper model forms with advantages, disadvantages, and examples identified.

Model form Advantages

Disadvantages

Example(s)

Variable-form  Highly flexible with robust performance
across multiple contrasting species; long
history of development and application;
ease of parameterization

Long history of development with consistent
linkages between stem form and volume;
often has algebraically integration; can be
estimated as a system of equations

Compatible

Requires numerical integration for volume
estimates; can have high 2004)
multicollinearity; can have unstable
behavior near stem base

May constrain behavior and unnecessarily
reduce flexibility with limited gains in
accuracy for volume predictions; no (2001)
assurance of biologically reasonable

Newnham (1992); Kozak (1988,

Demaerschalk (1972); Fang et al.
(2000); Sharma and Oderwald

representation of stem form

Polynomial Ease of fit and application; continuous with
a single equation required; algebraically
integrable and invertible; consistent

Long history of development and still widely
used today; ensures proper and
biologically consistent behavior;
algebraically integrable and invertible

Flexible and potentially more parsimonious
than variable-form approaches; robust for
species with complex forms; biological
interpretability; algebraically integrable
and invertible

Simple yet robust formulation; relies on
within-tree relationships; can incorporate
additional predictors

Segmented

Trigonometric

Matrix

Often requires numerous constraints for
proper behavior; can overfit and not
extrapolate well

Noncontinuous; determination and
estimation of optimal join points can be
challenging

May reduce flexibility; can be
noncontinuous and inconsistent in
behavior

Limited application; reliance on upper-
stem diameters

Kozak et al. (1969); Goodwin
(2009); Téo et al. (2018)

Max and Burkhart (1976); Clark
etal. (1991); Valentine and
Gregoire (2001)

Matney et al. (1985); Thomas
and Parresol (1991); Bi (2000)

Kilkki et al. (1978)

log length and g, is the cross-sectional area of the log at mid-
length).

2.3. Modern taper equation forms

Since the 1960s, there has been a preference for mathemati-
cally based model forms that offer the flexibility needed to accu-
rately estimate stem taper yet are constrained to ensure proper
behavior from the ground to tree tip. The vast majority of stem
taper equations rely primarily on three predictors (i.e., relative
or absolute height in the stem (h,), DBH, and H), despite a variety
of additional model predictors that have been tested with differ-
ing degrees of improvement. In contrast, a wide variability of
stem taper equation model forms have been developed and used,
but most are of four primary types: (i) variable-form; (ii) compati-
ble and parsimonious; (iii) polynomial, segmented, and splines;
and (iv) trigonometric and matrix. These types are further
described and compared in the following sections (Table 1).

2.3.1. Variable-form taper functions

Recognizing the drawback of assigning a unique shape vari-
able, or r exponent of eq. 4, to the entire tree stem profile, numer-
ous authors have indicated that a typical tree is a composite of
several geometric forms and segments. As depicted in Fig. 4, the
typical tree contains a bottom log that resembles frustums of a
neiloid, several logs or bolts in the middle portion of the tree pos-
sessing the shape of a paraboloid, and the tip of the tree that is of-
ten conic in shape. Based on a sample size of 11000 first (butt)
logs, Bruce (1982) affirmed the approximate neiloid shape for the
first (butt) log of multiple species in the US Pacific Northwest and
derived a cubic volume equation for the first log as vy = L X
(0.25 x g, + 0.75 x gyp), where L is log length and g, and gy, are the
cross-sectional areas of the log for the lower and upper end,
respectively. The empirical Bruce (1982) formula contains less vol-
ume than the exact Grosenbaugh (1966) formula for a frustum of

(da - db)2
—2
where k = 77/40 000 and d, and d,, are the diameters of the log for

a neiloid, which is expressed as v =k x L|dadp, +

the lower and upper end, respectively. It exceeds the Bruce (1982)
formula for first log by the quantity 0.5 x k x L x dy(d, — dp). The
observed volume of logs or bolts in the middle section of the tree
is parabolic, which is typically computed with the Smalian for-
mula or vyiqaie = L X (0.5 X g, + 0.5 X gp,). The observed volume of
the log at the tip of the tree is conic, which is computed as vy, =
(L/3) x ga. The taper function constructed by Fang et al. (2000) im-
plicitly produced an empirical volume formula for slash pine
(Pinus elliottii Engelm.) at the tip of a tree. The approximate Fang
et al. (2000) volume formula for the top segment of the tree is
expressed as vp = (L[2.604) X g,.

Inspecting Fig. 4, Newnham (1988, 1992) suggested that eq. 4
should no longer be deployed for a tree of interest using one
constant value for the exponent r. Rather, the changing shape
and implied value of r for each stem segment could be repre-
sented with changing step values. Newnham transformed eq. 4
and placed the exponent governing stem form on the left-hand
side:

o (om) = (533)

DBH/ \H-13
where k =2[rof eq. 4; k=1is a cone, k = 2 is a quadratic paraboloid,
k = 3 is a cubic paraboloid, and k = 2/3 is a neiloid. The changing
step values of k, by geometric shape for each stem segment, are

represented in Fig. 5. It is easy to obtain an observed value for k at
each bolt cut of a sample tree, computed as

H-hy
I\
(8) k=—"— 9/
n(53)
DB
Newnham (1988, 1992) then constructed regression equations

H—hy
T 1.3) and
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Fig. 4. The relative height of the dashed lines denotes the gradual
transition in geometric shapes from cone to paraboloid to neiloid.
Figure was adapted from Newnham (1988).
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Figure 5 contains the hypothesized continuous shape values for
k; however, it shows them only as a function of relative height. Pre-
dicted values for upper-stem diameter are then calculated as

/k
. II—hu)l
(10) ¢,7DBH><<H713

If the exponent 1/k in eq. 10 is a function of one constant para-
meter, as in the case of the simple Ormerod (1973) model, it is no
longer considered as a variable-form taper function. Similar to
the Ormerod (1973) taper model, the Behre (1927) hyperboloid is
another simple one-parameter model that can be expanded as a
variable-form taper function. With some modifications of the Bruce
(1972) terminology, the Behre (1927) taper model is expressed as

dy  H-hy

(t DBH H — ahy
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Fig. 5. Relationship between k = 2/r of eq. 4 and the domain for
relative height extended beyond the 0-1 range of original taper
function of eq. 4. The continuous curve implies a gradual
transition for change in taper and form for the stem bole with
changes in relative height. Figure from Newnham (1988).
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where 0 < « <1. When « =0, the stem resembles a cone, whereas
the stem resembles a cylinder when « = 1. Bruce (1972) demon-
strated that the parameter « could be observed for each bolt cut
of a sample tree with the computation

Hd, — DBH(H — hy)
duhy

(12) a=

Similar to eq. 9, a prediction equation can then be constructed
for the Behre (1927) parameter «, making it a variable-form taper
function.

Variable-form taper functions were considerably advanced by
Kozak (1988) using one continuous function to describe the shape
of the bole with a changing exponent to compensate for the nei-
loid, paraboloid, and conic forms. Kozak (1988) started with the
premise that the upper-stem diameter profile was guided by the
inflection point where the stem changes from a neiloid to a
paraboloid:

du .
(13) DBH
o n
where X = %; n = 0.5; p is the relative height (h,/H) of

the inflection point, typically 20%-25% of total height; and Cis a
continuous function for the entire stem, consisting of polyno-
mials and transformations of relative height and the slenderness
ratio. The change in direction from a neiloid to paraboloid occurs
at the relative height p when X =1.0. Kozak (2004) provides a good
summary of successive changes to eq. 13 over time; however, the
basic behavior of the model remains unchanged because it is gov-
erned by the X variable. Several enhancements have also been
implemented with respect to the C exponent function. The latest
model identified by Kozak (2004) has the following formulation:
(14) d = aoDmE (T )

where z = hy/H, n =1/3, p=1.3/H, Q =1- (hy/H)", and a; and b; are
coefficients determined from regression. Indeed, in more recent
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Fig. 6. The Kozak (2004) formulation (eq. 14) is well suited for
testing hypotheses in the C exponent function. Li et al. (2012) used
an indicated variable for stand origin and determined large
differences in the stem profile by relative height for natural and
planted red spruce (Picea rubens Sarg.). Figure was adapted from Li
et al. (2012).
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applications of the Kozak (2004) taper function outside of North
America’s Pacific Northwest, it is now common to encounter the
value of the inflection point set to p = 1.3/H and the power of the
inflection point set to n =1/3 (Li et al. 2012; Weiskittel and Li 2012;
Scolforo et al. 2018), and the term for tree size, namely
aoDBH"H%, has also improved performance (Kozak 2004). The
exponent terms inside the parentheses of eq. 14 correspond to
the C exponent function of eq. 13, which is ideally suited for test-
ing additional hypotheses regarding stem form. For instance, Li
et al. (2012) found that stand origin (planted vs. natural) had a
rather large effect on the stem profile across several softwood
species in eastern North America (Fig. 6).

Equation 14 possesses less multicollinearity than earlier mod-
els. Although the model initially appears complex, it can be eas-
ily transformed to a linear model by applying logarithms. The
initial parameter values obtained from linear regression consid-
erably facilitate the nonlinear regression fitting of eq. 14. It
should be noted that eq. 14 must be inverted by an iterative nu-
merical procedure to compute h, as a function of d,. Likewise,
numerical integration must be employed to compute stem vol-
ume. Neither numerical task is very difficult, and Robinson and
Hamann (2011) demonstrated the uniroot function in R software
for inverting the taper function with the Kozak (2004) model. In
addition, most studies comparing multiple taper model forms
have found variable-form to perform the best in predicting both
stem profile and volume (Rojo et al. 2005; Li and Weiskittel 2010).

2.3.2. Compatible and parsimonious taper functions

Compatibility implies that the integration of the taper func-
tion over the domain of ground line to total height will produce
an estimate that equals that of a total volume equation. Compati-
bility can be a useful and expedient feature, especially if it can
produce a taper function that requires no fitting. Ultimately,
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however, a fitted taper model with d, as the dependent variable
will outperform a compatible profile equation with parameters
that are indirectly derived from a total or merchantable volume
equation. As highlighted by Zhao et al. (2019), compatibility can
be defined both in algebraic terms as well as numerical consis-
tency among the components of total volume, merchantable vol-
ume, and taper.

Demaerschalk (1972) introduced a clever technique to produce
a taper function that is compatible with the popular Spurr (1952)
total volume equation, namely, v = ay + a; x DBH?> x H. The
Demaerschalk (1972) taper function is expressed as

2 by
(15) ( du ) _ ao(b1 4; l) « (H — hu> I Ch(bz + 1)
DBH kDBH?*H H k

y (H - hu> b
H
where k = n/40 000, g; are predetermined or exogenous coeffi-

cients of the Spurr (1952) volume equation, and b; are “free” coef-
ficients estimated from nonlinear regression. Recognizing that

H
total volume is computed as v =k / dlzldhu, it follows that com-
0

patibility is attained with the integration of eq. 15, resulting in

B (H _ hu)b1+1 H
b+ 1

a,(by + 1)DBH?
HP:

ao(by +1)
(16) V=g

H
(H — hy)?**!
b, +1

0

After simplification, eq. 16 results in v = a, + a; x DBH? x H.
Goulding and Murray (1976) used a fifth-degree linear polynomial
taper function to achieve compatibility. The left-hand side is a
unitless value, as it represents the subtraction of the relative
height from relative volume (tip to base). Total volume (v) is a pre-
determined or exogenous value:

— 2z =0,(32% — 22) + b,(47° — 22) + b3(5z* — 22)

d2kH
a7 ST

+ by(62° — 22)

where z = (H - h,)/H. Moving 2z to the right-hand side and multi-
plying both sides by v, it follows that compatible volume is demon-
strated using a change of variable technique, so that dz = —dh,/H.
The limits of integration are no longer h,, from 0 to H, but rather z
from1to 0.

hy=H ) dhu 0 )
(as) v—-kH[ @~ =4<H/1 d2dz

hy=0

therefore,

19) v=—byl - zz]?—bzv[z“ - zz]?—bgv[zs - zz];)

0
22

— byvlz® — 22}3—2\/ {—]
211

Equation 19 results in v = v. Reed and Green (1984) created a
compatible taper function that is identical to the Demaerschalk
(1972) profile function (eq. 15) with two exceptions: (i) the a, coef-
ficient of the Spurr (1952) combined variable volume equation
was set to zero and (ii) the a, coefficient of the Spurr (1952) model
was estimated simultaneously in a system of equations. The
Sharma and Oderwald (2001) compatible taper model shares
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Fig. 7. Comparison of tree taper function for a Chinese fir with a diameter at breast height (DBH) of 20 cm, total height (H) of 21 m, and
quadratic mean diameter (Dg) of 17.5 cm. The compatible taper function with zero “free” coefficients (eq. 22) predicts a d, of 5 cm at a
height of 20 m, whereas the modified Brink and von Gadow (1983) model predicts a d, of 2 cm at a height of 20 m. Note that primary
differences are at the stem base and near the tree tip. Equation 22 does not possess a mathematical formulation that is capable of flaring

at the base of the tree. [Color online.]
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several features of the Reed and Green (1984) system, especially
with respect to parsimony. Sharma and Oderwald (2001) pre-
sented the following one-parameter taper equation that is con-
strained to predict that d, =DBH when h,, =1.3:

h 2_’/(H7h )
2 _ 2 [ Pu u
(20) d, = DBH (1.3) H-13

Equation 20 is compatible with the volume equation, v= 8 x
DBH?” x H*>™”, provided that volume and upper-stem diameter are
simultaneously estimated in a system with the following con-

&) /6-2)]

By x@—7) , where k = 77/40 000. The

equations of Demaerschalk (1972), Reed and Green (1984), and
Sharma and Oderwald (2001) are all quite similar, especially if
y ~ 2 in eq. 20. Parsimony and compatibility appear to be the
main advantage in these models, but the parsimonious and com-
patible model loses its accuracy if taken too far. For example,
von Gadow and Hui (1999) presented the following Schumacher
and Hall (1933)-type total volume inside bark equation for Chi-
nese fir (Cunninghamia lanceolata (Lamb.) Hook.) in China:

k x

straint: 8 =

(21) v =Dby x DBH"* x H"

where by = 0.000058777, b; =1.9699831, and b, = 0.89646157.
Employing the Demaerschalk (1972) technique, a compatible taper
function for eq. 21 with essentially zero “free” parameters would be

kxH
— 119133 x DBH**¥ x (H — h,)***? x H°5

(22) dy= W’o x (by +1) x DBH” x (H — hy)™

Equation 22 is a compatible taper function; however, its useful-
ness is potentially limited, as the mathematics of consistent inte-
gration are no guarantee of biological realism in a stem profile.
Von Gadow and Hui (1999) conducted a comparison between the
estimates of total volume obtained from eq. 21 and a closed-form

zero 'free' coeff.  —Brink

integral of the modified Brink and von Gadow (1983) taper model
as presented by Riemer et al. (1995). Despite the outstanding
properties of the Brink and von Gadow model, it is not a compati-
ble taper equation. The modified Brink and von Gadow taper
model is expressed as

(23)  dy =2(u+ve P — welh)

B i DBH [ 1
u= 1 — eqx(13-H) + 2 l 1 _ erx(13-H)|’

[((DBH/2) —i] x eP*13
1— px(1.3-H) ’

where

ixe ¥

= m, i = 040788 x

DBH1.03702’ p
and Dg is quadratic mean diameter in centimetres, which is an
auxiliary variable that is available from most forest inventories.
Figure 7 presents a comparison between the modified Brink
and von Gadow (1983) taper function (eq. 23) and the compatible
taper function with zero “free” coefficients (eq. 22). As noted by
von Gadow and Hui (1999), a major application of taper functions
is the merchandizing of multiple stem products, so the ability to
accurately predict upper-stem diameter over the entire stem pro-
file is of paramount importance.

Another important category of compatible taper models is
derived from merchantable volume ratio models. The ratio
models are extremely useful given changing markets and the
common occurrence of new merchantability specifications for
products. The ratio models avoid illogical crossover in volume
estimates that occur when several independently fit equations
are used to estimate volumes to multiple top diameters. Two com-
mon ratio models are the Burkhart (1977) and the Cao and Burkhart
(1980) formulations (eqs. 24 and 25, respectively):

= @(179624/Dg) q = 10.43850 x el-141743Dg) o pr-1.50117

Vin dan
24) Mm_q_gy Cu_
@4 5 % ppH®
25)  Ym_q g, - h)"
( ) 7 - - OT
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where vy, is cumulative merchantable volume from the ground
line or stump to either d,, or h,. Experience has demonstrated that
eq. 25 is more precise than eq. 24 (Tasissa et al. 1997; Bullock and
Burkhart 2003); however, both equations are typically needed for
merchandizing multiple products when specifications are in terms
of product length and diameter at the small end of the log. At the
tip of the tree, vy, is conditioned to equal v in both eqs. 24 and 25.
Burkhart and Tomé (2012) demonstrated that by equating the right-
hand side of egs. 24 and 25, it is possible to derive a taper function:

b 1/aq
_ |bo x (H—h,)"DBH*

26 d
( ) " ag X Hb2

Equation 26 is a noncompatible taper function, as it was
derived from algebraic rearrangement of two ratio models. How-
ever, Bullock and Burkhart (2003) have demonstrated that it per-
forms reasonably well in predicting d,, and eq. 26 can be easily
inverted to predict h, as a function of d,. Similarly, Clutter (1980)
noted that merchantable volume (v,,) of eq. 24 also equals a solid
of revolution descending from the tree tip:

dm TZ
i u —
(27) vm—vaxaoxm—vfk/odadt

where T is distance from the tip of tree to d, (h, + T = H), and
d? = f(t) shows that diameter squared descending the stem is a

function of t, (0 <t <T). When t = T, then d, = [f{T)]>*. When eq. 27
is rearranged as

T 0.5a¢
f(T)
(28) k/of(t)dt =vao %
differentiating both sides of eq. 28, and using the fundamental
theorem of calculus, results in

()] a[f(1)]

(29) kf(T) = vay(0.5a;) DB T

Separation of the term dT to the left-hand side of the equation
and the terms involving f{T) to the right-hand side of the equation
provides

(30) DB 4p rpm)°s2afn)]

vaopaq

A separable differentiation technique may be used to solve ex-
plicitly for fiT) or d2.

0.5a;—1
2kDBH" {f(T) ]
31 T =
(31) Vagiy * 0.5a; — 1 T

where cis a constant of integration.

Imposing conditions on the constant of integration that T = 0
when f{T) = 0, and recognizing that T = H - h,,, provides the follow-
ing after rearrangement:

. a, _ o\ V(@-2)
(32) dy = k x (H—hy) x DBH* x (a; — 2)

VX ag X (g

Equation 32 can be easily inverted to predict h, as a function of
dy. McTague and Bailey (1987) expanded upon the Clutter (1980)
methodology and created a taper function with an inflection
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point for loblolly pine (Pinus taeda L.) in Brazil that was con-
strained to predict that d, = DBH when h, = 1.3 m. As Burkhart
and Tomé (2012) highlighted, the merchantable volume ratio
equation based on upper-stem diameter (eq. 24) can lead to some
negative estimates of merchantable volume (vy,) in the lower por-
tion of the stem. This problem is rectified by using an exponential
ratio equation that is constrained to predict positive values of vi,,.

G3)  lm o et
v

where B3 < 0. Jordan et al. (2005) derived a parsimonious and
compatible taper function using the merchantable volume ratio
model of eq. 33. Employing the approach of Clutter (1980), they
determined that volume at the tip of the tree downward was
equivalent to

T
(34) k/ F(t)dt = v — v x efdi’ DB
0
Using the transformation, x = d£?, they determined that

B: dy?
e

(35) KI'= >

J 0 2

With the additional transformation of z= —B,x x DBHF3,
dz = — B,DBHP:dy, it follows that

—p,d%2DBHP3
(36) kT =v(—B,DBHFs)** / (B2=2/B2]1g-2q,

0
This leads to

By—2

(37) k(H*hu):V(*,31DBH133)2/527( .
2

, fﬁldl’fZDBHm)

where vy is a lower incomplete gamma function with y(«, x) =
I'(«)F(x), and F(x) is the cumulative distribution function (cdf) of
the gamma. The compatible taper function is finally expressed as

By—2 K(H — hy) Ve

Bo " v(-p,pBH)Y T (B2)

1 1/B,
=
(5w

Seemingly unrelated regression (SUR) can be employed to con-
duct a simultaneous fit of the merchantable volume ratio equation
(eq. 33) and the taper function (eq. 38) for the three j3; coefficients.
The system is parsimonious and compatible, possesses acceptable
fit statistics, and does not require numerical integration techniques
for estimating volume. In contrast, the authors of this paper have
employed another parsimonious taper function that is consider-
ably easier to fit than that of the Jordan et al. (2005) model and is
superior in performance. Using the approach and statistical source
code provided by Harrell (2015), the authors fit eq. 39 with a re-
stricted cubic spline (RCS) to 183 clonal trees of the genus Eucalyptus
L’Hér. from Agua Clara, Mato Grosso do Sul, Brazil. The data used to
fit eq. 39 are described by Scolforo et al. (2018). Equations 33 and 38
were simultaneously fit to the same data, and the two taper func-
tions are compared in Fig. 8. The fitted RCS model contains four
knots but, after several restrictions, possesses only three coeffi-
cients. In addition to setting the intercept to zero, the constraints
ensure better behavior in the tails, that is, before the first knot and
after the last knot (Harrell 2015).

(38)  dy=T71
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Fig. 8. Stem profile equations for clonal eucalyptus with a DBH of 20 cm and H of 26 m. Both models possess three fitted coefficients;
however, the restricted cubic spline (RCS) model is considerably more precise in predicting upper-stem diameter than the Jordan et al.

(2005) model. [Color online.]
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3

dy , (H—hy H-hy
(39) DBH_’B1( i >+Bz( i 70.077)+

3 3
H- H-
+ B3< Hh“ - 0.272>++B4( Hh“ - 0.717)

+

where the knot values of 0.077, 0.272, 0.717, and 0.975 correspond
to the 5th, 25th, 60th, and 90th percentiles of (H — h,)/H, respec-
tively. The subscript operator “+” implies that the function is only
computed when the value of (H - h,)/H is larger than the knot value
inside the parentheses. In reality, only the B4, B8, and B3 coeffi-
cients are estimated. Harrell (2015) presented a new term 7, which
is the square of the last knot value minus the first knot value;
7 = (0.975 - 0.077)>. B; remains unchanged, but 8, and 5 now
B B

= and B; = 73 respectively. B4 and Bs are

computed as B, — B, (0.077 — 0.975) + B (0.272 — 0.975) and
0.975 — 0.717

B, (0.077 — 0.717) + B, (0.272 — 0.717)
Bs= 0.717 — 0.975
stem diameter d,, is now predicted using eq. 39 and the previously
determined values of B4, 8, , B5 , B4, and (5 The 183 sample trees
of clonal eucalyptus were cut into 2 m bolts, resulting in 2851 obser-
vations. Inspecting the sum of squares of error (SSE) for upper-stem
diameter, or Z(du — &u)z, the RCS eq. 39 resulted in a reduction
of 22% in SSE when compared with eq. 38.

In contrast to the Clutter (1980) approach, which is based on
relative diameter, both Van Deusen et al. (1982) and Lynch et al.
(2017) found it considerably easier to derive compatible taper
functions from merchantable volume ratio models that are
based on relative height. Rather than approaching the solid of
revolution from the tip of the tree downward, Van Deusen et al.

become B,

, respectively. Upper-

(1982) defined merchantable volume from the base of the stem
upward:

Ty
(40) vm:k/ & dh,
0

Dividing both sides by k and applying a derivative to both sides

results in

d |vm (hu):|
2 _ &

(41) d; = dhe [ k

Van Deusen et al. (1982) elected to work with a simple volume
ratio model as a function of relative height. Their ratio model is
constrained so that when merchantable height h, equals the
stump height of 15 cm, the merchantable volume (v,,) equals
Zero.

(42)  vm(h)=v-vx {;—;0’.1]115}6

where c is an estimated coefficient. Applying eq. 41 results in the
following compatible taper function:

5 VX c(H—hy)"
3 4 k(H - 0.15)°

Lynch et al. (2017) employed the same technique as that of
Van Deusen et al. (1982) and derived a compatible taper function
from the original merchantable volume ratio equation devel-
oped by Cao and Burkhart (1980) (eq. 25). Lynch et al. demon-
strated a compatible taper function for eq. 25 that is expressed as

B vxby xby (H— hu)b‘*1
(44) dy = \/— . i
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This equation can be easily inverted to predict h, as a function
of d:
1/(b1—1)

—k x d? x H”
(45) hu_H_l:VXboXbl

Additionally, Lynch et al. (2017) derived a new merchantable vol-
ume ratio model, vi,(h,), based on relative height that produced a
better taper function. Using the principles previously outlined,
Lynch et al. (2017) recommended the following merchantable
volume ratio model:

h o
(46)  vm(hy) = ag x DBH* x H? — ¢y x DBH" x H® <1 - ﬁ)

The first term of the right-hand side of eq. 46, apDBH" H®, is

the expression for total volume, v. A compatible taper function
for eq. 46 is easily derived as

a—1
@ h
(47) dy = \/ . CoODBHH (1 - ﬁ)

Compatible model forms offer the advantage of ensuring opti-
mized estimates of both stem form and volume, which are often
not potentially ensured by other methods. Recently, Zhao et al.
(2019) demonstrated the ability to have a completely compatible
system of taper, total, and merchantable volume equations that
are algebraically compatible and numerically consistent among
all component equations. In this analysis, simultaneous parame-
ter optimization of both taper and cumulative volume was pref-
erable to separate optimization for taper or volume only (Zhao
et al. 2019). The approach of Zhao et al. (2019) was extended to sev-
eral Pinus L. species in Mexico and found to outperform the other
compatible taper and volume systems (Quionez-Barraza et al.
2019). Although they may not provide the best predictions of ei-
ther form or volume (Li and Weiskittel 2010), some analyses indi-
cate that they can be one of the best performing approaches (e.g.,
Shahzad et al. 2020).

2.3.3. Polynomials, segmented models, and splined taper functions
Over several decades in North America, many individuals were

first introduced to taper functions with the Kozak et al. (1969)

second-degree polynomial equation as an example:

dy \* hy (hu)z
(48) (DBH) =ap+m xﬁ+a2 X T

Equation 48 is linear with respect to the parameters, is invertible
for computing h,, as a function of d,;, and can be integrated with an
analytical solution for computing volume. Avery and Burkhart
(2002) demonstrated that when eq. 48 is integrated to compute
total volume, the expression is a Spurr (1952)-type of combined
variable equation because it does not contain an intercept (v =a; x
DBH? x H). Although third-degree and higher order polynomials
will lead to a better fit, it can prompt some oscillation in the fitted
function when the domain of the independent variable has a range
of [0, 1]. In Brazil, the fifth-degree polynomial remains a popular
model for taper, primarily for its ease of parameter estimation with
linear regression (Téo et al. 2018). Typically, however, it is fit with-
out the square power for the dependent variable (Téo et al. 2018):

du hy M) he)’
(49) DBH:'BOJF'le (ﬁ)*ﬁzx (ﬁ) + B3 % (ﬁ)

e\ he)®
s (1) v e (B)
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Scolforo et al. (2018) fit eq. 49 to the clonal eucalyptus data set
highlighted in the previous section and obtained the following
predicted taper function:

(50) du _ 1.149 — 3.4350 x <h“> +16.0934 x <h“)2
DBH ’ H ’ H

A o\ e\’
u u u
— 38.7426 x (ﬁ) +40.4870 x (ﬁ) —15.5778 x (ﬁ)

Figure 9 displays the predicted value of eq. 50 for a sample tree
with a DBH of 20 cm and total height (H) of 26 m. An illogical
shape is evident for the stem section between 6 and 16 m in
height (Fig. 9), and the function also has the drawback of predict-
ing a negative d, value at the tip of the tree. This drawback is eas-
ily avoidable by imposing a restriction on the 8, parameter such
that d, = 0 when h,, = H. This constraint redefines the independent

variables as H_Thu) , where p is the degree of the polynomial

power. As displayed in Fig. 9, the oscillating residual pattern of
eq. 50 persists as a concern. The fifth-degree polynomial can be
improved substantially when estimating upper-stem diameter if
some of the integer power terms of eq. 49 are replaced with real
numbers below 1.0 (Hradetzky 1976). When fit to the same clonal
eucalyptus data set of Scolforo et al. (2018), the following taper
model reduced the SSE by 22% when compared with eq. 49:

d . 000001 N
u hu fru
(51) DBH_'B0+'81>< (H) + B, % (H) + B3

hu 0.9 hu 1 hu 10
() reoe () o (3)

where SSE for upper-stem diameter was defined as Z(du - &u)z.
Equation 51 was fit with the following constraint: B¢+ 81+ B2 +
Bs+ B4+ Bs=0,sothat the predicted taper displays logical prop-
erties at the tip of the tree. Similarly, Goodwin (2009) used a cubic
polynomial model form with multiple constraints on the parame-
ters, which was found to increase flexibility, improve predictions,
and generally outperform other commonly used stem taper model
forms.

Another natural approach for modeling taper has been focused
on modeling each section of the stem with polynomials, or other
models, and then joining them at the transition lines to account for
differences in shape along the tree bole (e.g., Fig. 4). The recent no-
menclature for the point of transition or join points where seg-
ments come together is to designate them as knots. The location of
the transition points or knots can be either predetermined or
estimated. Splined taper functions convey the image of a
smooth or gradual transition from one taper segment to the
next. This is enforced by conditioning each segment to have
identical slope values (first or higher order derivatives) at the
position of the knot.

Clark et al. (1991) constructed segmented taper functions for
the major species of the southern US, which remain widely used
by public agencies and the forest products industry. As displayed
in Fig. 10, the tree stem is divided into four segments using three
knots. The Clark et al. (1991) equations require that the user pro-
vide an estimate of inside- or outside-bark form class diameter
F(d, at 5.3 m); however, form class diameter can be predicted if it
is not observed. Two of the knots — breast height (1.37 m) and
form class height (5.3 m) — are predetermined, whereas the third
knot is located somewhere between 40% and 70% of total stem
height and is estimated from regression. Only at the third knot is
the transition smooth between the two segments. The Clark et al.
(1991) taper function possesses six coefficients that are species
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Fig. 9. Stem profile of a fifth-degree polynomial for stem taper in eucalyptus (top). The taper model predicts that d, = -0.5 cm when h, =
H =26 m. The oscillating behavior for the residuals is evident in the relative height domain of 0 < h,/H <1 (bottom).

upper-stem height h, {m)

25

20 \\
5 I
= 15 \
z
o
£
& 10
o
E
]
7
v 3
a
o
=1

0

2 4 8 10 12
-5
2,
&
4

Residual of Sth degree polynomial

specific; however, another two species-specific coefficients are
required to estimate form class diameter F if the Girard form
class is unobserved (Mesavage and Girard 1946). Clark et al. (1991)
declared F as the diameter (inside or outside bark) at 5.3 m above
ground, and it differs slightly from the original Girard form class
definition (diameter inside bark at 5.3 m divided by DBH multi-
plied by 100). At the base of the tree, upper-stem diameter is esti-
mated with

o () e (ernte) () - ()

DBH DBH? . (H - 1.37)r
H

where 1, ¢, and e are regression coefficients and 0 m <h, <1.37 m.
Equation 52 is particularly well suited for species that display a
buttress swell such as bald-cypress (Taxodium distichum (L.) Rich.) and
water tupelo (Nyssa aquatica L.) or southern pines with less pro-
nounced flaring at the base (Penfound 1934; Walsh and Dawson
2014). Between breast height (1.37 m) and form class height
(5.3 m), upper-stem diameter is estimated with a simple interpo-
lation function:

(DBH? — F?) x

()
() (5]

where p is a regression coefficient, F is d, (inside or outside
bark) at 5.3 m, and 1.37 m <h, <5.3 m. If the estimated d,, in eqs.
52 and 53 is an inside-bark value, then DBH is represented
by breast-height diameter inside bark. Upper-stem diameter at
5.3 m (F) can be estimated with the following simple linear
regression:

dy )
(53) (DBH) a
DBH? x

duszm F 5.3)
59 “DeH _ﬁ_ﬁﬁ’glx(i)

Clark et al. (1991) indicated that they used a Max and Burkhart
(1976)-type taper function for the mid-stem and upper-stem por-
tion of the tree. Further detail about the Max and Burkhart taper
model is provided later in this section; however, its base founda-
tion in this case involves two independent second-degree polyno-
mials of h,/H: one for the top segment of the tree and the other
for the middle segment. Clark et al. (1991) imposed four con-
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Fig. 10. The Clark et al. (1991) taper function consists of four
segments and three knots. Only the knot located between mid-
stem and the upper stem has a smooth transition. Figure from
Clark et al. (1991).
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straints on the two independent polynomials and reduced a six-
parameter model to a two-parameter model. The constraints
involve prediction at the tip of the tree (d, = 0 when h, = H), pre-
diction at form class height (d, = F when h, = 5.3 m), and equiva-
lent prediction of d, at the knot between two segments, in
addition to equal values of the first derivative at the knot. The
profile model for the middle and top segments of the stem (above
5.3m)is

) 1-b hy — 5.3\
(55) (f) _Imx<a2 >X<“‘m> b
(hu—s.s )2
X | ——=-1
H-53

where a and b are regression parameters, and I, =1if h, < [5.3 +
a(H - 5.3)] and I,;, = 0 otherwise. In reality, the middle segment is
modeled with both terms on the right-hand side of eq. 55,
whereas the top segment is modeled with only the second term
on the right-hand side. The knot occurs when h,, = 5.3 + a(H - 5.3).

At the knot, the value of the term a — h;}li:s.: equals 0, thus
reducing eq. 55 and its derivative to only the second term on the
right-hand side. The coefficients of eqs. 52, 53, and 55 for the bot-
tom, middle, and top portions of stem, respectively, are inde-
pendently estimated. This property of independence of Clark
et al.’s (1991) system of taper functions likely is not a disadvant-
age. Instead, the independence of the equations facilitates the
mathematical inversion of the equations for the computation of
upper-stem height h, and the analytical integration for volume.
The ease of fitting the models and the collective performance of
the taper functions over the entire profile are key factors when
judging the suitability of the model.
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Without question, there is a considerable art in building seg-
mented equations. Brink and von Gadow (1983) called this a bal-
anced compromise between the quality of the fit in a variety of
complex tree shapes and the simplicity of the model. For exam-
ple, Brink and von Gadow joined two differential equations at
the inflection point where the stem changes from a neiloid to a
paraboloid. Flewelling and Raynes (1993) introduced taper func-
tions for western hemlock (Tsuga heterophylla (Raf.) Sarg.) in the
US Pacific Northwest that consist of three segments and two
knots with a smooth transition at the knots. These equations are
complex, and a full explanation of their features and mechanics
is beyond the scope of this review, yet a brief overview is provided
here because of its novelty. One of the knots occurs at the height
of inflection where the stem changes from a neiloid to a parabo-
loid (h;), and the other knot occurs at the height where the stem
changes from a paraboloid to a cone (h) (Fig. 11). One interesting
aspect of Flewelling and Raynes’ taper system is the concept of
relative position of the sample tree in the diameter distribution
and its importance in governing the shape of the tree. In this
case, however, the diameter distribution is not stand specific, but
rather determined from the pool of all destructively sampled
trees. The form ratio is defined as DBH/dso — 1, where dsq is the
median value (50th percentile) of sample DBHs at a given total
height. In the upper segment of the tree, stem taper is defined by
a two-parameter, third-degree polynomial model:

a

c
(56) y=c2><x+51><xzfg><x3

where y is the unscaled upper-stem diameter inside bark and

H-h . . . .
X = o h“. Taper in the middle segment of the tree is estimated by
— Ikc
b b
(57) y:b0+b4 X X — 2 Xb1+2+£XX3

(b1 +1) (b1 +2)

hy — hy . ; :
where x = h“ hl' Taper in the bottom segment of the tree is esti-
matedas ¢

a,
(58) y:ao+(a4+a>x+2—2><xz+a1><x3+a2

x In (l - 1)
as

i hu. It should be noted that the a;, b;, and c; coeffi-
1

cients are not directly estimated by regression. Rather, a total of
eight equations involving 26 unconstrained parameters are con-
structed as functions of total height, DBH, and the form ratio of
DBH/dso - 1. Logistic transformations are made of the uncon-
strained functions to create shape parameters, and the a;, b;,
and ¢; coefficients are recovered from the shape parameters.
Equations 56-58 produce estimates of an unscaled upper-stem di-
ameter (y). The appropriate scaling factor (f) is computed using
eq.58 as

h
where x = —

(69 fopo

Yha=137

where DBHj, is DBH inside bark. Upper-stem diameter is then
computed as d,, = f x y. Computations are not provided here on
the methodology of computing the a;, b;, and ¢; coefficients of
eqs. 56-58, although it is instructive to see how the heights of the
inflection knot (h;) and the cone knot (h.) are calculated. In this
example furnished by Flewelling and Raynes (1993) in which the
tree DBH is 40.15 cm and H is 24.38 m, the ds, of sample trees by
total height is computed as dso = 4.830 x %% * H o (H —

<. Published by NRC Research Press



Can. J. For. Res. Downloaded from cdnsciencepub.com b}{ UNIVERSITY OF MAINE on 02/20/21
For personal use orily.

McTague and Weiskittel

Fig. 11. Tree form based on the Flewelling and Raynes (1993) terminology: h; is the height of the inflection point, whereas h. is the
transition height on the stem where the stem changes from a paraboloid to a cone. The taper function for the unscaled upper-stem
diameter, y, in each of the three segments is a function of relative height x. The definition of relative height x changes from segment to

segment. Figure was adapted from Newnham (1988).

A X = U

1.37)0:343 + 0005479 > H _ 55 4 c¢m. Form ratio (fr) is computed as

DBH
fr= Fa 1= 0.5906. The upper-stem height corresponding to
50 U
; . 3 . e
the inflection point or knot (h;) is hj =H x =2.93m,

147
where U, = -2.28 + 0.39 x (1 - 22 ) = _1.9927. The upper-
stem height corresponding to the knot (h) is h.=HXx

h; hi) eUs :| -
{ﬁ + (1 TH) 17| 21.96 m, where U® = 0.087 + 01903 x H -

1.6224 x (DBH/H). The Flewelling and Raynes (1993) taper functions
are still widely used in the US Pacific Northwest. Although the sys-
tem of equations can be integrated to compute volume, this feature
is often overlooked, as transactions with roundwood and logs are
largely conducted on a board-foot scale in the Pacific Northwest.

A very popular and still widely used taper function developed
by Max and Burkhart (1976) models the transition from neiloid to
paraboloid at the lower part of the stem and the transition from

CONE
H-h,
H-h,

PARABOLOID

hu o hi
~ h,— h;

NEILOID

paraboloid to cone in the upper part of the stem with one smooth
continuous function. The lower knot associated with the change
from neiloid to paraboloid generally occurs when h,/H < 0.12,
which corresponds to the h; of Flewelling and Raynes (1993). The
transition from paraboloid to cone generally occurs when the
knot of h,/H exceeds 0.75%, which corresponds to the h, of Flewelling
and Raynes (1993). The Max and Burkhart (1976) taper function is

expressed as
) = (1) o ()
(60) (DBH) =b; x ﬁ—1 + by x )~

2 2
h, h,
X (al—ﬁ“) X11+b4><<ﬂ2—ﬁu) ><12

where qa, is the knot value of h,/H or point of transition between a
paraboloid and a cone in the upper part of the stem (75%-85% of

1| + by
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total height); a, is the knot value of h,/H or point of transition
between a neiloid and a paraboloid in the lower part of the stem
(10%-15% of total height); I, = 1 if hy/H < a,, otherwise I, = 0; and
I, =1if hy/H < a,, otherwise I, = 0. Because the g; knot values are
not known a priori, they must be estimated together with the b;
parameters using nonlinear regression techniques. Max and
Burkhart (1976) used the technique presented by Gallant and
Fuller (1973) to piece together three second-degree polynomial
taper functions. The three taper functions can be expressed for
the upper (eq. 61), middle (eq. 62), and bottom (eq. 63) seg-
ments, respectively, as

d, \’ T he )\
(61 (DBH) wper PO B (ﬁ) B2 x <ﬁ>

do \? ha e\
(62) (DBH>middle: BatBax <ﬁ> B (ﬁ)

dy \? ha e\’
(63) (DBH)bottom: Bet B7x (ﬁ) By x (ﬁ>

Max and Burkhart (1976) imposed two conditions on eqs. 61
and 62 to guarantee that at the knot value of a,, the two functions
would predict the same value of (d,/DBH)* and that the transition
would be smooth. The first condition requires that both func-
tions predict the same upper-stem diameter at the knot a;:

(64) Bo+ B1a1+ B2a3 = B3 + Bt + Bsai

When the two curves join, the transition must be smooth. This
is achieved if the slopes determined by the first derivatives are
equal:

(65) B1+2By01=B4+2B5m

Returning to the taper function for the upper segment of the
stem (eq. 61), one additional constraint was imposed, namely
that (d,/DBH)* = 0 when h/H = 1. This results in 8, = -8; - B2
thus producing a new taper expression for the upper segment

of the stem:
= U1 )9
(66) (DB )upm B g7 —1) +Bax |5

Isolating the B4 term of eq. 65 produces B4= B1+ 28,0, - 2B50;.
Inserting the expressions for 3, and 3,4 into eq. 64 provides a new
function for Bz B3 = —B;— B, — B,a%+ Bsa?. Inserting this
expression for B3 and the previous value of B8, into eq. 62, it is now
possible to rewrite the expression for the middle segment:

g \2
(67) (D];H> midd]e: —B1— B2 — B2ai + Bsaj

) ) hy M)’
+ (B1+2B2a1 —2B5a1) ¥ 0 + Bs5 x T

The key at this point is to both add and subtract 8, x (h,/H)* to
eq. 67. Now it is possible to express the middle segment taper as

d \° d \°
(68) (DBH> middle: <DBH> upper * (35 B BZ)

h o)
2 _ Tu T
X |:a1 2a1<H) + <H>

Can. J. For. Res. Vol. 51, 2021

With the addition of an indicator variable, [, and reparamete-
rizing B, B,, and (85— B2) as by, b,, and bs, respectively, it is pos-
sible to use one expression to model the stem profile of the
middle and upper segments of the tree:

+bs

2
X (al—%> x I

where I, =1if hy/H < a,, otherwise I; = 0. The same procedure can
be used for splining the lower segment of the tree with the mid-
dle segment equation (eq. 69) at the knot value of a,. The Max and
Burkhart (1976) taper function has been applied to major
forest species in both the Northern and Southern Hemispheres and
still has wide acceptance. Martin (1981) has demonstrated how eq. 60
can be inverted to predict hy as a function of d,,. In addition, Martin
furnished an analytical integrated solution for volume. Nonlinear
regression techniques must be used to estimate the parameters, and
occasionally it can be difficult to obtain convergence or significant
coefficients for the knots a; and a,. This drawback can be easily sur-
mounted by fitting eq. 60 with a linear model inside a loop and
using an array of predetermined values for a, and a, in the suggested
ranges of 0.75 < a,<0.85 and 0.10 <a, <0.15.

The Max and Burkhart (1976) taper model contains three seg-
ments, two knots, and five restrictions or constraints. There is a flex-
ible and less tedious methodology for adding additional segments
and knots for splined polynomial taper functions. Unlike B-splines,
the methodology here displays stable behavior before the first knot
and after the last knot. This methodology maintains the smoothness
at the knots with equal values of the first derivative for the two seg-
ments at the knot. Following a technique by Pedan (2003), Scolforo
et al. (2018) employed quadratic polynomials with K = 4 empirical
knots (k; = 010, k, = 0.34, k3 = 0. 75, and k4 = 0.97). In addition, these
authors also added a tree size variable (S) to the model form:

dy hy hu)z

K h 2
-+ Zuk X |:(177u) *k1:|
H +
k=1

where b;-b; are the coefficients to be estimated; S =
DBH? x H
710000

be estimated; and the subscript operator “+” infers that the func-

h . .
x In <2 — E"> 1y, are the knot variable coefficients to

tion is only computed if 1 - (h,/H) is larger than the knot value
inside the parentheses, otherwise the value is zero. Hence, this
value replaces the indicator variable used in the Max and Burkhart
(1976) taper function with greater implied flexibility. Equation 71,
defined by Scolforo et al. (2018) as the penalized mixed spline (PMS)
approach, is a normal linear mixed-effects model, in which the quad-
ratic expression and S are fixed and the expressions for the knots are
declared random based on each tree (stand) and stand. It is suggested
that the mixed-effects model then resolves the smoothing spline
regression, which turns it into a penalized regression spline (Pedan
2003):

(71)  y=Xb+Zu+ e, [u, & ~N(0,diag(a2L, oI))

where
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AR h\? ) hy

X= : : :
hy AN ) hy
1—H—n) (1—H—n) DBH“H In Z—H—n
2 2
() k)
1 + Hl +
7 = . .

Mixed model application also makes it quite easy to account
for the autocorrelation within the stem of measurements at each
bolt cut. The locations of the knots in the PMS model are prede-
termined. Harrell (2015) suggested the addition of more knots to
a model as an adequate trade-off to determining the exact point
of transition between segments. However, it is important to be
prudent and terminate the addition of additional knots at the
point at which the u, coefficients are no longer statistically
significant.

Polynomials, segmented models, and splined taper functions
are among the oldest of the modern taper model forms and have
a long history of development and use but present some chal-
lenges in their proper formulation and parameterization. This
may have limited their development and application in more
recent decades.

2.3.4. Trigonometric models and matrix functions

Taper equations with trigonometric functions have a particu-
lar appeal when modeling the profile of species that has a pro-
nounced flare in the bottom portion of the tree. They are often
similar to the variable-form taper equations previously discussed
but can be simpler in their formulation given the reliance on
multiple trigonometric functions. With their inverse sigmoid
shape, they can match the stump swell at the ground line and the
remainder of the stem with only a few parameters. Matney et al.
(1985) proposed the following model of relative height for several
southern US hardwood species:

hill 1 _ a—axtan[bxHx(d, /DBH)|

(72) =1 f1—e }

d

where b, ¢, and d are parameters to be estimated and tan is the
tangent measured in radians. The parameter a may be isolated
and conditioned to predict that h, = 1.3 when d, = DBH:

~inf1— 1 - (13/H)"}
4= tan(b x H¢)

dict d, as a function of h,. Thomas and Parresol (1991) used sine
and cotangent variables to obtain profile flexibility with only
three parameters:

do \° h h
u o u 7 . u
(73) (DBH) =ay X (—H 1) +ay x {sm (c X T X —H)} + a3

. Equation 72 may be inverted to pre-

where ¢ = 1.5 for slash pine and 2.0 for willow oak (Quercus phellos L.).
Likewise, Bi (2000) used trigonometric functions and a formulation
resembling the Kozak (1988) and Newnham (1988) models to arrive
at a flexible taper function that is relatively easy to fit:
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duib) ok
(74) ul1l —
DBH;;,
where
In {sin(% X %)}
B=
In {sin(z Xg):|
2 H
and
. (7 h 37 h
K=a,+ay x mn(ixﬁ‘l) +az x cos(Txﬁu> +ay
. o u
Sm(EXE) h h
x ——2 2/ 1 gs x DBH + ag X — x VDBH + a7 X — X vH
hy H H
H

Similar to the Kozak (1988) and Newnham (1988) taper models,
upper-stem height (h,) and volume must be computed by invert-
ing eq. 74 using numerical techniques.

Kilkki et al. (1978) introduced a completely different methodol-
ogy of inspecting tree taper using matrix algebra for Scots pine
(Pinus sylvestris L.) in Finland, which was called a simultaneous
equation model. The premise was that each upper-stem diameter
can be predicted by an equation in which all other observed
upper-stem diameters are predictors. Additional variables indi-
cating tree size such as total height are also included in the pre-
diction equation. For the sake of brevity, this concept will be
presented using only four upper-stem measurements. Ideally,
however, this application would have 10 or more upper-stem di-
ameter measurements, presumably wherever there is a bolt cut.
The bolt cuts of the destructively sampled tree should not be a
fixed length apart, rather the tree should be sectioned in 10 or
more sections of equal relative length. The Kilkki et al. (1978) pre-
mise is re-created here with four simultaneous equations:

0+ ap X duz + a3 X dyz + g X dug +ky = dig
Az X dy1 + 0+ azz X dyz + a4 X dug + ko = duz
az; X dyg + azp X dyz + 0 + azg X dys + k3 = dy3
ag X dyt + agz X dyp + a3 X dyz +0 + kg = dug

(75)

The a;; coefficients are estimated by regression for each d,; with
independent models. The k; variables represent tree size, as a
function of total height, and are expressed as

(76) ki = koi + kyH + kyH?

where H is total tree height and ko, k;, and k, are regression
parameters. With some rearrangement of the terms, eq. 75 is
expressed as

—1 X dy + a1 X dyg + G13 X dyz + A1a X dyg = =k
(77) Az X dyt —1 X dyz + a3 X duz + G24 X dug = —k

a3 X dyg + a3z X dyp — 1 X dyz + az4 X dyg = —k3

ag X dyg + gy X dyz +a43 X dyz —1 X dug = —ky

A detached coefficient matrix notation may be used to repre-
sent the system Ax =b:

-1 ap ap apy du —k
(78) an —1 a3 g de | _ | —ke
az axn —1 s duz —k3
ay agp agz —1 dug —ky

The solution is then x = A™'b, where the x vector contains the
upper-stem diameters d,; and A" is the inverted matrix of the a;
coefficients with -1 on the diagonal. Interpolation must be used
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Fig. 12. The matrix approach of Kilkki et al. (1978) provides a smooth transition at the knots formed by the intersection of h,; and d,;. At

the first and last segment, b, and b; may be estimated from b,. The key relationships are f; = dy; — i“z — z‘ﬂ ha + i“z — he = a1 + bihy,
u2 — ual u2 — Hul
fo=du2 — i“z —~ z“: ha + i“z - z“i hy = a3 + byhy, and f = duz — i“;‘ —~ z“: hus + i“z —~ z“j hy = a3 + bshy. Figure was adapted from Kilkki et al.
it U . U - it - .
(1978).
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to estimate the upper-stem diameter between the diameters d;.
Kilkki et al. (1978) presented a rather sophisticated interpolation
rule that ensures a monotonic decrease in upper-stem diameter
between predicted d,; values:

(79) do=Fo+ (fi — fo) x b2 | (hu37hu

24
X +(fz —
|by| + [ba] huz — huz) (fo—12)
L Iba] X(hu—hu)14
[b2| +b3|  \huz — hu2

where hy, < hy, < hys and dy, < d, < dys. The f; and b; values are
explained in Fig. 12. It is hardly surprising that the regression fits
are outstanding for the system represented by eq. 75, given the
number of variables used to estimate d,;. Clearly, however, the
equations are not independent, and users of this method should
consider the use of two- or three-stage least squares methods for
estimating the system of equations.

Trigonometric models and matrix functions are a special class
of taper equations that offer some relative simplicity for address-
ing species with complex stem forms. Trigonometric models
share many similarities to variable-form approaches with high
flexibility, ease of parameterization, and robust accuracy. Beyond
Kilkki et al. (1978), matrix functions have seen more limited appli-
cation but could offer significant advantages if multiple upper-
stem diameters have greater availability in the future, perhaps
with terrestrial laser scanning (see section 5).

2.4. Inclusion of additional model covariates

Nearly all of the taper equations previously shown are primar-
ily a function of relative height in the stem, DBH, and H, as these
are the most common variables taken in routine inventories.
Moreover, there have been a number of attempts to improve taper

5 R

h3

equation performance by incorporating additional model covari-
ates, including (i) upper-stem diameter measurements, (ii) crown
size variables, (iii) tree form classifications, and (iv) stand- or site-
level factors.

2.4.1. Upper-stem diameters

As noted by Goodwin (2009), a key limitation of relying primar-
ily on DBH is that the volume of small trees cannot be deter-
mined and breast height might not be the most optimal location
for predicting stem form. Goodwin noted that relative heights
between 10% and 30% provided much better estimates of tree
form than DBH, consistent with the tendency to include addi-
tional upper-stem diameter measurements as predictors (Clark
et al. 1991; Kozak 1998; Jordan et al. 2005). As well summarized by
Sabatia and Burkhart (2015), the recommended optimal location
of this upper-stem diameter measurement has varied consider-
ably and likely depends on the species, the specific taper equa-
tion being used, and the ability to measure upper-stem diameter
measurements accurately. For example, fixed heights of 5-9 m
have been suggested as optimal (Clark et al. 1991; Trincado and
Burkhart 2006; Yang et al. 2009; Gomez-Garcia et al. 2013),
whereas relative heights of 30%-40% (Sharma and Zhang 2004;
Sharma and Parton 2009), 40%-50% (Kozak 1998), and values > 50%
(Cao 2009; Sabatia and Burkhart 2015) have also been suggested.

Although these measurements can be helpful in improving
predictive performance, measuring upper-stem diameter on stand-
ing trees can be difficult, as evidenced by Westfall et al. (2016) who
indicated that measurement error increases with tree size, differs
across species and measurement devices, and needs to be within
+0.2 cm to ensure proper prediction accuracy, which generally
questions the robustness of most field-based assessments of upper-
stem diameter. Likewise, imputation of upper-stem diameter using
a model (e.g., Clark et al. 1991) can also have unintended conse-
quences for the general usefulness of this variable as a predictor
as showcased by Li and Weiskittel (2010).
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2.4.2. Crown size

The influence of crown length on stem form has long been rec-
ognized (Pressler 1864; Larson 1963), yet its inclusion in taper
equations has varied. For example, some studies have found
them to be nonsignificant or to only marginally improve model
fits (Burkhart and Walton 1985; Muhairwe et al. 1994; Li and
Weiskittel 2010), whereas other studies (Hann et al. 1987; Leites
and Robinson 2004; Yang et al. 2009) have found otherwise, sug-
gesting that it might depend on the available data, species, and
model form. As noted by Weiskittel et al. (2011), the inclusion of
crown variables might not be to just simply improve model fit
predictions, but to ensure more logical biological behavior. A
taper equation should predict trees with shorter crowns com-
pared with similar-sized trees with larger crowns to have (i) wider
diameters above DBH, (ii) narrower diameters below DBH, and
(iii) a similar DBH. Consequently, the continual exploration of
including crown variables is still important and encouraged. This
can include the further testing of crown variables across a
broader range of species and stand conditions, as well as the
influence of various measures of crown. For example, crown ratio
has been commonly used, whereas height to crown midpoint
(Dean et al. 2002), crown length (Ozcelik and Bal 2013), crown ra-
tio weighted DBH (MacFarlane 2010), or a combination of crown
variables might be more effective (Leites and Robinson 2004).

2.4.3. Tree class and form classification

Trees have been known to vary in their form and its related
influence on volume with the relative wide use of form classes;
however, the use of tree form has had more limited use in stem
taper equations. This might simply be a function of taper studies
that focus only on trees with some idealized stem form, particu-
larly in broad-leaved species, or more general species that rarely
have a continuous stem (MacFarlane and Weiskittel 2016). When
trees from diverse morphological types were tested with a large
data set without any exclusion criteria, it was found that a simple
tree form classification system explained the most variation
between trees and stands, even across species (MacFarlane and
Weiskittel 2016). In this analysis, the tree form classification was
based on a merchantable form type, which focused on whether
or not the tree contained merchantable wood in some or all of
the following four categories: (i) main stem pulpwood, (ii) main
stem sawtimber, (iii) branch pulpwood, or (iv) branch sawtimber
(MacFarlane and Weiskittel 2016). Given its generality, extension
of this approach to other species and regions is logical.

Likewise, Castle et al. (2017) found that hardwood stem form
was strongly influenced by a more involved yet generic stem
form and risk classification of Pelletier et al. (2014), which should
be further explored across a broader array of species and stand or
site conditions. Rather than using form class, Sanquetta et al.
(2020) found the widely used tree hierarchical position classifica-
tion (e.g., dominant and intermediate) to be influential.

2.4.4. Stand- and site-level factors

Because of stand- and site-level influences on both H-DBH and
crown size relationships, a strong influence is expected on stem
form and volume. However, a more limited set of studies has
examined these relationships beyond the studies previously
described (e.g., Muhairwe et al. 1994; Madsen 1985), and this
might be an important area for future research. Early research by
Muhairwe et al. (1994) found that site class and stand age were
not influential predictors of stem form, likely because their
effect is implicitly captured by the use of both DBH and H in most
taper equations. Subsequent research has highlighted the poten-
tial effect of stand age (Liu et al. 2020b) and stand density even af-
ter the inclusion of DBH and H (Sharma and Zhang 2004; Sharma
and Parton 2009; Duan et al. 2016).
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Although these studies have found an influence of stand den-
sity on stem taper, they have been primarily focused on stem
number per hectare and not other more sophisticated measures
of stand density, which appears like a logical area of future explo-
ration and has shown greater predictive power (Schneider 2019).
As previously noted, Brink and von Gadow (1983) used stand-level
quadratic mean diameter as an important predictor of stem
taper, whereas Liu et al. (2020b) and Sanquetta et al. (2020) used a
measure of relative stocking and relative spacing index, respec-
tively. Likewise, Sharma (2020) found that the square root of the
ratio of stand basal area to stem number was the best stand den-
sity predictor for a single softwood species in Canada. Recently,
Poudel et al. (2020) indicated significant differences in stem form
based on trees from different stand origins (i.e., natural, planta-
tion, and coppice), and this might be an important stand-level
factor in regions with mixed regeneration strategies similar to
the findings of Li et al. (2012) (Fig. 6).

At the site level, focus has primarily been on the use of ecoregions
(Huang et al. 2000; Kozak 2004; Ozcelik et al. 2016; Lopez-Martinez
et al. 2020) and climate (Nigh and Smith 2012; Schneider et al. 2018;
Schneider 2019; Liu et al. 2020a). For example, Huang et al. (2000)
found significant differences in stem taper across five of the seven
ecoregions tested in Alberta, Canada, that reduced mean squared
error (MSE) up to 50%, and Schneider et al. (2018) observed climate-
induced changes in stem form in four of the five boreal species they
examined, with up to 5% difference in stem volume related to cli-
mate. These climate-related changes were found to significantly
interact with tree species functional traits like shade tolerance
(Schneider et al. 2018), which highlights an area for future research.
Also, as recently highlighted by Schneider (2019), the role of wind
as originally noted by Metzger (1893) (see section 2.1) could be partic-
ularly important in areas with high exposure and deserves further
evaluation given the better availability of high-resolution mean
wind speed data. Overall, the use of ecoregion and climate appears
justified in the development of broad-scale equations, especially
for species that cover a large range of conditions.

3. Model parameterization

Three primary regression approaches have been used to derive
taper equations: (i) parametric, (ii) semiparametric, and (iii) non-
parametric. All have distinct advantages and disadvantages (Table 2).

3.1. Parametric

The vast majority of taper model forms are parametric fitted by
purely parametric methods like ordinary least squares (OLS) (e.g.,
Kozak et al. 1969), nonlinear least squares (NLS) (e.g., Goodwin 2009),
seemingly unrelated regression (SUR) (e.g., Jordan et al. 2005), three-
stage least squares (e.g., Zakrzewski and MacFarlane 2006), quantile
regression (Cao and Wang 2015; Ozgelik et al. 2019), and most
recently, stochastic differential equations (Narmontas et al. 2020).
In the last decade, the use of nonlinear mixed-effects modeling
(NLME) has become the dominant form of fitting stem taper equa-
tions (e.g., Li et al. 2012; MacFarlane and Weiskittel 2016; Scolforo
et al. 2018), which was first introduced for stem taper modeling by
Gregoire and Schabenberger (1996). Mixed models provide a flexi-
ble framework for properly accounting for the nested or hierarchi-
cal nature of most stem taper data sets while providing a direct
benefit of allowing for local calibration (e.g., Trincado and Burkhart
2006), which is further discussed in section 4.2.

In addition to being hierarchical in nature, stem taper models
can have high multicollinearity, autocorrelation, and hetero-
skedasticity, which each rely on distinct statistical methods for
effectively addressing them. Kozak (1997) examined the effects
of multicollinearity and autocorrelation on stem taper predictive
performance and found that equations generally remained
unbiased yet had much greater variability when severe multicolli-
nearity was present. As previously discussed, this is often why
selection of the proper taper model form is more important than
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Table 2. Overview of the primary parametric, semiparametric, and nonparametric stem taper methods with advantages, disadvantages, and

examples identified.

Parameterization
method

Advantages

Disadvantages

Example(s)

Parametric
Ordinary least squares
(OLS)

Nonlinear mixed-
effects (NLME)

System of equations

Semiparametric
Generalized additive
models (GAMs)

B- and P-splines

Penalized mixed
splines (PMS)

Robust and provides unbiased
parameter estimates; starting values
are not needed; fast convergence

Accommodates complex hierarchical
data; easily allows for local
calibration; can provide improved
parameter estimates and their
uncertainty

Accommodates multiple equations as a
system and effectively addresses
cross-equation correlations

High flexibility; incorporation of
random effects; widely available in
statistical software

High flexibility; incorporation of
random effects; robust performance;
can be constrained

High flexibility; incorporation of
random effects; robust performance;

Does not accommodate hierarchical
data; limited to linear model forms;
requires meeting numerous
assumptions

Proper convergence can be a challenge
or time intensive for large data or
complex model forms; requires
robust starting values

Potential limited gains in predictive
accuracy; may constrain most
optimal parameter estimates

Potential for overfitting; lose precision
when smoothing terms are outside
the training range

Complex and may overfit; need robust
training data sets

Potential for overfitting; need robust
training data sets

Kozak et al. (1969); Téo et al. (2018)

Garber and Maguire (2003);
Gregoire and Schabenberger
(1996); Li and Weiskittel (2010)

Three-stage least squares
(Zakrzewski and MacFarlane
2006); seemingly unrelated
regression (SUR) (Fang et al.
(2000); Jordan et al. (2005))

Robinson et al. (2011); Marchi et al.
(2020)

Kublin et al. (2008, 2013); Kuzelka
and Maru$dk (2014a, 2014b)

Scolforo et al. (2018)

relative ease of fitting

Nonparametric

Random forest Uses cross-validation methods to avoid
overfitting; robust algorithm with
strong predictive performance

Uses cross-validation methods to avoid

overfitting; highly tunable

Artificial neural
network (ANN)

Need extensive and representative
training data sets; cannot extrapolate
beyond training data; algorithms
may need to be modified to
accommodate hierarchical data;

Nunes and Gorgens (2016); Yang
and Burkhart (2020)

Ozcelik et al. (2010); Socha et al.
(2020)

limited portability to other users

the actual fitting method. Similar to OLS or NLS, mixed models do
allow for effective handling of both autocorrelation and hetero-
skedasticity. Garber and Maguire (2003) noted that the inclusion
of tree-level random effects reduced some of the within-tree auto-
correlation, but first-order continuous autoregressive (CAR1) error
structure was needed to remove it completely, which has been
further supported in other studies (Trincado and Burkhart 2006;
Li et al. 2012). Weighting has long been a topic of focus in stem
taper modeling with varied findings (Cormier et al. 1992). Cur-
rently, most stem taper equations employ an optimized variance
power weighting as a function of the relative height in the stem
(Garber and Maguire 2003; Li et al. 2012; Scolforo et al. 2018),
which has been found to significantly improve model performance.

Although most stem taper equations are unbiased and rela-
tively accurate predictors of tree volume (Li and Weiskittel 2010),
they are optimized to predict stem diameter rather than stem
volume. As previously described, this is one of the stated benefits
of the compatible stem taper and volume equations, which could
be estimated using SUR (e.g., Jordan et al. 2005) or three-stage least
squares (Zakrzewski and MacFarlane 2006). Gains in accuracy are
not always evident and might compromise predictions of both
stem diameter and volume. Li and Weiskittel (2010) found that a
compatible prediction system was one of the lowest ranking for
both stem diameter and volume when compared with 10 other
noncompatible stem taper equations (Table 3), whereas other
recent studies have found otherwise (e.g., Shahzad et al. 2020),
suggesting that it might differ by species.

Table 3. Median ranking of various stem taper equations in terms of
predictions of stem diameter and total volume based on various model
fit statistics across three softwood species in Maine, United States.

Median rank

Stem Total stem
Equation diameter volume Overall
Max and Burkhart (1976) 6 1n 8.5
Kozak (2004) Model 01 1 7 9
Kozak (2004) Model 02 1 4 2.5
Bi (2000) 2 3 2.5
Zakrzewski (1999) 5 5 5
Valentine and Gregoire (2001) 3 2 2.5
Sharma and Zhang (2004) 7 8 7.5
Sharma and Parton (2009) 8 10 9
Clark et al. (1991) I* 5 1 3
Clark et al. (1991) I’ 10 9 10

Fang et al. (2000) 7 6 6.5

Note: Based on data presented by Li and Weiskittel (2010).
“Used observed upper-stem diameter at 5.3 m.
YUsed predicted upper-stem diameter at 5.3 m.

Instead of focusing on compatibility, several authors have
begun exploring alternative optimization algorithms to improve
parameter estimation for stem taper equations. Pang et al. (2016)
found that a combined method of constrained two-dimensional
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Table 4. Examples of stem taper equation use across various organizations and agencies throughout North America.

Organization Equation(s)

Reference

Canadian Forest Service
without measured total height
New Brunswick Department

of Natural Resources and hardwood species

Modified Sharma and Oderwald (2001) fit with or

Modified Kozak (2004) for primary softwood and

Ung et al. (2013)

Lietal. (2012)

Schneider et al. (2013)

Westfall and Scott (2010)

Energy Development

Quebec Ministry of Forests, Modified Sharma and Oderwald (2001) for nine
Wildlife and Parks species

US Forest Service, Forest Modified Valentine and Gregoire (2001) model form
Inventory and Analysis for 19 species groups in the northeastern US

US Forest Service, National Forest

Olson (1995), and many others

Depends on region, but includes use of Clark et al.
(1991), Flewelling and Raynes (1993), Wensel and

National Volume Estimator Library (NVEL; https://
www.fs.fed.us/forestmanagement/products/
measurement/volume/nvel/index.php)

optimum seeking and least square regression outperformed tra-
ditional OLS for stem taper equations for three tropical species in
China, and Nicoletti et al. (2020) used bivariate modeling for
modeling stem taper for loblolly pine in Brazil. Ozgelik and Cao
(2017) suggested that optimizing for both taper and either cumu-
lative or total volume performed better than other methods.

3.2. Semiparametric

Semiparametric methods like splines have been extensively
used for modeling stem taper (Lappi 2006; Kublin et al. 2008;
Scolforo et al. 2018). The splining methodology has varied and
has included the use of smoothing splines (Lappi 2006), general-
ized additive models (GAMs) (Robinson et al. 2011; Marchi et al.
2020), B-splines (Kublin et al. 2008, 2013), P-splines (KuZelka and
Marusdk 2014a), and penalized mixed splines (PMS) (Scolforo
et al. 2018). Several additional forms of splines were explored by
KuZelka and Marusdk (2014b), who suggested that interpolation
curves with first-degree continuity determined by the Catmull
and Rom (1974) spline performed best. Splines offer greater flexi-
bility in the fit without a greater addition of fixed parameters,
which may enhance representation on stem form variability
commonly seen in some species, especially hardwoods or soft-
woods with significant stump flare.

Semiparametric methods can also include a random effect sim-
ilar to the mixed models previously described, which allows for
better localization (Kublin et al. 2008). In comparison with more
traditional methods, performance of semiparametric methods
has varied. For example, Scolforo et al. (2018) found that a gener-
alized PMS approach gave more stable volume predictions, par-
ticularly across tree size classes. This is consistent with the
finding of KuZelka and Marus§dk (2014a), who found P-splines to
be superior to other widely used parametric model forms. Like-
wise, both Robinson et al. (2011) and Marchi et al. (2020) found
that GAMs generally outperformed parametric methods, but the
degree of improvement did vary by species.

Although semiparametric methods do offer greater flexibility
and predictive performance, two potential drawbacks are overfit-
ting and a decrease of model portability. KuZelka and MarusSdk
(2014D) clearly demonstrated that spline predictive performance
was very sensitive to the number of input points (knots) and
order (e.g., second vs. third order). Fitting of semiparametric
methods is relatively straightforward using the approaches
previously outlined or in R with the TapeR package (Kublin and
Breidenbach 2013). Likely, the best use of semiparametric meth-
ods for taper equation development are when localized predictions
are needed.

3.3. Nonparametric

Similar to semiparametric methods, fully nonparametric meth-
ods have seen wider use for taper predictions. This has included the
use of regression trees or forests (Nunes and Gorgens 2016; Yang

and Burkhart 2020) and artificial neural networks (Ozcelik et al.
2010; Socha et al. 2020). The random forest algorithm is commonly
used for regression trees, whereas various algorithms are available
for neural networks and can give different results (Ozgelik et al.
2010). Comparing these methods, neural networks have been
shown to generally outperform regression trees, which both
tend to outperform parametric methods (Nunes and Gorgens
2016). However, unlike mixed models, nonparametric methods
do not tend to address hierarchies in the data, which are gener-
ally quite prevalent in taper data sets. To address this, two-stage
bootstrapping approaches or hierarchical random forest meth-
ods must be used. Recently, Yang and Burkhart (2020) found that
the comparisons between parametric and nonparametric meth-
ods depended heavily on the underlying verification data with
nonparametric methods being more sensitive.

Like semiparametric approaches, nonparametric methods offer
several advantages that deserve additional exploration. Notably,
there are also some important drawbacks, which include (i) the
need for a highly representative and extensive database, as the
methods cannot predict outside of the range of the training data;
(i) they can overfit the data and give biologically implausible
predictions; (iii) reduced portability to other users; and (iv) the
predictions are nontractable in terms of both estimation and
quantification of uncertainty that would require numerical inte-
gration to derive volume. Similar to semiparametric methods,
nonparametric methods might be best when local predictions
are needed or for species with complex form types assuming
that extensive data are available.

4. Development, application, and use

Despite their general complexity, stem taper equations are
meant to be developed and used for a variety of practical and sci-
entific applications (Table 4). As previously described, a range of
taper model formulations and methods of parameter estimation
are currently in use (Table 2); this variety can make development
a challenge and highly dependent on sample size, measurement
methods, and tree selection protocols. With the wide use of
mixed-effect models, local calibration using a few upper-stem di-
ameter measurements is now possible and can prevent the need
to develop new equations. For effective application, users need to
potentially consider numerical integration methods, as well as
bolt length, the conversion between inside- and outside-bark
diameters, and imputation of missing values like total height.
Each of these issues is briefly elaborated on in the following
sections.

4.1. Sample size and tree selection

Stem taper equations require multiple observations of inside- and
outside-bark diameters, which can be taken on standing or destruc-
tively sampled trees. Given the challenges of measuring upper-
stem diameters (Westfall et al. 2016) and the larger interest in
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inside-bark diameter, taper measurements from felled trees are
generally preferred and have long been the primary means for a va-
riety of applications (Behre et al. 1926). Important considerations
in collecting the necessary data to develop a taper equation are
(i) number of sample trees; (ii) selection of sample trees; and
(ii) number, arrangement (e.g., equidistant vs. relative), and loca-
tion of diameter measurements along the stem.

Various factors such as species, model form, and expected
range of tree DBHs desired for application influence the optimal
tree sample size number estimate (Subedi et al. 2011). Kitikidou
and Chatzilazarou (2008) found that at least 825 observations of
stem diameters along the bole were needed to properly parame-
terize a taper equation. If 10-20 observations were taken from
each sample tree, then a minimum of 40-85 sample trees would
be needed, which is consistent with recommendations from
prior analyses (Kitikidou and Chatzilazarou 2008; Subedi et al.
2011; Stangle et al. 2016; Saarinen et al. 2019). However, there is of-
ten a significant interaction between sample size and tree selec-
tion criteria. Subedi et al. (2011) found that stratified random
sampling by selecting across a range of diameter classes was
most efficient when compared with other methods. At the very
least, selecting trees near the minimum and maximum of the
DBH range where the equation will be used is important, particu-
larly if nonparametric parameterization will be used.

Most volume and biomass studies sample trees well below the
largest tree DBH in an inventory because of the time, expense,
and value of measuring larger trees (Frank et al. 2019). In addi-
tion, most taper studies likely do not utilize a fully random selec-
tion methodology; often, vigorous and well-formed trees free of
defect are selected and used. Such selectivity can have important
implications for the representativeness of the developed equa-
tion (MacFarlane and Weiskittel 2016), as a significant fraction of
the underlying regional forest inventory may not fit these prop-
erties, especially in areas dominated by hardwoods (Castle et al.
2018).

Within a tree, either relative or absolute methods are often
used to select locations for measuring diameters. For example,
Westfall and Scott (2010) used measurements at 0.3, 0.6, 0.9, 1.4,
and 1.8 m and approximately every 1-2.5 m to tree tip to develop
stem taper equations for a variety of species in the northeastern
US, and Laasasenaho et al. (2005) used observations collected at
1%, 2.5%, 5%, 7.5%,10%,15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and
90% of total tree height for their stem taper equations. Often, the
highest variation and change in stem form is near the tree base,
and additional measurements are generally taken to effectively
capture it, particularly if predictions below 1.3 m are needed. At
minimum, measurements should be taken at least every 2 m
(e.g., Stdngle et al. 2016), as bias can occur if volume is estimated
with longer intervals (Filho and Schaaf1999). Further, perpendic-
ular measurements of major or minor axes of both diameter
inside and outside bark are generally needed to capture varia-
tion, and the use of bark thickness gauges can result in signifi-
cant bias (e.g., Stingle et al. 2016).

4.2. Calibration

Calibration can be achieved with different means and often
requires a much smaller sample size than developing a new stem
taper equation. A clear advantage of using mixed-effect models is
the ability to estimate a random effect from a small number of
samples (Trincado and Burkhart 2006), which has generally been
shown to outperform other calibration methods (Cao and Wang
2011, 2015). As previously discussed, the number, location, and
type (inside vs. outside bark) of observations can control the
effectiveness of local calibration. For example, Cao (2009) found
that a diameter measurement at the midpoint between breast
height and the tree tip significantly and modestly improved pre-
dictions of outside and inside bark, respectively. One important
drawback to mixed-effects calibration methods is that they often
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require the full error structure of the original fit model to be
available, which is rarely the case. It would be useful if authors
might consider publishing these as supplemental files in future
studies.

In addition, because of the common lack of upper-stem dia-
meter measurements, de-Miguel et al. (2012) proposed three alter-
native strategies for calibration and suggested that computing
mean predictions from a mixed-effects model over the distribu-
tion of random effects was the best approach. Likewise, Bouriaud
et al. (2019) recently highlighted that local calibration of stem
taper equations resulted in small gains and high biases but found
two Bayesian approaches to perform significantly better. As dis-
cussed further in section 5, terrestrial laser scanning (TLS) now
offers the unprecedented opportunity to generate necessary
stem taper equation calibration data with millimetre levels of ac-
curacy. Saarinen et al. (2019) suggested that at least 50 trees with
TLS were needed to effectively calibrate an existing stem taper
equation, but they demonstrated improvements in the lower por-
tion of the bole with only one sample tree due to the large number
of observations generated by TLS. Clearly, local calibration with
or even without new observations is an important and effective
method to ensure the proper application of stem taper equations.

4.3. Evaluation

Given the wide application and use of stem taper equations for
estimating both total and merchantable volume, effective evalu-
ation of these equations is important yet often overlooked in
practice. As previously described, calibration of stem taper equa-
tions can be achieved with relatively few observations but often
requires the availability of independent data, which can be hard
to obtain because of the difficulties and expense of measuring
upper-stem diameters. Consequently, evaluation of stem taper
equations can be done using either stem diameters or stem vol-
umes or a combination of both, which is generally preferred and
often most revealing (Li and Weiskittel 2010; Shahzad et al. 2020).

Kozak and Smith (1993) offered several practical quantitative
approaches for evaluating stem taper equations, which rely on
rankings of absolute values. In contrast, Goodwin (2009) sug-
gested the use of mean scaled statistics for more effective com-
parisons. If only stem diameters are available, examining behavior
across relative height classes is important, particularly equation
performance on the lower half of the bole. Likewise, examining
performance across tree DBH classes is critical if only stem volume
is available. Cross-validation or even bootstrapping methods for
evaluation can be informative but might be unnecessary, especially
when data are limited (Kozak and Kozak 2003). Equivalence testing
can be useful, as a region of indifference can be selected by the
user to handle potential measurement differences in the avail-
able data or to better define practically meaningful differences
(e.g., Zakrzewski and MacFarlane 2006). In contrast to purely
quantitative assessments, both Goodwin (2009) and Zakrzewski
(2009) provided various qualitative benchmarks for stem taper
equations (Table 5). Using either quantitative or qualitative
measures, the proper and routine evaluation of stem taper equa-
tions is required because of the myriad of factors that can influ-
ence their overall performance.

4.4. Application and use

Because of their high flexibility, taper equations have a variety
of uses, including (i) describing absolute or relative changes in
tree form, (ii) computing upper-stem diameters at specific loca-
tions on the bole, (iii) deriving volume estimates for portions or
the entire stem, and (iv) merchandizing trees into specific prod-
ucts based on certain specifications like log length or small- or
large-end diameter, which are all much harder to achieve
with a volume equation. Important considerations for a taper
equation’s most effective application and use are (i) interval
bolt length and method for numerical integration when required,

<. Published by NRC Research Press



Can. J. For. Res. Downloaded from cdnsciencepub.com b}{ UNIVERSITY OF MAINE on 02/20/21
For personal use orily.

McTague and Weiskittel 231
Table 5. Qualitative criteria for evaluating and assessing stem taper equations applied to common forms.
Model form

Goodwin Max and Burkhart Kozak Random Zakrzewski
Criterion Bi(2000)  (2009) (1976) (2004) forest (1999)
Closed-form integral expression and invertible 0 1 1 0 0 1
Allows flexibility of diameter input 0 1 0 0 0 0
Applicable to a wide range of tree sizes and species 1 1 1 1 1 1
Constrained” 0 0 0 0 0 1
Nonsegmented 1 1 0 1 1 1
Defines a stem surface in a closed form 0 0 0 0 0 0
Easily localized” 0 1 0.5 0 0 1
Easily regionalizable® 1 1 1 1 0 1
Has full continuity from stem base to tip? 0.5 1 0 1 1 1
Uses easy-to-obtain variables 1 1 1 1 1 1
Total 4.5 8 4.5 5 4 8

Note: 1=yes; 0 =no. Table was adapted from Goodwin (2009) and Zakrzewski (2009).

“Predictions should be consistent with inputs and yield logical values (e.g., d, = DBH when h,, =1.3 m).

PAble to explain between-tree variability with inclusion of additional information such as upper-stem diameters.

‘Applicable across broad spatial scales and reflects regional differences due to environmental or management-related factors without the need for reparameterization.

“Provides logical predictions throughout the full range of 0 to H for all trees.

(ii) deriving estimates of inside- and outside-bark diameter, and
(iii) measurement or imputation of stem taper equation covariates.

Most of the highly flexible variable-form taper equations (e.g.,
Kozak 2004) require numerical integration, which can be compu-
tationally demanding especially for large forest inventories.
With this approach, stem diameters are predicted by the taper
equation and volumes derived with the use of cubic log volume
formulas such as Smalian, Huber, and Newton. Likewise, various
log rules exist when volume in board feet is needed. In addition
to the method of integration, an important additional considera-
tion is the actual interval length for numerical integration, with
1-2 m as the most common recommendation for computation of
cubic volume, but errors can rapidly increase above those inter-
vals (Goulding 1979; Biging 1988). As highlighted by Filho and
Schaaf (1999), numerical integration methods done at even 2 m
will generally underestimate true volume, and they recommend
Huber’s method, as it is more robust. When computing board-
foot volume, the log length will depend upon the specific log
rule, but rarely is the length < 5 m. Briggs (1994) used several
illustrations to demonstrate how shorter logs create more board-
foot volume. Hence, log buyers often stipulate a minimum mean
log length in contracts to prevent excessive “volume manufac-
turing”.

For practical reasons, inside-bark diameter or volume is often
preferred given the limited value of bark. However, predictions
of both inside and outside bark are often needed at times. Stem
taper equations can be developed for both inside and outside
bark, but inside-bark observations might be more limited if
standing tree taper data sets are included (e.g., Clark et al. 1991; Li
et al. 2012). In addition, Li and Weiskittel (2011) found that inside-
bark diameters were better predicted using bark thickness equa-
tions that included diameter outside bark as a predictor when
compared with the sole use of a stem taper equation. Conse-
quently, a potentially more robust system for estimating both
inside- and outside-bark diameter might be using a stem taper
equation to predict the latter and a bark thickness equation for
the former (Li and Weiskittel 2011).

As previously described, most stem taper equations rely pri-
marily on DBH and total height as covariates, but additional vari-
ables like crown ratio or upper-stem diameters might also be
needed. As previously mentioned, measurement or predicted
error associated with covariates, especially upper-stem diameter
(Westfall et al. 2016), can be problematic and result in significant

biases. Equations such as eq. 54 can be used to estimate an upper-
stem diameter at a knot transition between segments, but they
can introduce another source of uncertainty. For example, Clark
et al. (1991) developed an equation to predict upper-stem diame-
ter equations for a variety of species in the southern US, but it
required both tree DBH and total height and had a coefficient of
variation ranging from 2% to 11%. Because stem taper equations
require DBH, alternative methods are often needed to determine
the form and volume of either saplings or seedlings in a forest in-
ventory. The stem taper equation of Goodwin (2009) uses dia-
meter at a flexible yet known height and is one of the few that
does not rely on DBH, which would ensure applicability to either
seedlings or saplings.

Most importantly, only a subsample (5%-30%) of tree heights
are generally measured in a typical forest inventory, and the
remaining values must be imputed using regional or locally cali-
brated equations. Garber et al. (2009) evaluated the effects of vari-
ous height imputation approaches on stand volume estimates
and found that the root mean square error (RMSE) ranged from
10 to 65 m>-ha™ or 3% to 21% depending on the method and num-
ber of trees available for local calibration. Their recommendation
was the use of a regional equation that included factors in addi-
tion to tree DBH such as stand density or locally calibrating a
mixed-effects model with at least four randomly selected trees
within a stand. The same findings would likely hold for other fac-
tors like crown ratio, whereas unbiased estimates of stand den-
sity would also be needed if stand-level factors are used as a
model covariate. This is important, as uncertainty in tree-level
volume estimates caused by measurement or prediction error
can significantly compound when being summarized to larger
scales (e.g., Berger et al. 2014; McRoberts and Westfall 2016).

5. Synthesis and future

Clearly, stem taper equations have a long history of develop-
ment, application, and use. Model forms, parameterization, and
issues with their application have continued to be refined over
the past several decades as outlined in this review. General con-
sensus appears to be converging on (i) clear advantages of the
variable-form model type; (ii) the importance of including addi-
tional factors beyond tree DBH and height, except potentially
upper-stem diameters; (iii) the superiority of a regionally cali-
brated method or semi- and nonparametric methods when
refined and localized estimates are needed, assuming sufficient
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data are available; and (iv) the importance of the specific method
and length of the numerical integration interval, as well as the
availability of quality input data when applying taper equations
to forest inventory data, particularly at large spatial scales.

Going forward, a variety of new and emerging technologies
will continue to improve taper equations and their predictive
capacity. Currently, the most important is TLS, which provides
an unprecedented level of detail on stem form and quantity and
quality of data for modeling. Numerous studies on this topic
covering a variety of algorithms, sensors, and applications are
now available; the studies highlighted here represent only a
small number of them. For example, Saarinen et al. (2017) demon-
strated the feasibility of using TLS to accurately measure stem
taper and volume across multiple hardwood and softwood spe-
cies with scans taking between 20 and 30 min or one-sixth the
amount of time required to do traditional destructive sampling.
This potential time and cost savings while providing a high reso-
lution of data should allow for the greater sample sizes needed
for better capturing the within- and between-tree variation in
stem form, which is important for species with eccentric forms
(Puletti et al. 2019). This also potentially allows the assessment of
stem volume growth over time (Luoma et al. 2019), which in turn
makes possible the ability to develop more dynamic stem taper
equations. Clearly, TLS can result in better stem form data that
help lead to better calibrated (Saarinen et al. 2019) or more
refined (Sun et al. 2016) taper equations.

Even so, TLS can only measure outside-bark diameters, can be
costly, requires significant processing, struggles to separate the
bole from branches in the tree crown, and can be complicated in
areas with complex terrain or rich understories (Heinzel and
Huber 2016). Recently, Eliopoulos et al. (2020) showed that terres-
trial stereoscopic photogrammetry was able to measure tree
diameters faster and cheaper than typical TLS scanners. Another
important yet potentially underutilized source of taper data in
North America is from the digital files created by mechanized
harvesters, which have been used more effectively for this pur-
pose in Australia and New Zealand (e.g., Murphy et al. 2006) and
Scandinavia (e.g., Koskela et al. 2006). For better characterizing
inside-bark stem form, additional technologies are also available.
On logs or other destructively sampled trees, computed tomogra-
phy (CT) can be used to accurately characterize bark thickness
and its variation (e.g., Stingle et al. 2016). On standing trees, ul-
trasonic and thermal image technologies have been used to non-
destructively detect internal defects (Taskhiri et al. 2020). These
methods combined with TLS may offer a novel means for model-
ing wood quality and net volume or at least allow for better ways
of quantifying defects than achieved in prior analyses (Frank
etal. 2018).

Overall, stem volume remains one of the most important tree-
and stand-level attributes for forest inventories, management,
and planning. This review has highlighted the extent and breadth
of scientific literature on stem taper equations, which have become
the primary means for estimating stem volume. Despite the great
progress made in accurately predicting stem taper and the avail-
ability of new technologies for better measuring it, many impor-
tant challenges remain. Future efforts should address (i) developing
more biologically based models of stem form and growth (Mékeld
and Valentine 2020); (ii) constructing geographically representa-
tive, species-specific, and nationally consistent stem taper and
volume databases (e.g., Radtke et al. 2015; Frank et al. 2019); (iii)
better quantifying the uncertainty of tree DBH, height, or vol-
ume and its potential to compound across spatial scales (e.g.,
McRoberts and Westfall 2016); (iv) the application of consistent, ro-
bust, and tractable methodologies for national inventories (e.g.,
Weiskittel et al. 2020); and (v) the full integration of multiple
available technologies for improving estimation procedures.
These and many other challenges will likely be the key focal
areas for future research in the years to come.
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