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PARTIAL DATA INVERSE PROBLEMS FOR SEMILINEAR
ELLIPTIC EQUATIONS WITH GRADIENT NONLINEARITIES

KATyA KRUPCHYK AND GUNTHER UHLMANN

ABSTRACT. We show that the linear span of the set of scalar products of gradients of
harmonic functions on a bounded smooth domain 2 C R"™ which vanish on a closed
proper subset of the boundary is dense in L1 (). We apply this density result to solve
some partial data inverse boundary problems for a class of semilinear elliptic PDE
with quadratic gradient terms.

1. Introduction and statement of results

Let Q C R™, n > 2, be a connected bounded open set with C'* boundary. In the
paper [8] it is established that the linear span of the set of products of harmonic
functions in C*°(Q), which vanish on a closed proper subset of the boundary, is dense
in L1(2). This result is motivated by the Calderén inverse problem with partial
data, see [24] and [40] for review, and it provides the solution of the linearized
version of the partial data problem at the zero potential. The recent works [27] and
[30] have exploited this density result to give a solution for the partial data inverse
boundary problem for a class of semilinear elliptic PDE.

The purpose of this paper is twofold. First we shall give an extension of the density
result of [8] where the set of products of harmonic functions which vanish on a
closed proper subset of the boundary, is replaced by the set of scalar products of
gradients of such functions. We shall then apply this density result to solve some
partial data inverse problems for a class of semilinear elliptic PDE with quadratic
gradient terms.

The first result of the paper, extending the corresponding result of [8], is as follows.

Theorem 1.1. Let Q C R™, n > 2, be a connected bounded open set with C°
boundary, let T' C 02 be an open nonempty subset of O, and let T =90 \T'. Then
the linear span of the set of scalar products of gradients of harmonic functions in
C>(Q), which vanish on T, is dense in L*(£2).

We shall next proceed to state our results concerning inverse boundary problems
for a class of semilinear elliptic PDE with quadratic gradient terms. Specifically,
we shall consider the following Dirichlet problem,

{—Au + q(z)(Vu)? + V(z,u) =0 in Q,

(1.1) u=f on 0.

Here ¢ € C*() for some 0 < a < 1, the Hélder space, and the function V : QxC —
C satisfies the following conditions:

(i) the map C 3 z + V-, 2) is holomorphic with values in C*(Q),
(ii) V(x,0) =8,V (z,0) = 82V (z,0) =0, for all z € Q.

We have also written (Vu)? = Vu - Vu. It follows from (i) and (ii) that V can be
expanded into a power series

(1.2) Viz,2) =) V(o) 7 Vilw) = oV (z,0) € C*(Q),
k=3 )

converging in the C*(Q) topology.
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It is shown in Appendix A that there exist § > 0 and C' > 0 such that when
f € Bs(99Q) :={f € C**(09Q) : || fllcz.(00) < ¢}, the problem (1.1) has a unique
solution u = uy € C%2(Q) satisfying ||u||Cg,a(§) < C6.

Let I';,T'y C 992 be arbitrary non-empty open subsets of the boundary 0€). As-
sociated to the problem (1.1), we define the partial Dirichlet—to—Neumann map
A;l"/rzf = Oyuy|r,, where f € Bs(09), supp (f) C I'1. Here v is the unit outer
normal to the boundary.

The second result of this paper is as follows.

Theorem 1.2. Let Q C R™, n > 2, be a connected bounded open set with C°
boundary, and let I'1,Ty C 9Q be arbitrary open non-empty subsets of the boundary
ON. Let q1,q2 € C¥(Q) and VD V) . Q x C — C satisfy the assumptions (i) and

(ii). Assume that A;l)"l;fl) = AqF;)"l;fQ). Then ¢t =q2 n Q and VY = V@ jn Q x C.

Remark 1.3. To best of our knowledge, Theorem 1.2 is new even in the full data
case 'y =Ty = 0Q2.

Remark 1.4. We would like to emphasize that in Theorem 1.2 the open non-empty
sets T'1, Ty C 00 are completely arbitrary. It may be interesting to note that the
corresponding partial data inverse problem is still open in dimensions n > 3 in the
linear setting, even for the linear Schrédinger equation —Au+ q(z)u = 0 in 2, say.
In dimension n = 2 in the linear setting, the global identifiability in the partial data
inverse problem is established in [14] when T'y = T'g is an arbitrary open non-empty
portion of 9, and in [15] when T1NTy = 0, provided that some additional geometric
assumptions are satisfied. We also refer to [7] for ezamples of non-uniqueness in the
anisotropic Calderdon problem when the Dirichlet and Neumann data are measured
on disjoint subsets of the boundary in dimensions n = 2, 3.

Remark 1.5. To motivate the consideration of nonlinear elliptic PDE, discussed
in this paper, let us mention that semilinear PDE with quadratic gradient terms
occur naturally in the study of harmonic maps, harmonic heat flow maps, as well
as Schrodinger maps, see [39], [3].

Following [30], we shall next discuss inverse boundary problems for semilinear el-
liptic equations with quadratic gradient terms, in the presence of an unknown ob-
stacle. Let 2 C R™ be a bounded open set with a connected C*° boundary, and
let D CC Q be such that Q\ D is connected and dD € C*°. Let us consider the
following boundary problem,

—Au+q(@)(Vu)? +V(z,u) =0 in Q\D,
(1.3) u=0 on 0D,
u=f on Of.

An application of Theorem A.1 of Appendix A, as before, gives that for all f €
B;s(09), the problem (1.3) has a unique small solution u € C%%(Q\ D). Let
'y, Ty C 99 be arbitrary non-empty open subsets of the boundary 90€2. We define
the associated partial Dirichlet—to-Neumann map Agif 12 by

Aﬁ;,rl’rz(f) = dyulr,, f € Bs(dQ), supp (f) CTy.

We are interested in the inverse problem of determining the unknown obstacle D,

the coefficient ¢, and the non-linear term V', all from the knowledge of the partial
o D,T;,T

Dirichlet—to-Neumann map A 5" ?.

The following result is analogous to [30, Theorem 1.2], with the novelty that we allow

quadratic gradient terms in the nonlinearity, and that we can perform measurements

on arbitrary open non-empty sets I'y, 'y C 09).

Theorem 1.6. Let Q C R™, n > 2, be a bounded open set with connected C'°
boundary, and let T'1,T's C 0Q be arbitrary open non-empty subsets of the boundary
00. Let D1,Dy CC Q be non-empty open subsets with C*>° boundaries such that
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Q\ D; are connected, j = 1,2. Let g; € C*(Q\ D;) and VW : (Q\ D;) x C — C

satisfy the assumptions (i) and (ii), j = 1,2. Assume that Aﬁl’{;ﬂ’)m = A(Zf{f(g’)rz

Then D := Dy = Dy, q1 = q2 in Q\ D and V) =V in (Q\ D) x C.

Remark 1.7. It may be interesting to note that the simultaneous recovery of an
obstacle and surrounding potentials in the linear setting, say in the case of the linear
Schrddinger equation, constitutes an open problem, see [20], [30] for a discussion.

Let us remark that inverse boundary problems for nonlinear elliptic PDE have been
studied extensively in the literature. To the best of our knowledge, the follow-
ing main types of nonlinear scalar equations have been considered, under suitable
assumptions on the nonlinearity:

(i) —Au + a(z,u) = 0, see [22], [21], [43] for the full data problem in the
Euclidean case, and [10], [29] for the manifold case, [16] for the partial data
problem in the n = 2 case, and [27], [30] for the partial data problem when
n>2,

—Au+b(u, Vu) = 0, see [19] for the partial data problem in the case n = 3,
—Au + q(x,Vu) = 0, see [42] for the full data problem when n = 2,

V- (y(z,u)Vu) = 0, see [41], [44] for the full data problem in the case n > 2,
V- (C(x,Vu)) =0, see [5], [23], [12] for the full data problem,

V- (c(u, Vu)Vu) = 0, see [37] for the full data problem when n > 2.

(i

)
(iii)
(iv)
(v)

)

(vi

A classical method for attacking inverse boundary problems for nonlinear elliptic
PDE, going back to [18], consists of performing a first order linearization of the given
nonlinear Dirichlet-to-Neumann map, allowing one to reduce the inverse problem
to an inverse boundary problem for a linear elliptic equation, and to employ the
available results in this case. A second order linearization of the nonlinear Dirichlet—
to-Neumann map has also been successfully exploited in the works [2], [5], [23],
[41], and [44]. The recent works [10], [29] have introduced a natural and powerful
method of higher order linearizations of the nonlinear Dirichlet-to-Neumann map
for inverse boundary problems for elliptic PDE, allowing one to solve such problems
for nonlinear equations in situations where the corresponding inverse problems in
the linear setting are open. This development of inverse boundary problems for
nonlinear elliptic PDE was preceded by the pioneering work [28] for inverse problems
for nonlinear hyperbolic PDE, see also [6], [33], and the references given there.

The problem of determining an unknown obstacle is of central significance in inverse
scattering. The first uniqueness result for this problem goes back to Schiffer and
Lax and Phillips [34, p. 173]. We refer to the works [17], [25], [26] for some other
significant contributions, and to [20] for a review.

Let us now describe the main ideas of the proofs of Theorem 1.1, Theorem 1.2, and
Theorem 1.6. First, the proof of Theorem 1.1 proceeds similarly to [8], with the
only essential difference being that a certain Runge type approximation theorem
needed here has to be established with respect to the H'-topology, as opposed to
an L%*-approximation result obtained in [8] .

The proof of Theorem 1.2 proceeds by the method of higher order linearizations,
with Theorem 1.1 and the main result of [8] being the crucial ingredients.

As for Theorem 1.6, it is an immediate consequence of Theorem 1.2, once the
obstacle has been recovered. Following [30], the determination of the obstacle is
obtained by performing a first order linearization of the problem (1.3), and relying
on a standard contradiction argument.

The paper is organized as follows. In Section 2 we establish Theorem 1.1. The
proof of Theorem 1.2 occupies Section 3. Theorem 1.6 is proven in Section 4. In
Appendix A we show the well-posedness of the Dirichlet problem for our semilinear
elliptic equation with quadratic gradient terms, in the case of small boundary data.
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2. Proof of Theorem 1.1

We shall follow the strategy of the work [8]. Let f € L>(2) be such that
(2.1) / fVu-Vudz =0,
Q

for any harmonic functions u,v € C*°(Q) satisfying ulz = v[z = 0. In view of the
Hahn—Banach theorem, we have to show that f = 0 in 2. This global statement
will be obtained as a corollary of the following local result.

Proposition 2.1. Let Q C R™, n > 2, be a bounded open set with C*° boundary,
let xg € 02, and let I C 09 be the complement of an open boundary neighborhood
of xg. Then there exists & > 0 such that if we have (2.1) for any harmonic functions
u,v € C*®(Q) satisfying ulz = v|g =0, then f =0 in B(z,5) N Q.

Proposition 2.1 will be proved in Subsection 2.3. The passage from local to global
results will be carried out in Subsection 2.2. Here an essential ingredient is a Runge
type approximation theorem in the H'-topology, established in Subsection 2.1 and
extending [8, Lemma 2.2], where approximation in the L?-sense was shown.

2.1. Runge type approximation. Let 2 C R”, n > 2, be a bounded open set
with C* boundary, and let us consider the L?-dual of H'(f2), given by

H™Y(Q) :={ve H Y (R") : supp (v) C Q},

see [9], [35]. Here the duality pairing is defined as follows: if v € H~1(Q) and
w € HY(Q), then we set

(2.2) (v, w)ﬁ,l(Q)’Hl(Q) = (v, EXt('LU))H—l(]Rn)’Hl(Rn),

where Ext(w) € H*(R™) is an arbitrary extension of w, and (-, H-1(Rr),H (R) 18

the extension of L? scalar product (p,¥)r2rn) = [gn ¢(@)1(2)dz. Note that the
definition (2.2) is independent of the choice of an extension Ext(w), see [9, Lemma
22.7).

Let Q1 C Q9 C R", n > 2, be two bounded open sets with smooth boundaries such
that Qo \ Q; # 0. Assume that 9Q; NIy = U where U C 99 is open with C>
boundary. Associated to g, we let G : C*°(Q3) — C°°(Q2), a — w, be the solution
operator to the Dirichlet problem,

—Aw=a in €,
{w|ag2 =0.
The following result is an extension of [8, Lemma 2.2].
Lemma 2.2. The space
W i= {Galg, : a € C(@), supp (a) € 5\ 07}
is dense in the space

S:={ueC™®Q): —Au=0 in Q, ulsa,noa, = 0},
with respect to the H'(21)—topology.
Proof. We shall use some ideas of [31], see also [4], [32]. Let v € H(€) be such
that
(23) (Uaga|91)ﬁ—1(91)71_]1(91) =0

for any a € C°°(Qy), supp (a) C 22\ Q;. By the Hahn—Banach theorem, it suffices
to show that (U7u)ﬁ*1(91),H1(Ql) =0 for any u € S.
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We have Ga € H}(Q2) and let us view Ga as an element of H*(R™) via an extension
by 0 to R™ \ Q2. Then there exists a sequence ¢; € C§°(£22) such that ¢; — Ga in
HY(R"™). Tt follows from (2.3) that

2.0 0= (v, ga)Hfl(R"),Hl(]R") = jlig)lo(% Wj)H*l(R"),Hl(R")

= jllﬂgo(va i) H-1(2),HL(Q) = (0:G4) g-1(Qy), HE (20)-

As v € H*(Qy), by [35, Theorem 3.29], there is a sequence v; € C§°(£1) such that
v; = vin H7Y(R"). Let f € H}(Q2) and f; € C™(Q2) N H{(Q2) be the unique
solutions to the following Dirichlet problems,

{—Af =v in QQ, {—Afj = vy in QQ,

(2.5)
f=0 on 0y, fi=0 on 0%s.

Now it follows from (2.4), (2.5) that

0= (v,9a)g-1(0.),H1(Q) = jlggo(vja Ga) g-1(0,),H1(Q)

(2.6) = Jim (=AfjGa)g-r (@), myen = i | (~Af)Gadz

j= Jao,

= lim / fiadr = fadzx.
J*}OO Q2 QZ

Here in the penultimate equality we use Green’s formula, and the fact that f;|sq, =
Galaa, = 0. In the last equality in (2.6) we use that f; — f in L?(Q) by the
well-posedness of the Dirichlet problem for —A in Qs, see [9, Theorem 23.4]. As
a € C®(Qy), supp (a) C Q \ Oy, is arbitrary, we get from (2.6) that f = 0 in
0\ Q1. Since f € H} (), we see that floo\o0, = 0, and therefore, flaq, = 0.
Hence, f € H} (1), and we shall view f as an element of H!(R") via an extension
by 0 to R™ \ ;.

Let f; € C5°(€;) be such that f; — f in H(R"). Thus, —Af; — —Af in H}(R™).
Let u € S and let Ext(u) € H*(R™) be an extension of u. Then integrating by parts,
we have
(=Af,Ext(u)) g-1(rn), 11 gn) = jli{go((_AJ/c;)vEXt(“))Hfl(R"),Hl(R")
(2.7) .
= lim | (=Af)uds =0

j—o0 o

We shall consider the compactly supported distribution g = —Af —v € H-}(R").
As supp (v),supp (f) C Q1, we see that supp (g) C 1, and it follows from (2.5)
that supp (g) C 9. As 9, is a codimension 1 submanifold in R™, by [1, Theorem
5.1.13], [35, Lemma 3.39], we obtain that

g=h®q,, heH Y200).

Furthermore, in view of (2.5), we have supp (g) C 921 N9 = U, and therefore,
supp (h) C U. Since U C 99 is an open set with C°° boundary, by [35, Theorem
3.29], there exists a sequence h; € C§°(U) such that h; — h in H~1/2(9€;). Hence,
we have

(9, Ext(u)) -1y, m1 ey = (M uloo,) g-172(000), 1172 (001)

2.8 . . _
( ) = 'hm (hj7u|391)H*I/Z(Z?Q]),Hlﬂ(aﬂl) = _hm h]UdS = 0,
J—00 J—00 an

where in the last equality we use that u|ga,nsq, = 0. It follows from (2.7) and (2.8)
that

(VW) -1,y (@) = (FASExb (W) g1 (rn), 11 @) = (95 Ext(w)) -1 ey, 12 () = O]
This completes the proof of Lemma 2.2. O
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FIGURE 1. The open sets 27 and 29

2.2. From local to global results. Proof of Theorem 1.1. We shall follow
[8]. We want to show that f vanishes inside . Let us fix a point z; € Q and let
0:[0,1] — Q be a C! curve joining z¢ € Q\ T to 21 such that 8(0) = ¢, 0/(0) is
the interior normal to 9Q at xo and 6(t) € Q, for all ¢t € (0, 1]. Let us set

O:(t) = {z € Q: d(x,0([0,t])) < e}
so that ©.(t) is a closed neighborhood of the curve ending at 6(t), t € [0, 1]. Let
I={te]0,1]: f vanishes a.e. on O.(t) N N}.

Note that by Proposition 2.1, 0 € I if € > 0 is small enough. One can easily see that
I is a closed subset of [0,1]. If we show that I is open then as [0, 1] is connected,
I =10,1]. Hence, z1 ¢ supp (f). Since x; is an arbitrary point of 2, we have f =0
on {2, completing the proof of Theorem 1.1.

Thus, we only need to show that I is open. To this end, let ¢t € I and € > 0 be small
enough so that 90.(t) NN c dQ\ I'. For & > 0 sufficiently small, the set 0O (t)
intersects 0f) transversally, and in suitable local coordinates 1, ..., ¥y, centered at
Zo, 0N is given by y,, = 0, and 90 (t) is given by y; = 0. It is then easy to see that
the set '\ ©.(¢) can be smoothed out into an open subset ©; of 2 with smooth
boundary so that

Q1 D0\ 6.(t), 992NnoN DT,

and 09, NON = U where U C 99, is an open set with C* boundary. Furthermore,
let us augment the set © by smoothing out the set Q U B(zg,e’), with 0 < &’ < ¢
sufficiently small, into an open set 25 with smooth boundary so that

00 NN D 0N NN = 9N, NN, O T.

Let G, be the Green kernel associated to the open set 29,
_AyGﬂg (.’E, y) = 5($ - y)v GQQ (l’, ')‘3&22 =0.
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Consider the function
v(z, z) = A FW)VyGay(x,y) - VyGa,(z,y)dy,  =,2 € Q2\

!
which is harmonic in both z, 2 € Q5 \ Q1. As f =0 on O,(¢) N, we get
o@,2) = [ 1)V, Gaulo)- V,Gou ey, 2.2 € 02\ T

When z, z € 5\ ©, the Green functions Gg, (7, ), G, (z, ) € C°°(Q) are harmonic
on , and Ga,(z,-)|f = Ga,(2,-)|z = 0. By assumption (2.1), we have v(z,z) =0
when z,2z € Q5 \ Q. Since v(z, z) is harmonic when x,z € Q3 \ Q1 and Q5 \ Q; is
connected, by unique continuation, v(z, z) = 0 when z,z € Q5 \ Q, i.e.

(29) f(y)vyGSb (l’, y) : VyGﬂz (Zv y)dy =0, =z,z2¢€ Qy \Qil
(951

Letting a € C®(Qy), supp (a) C 2\ Q1, b € C®(Qy), supp (b) C Qy \ O,
multiplying (2.9) by a(x), b(z), and integrating, we obtain that

[ 1) [ VGastw s [ 9,Go(zp)ble)dzdy =0,
[oN Qo Q2

Hence, we have
(2.10) A fVu-Voudy =0,
for all u,v € W. By continuity of 1the bilinear form,
HY () x HY () = C,  (u,v) — A fVu - Vudy,

and by Lemma 2.2, we get (2.10) for any u,v € C*(;) harmonic in ©; which
vanish on 9 N 9Qs. Now by Proposition 2.1, f vanishes on a neighborhood of
O\ (091 N INy), and hence, T is an open set.

2.3. Proof of Proposition 2.1. We shall follow [8]. First using a conformal
transformation of harmonic functions, we reduce to the following setting: zg = 0,
the tangent plane to © at x( is given by x; = 0,

Qc{zeR":|z+e|<1}, T={zecd:z <—2c}
for some ¢ > 0. Here e; = (1,0,...,0) is the first coordinate vector.

Let p(¢) = €2, € € R™, be the principal symbol of —A, and let us denote by p(¢) = ¢?
its holomorphic extension to C"*. We write

pH0)={CeC": ¢*=0}.

Let ¢ € p~1(0) and let x € C§°(R™) be a cutoff function such that x = 1 on I.
Consider the following function

(2.11) u(z,¢) = e~ #7¢ +w(x, (),
where w is the solution to the Dirichlet problem,
—Aw=0 in €,
{w|fm = — (e~ £ og:.

Thus, u € C>(Q), u is harmonic in 2, and ulz = 0. We have

S i 1/2 i 1/2
lwllio) < Clle™ Xl m2gaey < Clle™ ™ X2 a0y le™ Xl (00,

(2.12) )
< C(l + h_1|<|)1/26ﬁHK(ImC),

where Hp is the supporting function of the compact subset K = supp x N 902 of
the boundary,

Hi(€) = supz-€, €€R™
reK
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Let us take x € C§°(R™) be such that supp (x) C{zx € R" : 21 < —c} and x =1
on {z € 00 : x1 < —2c¢}. Then (2.12) implies that

(213) [l @) < CL+THC)2em Bimeretinel,

when Im (3 > 0.

The cancellation identity (2.1) gives that
(2.14) / f(z)hDu(x, ) - hDu(z,n)dz = 0,
Q

for all ¢,n € p~1(0), where u(z, ¢), u(x,n) are harmonic functions of the form (2.11).
It follows from (2.14) that

/ F@)C e = de = / F(@)Ce™ 5 - hDw(, n)da
Q Q
x eJTﬁIn~h w(zx, ()dx — x)hDw(x -hDw(z,n)dx.
+/Qf()n Du(z,¢) /Qf()D(,C)D(,n)

Thus,
(2.15)

[ )¢ e 5
Q

ix-n

+ [nllle™ " |2 IhDw(x, )l L2y + |hDw(x, ¢)ll 2@y llhDw(z, 1) || L2 @)
Now when Im ¢; > 0, using the fact that Q C {z € R : |z + e1| < 1}, we get

s
<o) ([Cllle™ 7 L2y llhDw (@, n)] L2 (0)

imc |tm ¢’ | _
(2.16) le” " |2 < Ce =, ¢ €p (0).
We obtain from (2.15) using (2.13) and (2.16) that
(2.17)

iz ( |Im ¢/ |+ |Im /|

\ / F@)C-me = da| < Ol fllpopeh o e min(m G tmm)
Q

(IC1(R* + D)2 + | (W* + RIC))Y2 + (B + hIC)Y2(h® + hin))'/?),
for all ¢,n € p~(0), Im ¢z > 0, Tmm, > 0.

As in [8], consider the map
s:pH(0) x p7H(0) = € (¢,m) = (.
Its differential at a point ({o,70),

DS(<O7770) : TCop_l(O) X Tnop_l(o) — (Cnv (Cﬂ?) = C + 7,

is surjective provided that C" = Ty p~1(0) + T,,,p~1(0), i.e. (o and 7o are linearly
independent. In particular, the latter is true if (; = v and g = —7 with v =
(4,1,0,...,0) € C*. Now (p+1no = 2ie1, and therefore, the inverse function theorem
implies that there exists € > 0 small such that any z € C", |z — 2ie1| < 2, may be
decomposed as z = ¢ +n where ,n € p~1(0), [¢ — | < Cie and |n+7| < Cie with
some C7 > 0. Furthermore, by rescaling, any z € C™ such that |z — 2iae;| < 2ca
for some a > 0, may be decomposed as

(2.18) z=C+n, ¢nep H0), [¢—ay|<Ciae, |n+ay| < Crae.

Now (2.18) implies that |Im¢’| < Chae, [Im7n'| < Chae, |¢| < Ca, and |n| < Ca. If
€ > 0 is small enough, (2.18) gives that Im(; > a/2, Imn; > a/2, and [( - 5| > a?,
Hence, it follows from (2.17) and (2.18) that

(2.19) ‘/Qf(a:)e”iizdx

for all z € C™ such that |z — 2iae;| < 2ea for some a > 0 and € > 0 sufficiently
small. Following [8] and choosing a > 1 large, we see that the bound (2.19) is
completely analogous to the estimate (3.8) in [8]. We may therefore complete the
proof of Proposition 2.1 by repeating the arguments of [8] exactly as they stand.

ca 2Cjas

<O|fllpe@e Fe v [a ' (1+a)'? +a"%(1+a)],
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3. Proof of Theorem 1.2

We shall first establish that the knowledge of the partial Dirichlet—to—Neumann
map Aqu“’/r2 allows us to recover the coefficient ¢ in the quadratic gradient term in
(1.1). To that end, let € = (g1,e2) € C?, and let fi, € C°°(9N), supp (fr) C Ty,
k =1,2. An application of Theorem A.1 shows that for all |¢| sufficiently small, the

Dirichlet problem

i uk .
{—Auj +¢;(2) (V)2 + 22, VP (@)% =0 in 0

(3.1)
u; = e1fi +eaf2 on o9,

j = 1,2, has a unique small solution u; = u;(-,e) € C%%(Q), which depends
holomorphically on ¢ € neigh(0,C?) with values in C?%(Q). We shall now carry
out a second order linearization of the problem (3.1) and of the corresponding partial
Dirichlet—to—Neumann maps. Note that the assumption (ii) on the nonlinearity V'
guarantees that V' does not appear in the second order linearlization. Differentiating
(3.1) with respect to ¢;, [ = 1,2, taking ¢ = 0, and using that u;(z,0) = 0, we get

{Av§l)20 in Q,

3.2
(8:2) v§l):fl on 01,

where vy) = 0., uj|e=0. By the uniqueness and the elliptic regularity for the Dirichlet

problem (3.2), we see that v() := vgl) = vél) €C>®(Q),1=1,2.
Applying O¢, Oc,|e=0 to (3.1), we get

(3 3) _A(851852Uj|8:0) + 2qj(£)va€1uj|<€:0 ’ V852Uj|8:0 =0 in €
' 651652Uj|5:0 =0 on 89,

and letting w; = 0, 0z, uj|e=0, (3.3) yields that

(3.4) —Aw; +2¢;(2)Vol) - Vo® =0 in Q,
' w; =0 on Of.

The fact that A;l,’gfl) (e1f1 +eafe) = Ag;"l;fz) (e1f1 + eaf2) for all small £1,e2 and
all f1, fo € C*°(99) with supp (f1),supp (f2) C I'; implies that d,u;|r, = dyus|r,.
Hence, an application of d;, 0., |.=o gives d,w1|r, = dywa|r,. Multiplying (3.4) by

v € C*°(Q) harmonic in Q and applying Green’s formula, we get

2/(q1 — q2) (Vo - V@)@ g = / (D,w1 — Dywy)v®dS =0,
Q B

Q\T';

provided that supp (v®|5q) C T'y. Hence, we obtain that
/(q1 —q2) (Vo) . Vo@)p®dz = 0
Q

for any v € C°(Q) harmonic in Q, I = 1,2,3, such that supp (v¥|gq) C T},
I = 1,2, and supp (v®|5q) C T's. Taking v®) # 0 and applying Theorem 1.1, we
obtain that

(r —q)v® =0 in Q.
Now 23 is harmonic and therefore, the set (v(*))~1(0) is of measure zero, see [36].
Hence ¢ = g2 =: ¢ in 2.

We now come to prove that V) = V() To that end, it suffices to show that
ViV = V2 for all m > 3, see (3.1), which will be done inductively. Let ¢ =
(e1,.--,em) € C™, m > 3, be small, and fr € C>®(99Q), supp (fx) C I'1, k =
1L,...,m. Let u; = u;(-,e) € C>*(Q), j = 1,2, be the unique small solution to the
Dirichlet problem

. k
{_Auj+q<x><wj>2+22°_3v,§”<x>’;i=0 in 0,

(3.5)
uj=¢e1fr+---+emfm on O
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We shall first discuss the case m = 3. The first linearization of (3.5) leads to
the problem (3.2) with I = 1,2,3, and therefore, 9., u|c—o = -, uz|c—=0 =: vV,
I =1,2,3. The second linearization of (3.5) gives rise to a problem of the form
(3.3) with ¢; = ¢, and therefore, 85118512u1|520 = 0, O, Uz|e—o =: wll2) 41, e
{1,2,3}. Applying 9.,0:,0:,|-=0 to (3.5), we obtain that

—Aw; + 1/30)0(1)@(2)1;(3) =H in Q
w; =0 on 01,

where H(z) = —2¢(z)[VoM -Vw?3) + Vv . Vw3 4 Vo3). V(12 is independent
of j. It follows that

/ (VD — VD) My@y@ gy = 0,
Q

for any v(®) € C*(Q) harmonic in Q, I = 1,...,4, such that supp (v(|5q) C T'y,
I =1,2,3, and supp (v®]sq) C Ty. Arguing as in [27], using the density result
of [8], we conclude that V3(1) = 3(2). The general inductive argument can now be
carried out exactly as in [27]. The proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.6

Theorem 1.6 is an immediate consequence of Theorem 1.2, once the obstacle has
been recovered. The proof of the fact that D; = D5 is standard, see for instance
[30], and is presented here for completeness and convenience of the reader.

Following [30], we proceed by performing a first order linearization of the problem
(1.3). To that end, let € € C, and let f € C°°(99), supp (f) C I';. An application
of Theorem A.1 shows that for all || sufficiently small, the Dirichlet problem

—Auj +q;j(2)(Vuy)® + Vi(z,u;) =0 in Q\Dj,
(4.1) u;j =0 on 0D;,
u; =¢f on 0%,

j = 1,2, has a unique small solution u; = u;(-,e) € C>*(Q2\ D;), which depends
holomorphically on e € neigh(0,C) with values in C**(Q\ D;). Differentiating
(4.1) with respect to €, taking ¢ = 0, and writing v; = 0.u;|.—0, We get

—Av; =0 in Q\Djy,
(4.2) v; =0 on 0D;,
v;=f on 0.

j = 1,2. The fact that Aq’ifg(ll’)b (ef) = AZ%&%FQ (ef) for all small ¢ and all f €

C°(99Q) with supp (f) C I'y implies that d,v1|r, = d,va|r,.

Assume that Dy # Ds, and assume for example that D5 is not contained in D;.
Let G be the connected component of Q \ (D7 U Dy) whose boundary contains €.
Then there exists a point g € 0D, such that zq € Q\ Dy and zo € 9G, see [17,
p. 1579]. We reproduce the argument of [17] for completeness and convenience of
the reader. Indeed, by our assumption and the fact that 0D is smooth, there is a
point ' € Dy \ D1. Let 2" € G be arbitrary and since 2\ D; is connected, there
is a continuous path s(t) € Q\ Dy, for t € [0, 1], such that s(0) = 2’ and s(1) = 2.
We let x¢ = s(tg) where tg = sup{t : s(t) € D2}.

To complete the proof, we follow [30] and let v = v; — vo. Then we have —Av =0
in G, v|gpg = 0, and 9, v|p, = 0. By the unique continuation principle for harmonic
functions and continuity of harmonic functions up to the boundary, we conclude
that v; = vy in G. In view of (4.2), we get 0 = va(wg) = v1(zo). Let us fix some
f€C>(09Q), supp (f) C I'y, such that f >0, f £ 0. As zg € Q\ D1, the maximum
principle yields that v; = 0 in Q\ D;. Since v; is continuous up to the boundary of
0\ Dy, we get a contradiction, and therefore, D; = D,. The proof of Theorem 1.6
is complete.
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Appendix A. Well-posedness of the Dirichlet problem for a class of
semilinear elliptic equations with a quadratic gradient
term

The purpose of this appendix is to show the well-posedness of the Dirichlet problem
for a class of semilinear elliptic equations with small boundary data. The argument
is standard and is given here for completeness and convenience of the reader.

Let & C R™, n > 2, be a bounded open set with C* boundary. Let k € NU {0}
and 0 < @ < 1. The Hélder space C**(€2) consists of all functions u € C*(Q) such

|0%u(x) — 0%u(y)|
1]l e gy i= sup + ||ull Lo () < oo.
che) |az:kw7yeﬂ,w¢y |z — y|* @

We shall write C®(Q) = C%*(Q). For future reference, we remark that C*<(Q) is
an algebra under pointwise multiplication, and
(A1)

[wollgracmy < Cllullgra@llvliLe@) + lulloe@lollgra@)s v e CH* (),
see [13, Theorem A.7]. We also have the corresponding spaces C*%(M), where M
is a compact C'*° manifold.

We shall be concerned with the following Dirichlet problem,

{—Au +q(x)(Vu)?  + V(z,u) =0 in

(4.2) u=f on ON.

Here ¢ € C%(Q), for some 0 < a < 1, and the function V : @ x C — C satisfies the
following conditions:

(a) the map C > z +— V(-,2) is holomorphic with values in the Holder space
c(Q),
(b) V(x,0) =0, for all z € Q.

The condition (b) ensures that uw = 0 is a solution to (A.2) when f = 0. It follows
from (a) and (b) that V' can be expanded into a power series

ok

(A.3) V(z,z) = ka(x)ﬁ’ Vi(z) == 0%V (2,0) € C*(Q),
k=1 '

converging in the C®(2) topology. Assume for simplicity that Vi € C*°(Q) and let
us suppose furthermore that

(¢) 01is not a Dirichlet eigenvalue of —A + V.

We have the following result.

Theorem A.1. There exist 6 > 0, C > 0 such that for any f € Bs(0Q) := {f €
C?(09) : || fllcze(o) < 8}, the problem (A.2) has a solution u = uy € C**(Q)
which satisfies

[ullcz.a@) < Cllfllc2eo0)-

Furthermore, the solution u is unique within the class {u € C**(Q) : ullgz.a @) <
Co} and it is depends holomorphically on f € Bs(09).

Proof. We shall follow [29] and in order to prove this result we shall rely on the
implicit function theorem for holomorphic maps between complex Banach spaces,
see [38, p. 144]. To that end, let us set

By = C**(09Q), By =C**(Q), Bs;=C%%Q) x C>*(090),
and consider the map,

(Ad) F:ByxBy— Bs, F(f,u)=(—Au+ qx)(Vu)? + V(z,u), uloq — f).
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Let us first show that the map F' has indeed the mapping property given in (A.4).
We have —Au € C%(Q) and an application of (A.1) gives q(z)(Vu)? € C%(Q). We
only need to check that V(z,u(x)) € C%(Q). To this end, let us first observe that
by Cauchy’s estimates, the coefficients Vi (x) in (A.3) satisfy

(A.5) Willon@ < w2 51 IV 2llea, B> 0.

k!
R* =R
Using (A.1) and (A.5), we get for all k =1,2,...,

k

(A6) > RkHu”C“ Q) Sup HV( )”Ca(ﬁ)

Choosing R = 20”“”0&(5)7 we see that the series >, | Vk(x)zk—]: converges in C%(Q)
and therefore, V (x,u(z)) € C*(Q). Furthermore,
Ve ulea@ < sup V2l ca):

[2]=2Cull o ()

We next claim that the map F' in (A.4) is holomorphic. To this end, let us observe
that since F' is clearly locally bounded, it suffices verify the weak holomorphy, see
[38, p. 133]. In doing so, let (fo,uo), (f,u) € By x Ba, and let us show that the
map

A= F((fo,u0) + A(f,u))
is holomorphic in C with values in Bs. Clearly, we only have to check that the map

A = V(x,up(z) + Auy(x)) is holomorphic in C with values in C*(€2). This follows
from the fact that the series

NE
==

(UO —+ )\ul)

~
Il

1

converges in C*(€2), locally uniformly in A € C, see (A.6).

We have F(0,0) = 0 and the partial differential 9, F'(0,0) : By — Bj is given by
0uF(0,0)v = (—Av + Viv,v|s0)-

In view of (c¢), an application of [11, Theorem 6.15] allows us to conclude that the
map 9, F(0,0) : B, — Bs is a linear isomorphism.

By the implicit function theorem, see [38, p. 144], we get that there exists § > 0
and a unique holomorphic map S : Bs(92) — C%*%(Q) such that S(0) = 0 and
F(f,S(f)) =0for all f € Bs(0). Setting u = S(f) and noting that S is Lipschitz
continuous and S(0) = 0, we see that

HUHC‘Z,Q(ﬁ) S C”fHCQa(ﬁ)

The proof is complete. O

Corollary A.2. The map
Bg(aQ) — Cl’a(ﬁ), f — 8,,Uf|3Q

is holomorphic.
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