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Abstract

This paper presents a computational framework that generates ensemble predictive mechanics models with uncertainty
quantification (UQ). We first develop a causal discovery algorithm to infer causal relations among time-history data meas-
ured during each representative volume element (RVE) simulation through a directed acyclic graph. With multiple plausible
sets of causal relationships estimated from multiple RVE simulations, the predictions are propagated in the derived causal
graph while using a deep neural network equipped with dropout layers as a Bayesian approximation for UQ. We select two
representative numerical examples (traction-separation laws for frictional interfaces, elastoplasticity models for granular
assembles) to examine the accuracy and robustness of the proposed causal discovery method for the common material law

predictions in civil engineering applications.
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1 Introduction

Computer simulations for mechanics problems often require
material (constitutive) laws that replicate the local constitutive
responses of the materials. These material laws can be used to
replicate the responses of an interface (e.g., traction-separation
laws or cohesive zone models) or bulk materials (e.g., elastoplas-
ticity models for solids, porosity-permeability relationship and
water retention curve). A computer model is then completed by
incorporating these local constitutive laws into a discretized form
of balance principles (balance of mass, linear momentum and
energy) where discretized numerical solutions can be sought by
a proper solver.

Constitutive laws, such as stress-strain relationship
for bulk materials, traction-separation laws for interface,
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porosity-permeability for porous media, are often derived
following a set of axioms and rules [82]. In these hand-
crafted models, phenomenological observations are incor-
porated into constitutive laws (e.g., critical state theory for
soil mechanics [8, 55, 68, 75], void-growth theory for ductile
damage [26]). While the earlier simpler models are often
amended by newer and more comprehensive models [13] in
order to improve the performance (e.g. accuracy, more real-
istic interpretation of mechanisms), these improvements are
often a trade-off that may unavoidably increase the number
of parameters, leading to increasing difficulty for the cali-
bration, verification and validation processes, as well as the
uncertainty quantification (UQ) [6, 7, 10, 13, 89, 91].

The rise of big data and the great promises of machine
learning have led to a new generation of approaches that
either bypass the usages of constitutive laws via model-free
data-driven methods (e.g., [2, 28, 38, 39]) or replace parts
of the modeling efforts/components with models gener-
ated from supervised learning (e.g., [19, 43, 48, 51, 83, 84,
88, 90, 99]). However, one critical issue of these machine
learning and data-driven approaches is the lack of sufficient
interpretability of predictions. While there is no universally
accepted definition of interpretability, we will herein employ
the definition used in [53] which refers interpretability as
the degree to which a human can understand the cause of
the prediction.
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One possible way to boost the interpretability is to intro-
duce a proper medium to represent knowledge that can be
understood by human [80]. Causal graph, also known as
causal Bayesian network, is one such medium in which the
causal relations among different entities are mathematically
represented by a directed graph. In the application of com-
putational mechanics [30, 88, 90] have derived a mathemati-
cal framework to decompose a complex prediction task into
multiple easier predictions represented by subgraphs within
graphs. More recent work such as [89, 92] introduce a deep
reinforcement learning approach that employs the Monte
Carlo Tree Search (MCTS) to assemble a directed graph
that generates a sequence of interconnected predictions of
physical quantities to emulate a hand-crafted constitutive
law. However, these directed graphs are generated to opti-
mize a given performance metric (e.g. accuracy, calculation
speed and forward prediction robustness), but not necessar-
ily reveal the underlying causal relations among physical
quantities.

Discovering causal relations from observational data is an
important problem for many fields of science, such as social
science [56], finance [23], and biomedicine [70]. The stand-
ard way to discover causality is through randomized con-
trolled experiments. However, conducting such experiments
can be either impractical, unethical, and/or very expensive
in many disciplines [96, 97]. For mechanics problems, the
major issues include the time and labor cost for physical
experiments, the lack of facilities or equipment to complete
the required tests and the difficulties to obtain specimens
[54, 63, 95]. As a result, an alternative approach, which is
adopted in this study, is to use sub-scale simulations as the
digital representation that generates auxiliary data sets to
build material laws or forecast engine for the macroscopic
material responses [15, 47, 49, 90]. Classic methods for
causal discovery are based on probabilistic graphical mod-
eling [61], the structure of which is a directed acyclic graph
(DAG) with nodes representing random variables and edges
representing conditional dependencies between variables.
Learning a DAG from observational data is highly challeng-
ing since the number of possible DAGs is super-exponential
to the number of nodes. There are two main approaches
for causal discovery: the constraint-based approach and
the score-based approach. The constraint-based approach
aims to recover a Markov equivalence class through infer-
ring conditional indep3endence relationships among the
variables, and the resulting Markov equivalence class may
contain multiple DAGs that indicate the same conditional
independence relationships [11, 42]. On the other hand, the
score-based approach uses a scoring function, such as the
Bayesian Information Criterion (BIC), to search for the DAG
that best fits the data [29, 33].

In this paper, we aim to discover causal relations that can
explain the underlying mechanism of a history-dependent
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macroscopic constitutive law upscaled from direct numerical
simulations at the meso-scale. The most common method
for constructing the causal relations from time-series data is
Granger causality [24], which assumes a number of lagged
effects and analyzes the data in a unit no more than that
number of lags. See [66] for a review of causal discovery
methods on time-series data. However, most of these causal
discovery methods assume that the data are generated from a
stationary process, meaning that the data are generated by a
distribution that does not change with time. Such an assump-
tion does not hold in many physical processes, in which the
mechanisms or parameters in the causal model may change
over time. Several methods have been proposed recently
to tackle time-varying causal relations in non-stationary
processes [22, 34, 36]. However, they either assume linear
causal models, or does not offer the flexibility of incorporat-
ing known physical knowledge, limiting their applicability to
the nonlinear path-dependent relations in learning material
constitutive laws.

In this work, we offer two major innovations. First, we
introduce a new decoupled discovery/training approach
where the discovery of causal relations represented by a
DAG is enabled by a causal discovery algorithm that deduces
plausible causal relations from non-stationary time series
data and incorporates known physical knowledge. Second,
we leverage the obtained causal graph as the representation
of mechanics knowledge and adopt a Bayesian approxima-
tion using the dropout layer technique [20] to propagate epis-
temic uncertainty in the causal graph and generate quantita-
tive predictions with uncertainty quantification.

The rest of the paper is organized as follows. Section 2
first introduces the two data sets (learning traction-separa-
tion law and hypo-plasticity of granular materials) used for
our numerical experiments. This is followed by the descrip-
tion of theory and implementation of the proposed causal
discovery algorithm used to deduce the causal relations
from non-stationary time series data (Sect. 3). The setup of
the deep neural network model for the prediction tasks and
the uncertainty propagation are included in Sects. 4 and 5
respectively. The proposed framework is then tested against
two numerical experiments (Sect. 6), which is then followed
by the conclusion.

2 Causal relations and constitutive laws

As demonstrated in previous studies such as [30, 83, 88-90,
92], the relationships in a constitutive model can be rep-
resented by a network of unidirectional information flow,
i.e., a DAG G = (V,E) where V represents a vertex set
and E denotes an edge set. With appropriate assumptions
that will be discussed later, the DAG can be identified as a
causal graph [61]. The causal relations are not only useful
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to explain the underlying mechanism of a process but also
provide us a basis to formulate multi-step transfer learn-
ing to predict constitutive responses. This strategy can be
beneficial because one can leverage more data gathered
from physical numerical experiments to train the prediction
model. For instance, while a black-box prediction of stress-
strain curves only leverages the stress-strain pair for super-
vised learning, the introduction of knowledge graphs may
introduce multiple supervised learning tasks where measure-
ments of porosity, fabric tensors or any other physical and
geometrical attributes measured during the experiments can
be leveraged to improve the training. For completeness, we
briefly describe the procedure to consider the data set as
vertex sets in graphs and the causal discovery process used
to create the directed edge set in a knowledge graph through
two examples.

Note that many of the physical quantities that become the
vertices in the knowledge graphs are graph metrics obtained
from analyzing the connectivity topology of the granular
system. For brevity, we will not provide a review on the
applications of graph theory for granular matter here. Inter-
ested readers may refer to Appendix 2 for the definitions
of the graph metrics and [1, 41, 58, 67, 81, 86] and [83]
for reviews on the graph theory applied to particulate and
granular systems.

2.1 Dataset for traction-separation law

In the first example, our goal is to conduct a numerical
experiment to verify whether the causal discovery algorithm
is able to re-discover the well-known causal relation that
links the plastic dilatancy and contraction to the frictional
behaviors [62, 69] with a small data set.

Following [88-90, 92], we consider the vertex set consists
of five elements, the displacement jump/separation U, the
traction T', and three geometric measures, i.e.,

1. Displacement jump U, the relative displacement of an
interface of two in-contact bodies.

2. Porosity ¢, the ratio between the volume of the void and
the total volume of RVE.

3. Coordination number (averaged) CN = N_, .../,

particle

where N ,..: 1S the number of particle contacts and
N particie 18 the number of particles in the RVE.

1 N . . .
2.3 n @ n® where n‘ is the

4. Fabric tensor Af =

contact

normal vector of a particle contact ¢ in the RVE. The
symbol ‘®’ denotes a juxtaposition of two vectors (e.g.,
a®b = qa;b;) or two symmetric second order tensors
[e.g.. (@ & By = ;B

5. Traction T, the traction vector acts on the interface.

To generate a machine learning based traction-separation
law, we identify the displacement jump as the root and the
traction as the leaf of the causal graph. The causal graph is
aDAG G = (V,E) where V is the set consisting of the physi-
cal quantities U, ¢, CN, Af and T. Meanwhile, E C V XV is
a set of directed edges that connect any two elements from
V, and E is determined from the causal discovery algorithm
outlined in Sect. 3.

The dataset is generated using an open-source code
YADE. In total, there are 100 traction-separation law simu-
lations run with different loading paths performed on the
same RVE. This RVE consists of spherical particles with
radii between 1 + 0.3 mm with uniform distribution. The
RVE has a height of 20 mm in the normal direction of the
frictional surface and is initially consolidated to an isotropic
pressure of 10 MPa. The inter-particle interaction is con-
trolled by Cundall’s elastic-frictional contact model [12]
with an inter-particle elastic modulus of Eeq =1GPa, a
ratio between shear and normal stiffness of k,/k, = 0.3, a
frictional angle of ¢ = 30°, a density p = 2600 kg/m>, and
a Cundall damping coefficient ag,,, = 0.2. For brevity, the
generation and setup of the simulations are not included in
this paper. Interested readers please refer to [89] for more
information. The data required to replicate the results of this
paper and for 3rd-party validation can be found in the Men-
deley Data repository [76].

2.2 Dataset for hypo-plasticity of granular
materials

While the first data set is used to determine whether the
causal graph algorithm may re-discover known physical
relations in the literature, the second problem is designed
to test whether the causal graph algorithm may successfully
investigate new plausible causal relations not known a prior
in the literature.

For this purpose, we run 60 discrete element simulations
and use 30 of them for calibrations and 30 for blind forward
predictions. In addition to the conventional microstructural
attributes (e.g., porosity and fabric tensor) typically used for
hand-crafted constitutive laws [8, 14, 50, 55, 75], we have
also recorded the evolution of the particle contact pairs in
each incremental time step of the discrete element simu-
lations. The particle contact connectivity is itself an undi-
rected graph Gcontact = (Vparlic]e’ E contact) where Vparticle is the
set of particles and E_ ., is the set of particle contacts,
one for each contact between two contacting convex par-
ticle represented. They are undirected edges. To facilitate
new discovery, we compute 15 different graph metrics of
G ontact (5€€ Appendix 2 for definition) that have not been
used for composing constitutive laws and see if (1) whether
the causal discovery algorithm may discover causal relations
among these new physical quantities and (2) whether the
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new discovery helps improve the accuracy, robustness and
consistency of the forward predictions enabled by neural net-
works trained according to the discovered causal relations.

In total, there are 11 types of time-history data in which
3 of them are second-order tensors (strain, stress and the
strong fabric tensor), and the rest are scalar (porosity, coor-
dination number graph density, graph local efficiency, graph
average clustering, graph degree assortativity coefficient,
graph transitivity and graph clique number). As such there
are 11 elements in the vertex set and the goal of the causal
discovery is to establish the edge set to complete the causal
graph. A sequence of supervised learning is then used to
generate predictions via deep learning.

3 Causal discovery and knowledge graph
constructions

3.1 Notations and assumptions

Let G = (V,E) be a DAG containing only directed edges
and has no directed cycles. For each V; € V, let PA’ denotes
the set of parents of V; in G. Since our data are time-history
dependent, we assume that the joint probability distribu-
tion of V at each time point according to G can factorize as
p(V) =TI~ p(V; | PA"), where m is the number of vertices
in G. Here p(V, | PA") can be regarded as “causal mecha-
nism.” For non-stationary time series data, the causal mech-
anism p(V; | PAY) can change over time, and the changes
may be due to the involved functional models or the causal
strengths.

Throughout this section, we use the example of traction-
separation law to illustrate the proposed causal discovery
method without loss of generality. Therefore, V is the set
consisting of displacement jump U, porosity ¢, coordination
number CN, fabric tensor A fs and traction T'. [35] developed
a constraint-based causal discovery algorithm for non-sta-
tionary time series data to identify changing causal modules
and recover the causal structure. In this paper, we extend the
algorithm in [35] such that the proposed causal discovery
algorithm not only handles non-stationary time-history data
but also incorporates certain physical constraints. For exam-
ple, in constructing the traction-separation law, we have the
prior knowledge that the dynamic changes in U can cause
changes in other variables, not vice versa. Therefore, if there
exists a directed edge between the displacement jump U and
any other variable V;, thenU — V..

Denote V_j; to include all other variables in V excluding
U (e.g., porosity, fabric tensor). Since the causal mechanism
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can change over time, we assume that the changes can be
explained by certain time-varying confounders, which can
be written as functions of time. As we have the prior knowl-
edge that U itself is a time-dependent variable and could
affect all other variables, we regard U as such a confounder
and assume that the causal relation for each V; € V_; can
be represented by the following structural equation model:

V; =g/(PA", 6,U), ), 1)

where PA’ includes U if the changes in U can affect the
changes in V,, 8,(U) denotes a function of U that influences V
as effective parameters, ¢, is a noise term that is independent
of U and PA". The ¢;’s are assumed to be independent. As we
treat U as a random variable, there is a joint distribution over
VU {6,(U)};.yey_,- Denote G to be the graph by adding
{6:(U)}.v.ev_, to G, and for each i, adding an arrow from
0,(U) to V,. Note that G is the induced subgraph of G**¢ over
V. Denote the joint distribution of G**$ to be p™s.

In order to apply any conditional independence test on
the variable set V for recovering causal structure, we set the
following assumptions [73].

Assumption 1 (Causal Markov condition) G**¢ and the joint
distribution p®¢ on V U {6,(U)};.y ey, satisfy the causal
Markov condition if and only if a vertex of G**8 is probabil-
istically independent of all its non-descendants in G**8 given
the set of all its parents.

Assumption 2 (Faithfulness) G**¢ and the joint distribution
p*8 satisfy the faithfulness condition if and only if no con-
ditional independence holds unless entailed by the causal
Markov condition.

Assumption 3 (Causal sufficiency) The common causes of
all variables in V U {6,(U)};.y cy_, are measured.

3.2 Recovery of the causal skeleton

In this section, we propose a constraint-based method build-
ing upon the PC algorithm [73] to first identify the skeleton
of G, defined as the obtained undirected graph if we ignore
the directions of edges in a DAG G. We prove that given
Assumptions 1-3, we can apply conditional independence
tests to V to recover the skeleton of G. Algorithm 1 describes
the proposed method, which is supported by Theorem 1. The
proof is provided in Appendix 1 following [35].
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Algorithm 1 Obtain the undirected skeleton of G

1: Object: To obtain the undirected skeleton of G

: Build a complete undirected graph U with variables V'

: for eachnode V; € V_g; do

if V; and U are independent given a subset of {Vy|V} € V_y;,k # i} then

end if
: end for

2
3
4
5: Remove the edge between V; and U
6
7
8: for every Vi, Vie V_uy do

9:  if V;and V; are independent given a subset of {V} | Vx € V_y,k # i,k # j} UU then

10: Remove the edge between V; and V;
11: end if

12: end for

13: return Ug

Theorem 1 Given Assumptions 1-3, for everyV;, V; € V_y, V;and V; are not adjacent in G if and only if they are independent
conditional on some subset of {V, |V, € V_y, k # Lk#ju{U}.

In lines 3-7 of Algorithm 1, we determine whether the
changes in U cause changes in V,. If not, U is not in the
parent set of V; and there is no edge between U and V; in G.
The lines 8—12 of Algorithm 1 aims to identify the causal
skeleton between variables in V except U. Since how other
variables change with U and the relations between these var-
iables are usually unknown and potentially very complex, we
use a nonparametric conditional independence test, kernel-
based condition independence (KCI) test developed by [98],
to determine the dependence between variables throughout
this paper. This nonparametric approach can not only cap-
ture the linear/nonlinear correlations between variables by
testing for zero Hilbert-Schmidt norm of the partial cross-
covariance operator, but also handle multidimensional data
that are common in mechanics problems.

3.3 Determination of causal directions

After obtaining the skeleton U;, we need to determine the
causal directions of edges. [52] provided a set of orientation
rules to determine the directions of undirected edges in a
graph based on conditional independence tests. However,
the Meek rule [52] is only applicable to edges that satisfy
its conditions. In this section, we first introduce the Meek
rule [52], then propose an algorithm to orient the edges that
are not covered by the Meek rule after incorporating known
physical knowledge.

Denote < to be an undirected edge. The Meek rule has
the following principles:

1. Forall triples V; & V, & V, if V; and V} are marginally
independent but condltlonally dependent given V,, then
Vi=oV, < Vg

l

2. ItV; >V, & V, and there is no edge between V; and V,,

l
then orient Vj - Vi

3. IfV; -V, & V, and there is an edge between V; and V;,

1
then or1ent V.-V

4 V-V, <V, VieV,oeV,adV, oV,

l

Vi =V,

then

Now we describe our algorithm on how to determine the
edge directions in the obtained skeleton U,;. Firstly, for any
node V; adjacent to U, we orient U — V; due to the prior
physical knowledge that only U affects other variables, not
vice versa. Then we apply the Meek rule to the obtained
graph after orienting the edges from U to its neighbours. For
instance, suppose U — V; « V,,if V; and U are independent
given a set of variables includlng Vi, then we orient V; > V;;
if V;and U are independent given a set of variables excludlng
Vi, then we have V; — V.
Next, we dlscuss how to determine the edge direc-
tion between two adjacent variables if they are both adja-
centtoU, ie.,V, & Vj, U-V,andU — Vj, since such
a scenario is not covered by the Meek rule. The modu-
larity property of causal systems [61] demonstrated that

if there are no confounders for cause and effect, then

p(cause) and p(effect | cause) are either fixed or change

independently. Based on this principle, since both V; and
V; change with U, we can test the conditional independ-
ence between p(V; | 6,(U)) and p(V; | V;,0,(U)), as well
as between p(V; | 0;(U)) and p(V; | V;,0,(U)) to determine
the direction between V; and V. That says, if p(V; | 6,(U))
and p(V; | V;,0,(U)) are conditionally independent but
pV; 16, (U)) and p(V; | V;,6,(U)) are not, then V; — V. [35]
developed a kernel embedding of non-stationary cond1t10nal
distributions and extended the Hilbert Schmidt Independ-
ence Criterion (HSIC, [25]) to measure the dependence
between distributions, based on which the causal directions
can be determined. For example, if we have two random var-
iables V, and V,, we can compute the dependence between
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p(V)and p(V, | V,)using the normalized HSIC, denoted by
AV] —v,- By the same token, we can compute the dependence
between p(V,) and p(V, | V,) using the normalized HSIC,
denoted by A%—»V,' If AV]_,VZ < AVﬁVl’ we orient V| — V,;
otherwise V, - V,. After orienting all possible edges, we
can get the Markov equivalent class of the DAG G. Algo-
rithm 2 summarizes the proposed method on how to deter-
mine causal directions.

Remark 1 In the numerical examples, we setup a thresh-
old inclusion probability (20%) below which the causality
relation is not included in the hierarchical neural network
models. This treatment allows us to ensure that the cau-
salities with sufficient likelihoods are included but the less
prominent relationship is omitted to improve the efficiency
and simplicity of the resultant model. This threshold can be
viewed as a hyperparameter. A highly threshold may yield a

Algorithm 2 Obtain the Markov equivalence class of the DAG G

1: Object: To orient the directions in the causal skeleton Ug
2: Input: The undirected skeleton output from Algorithm 1

: for any node V; adjacent to U do
Orient U — V;

end for

: for all other undirected edges do

Apply the Meek rule

: end for

10: if S is empty then

: Find all nodes that are adjacent to U and have undirected edges with other nodes, denoted by S

11: return G

12: else

13: repeat

14: foreachnode V € S do

15: Consider the set Z of nodes that either are directed parents of V or have undirected edges to
v

16: Calculate the normalized HSIC using the node V' as the effect and the set of nodes Z as the
cause

17: end for

18: Pick the node V with the smallest normalized HSIC

19: Orient all edge directions from the nodes in Z to node V

20: Remove the node V from S

21: until S is empty

22: end if

23: return G

Supervised ML

Directed Graph

Input Output
V3
1 Vsjo—
Vs
V,m
2 —
\£
3V [—i i—)v,

Fig.1 a shows a direct graph partitioned into three sub-graphs.
b indicates how each sub-graph is used in a separate supervised
machine learning task to predict the downstream node(s) from the
upstream node(s)
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DAG with less vertices and therefore reduce the total num-
ber of required supervised training at the expense of being
less precise on the causality relations among the data.

4 Supervised learning for path-dependent
material laws

Once causal relations are identified, a directed graph
G = (V,E) can be established where there is an edge e; € E
from the node V; € Vto V; € V if V; is a direct cause of V.
Denote the leaf node to be the vertex that is not the cause
to any other vertices, the root node to be the vertex that is
not the target of any other vertices. Figure 1 demonstrates
a directed graph indicating an information flow how leaf
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node(s) is related to root node(s) via some intermediate
nodes, e.g., in Fig. 1 {V|, V,}, {V,}, and { V5, V,, V5 } are sets
of root, leaf, and intermediate nodes.

Along with the similar idea introduced in [89], we aim to
discover all sub-graphs that sequentially pass the informa-
tion from the root to leaf, see Algorithm 3. Each of these
subgraphs will contain leaf and root but without any inter-
mediate nodes. As such, supervised learning can help us
train neural network that predict the root of each subgraph
with the corresponding leaf (or leaves) as input(s). To iden-
tify all sub-graphs, we traverse the graph backward from
leaf to root nodes. The leaf with its immediate predecessors
formed a directed tree which will be added into the list of
potential sub-graphs. Then, we remove edges of the founded
tree in the graph G. In the next step, we select a new leaf
node from the updated G and do the process just described
until there is not any edges in G. For the case shown in Fig. 1
we have the following potential sub-graphs:

G, =({V5, V3, Vs, Vg1, {exs, €36 €56 1), 2)

G, =V, V,, Vs) lese5)), 3)

G, =({V,, V4, Vs}. {eass ex51), (@)

G, ={V,V3}, {es)). ®))

Those sub-graphs (directed trees) that share common
upstream nodes will be merged into a bigger sub-graph. For
the graph in Fig. 1 final sub-graphs are:

G =G, =({V2, V3, V5, Vi1, {eas: €36: €56 1) 6)
G, =G, UG, =({V,V,,V,, Vs {ens, e15. €05 €251), (7)

G =G, ={V, Vi) {ezh. ®)

For each sub-graph, we have a separate supervised machine
learning (ML) task. In each ML task, inputs and outputs fea-
tures are upstream and downstream nodes in each directed
sub-graph, as shown in Fig. 1(b).

Algorithm 3 Obtain all supervised learning input-output pairs

—_

: Input: Directed graph G = (V, E)
S+ Q

: while E # @ do

Vi < get aleaf node of G
Ve (V)

V « {Viley € E}

S« Su{(V,v)}

E — E\{¢|Vie V}

: end while

R AR U R o

=
(=]

element as (V;, V;UV}) if V; = V.
: return S

-
—_

> result of causal graph

> a set of 2-tuples (input nodes, output nodes) for ML tasks

> if G has multiple leaf nodes returns a random leaf

> V is input node(s), and V is the output node for a potential ML task

: Modification: Elements i and j of & known as (V;, V;) and (V}, V;), respectively, are merged into one

@ Springer
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In the training step, we use the same architecture for all
ML tasks consisting of five layers GRU-Dropout-GRU-
Dropout-Dense. Each GRU layer has 32 neurons, and the
linear activation function is used for the Dense layer. Gated
Recurrent Unit (GRU) is one type of Recurrent Neural Net-
works (RNN) to model history dependence [9]. We use the
GRU to strengthen the robustness of the ML black-box in
dealing with any possible path-dependence [92]. The drop-
out rate in the GRU is controlled to quantify uncertainty in
the model prediction, which will be detailed in Sect. 5. All
the input and output feature columns for each supervised
learning task are normalized to zero mean and unity standard
deviation. The loss function is defined as the mean squared
root error between output prediction and ground truth. This
loss is minimized by the Adam optimizer inside Keras
library with Tensorflow 2.0 as its backend. Optimization
process is done by the mini-batch stochastic gradient descent
algorithm with a batch size 256 during 1000 epochs. The
described neural network architecture and hyperparameters
are chosen to be as close as possible to the ones used in [89].
Note that, the tuning of the hyperparameters (e.g. number of
neurons, number of layers, type of activation) may have a
significant effect on the performance of the neural network
models. The best combination of hyperparameters can be
estimated via a variety of approaches such as the greedy
search, random search [3], random forest [64], Bayesian
optimization [40], meta-gradient iteration or deep reinforce-
ment learning [18, 93]. In this work, we adopt the random
search approach in [3] to fine-tune the hyperparameters (cf.
Sec. 6.1) A rigorous hyperparameter study that compares
different hyperparameter tuning for neural networks that
generates constitutive laws may provide further insights on
the optimal setup of the hyperparameters but is out of the
scope of this study.

For the blind prediction, after training, we start from
the root (e.g., U in the traction-separation law) and sequen-
tially predict intermediate nodes via their corresponding
sub-graph trained neural networks (NN) until reaching the
leaf node. For example in the case shown in Fig. 1: NN 3
predicts V; from input V; V, and V5 are predicted by NN 2
from inputs V,; and V,; and finally NN 1 is used to predict the
target variable V, from input V, and the obtained intermedi-
ate nodes V3 and V.

5 Uncertainty propagation in causal graph
with dropout layers

As described in Sect. 4, we use the deep learning method,
GRU in the training step and prediction to handle path-
dependent predictions. However, the GRU itself is not
designed to capture prediction uncertainty, which is of
crucial importance in learning material law. In machine
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learning and statistics, Bayesian methods as probabilis-
tic models provide us a natural way to quantify the model
uncertainty through computing the posterior distribution of
unknown parameters [96]. However, these methods often
suffer from a prohibitively high computational cost. In this
paper, we show that the dropout technique [74] used in the
GRU can quantify uncertainty in prediction as a Bayesian
approximation.

Dropout, a regularization method that randomly masks
or ignores neurons during training, has been widely used in
many deep learning models to avoid over-fitting and improve
prediction [5, 31, 46]. [20] firstly prove the link between
dropout and a well known probabilistic model, the Gauss-
ian process [65], and show that the use of dropout in the
feed forward neural networks can be interpreted as a Bayes-
ian approximation of Gaussian processes. In the context of
RNNS, [21] treated RNNs as probabilistic models by assum-
ing network weights as random variables with a Gaussian
mixture prior (with one component fixed at zero with a small
variance). Such a technique is similar to the spike-and-slab
prior in Bayesian statistics for variable selection [37]. Then
[21] show that optimizing the objective in the variational
inference [4] for approximating the posterior distribution
over the weights is equivalent to conducting dropout in the
respective RNNs, and demonstrate the implementation in
one commonly-used RNN model, the long short-term mem-
ory [32]. In this section, we propose to extend the technique
developed in [21] in the context of GRUs for uncertainty
quantification (UQ) in the prediction.

Given training inputs X and the corresponding output
Y, suppose that we aim to predict an output y* for a new
input x*. From the Bayesian point of view, the prediction
uncertainty can be characterized by the posterior predictive
distribution of y* as follows:

PO XX, Y) = / PO |x op@ | X.do,  (9)

where @ includes all unknown model parameters, p(@ | X, Y)
is the posterior distribution of @. In the GRU, all unknown
weights can be viewed as @. As the posterior distribution
p(® | X, Y)is generally intractable, the variational inference
method approximates it by proposing a variational distribu-
tion g(®) and then finding the optimal parameters in the vari-
ational distribution through minimizing the Kullback-Leibler
(KL) divergence between the approximating distribution and
the full posterior distribution:

KL(g(@)|lp(@ | X, Y))

- / ¢(@)logp(¥ | X, 0)do + KLg@)p@). ¥

where p(w) is the prior distribution of @.
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Given an input sequence X = [x|, ..., x;]of length T, the
hidden state k, at time step ¢ in the GRU neural network can
be generated as follows:

= O-(szt + Uzht—l +bz)’
=oc(Wx,+Uh,_ +b,),
j, = tanh (Wyx, + Uy (r, 0 h,_,) +b;,),
h,=z,0h,_, + (1 _zt) i,

al
K3
|

~
I

an

~
Il

where ¢ denotes the sigmoid function and © denotes the
element-wise product. Also, we assume that the model
output at time step ¢ can be written as fy(h,) = h,Wy + by.
Then the unknown parameters in the GRU are
o={Wy.W_ U, W, U,W,.U,.byb_b.b,} We write
h, = f?(x,.h,_;)and f? for the output in order to make the
dependence on o clear.
Then the right hand of (10) can be written as follows:

where m, and m,, denote randomly masks repeated at all
time steps.

We take the prediction tasks in Fig. 1 for example. The
posterior predictive distribution of V; given V| is straight-
forward by (14) since only root and leaf nodes are involved.
When involving the intermediate nodes, e.g., the subgroup
G, the posterior predictive distribution of V, given the root
nodes (V, and V,) can be computed by

P(Vs | V17V2) =/P<V6 | V,, V3,V5,co)p(V3 | Vi, @)

pVs |V, Vo, 0)p(e | V), V,)dV3dVsde.
(16)
Specifically, when we generate B samples from the posterior
distribution of @, we also generate B samples for the inter-
mediate nodes. Those B samples of @ and the corresponding

- / q@)logp(Y | £y (%1, - xp f (X0 /2 /21, Rg) -.)) ) ) do + KL(g(@) || p(e)), (12)

which can be approximated by Monte Carlo integration with
the generated samples " ~ ¢q(w) and plug in the sampled
&"’s to (12).

Following [21], we use a mixture of Gaussian distribu-
tions as the variational distribution for every weight matrix
TOW @

K

g(®) = Hq((ok), q(@;) = zN(@:0,7°1) + (1 — DN (@pmy, 7°1),
k=1

(13)

where 7 is the dropout probability, m, is the variational
parameter (row vector), and 72 is a small variance. We opti-
mize over m, by minimizing the KL divergence in (12).
Sampling each row of @” is equivalent to randomly mask
rows in each weight matrix, i.e., conducting dropout. Then
the predictive posterior distribution can be approximated by

po* 1 x*,X,Y)

B
£ * 1 ES kA
=/p(v | ¥, @p@ | X, Y)do ~ = Y po* | x*,0"),
B b=1
(14)

where @ ~ g(w) and B is the total number of generated
samples.

To implement the dropout in the GRU, we re-parametrize
(11) as follows:

zZ, o
i =l o (5 ) o) as)
it tanh hyyom,

Fig.2 Final causal graph for the traction-separation law deduced
from time-history of displacement, traction, porosity, coordination
number, and fabric tensor. The number on each edge represents the
edge inclusion probabilities among all possible causal relations from
the training data sets
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intermediate nodes can be then used in Monte Carlo integra-
tion to calculate (16). Throughout this paper, we set B=200.

6 Numerical examples

In this section, we conduct two numerical experiments to
test our proposed framework that combines causal discovery
with deep learning to build constitutive laws for granular
materials. In Sect. 6.1, the causal discovery is conducted to
determine the constitutive relationships for an RVE interface
composed of spherical grains. The subsequent supervised
machine learning then leverages the causal relations learned
from the causal discovery algorithm to establish a serial of
supervised learning that constitutes a forecast engine for
traction. The propagation of uncertainty is enabled by the
dropout technique that approximates Monte Carlo simu-
lations to determine the confidence intervals for a given
dropout rate. In Sect. 6.2, the same exercise is repeated for
another data set to generate hypoplasticity surrogate model
for a discrete element assembly where new topological
measures are computed and incorporated into the proposed
framework to (1) discover new physical mechanisms and (2)
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determine the benefit of the new discovery on the accuracy,
robustness, and consistency of the forward predictions on
unseen events.

Table 1 This table reports the mean and standard deviation of the
validation loss among different configurations which are different
based on their number of units utilized for each GRU layer when
the optimal learning rate 0.001 and batch size 32 is chosen. Notice
that we randomly conduct 100 trials for each subgraph with different
hyperparameters. The last column shows the validation loss when the
neural network has the same architecture suggested in Sec. 4. Based
on the standard deviation values, we observe that the number of units
in GRU layers has a marginal effect on the performance. The sug-
gested fixed neural network architecture in Sec. 4 for all sub-graphs
has almost the same performance as the best optimal configurations

Subgraph Mean Standard devia- Number of  Suggested NN
tion configura-
tions
Porosity 1.6e—6 7.36e —7 10 37e -6
CN 1.04e -3 2.3e-5 1.07e =3
Fabric 22e—-3 398e—-4 7 24e -3
Traction 5.le—5 1.0le—5 9.1e -5
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6.1 Numerical example 1: machine learning
traction-separation law

Traction-separation laws are key ingredients of cohesive
fracture models [59, 60]. Generally speaking, a traction-
separation law constitutes the relation between the trac-
tion and displacement jump across a surface. There exist

Loading Step

many hand-crafted models developed by experts for dif-
ferent applications [60], while no interpretable machine
learning framework had been developed until recently by
[89] in which reinforcement learning is used to deduce an
interpretable knowledge graph that doubles as the forecast
engine. Also, in some applications such as granular materi-
als, more descriptors, e.g., porosity or fabric tensor, should
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be considered in these constitutive laws [77] to derive more
predictive models.

Our first test for the data-driven causal discovery model
with dropout UQ is on the traction-separation law data pub-
licly available in the repository Mendeley data (cf. [76]).
This dataset has also been used in [89] where the traction-
separation law is determined from reinforcement learn-
ing. Our major point of departure is three-fold. Firstly, we
develop a causal discovery algorithm to identify causal rela-
tions among history-dependent physical quantities in RVE
simulations. Secondly, we decouple the causal discovery
from the training of the neural network such that we now
first discover causal relations, then utilize the discovered
relationships to generate quantitative predictions using the
method detailed in Sect. 4. Thirdly, we introduce the Bayes-
ian approximation using the dropout technique to propagate
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Fig.7 Comparison of traction-displacement between model and experiment in one case
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Fig.9 Box plots of density
distributions of normal a and
shear b traction distributions at
three load steps.The top line is
maximum value and the bottom
line is the minimum value. The
box composed of three thick
lines are separately first quan-
tile, median, third quantile
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Fig. 12 Final Causal graph for the hypoplasticity relations deduced
from time-history of strain, stress, and 9 other measures of micro-
structural and topological properties. The number on each edge repre-
the uncertainty in the causal graph, building upon the theo-
retical framework established in [21].

The database includes 100 DEM experiments. In each
DEM experiment, the time history of all the variables
included in the DAG are recorded. Each experiment is con-
ducted by a different ratio of normal to tangential loading
rate and loading-unloading cycles on the same representa-
tive volume element of granular materials. As such, the total
number of time-history data points in these experiments may
vary from 51 to 111. The interested reader is referred to the
appendix in [89] for more information. In our study, feature
space consists of displacement jump vector, traction vector,
coordination number, symmetric part of fabric tensor, and
porosity. We use half of the experiments for causal discov-
ery and training artificial neural networks, and the rest is
used for test and validation. In the causal discovery step, as
different experimental setups may lead to different causal

Table 2 Hyperparameters used to train the neural network

NN setting description Abbreviation Values
Neuron type subset NeuronType GRU
Hidden layers subset numHiddenLayers 3
Number of neurons per layer numNeuronsPerLayer 32
Dropout rate subset DropOutRate 0.0
Optimizer type subset Optimizer Adam
Activation functions subset Activation relu
Batch sizes subset BatchSize 128
Minimum Learning rate ReduceLROnPlateau 0.95
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sents the edge inclusion probabilities among all possible causal rela-
tions from the training data sets

relations among variables, we apply the proposed causal
discovery algorithm (Algorithms 1 and 2 in Sect. 3) to each
of the training experiment, and then report the final causal
graph by calculating the inclusion probabilities of directed
edges appearing in all training experiments. The inclusion
probability of one edge is defined as the proportion of causal
graphs containing this edge. The directed edges with inclu-
sion probabilities being larger than a pre-defined threshold
(20% in our paper) are kept in the final causal graph. When
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Fig. 13 Empirical Cumulative Distribution Function (eCDF) for pre-
diction on training data sets and mean value of predictions on test
data sets. There are 60 simulations, 30 used for calibration and 30 for
blind forward testing. Blue curves are predictions made from neural
networks generated according to the causal graph, black curve is the
control experiment counterpart generated from predictions that takes
on strain fabric tensor and porosity as inputs to predict Cauchy stress
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Fig. 14 Difference between the major and minor principal stress vs. axial strain. Compressive strain has positive sign convention

both edge directions between two variables appear with posi-
tive inclusion probabilities (e.g., V; — V; and V; — V; both
exist), we keep the edge direction that has a higher inclusion
probability. The goal of the resultant model is to predict
the same granular assembly responds to a different cyclic
loading path unseen in the training. As such, the focus of
this model is to generate a surrogate for one representative
element volume.

Figure 2 plots the final causal graph on the training data
sets with edge inclusion probabilities. The strong confidence
(96%) in the edge starting from the displacement jump vec-
tor to porosity is consistent with the common field knowl-
edge, i.e., the immediate consequence of displacement jump
is the volume change. The displacement jump vector, as the
only control variable, affects all the intermediate physical
quantities and traction vector. This observation may seem
to be trivial, but it is not always the case which will be
shown in the next example. The causal effects of fabric and
coordination number on traction is aligned with the mod-
ern Critical State Theory [45] which is obtained without

expert interpretation by the causal algorithm. Note that fab-
ric encodes microstructural information in more detail such
as directional dependence due to its tensorial nature, rather
than porosity which smears out information into one scalar
quantity. Therefore, it is reasonable to see that fabric has a
considerable contribution in describing material behavior
with a complex arrangement of force chains at the micro-
structural level.

Remark 2 To make sure the suggested neural network archi-
tecture in Sect. 4 works satisfactorily in this problem, we
trained several neural networks with different hyper-param-
eters for each sub-graph learning task in Fig. 2. We used the
random search approach [3] implemented in Keras Tunner
package [57] for this study. The number of GRU layers is
kept fixed and equal to two, and in the training stage, the
dropout rate is set to zero. The number of epochs is also
set to 200. The parameters under this study are as follows:
the number of units in GRU layers are sampled from the set
{8,16,32,64}, the Adam learning rate is sampled from the
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Fig. 15 Difference between the major and immediate principal stress vs. axial strain. Compressive strain has positive sign convention

set {0.01,0.001,0.0001}, the batch size for the SGD algo-
rithm is sampled from the set {32, 64, 128,256,512}. Based
on these hyperparameter ranges, each subgraph learning task
has 240 different configurations; however, in the random
search algorithm, we set the number of trials to 100 for each
subgraph training task to reduce overall computational time.
For this hyperparameter tuning task, we choose 50 data sets
as the training set and another 50 data sets as the validation
set. Our metric for selecting the best configuration is the
minimum validation loss. We found that the learning rate
0.001 and batch size 32 are common among all the best
configurations of subgraphs. In Table 1 we study the effect
of number of units in GRU layers when learning rate and
batch size have their optimal values.

Applying Algorithm 3 to Fig. 2, we need to perform
four supervised learning tasks: (1) predict Poro from the
input U; (2) predict CN from the input U and the intermedi-
ate node Poro; (3) predict fabric from the input U and the
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intermediate nodes Poro and CN; and (4) predict the target
variable T from the input U and the obtained intermedi-
ate nodes Poro, CN, and fabric. We then use the GRU to
train each sub-graph with the dropout rate being 0.2 for both
training and feed-forward predictions. Figure 3 confirms that
the neural network architecture proposed in Sect. 4 yields
satisfactory performance for all supervised tasks. To exam-
ine the generalization performance of the trained neural net-
works, we study the empirical cumulative distribution func-
tions (eCDFs) for training and test data sets following [89].

We define the point-wise scaled mean squared error
(MSE) between a set of ground-truth values with size N and
its corresponding approximation set as:

N
1 appx

= = St'rue - S 'PP , 17

¢ N,;( ") = S6{™) (17)

where S is a scaling function. In this paper, the scaling

function linearly transforms a set of values into a new set

where all values are in the range [0, 1]. We perform 200
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Fig. 16 Difference between the immediate and minor principal stress vs. axial strain. Compressive strain has positive sign convention

feed-forward predictions to obtain the distribution of each
feature output at a specified load-step. For eCDF calculation
only, we use the average of these 200 predictions to approxi-
mate the feature output. In this way, the discrete eCDF of
a target output feature, such as porosity, at data point i is
defined as Fy(e;) = ﬁ 2?11 1(e; > e;) where e; is the point-
wise scaled MSE between the feature ground-truth value and
its predictions’ average, M is the total number of instances
(i.e., the total number of data points across 50 training data
sets) used for eCDF calculations, and 1(-) is the indicator
function. Figure 4 plots eCDFs for all feature outputs in
training and testing modes. In these plots, the eCDFs for
test and training cases are almost the same, indicating no
under-fitting or over-fitting issue exists. Note that the use of
dropout in the GRU is not only for uncertainty quantifica-
tion in prediction, but also to improve model generalization
performance.

In the following, we present prediction results for one of
the test cases where its applied normal and shear displace-
ments are plotted in Fig. 5. Normal and shear displacement

jumps experience cyclic loading-unloading path and are kept
equal in magnitude.

We focus on the average of model predictions in Figs. 6
and 7. In Fig. 6, we see that the initial friction angle is close
to 16.7 degree which is almost half of the inter-particle fric-
tion angle. This reduction in the overall friction angle might
be due to the induced dilation in the normal displacement.
Another reason could be related to initial confining pressure:
the higher the confining pressure is, the lower the friction
angle is. In each loading-unloading branch, the behavior is
almost linear without any energy dissipation, but further
loading after a level makes the behavior nonlinear. If we
only follow the loading path we observe the strain-soften-
ing which is the dominant mechanism of a dense granular
assemblage; see Figs. 6 and 7b. In other words, the material
shows an unstable peak shear strength which is followed
by a softening behavior until it reaches the critical state.
The sign of changes in normal traction (Fig. 9a) and shear
traction (Fig. 9b) are in agreement with the fabric normal
(Fig. 10a) and shear (Fig. 10b) components, respectively.
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Fig. 17 State path (void ratio vs. logarithm of mean pressure). Compressive strain has positive sign convention

This confirms the tendency of fabric tensor to trace the load
direction [44, 45, 87]. Overall the proposed data-driven
scheme can replicate main features of a realistic experiment,
and there exists a good agreement between the model and
experiment. However, there is an issue corresponding to sec-
ond loading-unloading cycle where hysteresis is predicted
by the model while experiment shows almost zero energy
dissipation. This is mainly due to the neural network capac-
ity and design and can be resolved by enriching the neural
network architecture with wider neurons or deeper layers or
hyper-parameter tuning. Note that one needs to be aware of
the over-fitting issue when the model complexity increases
by increasing the number of neurons. Generally, a more
complex neural network should be trained with more data.
The uncertainty in traction vector prediction is shown in
Fig 8. Density distributions of traction vector at three load-
ing steps are plotted in Fig 9. In this figure, steps 25, 47,
and 100 belong to the first unloading, second peak, the last
peak conditions, respectively (see Fig. 8). Figure 8 suggests
that the model is able to track the path-dependent behavior
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of experiments with narrow variation bands in most of
the loading steps. This figure also suggests that the uncer-
tainty for shear traction is higher than normal traction and
increases at peak loads. We know that, from mechanics, the
shear mode of deformation is more complex and nonlinear
than the normal mode and consequently deserves higher
uncertainty, which agrees with these results (also see step
47 and 100 in Fig. 9 for a quantitative comparison). At peak
values, the complexity is more profound due to the cyclic
loading or softening, so more uncertainty is expected.
Model prediction for fabric tensor is plotted in Fig. 10.
Density distributions of fabric tensor at three loading steps
are plotted in Fig. 11. The uncertainty in fabric tensor has
narrow variation bands in most of the loading steps. Simi-
lar to the traction prediction, the uncertainties in normal,
shear, and mixed modes are higher at peak loads due to the
cyclic loading or softening. However, comparing the normal,
shear, and mixed modes, we do not observe significant dif-
ferences in uncertainty at the three loading steps (Fig. 11).
Interestingly, we observe that traction predictions have less
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Fig. 18 Normalized fabric anisotropy variable vs. axial strain. Compressive strain has positive sign convention

uncertainty at initial load steps, step 0 to 20, comparing to
fabric while fabric is an intermediate node for traction pre-
diction. This means that traction prediction is potentially less
dependent on the fabric at initial loading steps and neural
network weights are automatically adjusted to make predic-
tions with high confidence as much as possible by an appro-
priate combination of porosity, displacement, and fabric.
We observe an almost linear correlation between normal
displacement jump and porosity, so we have not presented
porosity prediction results due to its simplicity. Such a cor-
relation is expected since the normal displacement is the
boundary condition in this problem, and dilation is explicitly
controlled during the experiment.

6.2 Numerical example 2: machine learning
hypoplasticity

In the second numerical experiment, we attempt to gener-
ate a predictive surrogate model for one numerical granular

assembly undergoing monotonic true triaxial compression
loading. For convenient purpose, discrete element simula-
tions are used as replacement of physical tests. These dis-
crete element simulations are run via the open-source soft-
ware YADE [72].

In total, we conduct 60 true triaxial compression tests
with loading path that varying the principle stress o, 0, and
o5 are performed on the same numerical specimen. Before
the shearing phase, the material is subjected to hydrostatic
loading to compress the assembly hydrostatically to reach
the initial confining pressure. Following this step, a vertical
compression or extension or a change of the applied tractions
on the side walls are prescribed to generate different stress
paths. To facilitate third-party validation and re-production
of the simulation results, the data used for the causal discov-
ery are given access to the public via Mendeley Data [85].
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Fig. 19 Graph density vs. axial strain. Compressive strain has positive sign convention

6.2.1 Data-driven causal relations of granular matter

Figure 12 shows the final causal graph of the causal discov-
ery algorithm applied to the true triaxial test data generated
from discrete element simulations. The number on each edge
represents the edge inclusion probability in the calibration
experimental data sets.

The causal discovery driven by the small set of calibration
data reveals a number of key observations that are worth-
noticing. First, the causal discovery algorithm does re-dis-
cover the conventional wisdoms, such as the fact that (1)
the changes of coordination number is due to the expansion
of the void space; (2) both the coordination number and the
porosity changes may cause changes on the fabric tensors;
and (3) the dominate role of the strong fabric tensors on
the resultant stress. These observations are consistent with
previous findings in a number of discrete element simulation
literature [41, 71, 77, 94] and the anisotropic critical state
theory [17, 45, 100].
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In addition to the rediscoveries of known knowledge,
the causal discovery algorithm also finds a few causal rela-
tionships not known in the existing literature (to the best
knowledge of the authors). For instance, the causal discov-
ery algorithm is able to establish a casual relationship that
changes in average clustering coefficient may affect the local
efficiency of the particle connectivity, whereas the degree of
assortativity coefficient, a measure of the similarity of the
connections of the graphs, may affect the graph transitiv-
ity. Interestingly, the causal discovery algorithm also finds
that changes of the strong fabric tensor may be caused by
changes of the strain (93%), porosity (60%), coordination
number (73%), graph density (73%), local efficiency (70%)
and graph transitivity (70%), degree of assortativity (70%) as
well as graph clique number (73%). This discovery indicates
that the changes of the strong fabric tensors are driven by
the changes of the underlying connectivity topology and the
volume changes of the void space.

Furthermore, another interesting discovery is that
the changes of the stress tensor is only conditionally
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Fig.20 Average Clustering vs. axial strain. Compressive strain has positive sign convention

independently caused by the changes of the strong fabric
tensor. This result is consistent with the previous finding
of 2D granular materials reported in [71] where it is shown
that (1) the principal direction of the strong fabric tensor
(but not necessarily other fabric tensors) is coaxial with the
homogenized Cauchy stress, and (2) the fabric tensor and
stress tensor are related by a scalar coefficient that may vary
according to the mean pressure.

6.2.2 Predictions based on discovered causal relationships

Here we investigate the accuracy, robustness and the limita-
tions of the machine learning predictions generated based on
the deduced causal relations. For comparison purposes, we
complete the training of two sets of neural networks—one
employs the newly discovered causal relationships into the
predictions, another one employs only the strain, fabric ten-
sor and porosity to predict the stress. The latter neural net-
work is then used as a controlled experiment for the former

one. The supervised learning procedures used to train the
two models are identical.

We first do not introduce the usage of dropout layer in the
GRU and hence the dropout rate is zero. The hyperparam-
eters are obtained from repeated trial-and-errors and they
are summarized in Table 2. All the sub-graph predictions,
regardless of the number of input variables, are trained by
the neural network with the identical architecture listed in
Table 2. After the predictions, we conduct a cross-validation
in which the trained neural networks are tasked to predict
both the homogenized Cauchy stress obtained from the cali-
bration and testing simulation data. The results are shown
in Fig. 13. Unlike the traction-separation law examples, the
predicted stress-strain curves for the true triaxial test exhibit
profound over-fitting regardless of whether the additional
graph metrics are used for the predictions.

The roughly 2-order of difference in stress predictions
suggests that either regularization strategy or more data is
needed to circumvent the mismatch of accuracy on the cali-
bration and blind prediction data. Notice that expanding the
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data set is not difficult for discrete element simulations, it is
certainly very difficult to conduct 60 true triaxial tests physi-
cally in a typical laboratory. As such, the results indicate the
difficulty to create forecast engine to predict stress responses
for unconventional stress paths even when the simulations
are free of the issues, noises and errors exhibited in physical
experiments.

Interestingly, the predictions from the neural network
with the new graph measures do not help significantly on
the mean errors of predictions. However, a closer exami-
nation of the tail of the eCDF on the two testing curves in
Fig. 13 does indicate that the neural network armed with
the new knowledge produces a less catastrophic worst-
case scenario. Figures 14, 15, and 16 show the predicted
principal stress difference against the benchmark data, in
which ¢, = 6, — 05, ¢, = 6, — 03, and g5 = 0, — 6, where
0, > 0, > 03 are principal stresses. In both the calibration
and the testing cases, the discrepancy of the principal stress
difference are minor.
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For brevity, we do not intend to present all the 30 forward
prediction results. Here, we pick three samples, two calibra-
tions (Test No. 23 and 29) and two blind predictions (Test
No. 50 and 56) for close examination. Figures 14, 15, and 16
compare the difference of the three principal stress inferred
from the recurrent neural network and obtained from dis-
crete element simulations. In these figures, TXC and TXE
denote triaxial compression and extension tests. For simplic-
ity, this test does not contain cyclic loading, as a result, the
prediction task is much simpler. Nevertheless, despite of the
relatively small data set, the trained neural networks in the
causal graph is capable of predicting important characteris-
tics, such as hardening/softening properly. The predictions
also exhibit more fluctuation, which is undesirable. How-
ever, this can be presumably suppressed with a different set
of activation functions and other regularization strategies.

The second important characteristics that warrants atten-
tion is the state path in the void ratio vs. logarithm of mean
pressure. Here, we consider compressive pressure as positive
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Fig. 22 Difference between the major and immediate principal stress vs. axial strain. Results are obtained for active dropout layers. Shaded area
includes predictions within 95% confidence interval. Compressive strain has positive sign convention

and the results are shown in Fig. 17. Again, the predictions
indicate that the trained neural network is able to predict
the elastic compression followed by the plastic dilatancy in
the triaxial compression (TXC) cases and the elastoplastic
expansion in the triaxial extension (TXE) cases.

Next, we examine the strong fabric tensor and its relation-
ships with graph measures. Here, the fabric tensor F is com-
puted by the summation of the dyadic product of the branch
vectors n divided by the number of grain contacts n_, i.e.,

1 n.
F=— .
nC;n®n (18)

The strong fabric tensor is obtained by considering only a
subset of the contact of which the contact normal force is
larger than a threshold value. In this work, this threshold
value is set to be the averaged contact force. For brevity, we

only show the normalized fabric anisotropy variable, which
measures the alignment between the fabric tensor and the
normalized deviatoric component of the stress n9,

1 . dev
A=———F:n 5 (19)

VF:F

in Fig. 18. Recall that the normalized fabric anisotropy vari-
able A = 1is a necessary condition for a material to reach
the critical state [16, 45, 100], hence the predictions of A
may indicate how accurate the neural network in the causal
graph predicts the critical state. Comparing the predictions
of A in the calibration cases and blind tests indicates that
the neural network prediction tends to delay the predicted
onset of the critical state. This may explain the over-fitting
exhibited in Fig. 13.
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Finally, we examine the predictions of the graph measures
most likely to be influential to the predictions of the fabric
tensors. Figure 19 shows that the graph density reduces dur-
ing the shear phase in both triaxial compression and exten-
sion tests. According to the causal graph, the deformation
is causing the graph density changing which in turn affects
the fabric tensors. These causal relationships seem reason-
able as the deformation during the shear phase is likely to
cause plastic dilatancy and therefore reduces the number of
contacts, which explains the drop in the graph density and
the resultant changes in fabric tensors.

A similar reasoning can also be used to explain the drops
in the average clustering shown in Fig. 20 where the shear
deformation tends to reduce the tendency of the particles to
cluster together and that in return leads to the evolution of
the fabric tensor.

These results indicate that, while the causal discovery
may reveal potential causal relations not apparent to domain
experts, the knowledge from causal relationships does not
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necessarily lead to more accurate predictions. Factors such
as the choices of the supervised machine learning methods
and the availability of data are also key factors that affect the
usefulness of the new knowledge for predictions.

6.2.3 Uncertainty propagation with dropout layer

As the final numerical experiment, we activate dropout lay-
ers to collect results of stochastic forward passes through the
model. This gives us a Monte Carlo estimate of the predic-
tions. Note that the activation of the dropout layers will lead
to a different set of neuron weights even the data used for the
training of the neural network are identical.

Figures 21, 22, and 23 show the confidence interval for
200 Monte Carlo predictions of principal stress differences,
4, g, and g5 vs. axial strain for 4 selected triaxial extension
and compression loading paths.

In most of the cases shown in Figs. 21, 22, and 23, the
mean paths of the stochastic predictions generated by the
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dropout layer is able to match qualitatively with the experi-
mental benchmarks. Furthermore, in most cases, the prin-
cipal stress differences observed from experiments are
within the 95% confidence interval. It should nevertheless
be noted that the blind test is less accurate than the calibra-
tion cases, indicating that the neural networks may have been
over-fitted.

To examine how uncertainty is propagated in the causal
graph, we plot the diagonal components of the fabric ten-
sor and the results are shown in Figs. 24, 25, and 26. For
brevity, the off-diagonal components of the fabric tensor,
which are much smaller than the diagonal components, are
not provided here. Comparing the 95% confidence interval
of the fabric tensor and that of the principal stress difference,
one can easily see that the predictions of stress tend to be
more accurate when the fabric tensor can be more precisely
determined with a narrower confidence interval.

7 Conclusions

In this paper, we introduce, for the first time, a data-driven
framework that combines (1) the causal discovery algo-
rithm that detects unknown causal relations, (2) the Bayes-
ian approximation for uncertainty quantification enabled by
the dropout technique, and (3) the recurrent neural network
technique to analyze, interpret, and forecast the path-depend-
ent responses of granular materials. Numerical experiments
conducted on idealized granular system have indicated that
the data-driven framework is able to investigate and discover
new hidden causal relationships and propagate uncertainty
generated from a sequence of structured neural network pre-
dictions within a casual graph. This approach has potentials
to help modelers and experimentalists to spot hidden mecha-
nisms not apparent to human eyes as well as deduce complex
casual relationships in a high-dimensional parametric space
where intuition and domain knowledge are not sufficient due
to the dimensionality of the data. Further work may include
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improvement and comparisons of different causal inferences,
extension to recover causal relations when both instantane-
ous and lagged causal relations exist, as well as the applica-
tions to more complex granular systems where particles are
of different shapes and properties.

Appendix: Proof of Theorem 1

Theorem 2 Given Assumptions 1-3, for every
V.V, € V_y, V,and V; are not adjacent in G if and only
if they are independent conditional on some subset of
Vil Vi eV_py,k#i,k#jlu{U}.

Proof From equation (1), any variable V,in V_;, can be writ-
ten as a function of {6,(U)}7" and {¢;}7";', where m — 1 is
the number of vertices included in V_j; since V includes
m vertices. Therefore, the distribution of V_; at each
value of U is determined by the distribution of €, ... , €,,_;

and the values of {Gi(U)};';_ll. For any V,,V, € V_, and
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SCV IV €V yk#ik#j), p(V,V;|SU{UY is
determined by H::] p(e;) and {6,(U) };’:11. Since H;:l p(e)
does not change with U, we have

p(V Vi | SU{0U)YE u{UD) = p(V,, V; | SU{8WU)YE).
(20)
Denote I to indicate independence, it follows that

ULV, V) | Su{e(U)yist. @1)

Applying the weak union property of conditional independ-
ence, we have

ULV, | {vi}usu{e(u)}r".

Suppose that V; and V; are not adjacent in G,
then they are not adjacent in G*¢. There exists a set
SC{V, |V, €V_y,k#i,k#j} such that SU {9,~(U)}l’.’;‘11

d-separates V; and V;. Because of Assumption 1, we have
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VALV | SU{6:(U)} 1 u{U}.

Since all ;(U) are deterministic functions of U, it follows
that

VLV | SU{UY.

Now we prove that if V; and V; are conditionally independ-
ent given a subset S of {V, | V, € V_p, k #i,k #j} U {U},
V; and V; are not adjacent in G. Because of Assumption 2
(faithfullness), V; and V; are not adjacent in G**¢. Therefore,
they are not adjacent in G. O

Appendix: Graph metric definitions

In this section, we provide brief review of the the terminol-
ogy of the graph measures obtained from the grain connec-
tivity graph generated in each time step of a discrete ele-
ment simulation. These graph measures are used to create
the knowledge graph for the machine learning constitutive
law in Section 6.2.

The following graph metrics were calculated using the
open-source software networkX [27] for exploration and
analysis of graph networks.

Definition 1 The degree assortativity coefficient measures
the similarity of the connections in a graph with respect to
the node degree.

Definition 2 The graph transitivity is the fraction of all
possible triangles present in the graph over the number of
triads. Possible triangles are identified by the number of tri-
ads—two edges with a shared vertex.

Definition 3 The density for undirected graphs is defined as:

2m

- nin—1) 23)

where n in the number of nodes and m is the number of
edges of the graph.

Definition 4 The average clustering coefficient of the graph
is defined as:

C= % Y (24)

veG

where n in the number of nodes and is c,, is the clustering
coefficient of node n defined as:

@ Springer

. 2T (n)
"7 deg(n)(deg(n) — 1)’

(25)

where T(n) is the number of triangles passing through node
n and deg(n) is the degree of node n.

Definition 5 A clique is a subset of nodes of an undirected
graph such that every two distinct nodes in the clique are
adjacent. The graph clique number is the size of largest
clique in the graph.

Definition 6 The efficiency of a pair of nodes is defined
as the reciprocal of the shortest path distance between the
nodes. The local efficiency of a node in the graph is the
average global efficiency of the subgraph induced by the
neighbours of the node. The average local efficiency, used
in this work, is the average of the local efficiency calculated
for every node in the graph.

Appendix: Loading conditions in bulk
plasticity experiments

The database used for causal discovery and training of the
neural network forecast engines for numerical example in
Section 6.2 includes 60 true triaxial numerical experiments
conducted via the YADE’ DEM simulator. These experi-
ments differ according to the applied axial strain rate €,
initial confining pressure p,, initial void ratio ¢;,, and a

parameter b = 2= that controls applied stress conditions.
117033

In all 60 cases we set 633 = 6, = 6,3 = 6,3 = 0. The setup
of them are listed below. The tests with the bold font are the
one discussed in Section 6.2. The first 30 test (labelled
TO-T29) are used to train the neural network, while T30-T59

are used for forward predictions.

TO &, <0,b=0, p,=—300kPa, ¢, = 0.539.
TI &, <0,b=0, p, = —400kPa, ¢, = 0.536.

T2 &, <0,b=0, py=—500kPa, ¢, = 0.534.

T3  &,>0,b=0, p, = —300kPa, ¢, = 0.539.

T4  &,>0,b=0, p, = —400kPa, ¢, = 0.536.

TS  é,>0,b=0, p, = —500kPa, ¢, = 0.534.

T6 ¢, <0,b=0.5, p, = —300kPa, e, = 0.539.
T7 ¢, <0,b=0.5, p, = —400kPa, e, = 0.536.
TS ¢, <0,b=0.5, p, = —500kPa, ¢, = 0.534.
T9 &, >0,b=0.5, p, = —300kPa, e, = 0.539.
TI0 &, > 0,b=0.5, p, = —400kPa, ¢, = 0.536.
TI1 &, >0,b=0.5, p, = —500kPa, e, = 0.534.
TI12 &, <0,b=0.1, py = —300kPa, ¢, = 0.539.
TI13 &, <0,b=0.1, py = —400kPa, ¢, = 0.536.
T4 ¢, <0,b=0.1, py = —500kPa, e, = 0.534.
TI5 &, >0,b=0.1, p, = —300kPa, e, = 0.539.
T16 &, > 0,b=0.1, p, = —400kPa, ¢, = 0.536.
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T17 &, > 0,b=0.1, py = —500kPa, ¢, = 0.534.
TI8 &, <0,b=0.25, p, = —300kPa, e, = 0.539.
T19 &, <0,b=0.25, p, = —400kPa, e, = 0.536.
T20 ¢, <0,b =025, p, = —500kPa, e, = 0.534.
T21 ¢, >0,b =025, p, = —300kPa, ¢, = 0.539.
T22 ¢, >0,b =025, p, = —400kPa, ¢, = 0.536.
T23 €, >0,b =025, p, = —500kPa, e, = 0.534.
T24 ¢, <0,b=0.75, p, = —300kPa, e, = 0.539.
T25 ¢, <0,b=0.75, p, = —400kPa, e, = 0.536.
T26 ¢, <0,b=0.75, p, = —500kPa, e, = 0.534.
T27 &, > 0,b=0.75, p, = —300kPa, e, = 0.539.
T28 ¢, > 0,b=0.75, p, = —400kPa, ¢, = 0.536.
T29 ¢, > 0,b=0.75, p, = —500kPa, ¢, = 0.534.
T30 &, <0,b=0, p,=—350kPa, ¢, = 0.539.
T31 &, <0,b=0, p, = —450kPa, ¢, = 0.536.
T32 ¢, <0,b=0,p,=—550kPa, ¢, = 0.534.
T33 ¢, >0,b=0, p, = —350kPa, ¢, = 0.539.
T34 ¢, >0,b=0, p, = —450kPa, ¢, = 0.536.
T35 ¢, >0,b=0, p,=—550kPa, ¢, = 0.534.
T36 ¢, <0,b=0.5, p, = —350kPa, ¢, = 0.539.
T37 ¢, <0,b=0.5, p, = —450kPa, e, = 0.536.
T38 ¢, <0,b=0.5, p, = —550kPa, ¢, = 0.534.
T39 ¢, >0,b=0.5, p, = —350kPa, e, = 0.539.
T40 &, > 0,b=0.5, p, = —450kPa, e, = 0.536.
T4l &, >0,b=0.5, p, = —550kPa, e, = 0.534.
T42 &, <0,b=0.1, py = —350kPa, ¢, = 0.539.
T43 ¢, <0,b=0.1, p, = —450kPa, e, = 0.536.
T44 ¢, <0,b=0.1, p, = —=550kPa, ¢, = 0.534.
T45 ¢, >0,b=0.1, py = —350kPa, ¢, = 0.539.
T46 ¢, > 0,b=0.1, p, = —450kPa, ¢, = 0.536.
T47 ¢, >0,b=0.1, py = —=550kPa, e, = 0.534.
T48 ¢, <0,b =025, p, = —350kPa, e, = 0.539.
T49 ¢, <0,b =025, p, = —450kPa, e, = 0.536.
TS0 ¢, <0,b =025, p, = —550kPa, e, = 0.534.
TS51 &, > 0,b=0.25, p, = —350kPa, ¢, = 0.539.
T52 &, > 0,b =025, p, = —450kPa, e, = 0.536.
TS3 &, > 0,b=0.25, p, = —550kPa, e, = 0.534.
TS54 ¢, <0,b=0.75, p, = —350kPa, e, = 0.539.
TS5 &, <0,b=0.75, p, = —450kPa, e, = 0.536.
T56 €, <0,b=0.75, py = —550kPa, ¢, = 0.534.
T57 €, >0,b=0.75, py = —350kPa, e, = 0.539.
TS8 ¢, > 0,b=0.75, p, = —450kPa, e, = 0.536.
T59 ¢, >0,b=0.75, p, = —550kPa, e, = 0.534.

Appendix: Extension to lagged causal
relationships

In this section, we briefly discuss an extension of the pro-
posal causal discovery approach to allow both instantaneous
and lagged causal relations. Without loss of generality, we
use the example of traction-separation law to illustrate the
method. Recall that V_j; includes all other variables in V

excluding U (e.g., porosity, fabric tensor). Assume that there
are m vertices in V_g;, and we denote the values of vertices
at the th time point to be V_(¢) = (V,(¢), ..., V,,(?)), where
t =1,...,T. Since there exist both instantaneous and lagged
causal relations over these variables, we assume that the larg-
est lag time to be L. Furthermore, we denote the ith variable
from the I/th time point to the (T — L + [ — 1)th time point to
be Vi’ =WV, Vi+1),..,.V(T-L+I1-1),i=1,....m

and/=1,...,L 1-I- 1. Then we ilntroduce a new set of vari-
ables V_y, = {V }4 where V' = {V!, V! ... V! }. Fig. 27

illustrates the lagged causal relationships using a DAG with
only two vertices. Fig. 27(a) shows the repetitive causal
graph over two time series V() = (V,(#), V,(0)),t=1,...,T
when the lag time L = 1. Fig. 27(b) shows the unit causal
graph over the newly introduced variables V = ViUV In
this case, our goal is to not only recover the instantaneous
causal relations between Vl2 and V22 as what did in the main
manuscript, but also the lagged causal relations from Vl1 to
V22, and from Vl1 to Vlz.

Recall that U is the known input (i.e., displacement
jump), and we have the prior knowledge that the dynamic
changes in U can cause changes in other variables, not vice
versa. Therefore, U can be used as a surrogate variable to
help identify the causal relations. To recover the causal skel-
eton for both instantaneous and lagged causal relations, we
modify Algorithm 1 as follows. Firstly, a complete undi-
rected graph Uy; is built with the variable U and the newly
introduced variables f/_U. Then for each i, we test for the
marginal and conditional independence between ViLJrl and U,
i =1,...,m.If they are independent, the edge between ViLJrl
and U is removed; meanwhile the edge between Vl.l and U is
also removed, / = 1, ..., L. Next, we recover lagged causal
relations by testing the marginal and conditional independ-
ence between the variables in V"' and the variables in
VL_I+1 for each /th lagged relation, [ = 1, ..., L. In particular,

if ViLJrl and ‘/jL"Jrl are independent, their edge is removed

ViL_k+1 VjL—l+l—k

from U,; meanwhile the edge between and

is removed, k =0, ..., L — [. Lastly, we recover the instanta-
neous causal relations by testing for the marginal and con-
ditional independence between V/*! and Vj“'l, i # j. If they
are independent, their edge is removed; meanwhile the edge
between Vi" and Vj" isremoved, k = 1, ..., L. After the causal
skeleton is determined, we can apply Algorithm 2 in the
paper to recover the causal directions for instantaneous
causal relations. For lagged ones, they follow the rule that
past causes future.
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