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Abstract 
This paper presents a computational framework that generates ensemble predictive mechanics models with uncertainty 
quantification (UQ). We first develop a causal discovery algorithm to infer causal relations among time-history data meas-
ured during each representative volume element (RVE) simulation through a directed acyclic graph. With multiple plausible 
sets of causal relationships estimated from multiple RVE simulations, the predictions are propagated in the derived causal 
graph while using a deep neural network equipped with dropout layers as a Bayesian approximation for UQ. We select two 
representative numerical examples (traction-separation laws for frictional interfaces, elastoplasticity models for granular 
assembles) to examine the accuracy and robustness of the proposed causal discovery method for the common material law 
predictions in civil engineering applications.
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1 Introduction

Computer simulations for mechanics problems often require 
material (constitutive) laws that replicate the local constitutive 
responses of the materials. These material laws can be used to 
replicate the responses of an interface (e.g., traction-separation 
laws or cohesive zone models) or bulk materials (e.g., elastoplas-
ticity models for solids, porosity-permeability relationship and 
water retention curve). A computer model is then completed by 
incorporating these local constitutive laws into a discretized form 
of balance principles (balance of mass, linear momentum and 
energy) where discretized numerical solutions can be sought by 
a proper solver.

Constitutive laws, such as stress-strain relationship 
for bulk materials, traction-separation laws for interface, 

porosity-permeability for porous media, are often derived 
following a set of axioms and rules [82]. In these hand-
crafted models, phenomenological observations are incor-
porated into constitutive laws (e.g., critical state theory for 
soil mechanics [8, 55, 68, 75], void-growth theory for ductile 
damage [26]). While the earlier simpler models are often 
amended by newer and more comprehensive models [13] in 
order to improve the performance (e.g. accuracy, more real-
istic interpretation of mechanisms), these improvements are 
often a trade-off that may unavoidably increase the number 
of parameters, leading to increasing difficulty for the cali-
bration, verification and validation processes, as well as the 
uncertainty quantification (UQ) [6, 7, 10, 13, 89, 91].

The rise of big data and the great promises of machine 
learning have led to a new generation of approaches that 
either bypass the usages of constitutive laws via model-free 
data-driven methods (e.g., [2, 28, 38, 39]) or replace parts 
of the modeling efforts/components with models gener-
ated from supervised learning (e.g., [19, 43, 48, 51, 83, 84, 
88, 90, 99]). However, one critical issue of these machine 
learning and data-driven approaches is the lack of sufficient 
interpretability of predictions. While there is no universally 
accepted definition of interpretability, we will herein employ 
the definition used in [53] which refers interpretability as 
the degree to which a human can understand the cause of 
the prediction.

This article is part of the topical collection: Physics-informed 
artificial intelligence for granular matter.
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One possible way to boost the interpretability is to intro-
duce a proper medium to represent knowledge that can be 
understood by human [80]. Causal graph, also known as 
causal Bayesian network, is one such medium in which the 
causal relations among different entities are mathematically 
represented by a directed graph. In the application of com-
putational mechanics [30, 88, 90] have derived a mathemati-
cal framework to decompose a complex prediction task into 
multiple easier predictions represented by subgraphs within 
graphs. More recent work such as [89, 92] introduce a deep 
reinforcement learning approach that employs the Monte 
Carlo Tree Search (MCTS) to assemble a directed graph 
that generates a sequence of interconnected predictions of 
physical quantities to emulate a hand-crafted constitutive 
law. However, these directed graphs are generated to opti-
mize a given performance metric (e.g. accuracy, calculation 
speed and forward prediction robustness), but not necessar-
ily reveal the underlying causal relations among physical 
quantities.

Discovering causal relations from observational data is an 
important problem for many fields of science, such as social 
science [56], finance [23], and biomedicine [70]. The stand-
ard way to discover causality is through randomized con-
trolled experiments. However, conducting such experiments 
can be either impractical, unethical, and/or very expensive 
in many disciplines [96, 97]. For mechanics problems, the 
major issues include the time and labor cost for physical 
experiments, the lack of facilities or equipment to complete 
the required tests and the difficulties to obtain specimens 
[54, 63, 95]. As a result, an alternative approach, which is 
adopted in this study, is to use sub-scale simulations as the 
digital representation that generates auxiliary data sets to 
build material laws or forecast engine for the macroscopic 
material responses [15, 47, 49, 90]. Classic methods for 
causal discovery are based on probabilistic graphical mod-
eling [61], the structure of which is a directed acyclic graph 
(DAG) with nodes representing random variables and edges 
representing conditional dependencies between variables. 
Learning a DAG from observational data is highly challeng-
ing since the number of possible DAGs is super-exponential 
to the number of nodes. There are two main approaches 
for causal discovery: the constraint-based approach and 
the score-based approach. The constraint-based approach 
aims to recover a Markov equivalence class through infer-
ring conditional indep3endence relationships among the 
variables, and the resulting Markov equivalence class may 
contain multiple DAGs that indicate the same conditional 
independence relationships [11, 42]. On the other hand, the 
score-based approach uses a scoring function, such as the 
Bayesian Information Criterion (BIC), to search for the DAG 
that best fits the data [29, 33].

In this paper, we aim to discover causal relations that can 
explain the underlying mechanism of a history-dependent 

macroscopic constitutive law upscaled from direct numerical 
simulations at the meso-scale. The most common method 
for constructing the causal relations from time-series data is 
Granger causality [24], which assumes a number of lagged 
effects and analyzes the data in a unit no more than that 
number of lags. See [66] for a review of causal discovery 
methods on time-series data. However, most of these causal 
discovery methods assume that the data are generated from a 
stationary process, meaning that the data are generated by a 
distribution that does not change with time. Such an assump-
tion does not hold in many physical processes, in which the 
mechanisms or parameters in the causal model may change 
over time. Several methods have been proposed recently 
to tackle time-varying causal relations in non-stationary 
processes [22, 34, 36]. However, they either assume linear 
causal models, or does not offer the flexibility of incorporat-
ing known physical knowledge, limiting their applicability to 
the nonlinear path-dependent relations in learning material 
constitutive laws.

In this work, we offer two major innovations. First, we 
introduce a new decoupled discovery/training approach 
where the discovery of causal relations represented by a 
DAG is enabled by a causal discovery algorithm that deduces 
plausible causal relations from non-stationary time series 
data and incorporates known physical knowledge. Second, 
we leverage the obtained causal graph as the representation 
of mechanics knowledge and adopt a Bayesian approxima-
tion using the dropout layer technique [20] to propagate epis-
temic uncertainty in the causal graph and generate quantita-
tive predictions with uncertainty quantification.

The rest of the paper is organized as follows. Section 2 
first introduces the two data sets (learning traction-separa-
tion law and hypo-plasticity of granular materials) used for 
our numerical experiments. This is followed by the descrip-
tion of theory and implementation of the proposed causal 
discovery algorithm used to deduce the causal relations 
from non-stationary time series data (Sect. 3). The setup of 
the deep neural network model for the prediction tasks and 
the uncertainty propagation are included in Sects. 4 and 5 
respectively. The proposed framework is then tested against 
two numerical experiments (Sect. 6), which is then followed 
by the conclusion.

2  Causal relations and constitutive laws

As demonstrated in previous studies such as [30, 83, 88–90, 
92], the relationships in a constitutive model can be rep-
resented by a network of unidirectional information flow, 
i.e., a DAG G = (V,E) where V  represents a vertex set 
and E denotes an edge set. With appropriate assumptions 
that will be discussed later, the DAG can be identified as a 
causal graph [61]. The causal relations are not only useful 
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to explain the underlying mechanism of a process but also 
provide us a basis to formulate multi-step transfer learn-
ing to predict constitutive responses. This strategy can be 
beneficial because one can leverage more data gathered 
from physical numerical experiments to train the prediction 
model. For instance, while a black-box prediction of stress-
strain curves only leverages the stress-strain pair for super-
vised learning, the introduction of knowledge graphs may 
introduce multiple supervised learning tasks where measure-
ments of porosity, fabric tensors or any other physical and 
geometrical attributes measured during the experiments can 
be leveraged to improve the training. For completeness, we 
briefly describe the procedure to consider the data set as 
vertex sets in graphs and the causal discovery process used 
to create the directed edge set in a knowledge graph through 
two examples.

Note that many of the physical quantities that become the 
vertices in the knowledge graphs are graph metrics obtained 
from analyzing the connectivity topology of the granular 
system. For brevity, we will not provide a review on the 
applications of graph theory for granular matter here. Inter-
ested readers may refer to Appendix 2 for the definitions 
of the graph metrics and [1, 41, 58, 67, 81, 86] and [83] 
for reviews on the graph theory applied to particulate and 
granular systems.

2.1  Dataset for traction-separation law

In the first example, our goal is to conduct a numerical 
experiment to verify whether the causal discovery algorithm 
is able to re-discover the well-known causal relation that 
links the plastic dilatancy and contraction to the frictional 
behaviors [62, 69] with a small data set.

Following [88–90, 92], we consider the vertex set consists 
of five elements, the displacement jump/separation U , the 
traction T , and three geometric measures, i.e., 

1. Displacement jump U , the relative displacement of an 
interface of two in-contact bodies.

2. Porosity ! , the ratio between the volume of the void and 
the total volume of RVE.

3. Coordination number (averaged) CN = Ncontact∕Nparticle 
where Ncontact is the number of particle contacts and 
Nparticle is the number of particles in the RVE.

4. Fabric tensor !f =
1

Ncontact

∑Ncontact

c=1
"c ⊗ "c where !c is the 

normal vector of a particle contact c in the RVE. The 
symbol ‘ ⊗ ’ denotes a juxtaposition of two vectors (e.g., 
a⊗ b = aibj ) or two symmetric second order tensors 
[e.g., (! ⊗ ")ijkl = "ij#kl].

5. Traction T , the traction vector acts on the interface.

To generate a machine learning based traction-separation 
law, we identify the displacement jump as the root and the 
traction as the leaf of the causal graph. The causal graph is 
a DAG G = (V,E) where V is the set consisting of the physi-
cal quantities U,!,CN,Af  and T . Meanwhile, E ⊆ V × V is 
a set of directed edges that connect any two elements from 
V , and E is determined from the causal discovery algorithm 
outlined in Sect. 3.

The dataset is generated using an open-source code 
YADE. In total, there are 100 traction-separation law simu-
lations run with different loading paths performed on the 
same RVE. This RVE consists of spherical particles with 
radii between 1 ± 0.3 mm with uniform distribution. The 
RVE has a height of 20 mm in the normal direction of the 
frictional surface and is initially consolidated to an isotropic 
pressure of 10 MPa. The inter-particle interaction is con-
trolled by Cundall’s elastic-frictional contact model [12] 
with an inter-particle elastic modulus of Eeq = 1GPa , a 
ratio between shear and normal stiffness of ks∕kn = 0.3 , a 
frictional angle of ! = 30◦ , a density ! = 2600 kg/m3 , and 
a Cundall damping coefficient !damp = 0.2 . For brevity, the 
generation and setup of the simulations are not included in 
this paper. Interested readers please refer to [89] for more 
information. The data required to replicate the results of this 
paper and for 3rd-party validation can be found in the Men-
deley Data repository [76].

2.2  Dataset for hypo-plasticity of granular 
materials

While the first data set is used to determine whether the 
causal graph algorithm may re-discover known physical 
relations in the literature, the second problem is designed 
to test whether the causal graph algorithm may successfully 
investigate new plausible causal relations not known a prior 
in the literature.

For this purpose, we run 60 discrete element simulations 
and use 30 of them for calibrations and 30 for blind forward 
predictions. In addition to the conventional microstructural 
attributes (e.g., porosity and fabric tensor) typically used for 
hand-crafted constitutive laws [8, 14, 50, 55, 75], we have 
also recorded the evolution of the particle contact pairs in 
each incremental time step of the discrete element simu-
lations. The particle contact connectivity is itself an undi-
rected graph Gcontact = (Vparticle,Econtact) where Vparticle is the 
set of particles and Econtact is the set of particle contacts, 
one for each contact between two contacting convex par-
ticle represented. They are undirected edges. To facilitate 
new discovery, we compute 15 different graph metrics of 
Gcontact (see Appendix 2 for definition) that have not been 
used for composing constitutive laws and see if (1) whether 
the causal discovery algorithm may discover causal relations 
among these new physical quantities and (2) whether the 
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new discovery helps improve the accuracy, robustness and 
consistency of the forward predictions enabled by neural net-
works trained according to the discovered causal relations.

In total, there are 11 types of time-history data in which 
3 of them are second-order tensors (strain, stress and the 
strong fabric tensor), and the rest are scalar (porosity, coor-
dination number graph density, graph local efficiency, graph 
average clustering, graph degree assortativity coefficient, 
graph transitivity and graph clique number). As such there 
are 11 elements in the vertex set and the goal of the causal 
discovery is to establish the edge set to complete the causal 
graph. A sequence of supervised learning is then used to 
generate predictions via deep learning.

3  Causal discovery and knowledge graph 
constructions

3.1  Notations and assumptions

Let G = (V,E) be a DAG containing only directed edges 
and has no directed cycles. For each Vi ∈ V , let PAi denotes 
the set of parents of Vi in G. Since our data are time-history 
dependent, we assume that the joint probability distribu-
tion of V at each time point according to G can factorize as 
p(V) =

∏m

i=1
p(Vi ∣ PA

i), where m is the number of vertices 
in G. Here p(Vi ∣ PA

i) can be regarded as “causal mecha-
nism.” For non-stationary time series data, the causal mech-
anism p(Vi ∣ PA

i) can change over time, and the changes 
may be due to the involved functional models or the causal 
strengths.

Throughout this section, we use the example of traction-
separation law to illustrate the proposed causal discovery 
method without loss of generality. Therefore, V is the set 
consisting of displacement jump U , porosity ! , coordination 
number CN, fabric tensor Af  , and traction T . [35] developed 
a constraint-based causal discovery algorithm for non-sta-
tionary time series data to identify changing causal modules 
and recover the causal structure. In this paper, we extend the 
algorithm in [35] such that the proposed causal discovery 
algorithm not only handles non-stationary time-history data 
but also incorporates certain physical constraints. For exam-
ple, in constructing the traction-separation law, we have the 
prior knowledge that the dynamic changes in U can cause 
changes in other variables, not vice versa. Therefore, if there 
exists a directed edge between the displacement jump U and 
any other variable Vi , then U → Vi.

Denote V−U to include all other variables in V excluding 
U (e.g., porosity, fabric tensor). Since the causal mechanism 

can change over time, we assume that the changes can be 
explained by certain time-varying confounders, which can 
be written as functions of time. As we have the prior knowl-
edge that U itself is a time-dependent variable and could 
affect all other variables, we regard U as such a confounder 
and  assume that the causal relation for each Vi ∈ V−U can 
be represented by the following structural equation model:

where PAi includes U if the changes in U can affect the 
changes in Vi , !i(U) denotes a function of U that influences Vi 
as effective parameters, !i is a noise term that is independent 
of U and PAi . The !i ’s are assumed to be independent. As we 
treat U as a random variable, there is a joint distribution over 
V ∪ {!i(U)}i∶Vi∈V−U

 . Denote Gaug to be the graph by adding 
{!i(U)}i∶Vi∈V−U

 to G, and for each i, adding an arrow from 
!i(U) to Vi . Note that G is the induced subgraph of Gaug over 
V . Denote the joint distribution of Gaug to be paug.

In order to apply any conditional independence test on 
the variable set V for recovering causal structure, we set the 
following assumptions [73].

Assumption 1 (Causal Markov condition) Gaug and the joint 
distribution paug on V ∪ {!i(U)}i∶Vi∈V−U

 satisfy the causal 
Markov condition if and only if a vertex of Gaug is probabil-
istically independent of all its non-descendants in Gaug given 
the set of all its parents.

Assumption 2 (Faithfulness) Gaug and the joint distribution 
paug satisfy the faithfulness condition if and only if no con-
ditional independence holds unless entailed by the causal 
Markov condition.

Assumption 3 (Causal sufficiency) The common causes of 
all variables in V ∪ {!i(U)}i∶Vi∈V−U

 are measured.

3.2  Recovery of the causal skeleton

In this section, we propose a constraint-based method build-
ing upon the PC algorithm [73] to first identify the skeleton 
of G, defined as the obtained undirected graph if we ignore 
the directions of edges in a DAG G. We prove that given 
Assumptions 1–3, we can apply conditional independence 
tests to V to recover the skeleton of G. Algorithm 1 describes 
the proposed method, which is supported by Theorem 1. The 
proof is provided in Appendix 1 following [35].

(1)Vi =gi(PA
i, !i(U), "i),
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Theorem 1 Given Assumptions 1–3, for every Vi,Vj ∈ V−U , Vi and Vj are not adjacent in G if and only if they are independent 
conditional on some subset of {Vk ∣ Vk ∈ V−U, k ≠ i, k ≠ j} ∪ {U}.

In lines 3–7 of Algorithm 1, we determine whether the 
changes in U cause changes in Vi . If not, U is not in the 
parent set of Vi and there is no edge between U and Vi in G. 
The lines 8–12 of Algorithm 1 aims to identify the causal 
skeleton between variables in V except U . Since how other 
variables change with U and the relations between these var-
iables are usually unknown and potentially very complex, we 
use a nonparametric conditional independence test, kernel-
based condition independence (KCI) test developed by [98], 
to determine the dependence between variables throughout 
this paper. This nonparametric approach can not only cap-
ture the linear/nonlinear correlations between variables by 
testing for zero Hilbert-Schmidt norm of the partial cross-
covariance operator, but also handle multidimensional data 
that are common in mechanics problems.

3.3  Determination of causal directions

After obtaining the skeleton UG , we need to determine the 
causal directions of edges. [52] provided a set of orientation 
rules to determine the directions of undirected edges in a 
graph based on conditional independence tests. However, 
the Meek rule [52] is only applicable to edges that satisfy 
its conditions. In this section, we first introduce the Meek 
rule [52], then propose an algorithm to orient the edges that 
are not covered by the Meek rule after incorporating known 
physical knowledge.

Denote ↔ to be an undirected edge. The Meek rule has 
the following principles: 

1. For all triples Vi ↔ Vj ↔ Vk , if Vi and Vk are marginally 
independent but conditionally dependent given Vj , then 
Vi → Vj ← Vk;

2. If Vi → Vj ↔ Vk and there is no edge between Vi and Vk , 
then orient Vj → Vk;

3. If Vi → Vj ↔ Vk and there is an edge between Vi and Vk , 
then orient Vi → Vk;

4. If Vi → Vj ← Vk , Vi ↔ Vk ↔ Vk , and Vk ↔ Vj , then 
Vk → Vj.

Now we describe our algorithm on how to determine the 
edge directions in the obtained skeleton UG . Firstly, for any 
node Vi adjacent to U , we orient U → Vi due to the prior 
physical knowledge that only U affects other variables, not 
vice versa. Then we apply the Meek rule to the obtained 
graph after orienting the edges from U to its neighbours. For 
instance, suppose U → Vi ↔ Vj , if Vj and U are independent 
given a set of variables including Vi , then we orient Vi → Vj ; 
if Vj and U are independent given a set of variables excluding 
Vi , then we have Vj → Vi.

Next, we discuss how to determine the edge direc-
tion between two adjacent variables if they are both adja-
cent to U , i.e., Vi ↔ Vj , U → Vi , and U → Vj , since such 
a scenario is not covered by the Meek rule. The modu-
larity property of causal systems [61] demonstrated that 
if there are no confounders for cause and effect, then 
p(cause) and p(effect ∣ cause) are either fixed or change 
independently. Based on this principle, since both Vi and 
Vj change with U , we can test the conditional independ-
ence between p(Vi ∣ !i(U)) and p(Vj ∣ Vi, !j(U)) , as well 
as between p(Vj ∣ !j(U)) and p(Vi ∣ Vj, !i(U)) to determine 
the direction between Vi and Vj . That says, if p(Vi ∣ !i(U)) 
and p(Vj ∣ Vi, !j(U)) are conditionally independent but 
p(Vj ∣ !j(U)) and p(Vi ∣ Vj, !i(U)) are not, then Vi → Vj . [35] 
developed a kernel embedding of non-stationary conditional 
distributions and extended the Hilbert Schmidt Independ-
ence Criterion (HSIC, [25]) to measure the dependence 
between distributions, based on which the causal directions 
can be determined. For example, if we have two random var-
iables V1 and V2 , we can compute the dependence between 
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p(V1) and p(V2 ∣ V1) using the normalized HSIC, denoted by 
Δ̂V1→V2

 . By the same token, we can compute the dependence 
between p(V2) and p(V1 ∣ V2) using the normalized HSIC, 
denoted by Δ̂V2→V1

 . If Δ̂V1→V2
< Δ̂V2→V1

 , we orient V1 → V2 ; 
otherwise V2 → V1 . After orienting all possible edges, we 
can get the Markov equivalent class of the DAG G. Algo-
rithm 2 summarizes the proposed method on how to deter-
mine causal directions.

Fig. 1  a shows a direct graph partitioned into three sub-graphs. 
b indicates how each sub-graph is used in a separate supervised 
machine learning task to predict the downstream node(s) from the 
upstream node(s)

Remark 1 In the numerical examples, we setup a thresh-
old inclusion probability ( 20% ) below which the causality 
relation is not included in the hierarchical neural network 
models. This treatment allows us to ensure that the cau-
salities with sufficient likelihoods are included but the less 
prominent relationship is omitted to improve the efficiency 
and simplicity of the resultant model. This threshold can be 
viewed as a hyperparameter. A highly threshold may yield a 

DAG with less vertices and therefore reduce the total num-
ber of required supervised training at the expense of being 
less precise on the causality relations among the data.

4  Supervised learning for path-dependent 
material laws

Once causal relations are identified, a directed graph 
G = (V,E) can be established where there is an edge eij ∈ E 
from the node Vi ∈ V to Vj ∈ V if Vi is a direct cause of Vj . 
Denote the leaf node to be the vertex that is not the cause 
to any other vertices, the root node to be the vertex that is 
not the target of any other vertices. Figure 1 demonstrates 
a directed graph indicating an information flow how leaf 
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node(s) is related to root node(s) via some intermediate 
nodes, e.g., in Fig. 1 {V1,V2} , {V6} , and {V3,V4,V5} are sets 
of root, leaf, and intermediate nodes.

Along with the similar idea introduced in [89], we aim to 
discover all sub-graphs that sequentially pass the informa-
tion from the root to leaf, see Algorithm 3. Each of these 
subgraphs will contain leaf and root but without any inter-
mediate nodes. As such, supervised learning can help us 
train neural network that predict the root of each subgraph 
with the corresponding leaf (or leaves) as input(s). To iden-
tify all sub-graphs, we traverse the graph backward from 
leaf to root nodes. The leaf with its immediate predecessors 
formed a directed tree which will be added into the list of 
potential sub-graphs. Then, we remove edges of the founded 
tree in the graph G. In the next step, we select a new leaf 
node from the updated G and do the process just described 
until there is not any edges in G. For the case shown in Fig. 1 
we have the following potential sub-graphs:

(2)Ga = ({V2,V3,V5,V6}, {e26, e36, e56}),

(3)Gb = ({V1,V4,V5}, {e14, e15}),

Those sub-graphs (directed trees) that share common 
upstream nodes will be merged into a bigger sub-graph. For 
the graph in Fig. 1 final sub-graphs are:

For each sub-graph, we have a separate supervised machine 
learning (ML) task. In each ML task, inputs and outputs fea-
tures are upstream and downstream nodes in each directed 
sub-graph, as shown in Fig. 1(b).

(4)Gc = ({V2,V4,V5}, {e24, e25}),

(5)Gd = ({V1,V3}, {e13}).

(6)G1 = Ga = ({V2,V3,V5,V6}, {e26, e36, e56}),

(7)G2 = Gb ∪ Gc = ({V1,V2,V4,V5}, {e14, e15, e24, e25}),

(8)G3 = Gd = ({V1,V3}, {e13}).
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In the training step, we use the same architecture for all 
ML tasks consisting of five layers GRU-Dropout-GRU-
Dropout-Dense. Each GRU layer has 32 neurons, and the 
linear activation function is used for the Dense layer. Gated 
Recurrent Unit (GRU) is one type of Recurrent Neural Net-
works (RNN) to model history dependence [9]. We use the 
GRU to strengthen the robustness of the ML black-box in 
dealing with any possible path-dependence [92]. The drop-
out rate in the GRU is controlled to quantify uncertainty in 
the model prediction, which will be detailed in Sect. 5. All 
the input and output feature columns for each supervised 
learning task are normalized to zero mean and unity standard 
deviation. The loss function is defined as the mean squared 
root error between output prediction and ground truth. This 
loss is minimized by the Adam optimizer inside Keras 
library with Tensorflow 2.0 as its backend. Optimization 
process is done by the mini-batch stochastic gradient descent 
algorithm with a batch size 256 during 1000 epochs. The 
described neural network architecture and hyperparameters 
are chosen to be as close as possible to the ones used in [89]. 
Note that, the tuning of the hyperparameters (e.g. number of 
neurons, number of layers, type of activation) may have a 
significant effect on the performance of the neural network 
models. The best combination of hyperparameters can be 
estimated via a variety of approaches such as the greedy 
search, random search [3], random forest [64], Bayesian 
optimization [40], meta-gradient iteration or deep reinforce-
ment learning [18, 93]. In this work, we adopt the random 
search approach in [3] to fine-tune the hyperparameters (cf. 
Sec. 6.1) A rigorous hyperparameter study that compares 
different hyperparameter tuning for neural networks that 
generates constitutive laws may provide further insights on 
the optimal setup of the hyperparameters but is out of the 
scope of this study. 

For the blind prediction, after training, we start from 
the root (e.g., U in the traction-separation law) and sequen-
tially predict intermediate nodes via their corresponding 
sub-graph trained neural networks (NN) until reaching the 
leaf node. For example in the case shown in Fig. 1: NN 3 
predicts V3 from input V1 ; V4 and V5 are predicted by NN 2 
from inputs V1 and V2 ; and finally NN 1 is used to predict the 
target variable V6 from input V2 and the obtained intermedi-
ate nodes V3 and V5.

5  Uncertainty propagation in causal graph 
with dropout layers

As described in Sect. 4, we use the deep learning method, 
GRU in the training step and prediction to handle path-
dependent predictions. However, the GRU itself is not 
designed to capture prediction uncertainty, which is of 
crucial importance in learning material law. In machine 

learning and statistics, Bayesian methods as probabilis-
tic models provide us a natural way to quantify the model 
uncertainty through computing the posterior distribution of 
unknown parameters [96]. However, these methods often 
suffer from a prohibitively high computational cost. In this 
paper, we show that the dropout technique [74] used in the 
GRU can quantify uncertainty in prediction as a Bayesian 
approximation.

Dropout, a regularization method that randomly masks 
or ignores neurons during training, has been widely used in 
many deep learning models to avoid over-fitting and improve 
prediction [5, 31, 46]. [20] firstly prove the link between 
dropout and a well known probabilistic model, the Gauss-
ian process [65], and show that the use of dropout in the 
feed forward neural networks can be interpreted as a Bayes-
ian approximation of Gaussian processes. In the context of 
RNNs, [21] treated RNNs as probabilistic models by assum-
ing network weights as random variables with a Gaussian 
mixture prior (with one component fixed at zero with a small 
variance). Such a technique is similar to the spike-and-slab 
prior in Bayesian statistics for variable selection [37]. Then 
[21] show that optimizing the objective in the variational 
inference [4] for approximating the posterior distribution 
over the weights is equivalent to conducting dropout in the 
respective RNNs, and demonstrate the implementation in 
one commonly-used RNN model, the long short-term mem-
ory [32]. In this section, we propose to extend the technique 
developed in [21] in the context of GRUs for uncertainty 
quantification (UQ) in the prediction.

Given training inputs X and the corresponding output 
Y , suppose that we aim to predict an output y∗ for a new 
input x∗ . From the Bayesian point of view, the prediction 
uncertainty can be characterized by the posterior predictive 
distribution of y∗ as follows:

where ! includes all unknown model parameters, p(! ∣ X,Y) 
is the posterior distribution of ! . In the GRU, all unknown 
weights can be viewed as ! . As the posterior distribution 
p(! ∣ X,Y) is generally intractable, the variational inference 
method approximates it by proposing a variational distribu-
tion q(!) and then finding the optimal parameters in the vari-
ational distribution through minimizing the Kullback-Leibler 
(KL) divergence between the approximating distribution and 
the full posterior distribution:

where p(!) is the prior distribution of !.

(9)p(y∗ ∣ x∗,X,Y) = ∫ p(y∗ ∣ x∗,!)p(! ∣ X,Y)d!,

(10)
KL(q(!)‖p(! ∣ X,Y)) ∝

− ∫ q(!) log p(Y ∣ X,!)d! + KL(q(!)‖p(!)),
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Given an input sequence X = [x1,… , xT ] of length T, the 
hidden state ht at time step t in the GRU neural network can 
be generated as follows:

where ! denotes the sigmoid function and ⊙ denotes the 
element-wise product. Also, we assume that the model 
output at time step t can be written as fY(ht) = htWY + bY . 
Then the unknown parameters in the GRU are 
! =

{
WY ,Wz,Uz,Wr,Ur,Wh,Uh, bY , bz, br, bh

}
 . We write 

ht = f !
h

(
xt, ht−1

)
 and f !

Y
 for the output in order to make the 

dependence on ! clear.
Then the right hand of (10) can be written as follows:

which can be approximated by Monte Carlo integration with 
the generated samples !̂b ∼ q(!) and plug in the sampled 
!̂b ’s to (12).

Following [21], we use a mixture of Gaussian distribu-
tions as the variational distribution for every weight matrix 
row !k:

where ! is the dropout probability, mk is the variational 
parameter (row vector), and !2 is a small variance. We opti-
mize over mk by minimizing the KL divergence in (12). 
Sampling each row of !̂b is equivalent to randomly mask 
rows in each weight matrix, i.e., conducting dropout. Then 
the predictive posterior distribution can be approximated by

where !̂b ∼ q(!) and B is the total number of generated 
samples.

To implement the dropout in the GRU, we re-parametrize 
(11) as follows:

(11)

zt = !
(
Wzxt + Uzht−1 + bz

)
,

rt = !
(
Wrxt + Urht−1 + br

)
,

it = tanh
(
Whxt + Uh

(
rt ⊙ ht−1

)
+ bh

)
,

ht = zt ⊙ ht−1 +
(
1 − zt

)
⊙ it,

(12)−∫ q(!) log p
(
Y ∣ f !

Y

(
x1,… , xT , f

!
h

(
xT , f

!
h
(… f !

h
(x1, h0)…)

)))
d! + KL(q(!)‖p(!)),

(13)
q(!) =

K∏
k=1

q(!k), q
(
!k

)
= !N

(
!k;!, "

2I
)
+ (1 − !)N

(
!k;mk, "

2I
)
,

(14)

p(y∗ ∣ x∗,X,Y)

= ∫ p(y∗ ∣ x∗,!)p(! ∣ X,Y)d! ≈
1

B

B∑
b=1

p(y∗ ∣ x∗, !̂b),

(15)
⎛
⎜
⎜⎝

zt
rt
it

⎞
⎟
⎟⎠
=
⎛
⎜
⎜⎝

!

!

tanh

⎞
⎟
⎟⎠

((
xt◦mx

ht−1◦mh

)
⋅ !

)
,

where mx and mh denote randomly masks repeated at all 
time steps.

We take the prediction tasks in Fig. 1 for example. The 
posterior predictive distribution of V3 given V1 is straight-
forward by (14) since only root and leaf nodes are involved. 
When involving the intermediate nodes, e.g., the subgroup 
G1 , the posterior predictive distribution of V6 given the root 
nodes ( V1 and V2) can be computed by

Specifically, when we generate B samples from the posterior 
distribution of ! , we also generate B samples for the inter-
mediate nodes. Those B samples of ! and the corresponding 

(16)

p
(
V6 ∣ V1,V2

)
=∫ p

(
V6 ∣ V2,V3,V5,!

)
p(V3 ∣ V1,!)

p(V5 ∣ V1,V2,!)p(! ∣ V1,V2)dV3dV5d!.

Fig. 2  Final causal graph for the traction-separation law deduced 
from time-history of displacement, traction, porosity, coordination 
number, and fabric tensor. The number on each edge represents the 
edge inclusion probabilities among all possible causal relations from 
the training data sets
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intermediate nodes can be then used in Monte Carlo integra-
tion to calculate (16). Throughout this paper, we set B=200.

6  Numerical examples

In this section, we conduct two numerical experiments to 
test our proposed framework that combines causal discovery 
with deep learning to build constitutive laws for granular 
materials. In Sect. 6.1, the causal discovery is conducted to 
determine the constitutive relationships for an RVE interface 
composed of spherical grains. The subsequent supervised 
machine learning then leverages the causal relations learned 
from the causal discovery algorithm to establish a serial of 
supervised learning that constitutes a forecast engine for 
traction. The propagation of uncertainty is enabled by the 
dropout technique that approximates Monte Carlo simu-
lations to determine the confidence intervals for a given 
dropout rate. In Sect. 6.2, the same exercise is repeated for 
another data set to generate hypoplasticity surrogate model 
for a discrete element assembly where new topological 
measures are computed and incorporated into the proposed 
framework to (1) discover new physical mechanisms and (2) 

determine the benefit of the new discovery on the accuracy, 
robustness, and consistency of the forward predictions on 
unseen events.

Table 1  This table reports the mean and standard deviation of the 
validation loss among different configurations which are different 
based on their number of units utilized for each GRU layer when 
the optimal learning rate 0.001 and batch size 32 is chosen. Notice 
that we randomly conduct 100 trials for each subgraph with different 
hyperparameters. The last column shows the validation loss when the 
neural network has the same architecture suggested in Sec. 4. Based 
on the standard deviation values, we observe that the number of units 
in GRU layers has a marginal effect on the performance. The sug-
gested fixed neural network architecture in Sec. 4 for all sub-graphs 
has almost the same performance as the best optimal configurations

Subgraph Mean Standard devia-
tion

Number of 
configura-
tions

Suggested NN

Porosity 1.6e − 6 7.36e − 7 10 3.7e − 6

CN 1.04e − 3 2.3e − 5 5 1.07e − 3

Fabric 2.2e − 3 3.98e − 4 7 2.4e − 3

Traction 5.1e − 5 1.01e − 5 8 9.1e − 5

Fig. 3  Training loss conver-
gence behavior for four super-
vised learning tasks deduced 
from the causal graph. Top 
left: fabric is predicted based 
on displacement, porosity and 
coordination number; Top right: 
porosity is predicted based on 
displacement; Bottom left: coor-
dination number is predicted 
based on displacement and 
porosity; Bottom right: traction 
is predicted based on displace-
ment, coordination number, 
fabric, and porosity
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6.1  Numerical example 1: machine learning 
traction-separation law

Traction-separation laws are key ingredients of cohesive 
fracture models [59, 60]. Generally speaking, a traction-
separation law constitutes the relation between the trac-
tion and displacement jump across a surface. There exist 

many hand-crafted models developed by experts for dif-
ferent applications [60], while no interpretable machine 
learning framework had been developed until recently by 
[89] in which reinforcement learning is used to deduce an 
interpretable knowledge graph that doubles as the forecast 
engine. Also, in some applications such as granular materi-
als, more descriptors, e.g., porosity or fabric tensor, should 

Fig. 4  Empirical Cumulative 
Distribution Function (eCDF) 
for prediction on training data 
sets and mean value of predic-
tions on test data sets. We use 
50 data sets for training and 
50 other data sets for testing 
purposes. For each test case, 
we perform 200 feed-forward 
predictions with the drop-out 
rate 0.2

Fig. 5  Applied normal and 
shear displacements in one of 
the experimental cases. Incre-
ment in normal jump indicates 
more compression
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be considered in these constitutive laws [77] to derive more 
predictive models.

Our first test for the data-driven causal discovery model 
with dropout UQ is on the traction-separation law data pub-
licly available in the repository Mendeley data (cf. [76]). 
This dataset has also been used in [89] where the traction-
separation law is determined from reinforcement learn-
ing. Our major point of departure is three-fold. Firstly, we 
develop a causal discovery algorithm to identify causal rela-
tions among history-dependent physical quantities in RVE 
simulations. Secondly, we decouple the causal discovery 
from the training of the neural network such that we now 
first discover causal relations, then utilize the discovered 
relationships to generate quantitative predictions using the 
method detailed in Sect. 4. Thirdly, we introduce the Bayes-
ian approximation using the dropout technique to propagate 

Fig. 6  Comparison of normal-shear traction between model and 
experiment in one case

Fig. 7  Comparison of traction-displacement between model and experiment in one case

Fig. 8  Model predictions for 
normal a and shear b traction 
values. Shaded area includes 
predictions within 95% confi-
dence interval

(a) (b)
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Fig. 9  Box plots of density 
distributions of normal a and 
shear b traction distributions at 
three load steps.The top line is 
maximum value and the bottom 
line is the minimum value. The 
box composed of three thick 
lines are separately first quan-
tile, median, third quantile

(a) (b)

(a) (b) (c)

Fig. 10  Model prediction for components of symmetric fabric tensor A . Normal (a), shear (b), and mixed (c) components of fabric tensors are 
A
nn

 , A
ss

 , and A
ns

 , respectively. Shaded area includes predictions within 95% confidence interval

(a) (b) (c)

Fig. 11  Box plots of density distributions of fabric’s components
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the uncertainty in the causal graph, building upon the theo-
retical framework established in [21].

The database includes 100 DEM experiments. In each 
DEM experiment, the time history of all the variables 
included in the DAG are recorded. Each experiment is con-
ducted by a different ratio of normal to tangential loading 
rate and loading-unloading cycles on the same representa-
tive volume element of granular materials. As such, the total 
number of time-history data points in these experiments may 
vary from 51 to 111.  The interested reader is referred to the 
appendix in [89] for more information. In our study, feature 
space consists of displacement jump vector, traction vector, 
coordination number, symmetric part of fabric tensor, and 
porosity. We use half of the experiments for causal discov-
ery and training artificial neural networks, and the rest is 
used for test and validation. In the causal discovery step, as 
different experimental setups may lead to different causal 

relations among variables, we apply the proposed causal 
discovery algorithm (Algorithms 1 and 2 in Sect. 3) to each 
of the training experiment, and then report the final causal 
graph by calculating the inclusion probabilities of directed 
edges appearing in all training experiments. The inclusion 
probability of one edge is defined as the proportion of causal 
graphs containing this edge. The directed edges with inclu-
sion probabilities being larger than a pre-defined threshold 
(20% in our paper) are kept in the final causal graph. When 

Fig. 12  Final Causal graph for the hypoplasticity relations deduced 
from time-history of strain, stress, and 9 other measures of micro-
structural and topological properties. The number on each edge repre-

sents the edge inclusion probabilities among all possible causal rela-
tions from the training data sets

Table 2  Hyperparameters used to train the neural network

NN setting description Abbreviation Values

Neuron type subset NeuronType GRU 
Hidden layers subset numHiddenLayers 3
Number of neurons per layer numNeuronsPerLayer 32
Dropout rate subset DropOutRate 0.0
Optimizer type subset Optimizer Adam
Activation functions subset Activation relu
Batch sizes subset BatchSize 128
Minimum Learning rate ReduceLROnPlateau 0.95

Fig. 13  Empirical Cumulative Distribution Function (eCDF) for pre-
diction on training data sets and mean value of predictions on test 
data sets. There are 60 simulations, 30 used for calibration and 30 for 
blind forward testing. Blue curves are predictions made from neural 
networks generated according to the causal graph, black curve is the 
control experiment counterpart generated from predictions that takes 
on strain fabric tensor and porosity as inputs to predict Cauchy stress
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both edge directions between two variables appear with posi-
tive inclusion probabilities (e.g., Vi → Vj and Vj → Vi both 
exist), we keep the edge direction that has a higher inclusion 
probability. The goal of the resultant model is to predict 
the same granular assembly responds to a different cyclic 
loading path unseen in the training. As such, the focus of 
this model is to generate a surrogate for one representative 
element volume.

Figure 2 plots the final causal graph on the training data 
sets with edge inclusion probabilities. The strong confidence 
( 96% ) in the edge starting from the displacement jump vec-
tor to porosity is consistent with the common field knowl-
edge, i.e., the immediate consequence of displacement jump 
is the volume change. The displacement jump vector, as the 
only control variable, affects all the intermediate physical 
quantities and traction vector. This observation may seem 
to be trivial, but it is not always the case which will be 
shown in the next example. The causal effects of fabric and 
coordination number on traction is aligned with the mod-
ern Critical State Theory [45] which is obtained without 

expert interpretation by the causal algorithm. Note that fab-
ric encodes microstructural information in more detail such 
as directional dependence due to its tensorial nature, rather 
than porosity which smears out information into one scalar 
quantity. Therefore, it is reasonable to see that fabric has a 
considerable contribution in describing material behavior 
with a complex arrangement of force chains at the micro-
structural level.

Remark 2 To make sure the suggested neural network archi-
tecture in Sect. 4 works satisfactorily in this problem, we 
trained several neural networks with different hyper-param-
eters for each sub-graph learning task in Fig. 2. We used the 
random search approach [3] implemented in Keras Tunner 
package [57] for this study. The number of GRU layers is 
kept fixed and equal to two, and in the training stage, the 
dropout rate is set to zero. The number of epochs is also 
set to 200. The parameters under this study are as follows: 
the number of units in GRU layers are sampled from the set 
{8, 16, 32, 64} , the Adam learning rate is sampled from the 

Fig. 14  Difference between the major and minor principal stress vs. axial strain. Compressive strain has positive sign convention
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set {0.01, 0.001, 0.0001} , the batch size for the SGD algo-
rithm is sampled from the set {32, 64, 128, 256, 512} . Based 
on these hyperparameter ranges, each subgraph learning task 
has 240 different configurations; however, in the random 
search algorithm, we set the number of trials to 100 for each 
subgraph training task to reduce overall computational time. 
For this hyperparameter tuning task, we choose 50 data sets 
as the training set and another 50 data sets as the validation 
set. Our metric for selecting the best configuration is the 
minimum validation loss. We found that the learning rate 
0.001 and batch size 32 are common among all the best 
configurations of subgraphs. In Table 1 we study the effect 
of number of units in GRU layers when learning rate and 
batch size have their optimal values.

Applying Algorithm 3 to Fig. 2, we need to perform 
four supervised learning tasks: (1) predict Poro from the 
input U ; (2) predict CN from the input U and the intermedi-
ate node Poro; (3) predict fabric from the input U and the 

intermediate nodes Poro and CN; and (4) predict the target 
variable T from the input U and the obtained intermedi-
ate nodes Poro, CN, and fabric. We then use the GRU to 
train each sub-graph with the dropout rate being 0.2 for both 
training and feed-forward predictions. Figure 3 confirms that 
the neural network architecture proposed in Sect. 4 yields 
satisfactory performance for all supervised tasks. To exam-
ine the generalization performance of the trained neural net-
works, we study the empirical cumulative distribution func-
tions (eCDFs) for training and test data sets following [89].

We define the point-wise scaled mean squared error 
(MSE) between a set of ground-truth values with size N and 
its corresponding approximation set as:

where S is a scaling function. In this paper, the scaling 
function linearly transforms a set of values into a new set 
where all values are in the range [0, 1]. We perform 200 

(17)ei =
1

N

N∑
i=1

(S(ytrue
i

) − S(y
appx

i
)),

Fig. 15  Difference between the major and immediate principal stress vs. axial strain. Compressive strain has positive sign convention
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feed-forward predictions to obtain the distribution of each 
feature output at a specified load-step. For eCDF calculation 
only, we use the average of these 200 predictions to approxi-
mate the feature output. In this way, the discrete eCDF of 
a target output feature, such as porosity, at data point i is 
defined as FN(ei) =

1

M

∑M

j=1
!(ei ≥ ej) where ei is the point-

wise scaled MSE between the feature ground-truth value and 
its predictions’ average, M is the total number of instances 
(i.e., the total number of data points across 50 training data 
sets) used for eCDF calculations, and !(⋅) is the indicator 
function. Figure 4 plots eCDFs for all feature outputs in 
training and testing modes. In these plots, the eCDFs for 
test and training cases are almost the same, indicating no 
under-fitting or over-fitting issue exists. Note that the use of 
dropout in the GRU is not only for uncertainty quantifica-
tion in prediction, but also to improve model generalization 
performance.

In the following, we present prediction results for one of 
the test cases where its applied normal and shear displace-
ments are plotted in Fig. 5. Normal and shear displacement 

jumps experience cyclic loading-unloading path and are kept 
equal in magnitude.

We focus on the average of model predictions in Figs. 6 
and 7. In Fig. 6, we see that the initial friction angle is close 
to 16.7 degree which is almost half of the inter-particle fric-
tion angle. This reduction in the overall friction angle might 
be due to the induced dilation in the normal displacement. 
Another reason could be related to initial confining pressure: 
the higher the confining pressure is, the lower the friction 
angle is. In each loading-unloading branch, the behavior is 
almost linear without any energy dissipation, but further 
loading after a level makes the behavior nonlinear. If we 
only follow the loading path we observe the strain-soften-
ing which is the dominant mechanism of a dense granular 
assemblage; see Figs. 6 and 7b. In other words, the material 
shows an unstable peak shear strength which is followed 
by a softening behavior until it reaches the critical state. 
The sign of changes in normal traction (Fig. 9a) and shear 
traction (Fig. 9b) are in agreement with the fabric normal 
(Fig. 10a) and shear (Fig. 10b) components, respectively. 

Fig. 16  Difference between the immediate and minor principal stress vs. axial strain. Compressive strain has positive sign convention
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This confirms the tendency of fabric tensor to trace the load 
direction [44, 45, 87]. Overall the proposed data-driven 
scheme can replicate main features of a realistic experiment, 
and there exists a good agreement between the model and 
experiment. However, there is an issue corresponding to sec-
ond loading-unloading cycle where hysteresis is predicted 
by the model while experiment shows almost zero energy 
dissipation. This is mainly due to the neural network capac-
ity and design and can be resolved by enriching the neural 
network architecture with wider neurons or deeper layers or 
hyper-parameter tuning. Note that one needs to be aware of 
the over-fitting issue when the model complexity increases 
by increasing the number of neurons. Generally, a more 
complex neural network should be trained with more data.

The uncertainty in traction vector prediction is shown in 
Fig 8. Density distributions of traction vector at three load-
ing steps are plotted in Fig 9. In this figure, steps 25, 47, 
and 100 belong to the first unloading, second peak, the last 
peak conditions, respectively (see Fig. 8). Figure 8 suggests 
that the model is able to track the path-dependent behavior 

of experiments with narrow variation bands in most of 
the loading steps. This figure also suggests that the uncer-
tainty for shear traction is higher than normal traction and 
increases at peak loads. We know that, from mechanics, the 
shear mode of deformation is more complex and nonlinear 
than the normal mode and consequently deserves higher 
uncertainty, which agrees with these results (also see step 
47 and 100 in Fig. 9 for a quantitative comparison). At peak 
values, the complexity is more profound due to the cyclic 
loading or softening, so more uncertainty is expected.

Model prediction for fabric tensor is plotted in Fig. 10. 
Density distributions of fabric tensor at three loading steps 
are plotted in Fig. 11. The uncertainty in fabric tensor has 
narrow variation bands in most of the loading steps. Simi-
lar to the traction prediction, the uncertainties in normal, 
shear, and mixed modes are higher at peak loads due to the 
cyclic loading or softening. However, comparing the normal, 
shear, and mixed modes, we do not observe significant dif-
ferences in uncertainty at the three loading steps (Fig. 11). 
Interestingly, we observe that traction predictions have less 

Fig. 17  State path (void ratio vs. logarithm of mean pressure). Compressive strain has positive sign convention
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uncertainty at initial load steps, step 0 to 20, comparing to 
fabric while fabric is an intermediate node for traction pre-
diction. This means that traction prediction is potentially less 
dependent on the fabric at initial loading steps and neural 
network weights are automatically adjusted to make predic-
tions with high confidence as much as possible by an appro-
priate combination of porosity, displacement, and fabric. 
We observe an almost linear correlation between normal 
displacement jump and porosity, so we have not presented 
porosity prediction results due to its simplicity. Such a cor-
relation is expected since the normal displacement is the 
boundary condition in this problem, and dilation is explicitly 
controlled during the experiment.

6.2  Numerical example 2: machine learning 
hypoplasticity

In the second numerical experiment, we attempt to gener-
ate a predictive surrogate model for one numerical granular 

assembly undergoing monotonic true triaxial compression 
loading. For convenient purpose, discrete element simula-
tions are used as replacement of physical tests. These dis-
crete element simulations are run via the open-source soft-
ware YADE [72].

In total, we conduct 60 true triaxial compression tests 
with loading path that varying the principle stress !1, !2 and 
!3 are performed on the same numerical specimen. Before 
the shearing phase, the material is subjected to hydrostatic 
loading to compress the assembly hydrostatically to reach 
the initial confining pressure. Following this step, a vertical 
compression or extension or a change of the applied tractions 
on the side walls are prescribed to generate different stress 
paths. To facilitate third-party validation and re-production 
of the simulation results, the data used for the causal discov-
ery are given access to the public via Mendeley Data [85].

Fig. 18  Normalized fabric anisotropy variable vs. axial strain. Compressive strain has positive sign convention
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6.2.1  Data-driven causal relations of granular matter

Figure 12 shows the final causal graph of the causal discov-
ery algorithm applied to the true triaxial test data generated 
from discrete element simulations. The number on each edge 
represents the edge inclusion probability in the calibration 
experimental data sets.

The causal discovery driven by the small set of calibration 
data reveals a number of key observations that are worth-
noticing. First, the causal discovery algorithm does re-dis-
cover the conventional wisdoms, such as the fact that (1) 
the changes of coordination number is due to the expansion 
of the void space; (2) both the coordination number and the 
porosity changes may cause changes on the fabric tensors; 
and (3) the dominate role of the strong fabric tensors on 
the resultant stress. These observations are consistent with 
previous findings in a number of discrete element simulation 
literature [41, 71, 77, 94] and the anisotropic critical state 
theory [17, 45, 100].

In addition to the rediscoveries of known knowledge, 
the causal discovery algorithm also finds a few causal rela-
tionships not known in the existing literature (to the best 
knowledge of the authors). For instance, the causal discov-
ery algorithm is able to establish a casual relationship that 
changes in average clustering coefficient may affect the local 
efficiency of the particle connectivity, whereas the degree of 
assortativity coefficient, a measure of the similarity of the 
connections of the graphs, may affect the graph transitiv-
ity. Interestingly, the causal discovery algorithm also finds 
that changes of the strong fabric tensor may be caused by 
changes of the strain (93%), porosity (60%), coordination 
number (73%), graph density (73%), local efficiency (70%) 
and graph transitivity (70%), degree of assortativity (70%) as 
well as graph clique number (73%). This discovery indicates 
that the changes of the strong fabric tensors are driven by 
the changes of the underlying connectivity topology and the 
volume changes of the void space.

Furthermore, another interesting discovery is that 
the changes of the stress tensor is only conditionally 

Fig. 19  Graph density vs. axial strain. Compressive strain has positive sign convention
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independently caused by the changes of the strong fabric 
tensor. This result is consistent with the previous finding 
of 2D granular materials reported in [71] where it is shown 
that (1) the principal direction of the strong fabric tensor 
(but not necessarily other fabric tensors) is coaxial with the 
homogenized Cauchy stress, and (2) the fabric tensor and 
stress tensor are related by a scalar coefficient that may vary 
according to the mean pressure.

6.2.2  Predictions based on discovered causal relationships

Here we investigate the accuracy, robustness and the limita-
tions of the machine learning predictions generated based on 
the deduced causal relations. For comparison purposes, we 
complete the training of two sets of neural networks—one 
employs the newly discovered causal relationships into the 
predictions, another one employs only the strain, fabric ten-
sor and porosity to predict the stress. The latter neural net-
work is then used as a controlled experiment for the former 

one. The supervised learning procedures used to train the 
two models are identical.

We first do not introduce the usage of dropout layer in the 
GRU and hence the dropout rate is zero. The hyperparam-
eters are obtained from repeated trial-and-errors and they 
are summarized in Table 2. All the sub-graph predictions, 
regardless of the number of input variables, are trained by 
the neural network with the identical architecture listed in 
Table 2. After the predictions, we conduct a cross-validation 
in which the trained neural networks are tasked to predict 
both the homogenized Cauchy stress obtained from the cali-
bration and testing simulation data. The results are shown 
in Fig. 13. Unlike the traction-separation law examples, the 
predicted stress-strain curves for the true triaxial test exhibit 
profound over-fitting regardless of whether the additional 
graph metrics are used for the predictions.

The roughly 2-order of difference in stress predictions 
suggests that either regularization strategy or more data is 
needed to circumvent the mismatch of accuracy on the cali-
bration and blind prediction data. Notice that expanding the 

Fig. 20  Average Clustering vs. axial strain. Compressive strain has positive sign convention
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data set is not difficult for discrete element simulations, it is 
certainly very difficult to conduct 60 true triaxial tests physi-
cally in a typical laboratory. As such, the results indicate the 
difficulty to create forecast engine to predict stress responses 
for unconventional stress paths even when the simulations 
are free of the issues, noises and errors exhibited in physical 
experiments.

Interestingly, the predictions from the neural network 
with the new graph measures do not help significantly on 
the mean errors of predictions. However, a closer exami-
nation of the tail of the eCDF on the two testing curves in 
Fig. 13 does indicate that the neural network armed with 
the new knowledge produces a less catastrophic worst-
case scenario. Figures 14, 15, and 16 show the predicted 
principal stress difference against the benchmark data, in 
which q1 = !1 − !2 , q2 = !1 − !3 , and q3 = !2 − !2 where 
!1 ≥ !2 ≥ !3 are principal stresses. In both the calibration 
and the testing cases, the discrepancy of the principal stress 
difference are minor.

For brevity, we do not intend to present all the 30 forward 
prediction results. Here, we pick three samples, two calibra-
tions (Test No. 23 and 29) and two blind predictions (Test 
No. 50 and 56) for close examination. Figures 14, 15, and 16 
compare the difference of the three principal stress inferred 
from the recurrent neural network and obtained from dis-
crete element simulations. In these figures, TXC and TXE 
denote triaxial compression and extension tests. For simplic-
ity, this test does not contain cyclic loading, as a result, the 
prediction task is much simpler. Nevertheless, despite of the 
relatively small data set, the trained neural networks in the 
causal graph is capable of predicting important characteris-
tics, such as hardening/softening properly. The predictions 
also exhibit more fluctuation, which is undesirable. How-
ever, this can be presumably suppressed with a different set 
of activation functions and other regularization strategies.

The second important characteristics that warrants atten-
tion is the state path in the void ratio vs. logarithm of mean 
pressure. Here, we consider compressive pressure as positive 

Fig. 21  Difference between the major and minor principal stress vs. axial strain. Results are obtained for active dropout layers. Shaded area 
includes predictions within 95% confidence interval. Compressive strain has positive sign convention
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and the results are shown in Fig. 17. Again, the predictions 
indicate that the trained neural network is able to predict 
the elastic compression followed by the plastic dilatancy in 
the triaxial compression (TXC) cases and the elastoplastic 
expansion in the triaxial extension (TXE) cases.

Next, we examine the strong fabric tensor and its relation-
ships with graph measures. Here, the fabric tensor F is com-
puted by the summation of the dyadic product of the branch 
vectors n divided by the number of grain contacts nc , i.e.,

The strong fabric tensor is obtained by considering only a 
subset of the contact of which the contact normal force is 
larger than a threshold value. In this work, this threshold 
value is set to be the averaged contact force. For brevity, we 

(18)F =
1

nc

nc∑
i=1

n⊗ n.

only show the normalized fabric anisotropy variable, which 
measures the alignment between the fabric tensor and the 
normalized deviatoric component of the stress ndev,

in Fig. 18. Recall that the normalized fabric anisotropy vari-
able A = 1 is a necessary condition for a material to reach 
the critical state [16, 45, 100], hence the predictions of A 
may indicate how accurate the neural network in the causal 
graph predicts the critical state. Comparing the predictions 
of A in the calibration cases and blind tests indicates that 
the neural network prediction tends to delay the predicted 
onset of the critical state. This may explain the over-fitting 
exhibited in Fig. 13.

(19)A =
1√
F ∶ F

F ∶ ndev,

Fig. 22  Difference between the major and immediate principal stress vs. axial strain. Results are obtained for active dropout layers. Shaded area 
includes predictions within 95% confidence interval. Compressive strain has positive sign convention
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Finally, we examine the predictions of the graph measures 
most likely to be influential to the predictions of the fabric 
tensors. Figure 19 shows that the graph density reduces dur-
ing the shear phase in both triaxial compression and exten-
sion tests. According to the causal graph, the deformation 
is causing the graph density changing which in turn affects 
the fabric tensors. These causal relationships seem reason-
able as the deformation during the shear phase is likely to 
cause plastic dilatancy and therefore reduces the number of 
contacts, which explains the drop in the graph density and 
the resultant changes in fabric tensors.

A similar reasoning can also be used to explain the drops 
in the average clustering shown in Fig. 20 where the shear 
deformation tends to reduce the tendency of the particles to 
cluster together and that in return leads to the evolution of 
the fabric tensor.

These results indicate that, while the causal discovery 
may reveal potential causal relations not apparent to domain 
experts, the knowledge from causal relationships does not 

necessarily lead to more accurate predictions. Factors such 
as the choices of the supervised machine learning methods 
and the availability of data are also key factors that affect the 
usefulness of the new knowledge for predictions.

6.2.3  Uncertainty propagation with dropout layer

As the final numerical experiment, we activate dropout lay-
ers to collect results of stochastic forward passes through the 
model. This gives us a Monte Carlo estimate of the predic-
tions. Note that the activation of the dropout layers will lead 
to a different set of neuron weights even the data used for the 
training of the neural network are identical.

Figures 21, 22, and 23 show the confidence interval for 
200 Monte Carlo predictions of principal stress differences, 
q1 , q2 and q3 vs. axial strain for 4 selected triaxial extension 
and compression loading paths.

In most of the cases shown in Figs. 21, 22, and 23, the 
mean paths of the stochastic predictions generated by the 

Fig. 23  Difference between the immediate and minor principal stress vs. axial strain. Results are obtained for active dropout layers. Shaded area 
includes predictions within 95% confidence interval. Compressive strain has positive sign convention
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dropout layer is able to match qualitatively with the experi-
mental benchmarks. Furthermore, in most cases, the prin-
cipal stress differences observed from experiments are 
within the 95% confidence interval. It should nevertheless 
be noted that the blind test is less accurate than the calibra-
tion cases, indicating that the neural networks may have been 
over-fitted.

To examine how uncertainty is propagated in the causal 
graph, we plot the diagonal components of the fabric ten-
sor and the results are shown in Figs. 24, 25, and 26. For 
brevity, the off-diagonal components of the fabric tensor, 
which are much smaller than the diagonal components, are 
not provided here. Comparing the 95% confidence interval 
of the fabric tensor and that of the principal stress difference, 
one can easily see that the predictions of stress tend to be 
more accurate when the fabric tensor can be more precisely 
determined with a narrower confidence interval.

7  Conclusions

In this paper, we introduce, for the first time, a data-driven 
framework that combines (1) the causal discovery algo-
rithm that detects unknown causal relations, (2) the Bayes-
ian approximation for uncertainty quantification enabled by 
the dropout technique, and (3) the recurrent neural network 
technique to analyze, interpret, and forecast the path-depend-
ent responses of granular materials. Numerical experiments 
conducted on idealized granular system have indicated that 
the data-driven framework is able to investigate and discover 
new hidden causal relationships and propagate uncertainty 
generated from a sequence of structured neural network pre-
dictions within a casual graph. This approach has potentials 
to help modelers and experimentalists to spot hidden mecha-
nisms not apparent to human eyes as well as deduce complex 
casual relationships in a high-dimensional parametric space 
where intuition and domain knowledge are not sufficient due 
to the dimensionality of the data. Further work may include 

Fig. 24  Component 11 of fabric tensor vs. axial strain. Results are obtained for active dropout layers. Shaded area includes predictions within 
95% confidence interval. Compressive strain has positive sign convention
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improvement and comparisons of different causal inferences, 
extension to recover causal relations when both instantane-
ous and lagged causal relations exist,  as well as the applica-
tions to more complex granular systems where particles are 
of different shapes and properties.

Appendix: Proof of Theorem 1

Theorem   2 Given Assumptions   1–3,  for every 
Vi,Vj ∈ V−U , Vi and Vj are not adjacent in G if and only 
if they are independent conditional on some subset of 
{Vk ∣ Vk ∈ V−U, k ≠ i, k ≠ j} ∪ {U}.

Proof From equation (1), any variable Vi in V−U can be writ-
ten as a function of {!i(U)}m−1i=1

 and {!i}m−1i=1
 , where m − 1 is 

the number of vertices included in V−U since V includes 
m vertices. Therefore, the distribution of V−U at each 
value of U is determined by the distribution of !1,… , !m−1 
and the values of {!i(U)}m−1i=1

 . For any Vi,Vj ∈ V−U and 

S ⊆ {Vk ∣ Vk ∈ V−U, k ≠ i, k ≠ j} ,  p(Vi,Vj ∣ S ∪ {U}) i s 
determined by ∏m−1

i=1
p(!i) and {!i(U)}m−1i=1

 . Since ∏m−1
i=1

p(!i) 
does not change with U , we have

Denote  to indicate independence, it follows that

Applying the weak union property of conditional independ-
ence, we have 

Suppose that Vi and Vj are not adjacent in G, 
then they are not adjacent in Gaug . There exists a set 
S ⊆ {Vk ∣ Vk ∈ V−U, k ≠ i, k ≠ j} such that S ∪ {!i(U)}

m−1
i=1

 
d-separates Vi and Vj . Because of Assumption 1, we have

(20)
p(Vi,Vj ∣ S ∪ {!i(U)}

m−1
i=1

∪ {U}) = p(Vi,Vj ∣ S ∪ {!i(U)}
m−1
i=1

).

(21)

Fig. 25  Component 22 of fabric tensor vs. axial strain. Results are obtained for active dropout layers. Shaded area includes predictions within 
95% confidence interval. Compressive strain has positive sign convention
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Since all !i(U) are deterministic functions of U , we have 
p(Vi,Vj ∣ S ∪ U) = p(Vi,Vj ∣ S ∪ {!i(U)}

m−1
i=1

∪ U).
Equations (21) and (22) imply that 

(22)

By the weak union property of conditional independence, 
we have 

Fig. 26  Component 33 of fabric tensor vs. axial strain. Results are obtained for active dropout layers. Shaded area includes predictions within 
95% confidence interval. Compressive strain has positive sign convention

Fig. 27  An illustration of lagged 
causal relationships with two 
vertices in a DAG and the lag 
time being 1 ( L = 1)

(a) (b)
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Since all !i(U) are deterministic functions of U , it follows 
that 

Now we prove that if Vi and Vj are conditionally independ-
ent given a subset S of {Vk ∣ Vk ∈ V−U, k ≠ i, k ≠ j} ∪ {U} , 
Vi and Vj are not adjacent in G. Because of Assumption 2 
(faithfullness), Vi and Vj are not adjacent in Gaug . Therefore, 
they are not adjacent in G.   ◻

Appendix: Graph metric de"nitions

In this section, we provide brief review of the the terminol-
ogy of the graph measures obtained from the grain connec-
tivity graph generated in each time step of a discrete ele-
ment simulation. These graph measures are used to create 
the knowledge graph for the machine learning constitutive 
law in Section 6.2.

The following graph metrics were calculated using the 
open-source software networkX [27] for exploration and 
analysis of graph networks.

Definition 1 The degree assortativity coefficient measures 
the similarity of the connections in a graph with respect to 
the node degree.

Definition 2 The graph transitivity is the fraction of all 
possible triangles present in the graph over the number of 
triads. Possible triangles are identified by the number of tri-
ads—two edges with a shared vertex.

Definition 3 The density for undirected graphs is defined as:

where n in the number of nodes and m is the number of 
edges of the graph.

Definition 4 The average clustering coefficient of the graph 
is defined as:

where n in the number of nodes and is cn is the clustering 
coefficient of node n defined as:

(23)d =
2m

n(n − 1)
,

(24)C =
1

n

∑
v∈G

cn,

where T(n) is the number of triangles passing through node 
n and deg(n) is the degree of node n.

Definition 5 A clique is a subset of nodes of an undirected 
graph such that every two distinct nodes in the clique are 
adjacent. The graph clique number is the size of largest 
clique in the graph.

Definition 6 The efficiency of a pair of nodes is defined 
as the reciprocal of the shortest path distance between the 
nodes. The local efficiency of a node in the graph is the 
average global efficiency of the subgraph induced by the 
neighbours of the node. The average local efficiency, used 
in this work, is the average of the local efficiency calculated 
for every node in the graph.

Appendix: Loading conditions in bulk 
plasticity experiments

The database used for causal discovery and training of the 
neural network forecast engines for numerical example in 
Section 6.2 includes 60 true triaxial numerical experiments 
conducted via the YADE’ DEM simulator. These experi-
ments differ according to the applied axial strain rate "̇11 , 
initial confining pressure p0 , initial void ratio e0 , and a 
parameter b =

!22−!33
!11−!33

 that controls applied stress conditions. 
In all 60 cases we set "̇33 = "̇12 = "̇23 = "̇13 = 0 . The setup 
of them are listed below. The tests with the bold font are the 
one discussed in Section 6.2. The first 30 test (labelled 
T0-T29) are used to train the neural network, while T30-T59 
are used for forward predictions. 

T0  "̇11 < 0 , b = 0 , p0 = −300kPa , e0 = 0.539.
T1  "̇11 < 0 , b = 0 , p0 = −400kPa , e0 = 0.536.
T2  "̇11 < 0 , b = 0 , p0 = −500kPa , e0 = 0.534.
T3  "̇11 > 0 , b = 0 , p0 = −300kPa , e0 = 0.539.
T4  "̇11 > 0 , b = 0 , p0 = −400kPa , e0 = 0.536.
T5  "̇11 > 0 , b = 0 , p0 = −500kPa , e0 = 0.534.
T6  "̇11 < 0 , b = 0.5 , p0 = −300kPa , e0 = 0.539.
T7  "̇11 < 0 , b = 0.5 , p0 = −400kPa , e0 = 0.536.
T8  "̇11 < 0 , b = 0.5 , p0 = −500kPa , e0 = 0.534.
T9  "̇11 > 0 , b = 0.5 , p0 = −300kPa , e0 = 0.539.
T10  "̇11 > 0 , b = 0.5 , p0 = −400kPa , e0 = 0.536.
T11  "̇11 > 0 , b = 0.5 , p0 = −500kPa , e0 = 0.534.
T12  "̇11 < 0 , b = 0.1 , p0 = −300kPa , e0 = 0.539.
T13  "̇11 < 0 , b = 0.1 , p0 = −400kPa , e0 = 0.536.
T14  "̇11 < 0 , b = 0.1 , p0 = −500kPa , e0 = 0.534.
T15  "̇11 > 0 , b = 0.1 , p0 = −300kPa , e0 = 0.539.
T16  "̇11 > 0 , b = 0.1 , p0 = −400kPa , e0 = 0.536.

(25)cn =
2T(n)

deg(n)(deg(n) − 1)
,
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T17  "̇11 > 0 , b = 0.1 , p0 = −500kPa , e0 = 0.534.
T18  "̇11 < 0 , b = 0.25 , p0 = −300kPa , e0 = 0.539.
T19  "̇11 < 0 , b = 0.25 , p0 = −400kPa , e0 = 0.536.
T20  "̇11 < 0 , b = 0.25 , p0 = −500kPa , e0 = 0.534.
T21  "̇11 > 0 , b = 0.25 , p0 = −300kPa , e0 = 0.539.
T22  "̇11 > 0 , b = 0.25 , p0 = −400kPa , e0 = 0.536.
T23  "̇11 > 0 , b = 0.25 , p0 = −500kPa , e0 = 0.534.
T24  "̇11 < 0 , b = 0.75 , p0 = −300kPa , e0 = 0.539.
T25  "̇11 < 0 , b = 0.75 , p0 = −400kPa , e0 = 0.536.
T26  "̇11 < 0 , b = 0.75 , p0 = −500kPa , e0 = 0.534.
T27  "̇11 > 0 , b = 0.75 , p0 = −300kPa , e0 = 0.539.
T28  "̇11 > 0 , b = 0.75 , p0 = −400kPa , e0 = 0.536.
T29  "̇11 > 0 , b = 0.75 , p0 = −500kPa , e0 = 0.534.
T30  "̇11 < 0 , b = 0 , p0 = −350kPa , e0 = 0.539.
T31  "̇11 < 0 , b = 0 , p0 = −450kPa , e0 = 0.536.
T32  "̇11 < 0 , b = 0 , p0 = −550kPa , e0 = 0.534.
T33  "̇11 > 0 , b = 0 , p0 = −350kPa , e0 = 0.539.
T34  "̇11 > 0 , b = 0 , p0 = −450kPa , e0 = 0.536.
T35  "̇11 > 0 , b = 0 , p0 = −550kPa , e0 = 0.534.
T36  "̇11 < 0 , b = 0.5 , p0 = −350kPa , e0 = 0.539.
T37  "̇11 < 0 , b = 0.5 , p0 = −450kPa , e0 = 0.536.
T38  "̇11 < 0 , b = 0.5 , p0 = −550kPa , e0 = 0.534.
T39  "̇11 > 0 , b = 0.5 , p0 = −350kPa , e0 = 0.539.
T40  "̇11 > 0 , b = 0.5 , p0 = −450kPa , e0 = 0.536.
T41  "̇11 > 0 , b = 0.5 , p0 = −550kPa , e0 = 0.534.
T42  "̇11 < 0 , b = 0.1 , p0 = −350kPa , e0 = 0.539.
T43  "̇11 < 0 , b = 0.1 , p0 = −450kPa , e0 = 0.536.
T44  "̇11 < 0 , b = 0.1 , p0 = −550kPa , e0 = 0.534.
T45  "̇11 > 0 , b = 0.1 , p0 = −350kPa , e0 = 0.539.
T46  "̇11 > 0 , b = 0.1 , p0 = −450kPa , e0 = 0.536.
T47  "̇11 > 0 , b = 0.1 , p0 = −550kPa , e0 = 0.534.
T48  "̇11 < 0 , b = 0.25 , p0 = −350kPa , e0 = 0.539.
T49  "̇11 < 0 , b = 0.25 , p0 = −450kPa , e0 = 0.536.
T50  "̇11 < 0 , b = 0.25 , p0 = −550kPa , e0 = 0.534.
T51  "̇11 > 0 , b = 0.25 , p0 = −350kPa , e0 = 0.539.
T52  "̇11 > 0 , b = 0.25 , p0 = −450kPa , e0 = 0.536.
T53  "̇11 > 0 , b = 0.25 , p0 = −550kPa , e0 = 0.534.
T54  "̇11 < 0 , b = 0.75 , p0 = −350kPa , e0 = 0.539.
T55  "̇11 < 0 , b = 0.75 , p0 = −450kPa , e0 = 0.536.
T56  "̇11 < 0 , b = 0.75 , p0 = −550kPa , e0 = 0.534.
T57  "̇11 > 0 , b = 0.75 , p0 = −350kPa , e0 = 0.539.
T58  "̇11 > 0 , b = 0.75 , p0 = −450kPa , e0 = 0.536.
T59  "̇11 > 0 , b = 0.75 , p0 = −550kPa , e0 = 0.534.

Appendix: Extension to lagged causal 
relationships

In this section, we briefly discuss an extension of the pro-
posal causal discovery approach to allow both instantaneous 
and lagged causal relations. Without loss of generality, we 
use the example of traction-separation law to illustrate the 
method. Recall that V−U includes all other variables in V 

excluding U (e.g., porosity, fabric tensor). Assume that there 
are m vertices in V−U , and we denote the values of vertices 
at the tth time point to be V−U(t) = (V1(t),… ,Vm(t)) , where 
t = 1,… , T  . Since there exist both instantaneous and lagged 
causal relations over these variables, we assume that the larg-
est lag time to be L. Furthermore, we denote the ith variable 
from the lth time point to the (T − L + l − 1) th time point to 
be Vl

i
= (Vi(l),Vi(l + 1),… ,Vi(T − L + l − 1)) , i = 1,… ,m 

and l = 1,… , L + 1 . Then we introduce a new set of vari-
ables Ṽ−U = {Ṽ

1
}L+1
l=1

 , where Ṽl
= {Vl

1
,Vl

2
,… ,Vl

m
} . Fig. 27 

illustrates the lagged causal relationships using a DAG with 
only two vertices. Fig. 27(a) shows the repetitive causal 
graph over two time series V(t) = (V1(t),V2(t)) , t = 1,… , T  
when the lag time L = 1 . Fig. 27(b) shows the unit causal 
graph over the newly introduced variables Ṽ = Ṽ

1
∪ Ṽ

2 . In 
this case, our goal is to not only recover the instantaneous 
causal relations between V2

1
 and V2

2
 as what did in the main 

manuscript, but also the lagged causal relations from V1
1
 to 

V2
2
 , and from V1

1
 to V2

1
.

Recall that U is the known input (i.e., displacement 
jump), and we have the prior knowledge that the dynamic 
changes in U can cause changes in other variables, not vice 
versa. Therefore, U can be used as a surrogate variable to 
help identify the causal relations. To recover the causal skel-
eton for both instantaneous and lagged causal relations, we 
modify Algorithm 1 as follows. Firstly, a complete undi-
rected graph UG is built with the variable U and the newly 
introduced variables Ṽ−U . Then for each i, we test for the 
marginal and conditional independence between VL+1

i
 and U , 

i = 1,… ,m . If they are independent, the edge between VL+1
i

 
and U is removed; meanwhile the edge between Vl

i
 and U is 

also removed, l = 1,… , L . Next, we recover lagged causal 
relations by testing the marginal and conditional independ-
ence between the variables in ṼL+1 and the variables in 
Ṽ

L−l+1 for each lth lagged relation, l = 1,… , L . In particular, 
if VL+1

i
 and VL−l+1

j
 are independent, their edge is removed 

from UG ; meanwhile the edge between VL−k+1
i

 and VL−l+1−k
j

 
is removed, k = 0,… , L − l . Lastly, we recover the instanta-
neous causal relations by testing for the marginal and con-
ditional independence between VL+1

i
 and VL+1

j
 , i ≠ j . If they 

are independent, their edge is removed; meanwhile the edge 
between Vk

i
 and Vk

j
 is removed, k = 1,… , L . After the causal 

skeleton is determined, we can apply Algorithm 2 in the 
paper to recover the causal directions for instantaneous 
causal relations. For lagged ones, they follow the rule that 
past causes future.
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