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Component-Based Machine
Learning Paradigm for
Discovering Rate-Dependent
and Pressure-Sensitive Level-Set
Plasticity Models
Conventionally, neural network constitutive laws for path-dependent elastoplastic solids
are trained via supervised learning performed on recurrent neural networks, with the
time history of strain as input and the stress as output. However, training neural networks
to replicate path-dependent constitutive responses requires significantly more data due to
the path dependence. This demand on diversity and abundance of accurate data, as well
as the lack of interpretability to guide the data generation process, could become major
roadblocks for engineering applications. In this study, we attempt to simplify these training
processes and improve the interpretability of the trained models by breaking down the train-
ing of material models into multiple supervised machine learning programs for elasticity,
initial yielding, and hardening laws that can be conducted sequentially. To predict pressure
sensitivity and rate dependence of the plastic responses, we reformulate the Hamliton–
Jacobi equation such that the yield function is parametrized in a product space spanned
by the principal stress, the accumulated plastic strain, and time. To test the versatility of
the neural network meta-modeling framework, we conduct multiple numerical experiments
where neural networks are trained and validated against (1) data generated from known
benchmark models, (2) data obtained from physical experiments, and (3) data inferred
from homogenizing sub-scale direct numerical simulations of microstructures. The neural
network model is also incorporated into an offline FFT-FEM model to improve the effi-
ciency of the multiscale calculations. [DOI: 10.1115/1.4052684]

Keywords: computational mechanics, constitutive modeling of materials, elasticity, failure
criteria, micromechanics, plasticity

1 Introduction
One of the century-old challenges for mechanics researchers is to

formulate plasticity theory that predicts the relationship among
strain history, plastic deformation, and stress for materials governed
by different deformation mechanisms at smaller scales. As plastic
deformation accumulates, the dissipation and plastic work may
lead the yielding criteria to evolve and cause a variety of harden-
ing/softening mechanisms due to the evolution of microstructures,
such as twinning [1], dislocation [2], pore collapse [3], void nucle-
ation [4], and rearranging of particles [5]. Generations of scholars
including Coulomb [6], von Mises [7], and Drucker and Prager
[8] spent decades to create new plasticity theories to incorporate
new causality relations and hypotheses for path-dependent materi-
als. In stress-based plasticity theories, yield function is expressed
as a function of stress, internal variables, and the hardening laws
(e.g., isotropic, kinematic hardening, rotational, mixed-mode, hard-
ening) as deduced from experimental observations and sub-scale
micro-mechanical simulations (e.g., dislocation dynamic, molecular
simulations).
In the past decades, new plasticity models are often generated

by modifying existing models with different expressions of the
yield functions or the hardening laws. For instance, a search in

Google Scholar for “modified Johnson-Cook model” and “modi-
fied Gurson model” reveals more than 632,000 and 8,350 results,
respectively.2 A majority of these published works are dedicated to
manually modifying the original model with new evolution laws or
shapes of the yield surface that accompany new physics, new mate-
rials, or new insights for more precise predictions. While this con-
ventional workflow has led to numerous improvements in
modeling, the more sophisticated models are often inherently
harder to tune due to the expansion of parametric space. This expan-
sion does not only make it less feasible to determine the optimal
mathematical expressions through a manner trial-and-error effort
(even after the causality of the yielding and hardening is known
[9]) but also require a more complicated inverse problems to iden-
tify the material parameters [10–12].
The recent success of deep neural networks has inspired a new

trend where one simply builds a forecast engine by training a
network with a pair of strain and stress histories [13,14]. To repli-
cate the history dependence of the plastic deformation, an earlier
neural network approach work would employ strain and stress
from multiple previous time-steps to predict new stress states
[15], whereas more recent works such as Refs. [16,17] employ
recurrent neural networks, such as the long short-term memory
(LSTM) and gated recurrent neural networks to introduce
memory effects. The promise and expectation are that the continu-
ous advancement of neural networks or other machine learning
techniques might one day replace the modeling paradigm currently1Corresponding author.
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employed in the engineering industry with superior accuracy, effi-
ciency, and robustness [16,18]. However, the early success in the
1990s and the recent resurrection of optimism about neural
network predictions on constitutive responses so far have a limited
impact on industry applications. This reluctance is not entirely unjus-
tified. In fact, recent studies and workshops conducted by the US
Department of Energy have cited the lack of domain awareness, inter-
pretability, and robustness as some of the major technical barriers
for the revolution of artificial intelligence (AI) for scientific machine
learning [19]. To facilitate changes in the industry, the trustworthiness
of the predictions is necessary and interpretability is a necessary con-
dition to overcome these obstacles [20].
As such, our focus in this work is to explore the possibility of

building an interpretable machine learning paradigm capable of
serving as the interface between plasticity modelers and artificial
intelligence. As such, our focus has shifted from solely using AI
to make predictions to building AI to create plasticity theories com-
patible with domain knowledge, easily interpreted, and capable of
not only improving the accuracy but also the robustness of existing
models. We propose the training of elastoplasticity models through
multiple supervised learning procedures to generate the model com-
ponents of knowledge separately (i.e., elastic stored energy, yield-
ing function, and hardening laws). The resultant model is the
composition of these machine-generated knowledge components
and is fully interpretable by modelers.
To achieve this goal, we have recast both rate-independent and

rate-dependent plasticity as a Hamilton–Jacobi problem in a para-
metric space spanned by the principal stress, the accumulated
plastic strain, the plastic strain rate, and the real time. Meanwhile,
the anisotropy of plastic yielding is achieved by mapping the yield
function level sets of the same material under different orientations
through a supervised neural network training on a chosen yield func-
tion projection basis. These treatments enable us to create a general
mathematical description for a large number of existing plasticity
models, including von Mises plasticity, Drucker–Prager, and
Cam-clay models combined with any possible hardening law as
merely special cases of the level set plasticity model. Instead of
solving the level set extension problem in the parametric space, we
formulate a supervised learning problem to generate the constitutive
updates from neural computation and to speed up calculation com-
pared to classical hierarchical multiscale computation [21–24].
More importantly, this new AI-enabled framework represents a new

paradigm shift where the goal of machine learning has shifted from
merely generating forecast engines for mechanistic predictions to cre-
ating interpretable mathematical models that inherently obey physical
laws with the assistance of machine learning. The resultant model does
not require the usage of recurrent neural networks, it is easier to train,
and provides more robust results for blind predictions.

2 Level Set Plasticity
The goal of this section is to extend the previous published work

[25] to incorporate pressure sensitivity and rate dependence. The
mathematical framework is similar except that the introduction of
the pressure dependence and the rate dependence may lead to a
higher dimensional space for the Hamilton–Jacobi problem and
therefore higher demand on data. These new implications are high-
lighted in this section. Details of the initial implementation of the
level set plasticity model can be referred to Ref. [25]. The algorithm
used to generate the yield function level sets and trained the plastic-
ity model neural networks is summarized in Algorithm 1.
Here, we formulate a new learning problem for plasticity that does

not complete the training in a single supervised learning, but splits
the learning task into multiple smaller components (predicting a
stored elasticity energy functional, predicting a yield surface, and
introducing a mapping for anisotropy), each constituting one
neural network trained for a sub-goal. Then, complex behaviors
can be predicted by integrating these networks in a level set plasticity
framework. This treatment does not only improve the predictions but

also introduces a learning structure where the casual relations of the
individual components are defined without losing the generality of
individual model predictions. As pointed out by recent work for
interpretable machine learning [20,26], this component design
helps promoting both simulatability (the ability to internally simulate
and reason about the overall predictions) andmodularity (the ability
to interpret portions of the predictions independently) of the
AI-generated models.
We introduce a new concept of treating the yield surfaces in the

parametric space composed of stress, accumulated plastic strain,
and strain rate as a level set. We also discuss the importance of
leveraging material symmetries to reduce the data demand for the
supervised machine learning problem. Previously, Refs. [25,27]
have introduced NURB and machine learning-based interpolations,
respectively, to generate yield surfaces with isotropic rate-independent
plasticity. The key departure here is the new capacity to generalize
the learning algorithm for anisotropic rate-dependent/independent
plasticity.
An important factor that dictates whether the training of the

machine learning model with limited data could be successful is
howmaterial symmetry can be leveraged. For example, the data col-
lection can be significantly reduced for isotropic plasticity, as the
principal strain and stress are co-axial. Another important aspect to
consider is how to leverage material symmetry to select the coordi-
nate system that represents the same data in the parametric space.
For instance, a Euclidean space spanned by the values of the three
principal stresses could be sufficient for an isotropic yield function
and hence leads to a simpler supervised learning problem than
those that use all six stress components. Furthermore, the choice of
the coordinate system may affect how one plans to collect data and
vice versa. For instance, while it is possible to formulate the level
set problem with the principal stress as the Cartesian basis, i.e.,
(σ1, σ2, σ3), it might be even more efficient to consider the usage of
(q, p) stress for experimental data obtained from conventional triaxial
tests where only two distinctive principal stress can be controlled. In
this latter case, the anisotropy and the dependence of all three invari-
ants of the constitutive responses could not be sufficiently captured
from the data gathered by the set of the experiments alone. Hence,
increasing the dimensions of the parametric space for the elasticity
energy and the yield function would not be beneficial. In the numer-
ical experiments we conducted, we adopt the cylindrical coordinates
(see Eq. (1)) for the π-plane orthogonal to the hydrostatic axis, where
σ1= σ2= σ3 (compared to Ref. [28]). This treatment enables us to
detect any symmetry on the π-plane thatmight reduce the dimensions
of the data and potentially simplify the training of the neural network
with less data.
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Before translating the yield surface fΓ data points into a yield func-
tion level set, we reduce the dimensionality of the stress point x repre-
sentation. In the case of the isotropic pressure-dependent plasticity,
we can reduce the stress representation from six dimensions x(σ11,
σ22, σ33, σ12, σ23, σ13) (already reduced from 9 due to balance of
angular momentum) to an equivalent three stress invariant repre-
sentation x̂(p, ρ, θ). In this representation, p is the mean pressure
and ρ and θ are the Lode’s radius and angle, respectively.
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The yield function is then postulated to be a signed distance func-
tion defined as follows:

ϕ(̂x, ξ, ξ̇, t) =
d(̂x) outside fΓ(inadmissible stress)
0 on fΓ(yielding)

−d(̂x) inside fΓ(elastic region)




 (2)

where d(x̂) is the minimum Euclidean distance between any point x̂
of the solution domain Ω of the stress space where the signed
distance function is defined and the yield surface fΓ = {̂x ∈ R3|
f (̂x) = 0}, defined as follows:

d(̂x) =min x̂ − x̂Γ
∣∣ ∣∣( )

(3)

where x̂Γ is the yielding stress for a given value of accumulated
plastic strain ξ and its rate ξ̇ at time t. The plastic internal variable
ξ is monotonically increasing and represents the history-dependent
behavior of the material. The time t signifies a snapshot of the
current state of the level set ϕ for the current value of the plastic
internal variable ξ and its rate ξ̇.

2.1 Data Augmentation Through Signed Distance Function
Generation. We can now preprocess the stress point cloud of the
yield surface for a given ξ and ξ̇ by solving the Eikonal equation
∇x̂ϕ
∣∣ ∣∣ = 1, while prescribing the signed distance function to 0 at
x̂ ∈ fΓ. For every stress point in the yield surface data set, we gen-
erate a discrete number of auxiliary points that construct a signed
distance function. In the context of level set theory, this can be
seen as solving the level set initialization problem. In the context
of machine learning, the signed distance function construction
can be interpreted as a method of data augmentation—a large
number of auxiliary data samples, where fΓ≠ 0 are introduced to
improve the training performance as well as the accuracy and
robustness of both the learned function fΓ and equally importantly
its stress gradient ∂fΓ/∂σij. A schematic of the yield surface data pre-
processing into a signed distance function is demonstrated in Fig. 1.
The color is the value of the signed distance yield function. It is neg-
ative in the elastic region and positive in the inadmissible stress
region. The material yields if the current stress is at the location
where the value of yield function equals to zero. It is noted that
the signed distance function has been selected as the preferred
level set function due to the simplicity of the implementation—
the yield function can be formulated as other implicit functions,
which will be considered in the future work.

2.2 Hardening as a Level Set Extension Problem. After pre-
processing the yield surface fΓ data points for a sequence of internal
variable values ξ and rates ξ̇ into a level set by solving the level set
initialization problem, we will recover the velocity function of a
Hamilton-Jacobi equation of a level set extension problem to
describe the temporal evolution of the level set. A general
Hamilton-Jacobi equation reads:

∂ϕ
∂t

+ v · ∇x̂ϕ = 0 (4)

where v is the normal velocity field that describes the geometric
evolution of the boundary (yield surface fΓ). In the context of plas-
ticity, the velocity field corresponds to the observed hardening
mechanism. The velocity vector field can be described by a magni-
tude scalar function F and a direction vector field n = ∇x̂ϕ/ ∇x̂ϕ

∣∣ ∣∣
such that:

v = F · n (5)

Substituting into Eq. (4):

∂ϕ(ξ, ξ̇)
∂t

+ F(ξ, ξ̇)|∇x̂ϕ(ξ, ξ̇)| = 0,

where Fi ≈
ϕi+1(ξi+1, ξ̇i+1) − ϕi(ξi, ξ̇i)

Δt

(6)

In Eq. (6), Fi(p, ρ, θ, ξ, ξ̇) = F(p, ρ, θ, ξ, ξ̇, ti) for i= 0, 1, 2, …,
n + 1 is the finite difference approximated scalar velocity (harden-
ing) function that corresponds to the preprocessed collection of
signed distance functions {ϕ0, ϕ1, …, ϕn+1} at time {t0, t1, …, tn+1}.
Thus, we have recast a yield function f into a signed distance
function ϕ, such that f (p, ρ, θ, ξ, ξ̇) = ϕ(p, ρ, θ, ξ, ξ̇). We can
now formulate a machine learning problem to approximate the
level set yield function f with its neural network yield function f̂ =
f̂ p, ρ, θ, ξ, ξ̇|W, b
( )

counterpart, parametrized by weights W and
biases b to be optimized during training.
The training objective for the neural network optimization is

to minimize the following loss function at training samples
(x̂, ξ, ξ̇, t) for i∈ [1, …, N ]:

W ′, b′ = argmin
W ,b

1
N

∑N

i=1

fi − f̂i
∥∥∥

∥∥∥
2

2
+wp sign −

∑3

A=1

σA,i
∂ f̂i
∂σA,i

( )( )( )

(7)

where we have added a penalty term, weighted by a factor wp, that
will activate when the yield function is not obeying convexity
during training.

Fig. 1 Universal training process for level set yield functions: (1) gather yield
surface data points, (2) generate level set through the initialization process, and
(3) train neural network on the level set data (the zeroth level of the predicted level
set is the approximated yield surface)
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It is noted that the Hamilton-Jacobi equation described in this
section will not be solved numerically—while theoretically possible
(e.g., fast marching solver). Its solution will be directly predicted by
a neural network. The zeroth level of the neural network predicted
level set is the yield surface. The neural network approximated
velocity field is the data-driven hardening mechanism.
Remark 1 Rescaling of the training data . In every loss function in
this study, we have introduced scaling coefficients γα to remind the
readers that it is possible to change the weighting to adjust the relative
importance of different terms in the loss function. These scaling coef-
ficients may also be viewed as the weighting function in a multi-
objective optimization problem. In practice, we have normalized all
data to avoid the vanishing or exploding gradient problem that may
occur during the back-propagation process [29]. As such, normaliza-
tion is performed before the training as a preprocessing step. The Xi
sample of a measure X is scaled to a unit interval via

Xi : =
Xi − Xmin

Xmax − Xmin
(8)

where Xi is the normalized sample point. Xmin and Xmax are the
minimum and maximum values of the measure X in the training
data set such that all different types of data used in this paper (e.g.,
energy, stress, stress gradient, stiffness) are all normalized within
the range [0, 1]. ▪

Algorithm 1 Training of a pressure and rate-dependent isotropic
yield function level set neural network.

Require: Data set of N samples: stress measures σ at yielding, accumulated
plastic strain ϵp, and accumulated plastic strain rate ϵ̇p, a Llevels number of
levels (isocontours) for the constructed signed distance function level set
(data augmentation), and a parameter ζ > 1 for the radius range of the con-
structed signed distance function.
1. Project stress onto π-plane

Initialize empty set of π-plane projection training samples (ρi, θi, pi) for i
in [0, ...,N].

for i in [0,...,N ] do
Spectrally decompose σi =

∑3
A=1 σA,in

(A)
i ⊗ n(A)i .

Transform σ1,i, σ2,i, σ3,i
( )

into σ′′1,i, σ
′′
2,i, σ

′′
3,i

( )
via Eq. (1)

ρi ←
(((((((((((
σ′′ 21,i + σ′′ 22,i

√

θi ← tan−1 σ′′2,i
σ′′1,i

( )

pi ←
3((
3

√ σ′′3,i
end for

2. Construct yield function level set (data augmentation)
Initialize empty set of augmented training samples (ρm, θm, pm, ϵ p,m,

ϵ̇ p,m, fm) for m in [0, ...,N × Llevels].
m ← 0.
for i in [0, ..., N ] do

for j in [0, ..., Llevels] do

ρm ←
ζj

Llevels

( )
ρi ▷ the signed distance function is

constructed for a radius range of 0, ζρi
[ ]

θm ← θi
pm ← pi
ϵ p,m ← ϵ p,i
ϵ̇ p,m ← ϵ̇ p,i

fm ←
ζj

Llevels

( )
ρi − ρi ▷ the signed distance function value

range is −ρi, ζ − 1( )ρi
[ ]

Rescale (ρm, θm, pm, ϵ p,m, ϵ̇ p,m, fm) into (ρm, θm, ϵ p,m, ϵ̇ p,m, fm)
via Eq. (8).

m ← m+ 1
end for

end for
3. Train neural network f̂ (ρm, θm, ϵ p,m, ϵ̇ p,m) with loss function Eq. (7).
4. Output trained yield function f̂ neural network and exit.

2.3 Higher-Order Sobolev Training. In this study, we distin-
guish between the material’s elastic and plastic behaviors by train-
ing two different neural network model components—a
hyperelastic energy functional and a yield function level set that
evolves according to accumulated plastic strain. These components
are then combined in a specific form of return mapping algorithm
(Algorithm 1) that may take an arbitrary elasticity model and a
yield function with generic hardening law to generate the constitu-
tive update for the class of inelastic materials that has a distinct
elastic region defined in a parametric space. The hyperelastic
network counterpart is expected to have interpretable derivatives
—the first derivative of the energy functional with respect to the
strain should be a valid stress tensor and the second derivative a
valid stiffness tensor. We adopt a Sobolev training objective, first
introduced in Ref. [30], and we extend it to higher-order constraints
to train the energy functional approximator ψ̂e ϵe ∣ W, b

( )
using the

following loss function:

W ′, b′ = argmin
W ,b

(
1
N

∑N

i=1

(
ψ e
i − ψ̂e

i

∥∥ ∥∥2
2 +

∂ψ e
i

∂ϵei
−
∂ψ̂e

i

∂ϵei

∥∥∥∥

∥∥∥∥
2

2

+
∂2ψe

i

∂ϵei ⊗ ∂ϵei
−

∂2ψ̂ e
i

∂ϵei ⊗ ∂ϵei

∥∥∥∥

∥∥∥∥
2

2

))
(9)

A benefit of using Sobolev training is the notable data efficiency.
Sobolev training has been shown to produce more accurate and
smooth predictions for the energy, stress, and stiffness fields for
the same amount of data compared to classical L2 norm approaches
that would solely constrain the predicted energy values [25].

3 Numerical Experiments
In this section, we demonstrate the AI’s capacity to rediscover

plasticity models from the literature, we explore the model’s
ability to capture highly complex new hardening modes and,
finally, showcase how the AI can discover the yield surface for a
new polycrystal material and replace the plasticity model in a
finite element simulation. To test whether the machine learning
approach can be generalized, we purposely test the AI against a
wide range of material data sets for soil, rock, polycrystal, and
steel. In particular, we employ three types of data sets, (1) data gen-
erated from known literature models, (2) data obtained from exper-
iments, and (3) data obtained from sub-scale direct numerical
simulations of microstructures. The first type of data is used as a
benchmark to verify whether the neural network can correctly
deduce the correct plastic deformation mechanisms (yield surface
and hardening) when given the corresponding data. The second
and third types of data are used to validate and examine the AI’s
ability to discover new plastic deformation mechanisms with a geo-
metrical interpretation in the stress space.

3.1 Verification Examples. The first set of examples is
used to showcase the capacity of the algorithm to reproduce the
modeling capacity of classical plasticity theory. We first demon-
strate our algorithms ability to recover yield surface and hardening
mechanisms from the classical plasticity literature. We then demon-
strate the frameworks capacity to make predictions calibrated on
experimental data for pressure-dependent and rate-dependent
plasticity.

3.1.1 Verification on Classical Plasticity Theories. The pro-
posed AI can readily reproduce numerous yield function models
from the plasticity literature, following the same universal data pre-
processing and neural network training algorithm. For this bench-
mark experiment, we generate synthetic data sets for four initial
yield surfaces of increasing shape complexity: the J2 [7] (cylinder),
Drucker–Prager [8] (cone), Modified Cam-Clay [31] (oval), and
Argyris [32] (ovoid with triangular cross section) yield surfaces.
We simultaneously study four common hardening mechanisms

021003-4 / Vol. 89, FEBRUARY 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/2/021003/6779195/jam
_89_2_021003.pdf by C

olum
bia U

niversity, W
aiching Sun on 16 N

ovem
ber 2021



that transform and/or translate these surfaces in the 3D stress space:
isotropic hardening (cylinder dilation), rotational hardening (cone
rotation), kinematic hardening (translation along the hydrostatic
axis), and softening (shrinking).
The data sets for these yield surfaces are populated by sampling

from the above-mentioned literature yield functions. The sampling
was performed as a uniform grid of the stress invariants and the
accumulated plastic strain. We sample 50 data points along the
mean pressure axis, 100 data points along the angle axis, and 10
data points along the accumulated plastic strain axis (a total of
50,000 data samples per yield function data set). The yield
surface data points are preprocessed into a signed distance function
level set database through the level set initialization procedure. For
each yield surface, 15 levels are constructed: the yielding level, 7 in
the elastic region, and 7 in the region of inadmissible stress. After
data augmentation, the training data set consists of 750,000 level
set sample points.
For each level set database, we train a feed-forward neural

network to approximate the initial yield function and its evolution.
The yield function neural networks consist of a hidden dense layer
(100 neurons/ReLU), followed by two multiply layers, then another
hidden dense layer (100 neurons/ReLU) and an output dense layer
(linear). The use of multiply layers was first introduced in Ref. [25]
to increase the continuity of the activation functions of neural
network functional approximators. They were shown to allow
greater control over the network’s higher-order derivatives and
the application of higher-order Sobolev constraints in the loss func-
tion. The layers’ kernel weight matrix was initialized with a Glorot
uniform distribution and the bias vector with a zero distribution. All
the models were trained for 2000 epochs with a batch size of 128
using the NAdam optimizer, set with default values of the Keras
library.3

The neural network predicted yield surfaces are demonstrated in
Fig. 2. For each model, three surfaces are shown for three different
levels of accumulated plastic strain. It is highlighted that, given an

accumulated plastic strain value, we can recover the entire yield
locus.

3.1.2 Level Set Plasticity Model Discovery for Rate-Dependent
and Anisotropic Materials. In this section, we test the framework
capacity to make predictions on rate-dependent and anisotropic
data.
To test the trained neural network prediction of rate-dependent

responses, we incorporate data from the published work [33] for
steel that exhibits different yielding stress under different strain
rates. In the numerical experiments, we use experimental data col-
lected at strain rates ranging from 0 to 0.02 s−1 as the training
data, sampled in a uniform grid of ten strain rate increments. The
yield surface is sampled at 25 points along the mean pressure
axis, at 100 points along the angles axis, and at 10 points along
the accumulated plastic strain axis (a total of 250,000 sample
points). The data are preprocessed into signed distance functions
of 15 levels, generating 3,750,000 training sample points. The

Fig. 2 AI can rediscover classical plasticity models: J2 plasticity model with isotropic hardening (top left), Drucker–Prager
model with rotational hardening (top right), MCC model with kinematic hardening (Bauschinger effect) (bottom left), and
Argyris model with softening (bottom right). The corresponding benchmark and predicted strain–stress curves are also dem-
onstrated. The stress measure is in kPa.

Fig. 3 Neural network predicted viscoplastic response for
increasing loading strain rates for a tension (a) and shear
(b) loading test performed on mild-steel beams (experimental
data obtained from Ref. [33])3https://keras.io
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neural network used for this viscoplastic model training follows the
same architecture as the yield function neural networks described in
Sec. 3.1.1.
We use the experimental data collected at strain rates 10−4, 5×

10−1, and 0.02 s−1 to validate the ability of the model to make
blind predictions for unseen events. Figure 3(a) shows the results
of the six predictions that the AI generated for unseen data. The
left figure shows the stress–strain predictions on the uniaxial
tensile tests of three different loading rates, while the right figure
shows the stress–strain predictions on the simple shear test counter-
part. In both cases, the predictions match well with the unseen
benchmark data that is excluded from the training data set.
As for the anisotropic predictions, Fig. 4 shows the machine

learning generated mapping that predicts how the yield surface in
the principal stress space evolves for different material orientations.
The data we employed in this second experiment are generated from
an FFT solver that simulates the polycrystal plasticity of a specimen
composed of FCC crystal grains. We sample the material constitu-
tive behavior at ten microstructure orientations at 150 lode angle
sampling directions and preprocess the data into signed distance

functions of 15 levels, generating 22,500 training sample points
for the projection mapping neural network. Working on the
pressure-independent stress space, the network inputs the true
stress invariants and the microstructural orientation information
that describes the anisotropy—in the case of polycrystals studied
in this work, the polycrystal orientations as three Euler angles,
and outputs the reference stress space invariants. The network has
the following layer structure: dense layer (200 neurons/ReLU), mul-
tiply layer, dense layer (200 neurons/ReLU), multiply layer, fol-
lowed by three more dense layers (200 neurons/ReLU), and an
output dense layer (linear). The layers’ kernel weight matrix was
initialized with a Glorot uniform distribution and the bias vector
with a zero distribution. The model was trained for 2000 epochs
with a batch size of 256 using the NAdam optimizer. The predic-
tions of the mapping suggest that it is possible to generate a
single mapping function that maps all yield surfaces obtained
from different polycrystal specimens of different orientation onto
a reference stress domain, denoted as (σ1′′, σ2′′, σ3′′).

Fig. 4 The framework can capture anisotropic responses by projecting anisotropic yield surfaces onto a master projection
basis curve using a neural network stress space mapping φNN
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3.2 Demonstration of Model Discovery Capacity. Yield
surface discovery in the literature has been limited by the difficulty
of deriving mathematical expressions for higher-complexity geo-
metrical shapes that represent them. Additional obstacles arise
when there is need to describe the smooth transition from the
shape of the initial yield surface to that of a state with more accumu-
lated plasticity. The algorithm’s capability to discover new yield
surfaces and hardening mechanisms automatically directly from
the data overcomes these impediments.
To test this, we construct a fictitious yield surface database that is

based on the Argyris model [32] and combines the modified
Cam-Clay [31] hardening mechanism along with a transformation
of the elastic region’s cross section from a triangular shape to a
circle. The yield surface is sampled at a total of 50,000 points
and preprocessed to generate 750,000 level set sample points.
The predictions for the yield surface and underlying level set for
increasing accumulated plastic strain are demonstrated in Fig. 5.
Deriving a mathematical expression for this data set is not straight-
forward. Even if the derivation is successful, the resultant mathe-
matical expression might require additional material parameters
that lacks physics underpinning. The capability of the neural
network to approximate arbitrary function therefore offers us a
flexible and simple treatment to handle the evolution of yield
function.
To analyze the sensitivity with respect to the random neural

networkweight initialization, we have repeated the supervised learn-
ing for the synthetic yield function problem showcased in Fig. 5 five
times, eachwith a different random seed. The results shown in Fig. 6,
indicate that the training and the resultant losses for both the training
and testing cases are close. This result suggests that the training is not
very sensitive to the random seeds. Furthermore, the small difference
in the training and testing loss of the yield function also suggests that
there is no significant overfitting.
Our proposed algorithm also automates the discovery of yield sur-

faces for new materials. We generate a yield surface database for a
randomly generated polycrystal microstructure through efficient
data sampling of the invariant stress space with FFT solver elastoplas-
tic simulations. To gather the yield surface data points for the poly-
crystal material, we subdivide the π-plane uniformly at 140 Lode’s
angles and sample the stress space with monotonic loading simula-
tions at each angle direction. The yield surface data points are gath-
ered as soon as yielding is first detected, recording the stress

response and the accumulated plastic strain. The FFT simulations
provide 157,500 sample points that are preprocessed into 2,362,500
level set sample points. It is noted that the material was observed to
be pressure independent. Thus, sampling on the π-plane at a constant
mean pressure was enough to capture the entire stress response.
The yield surface data points are preprocessed into a level set data

base, and the results of the trained polycrystal neural network yield
function are demonstrated in Fig. 5. The neural network parameters
for the new model training in this section remain identical as previ-
ously described. Investing the modeling effort to describe the
complex yielding behavior of a material could be proven futile,
especially if the material is highly heterogeneous. Conceiving a
new yield function for every new material studied can become
rather impractical and automation in yield surface generation can
accelerate the plasticity study of novel materials.

3.3 Offline Multiscale FFT-FEM Numerical Experiments.
In engineering practice, a constitutive law is seldom used as a stan-
dalone forecast engine but is often incorporated into a solver that
provides a discretized numerical solution. Here, we test whether
the AI-generated models can be deployed into an existing finite
element solution. The yield surface neural networks combined
with a hyperelastic energy functional neural network can be
readily plugged into a strain space return mapping algorithm to
make strain–stress predictions. In this study, we utilize a linear elas-
ticity energy functional as the neural network that will provide the
elastic response in the algorithm. We train a two layer feed-forward
neural network that inputs the elastic volumetric ϵev and deviatoric ϵ

e
s

strain invariants to approximate the hyperelastic energy funtional
ψe. The network is trained on 2500 data points sampled from a
uniform grid of ϵev, ϵ

e
s

( )
pairs. The architecture consists of a

hidden dense layer (100 neurons/ReLU), followed by two multiply
layers, then another hidden dense layer (100 neurons/ReLU), and an
output dense layer (linear). The models were trained for 1000
epochs with a batch size of 32 using the NAdam optimizer [34],
set with default values in the Keras library. By using a Sobolev
training framework, the model was optimized with a higher-order
H2 training objective—the loss function constrains the predicted
energy, stress, and stiffness similar to (9). The resulting stress pre-
dictions for the literature yield surfaces for random cyclic loading

Fig. 5 AI discovered yield surfaces and hardening mechanisms as evolving level
sets from synthetic data. The yield surface and corresponding yield function level
set are evolved according to the accumulated plastic strain.
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and unloading strain paths are demonstrated in Fig. 2 for each
approximated yield surface model.
We have also successfully incorporated the trained neural

network plasticity model into a finite element solver to deliver an
excellent match with the high-cost FFT-FEM predictions for
unseen loading paths not included in the training data set. The dis-
covered yield function for a randomly generated polycrystal micro-
structure is demonstrated in Fig. 7. In Fig. 8, the polycrystal

plasticity model trained by a neural network is used to replace the
FFT solver that provides the constitutive updates from DNS simu-
lations at the sub-scale level. The simulation is performed on a
square plate with a circular hole supported on frictionless rollers
on the top and bottom surfaces. Results shown in Fig. 8 indicate
that the NN-FEMmodel is capable of replacing the computationally
heavy FFT-FEM simulations (compared to Ref. [35]) with a frac-
tion of the cost.
In this offline multiscale problem, the finite element contains 960

elements with 2880 integration points. An FFT-FEM framework
may take an average of 11,110 (approximately 3.85 s per integration
point) seconds to complete the incremental constitutive updates for
all integration points, whereas the neural network counterpart
require an average of 230 s (approximately 0.08 s per integration
point) to finish the same task in a MacBook Pro with 8-core
CPU. As for the overhead cost to generate the training data from
the FFT polycrystal simulations, the time to generate the training
data set for the polycrystal yield function (157,500 yield function
sample points) is approximately 5 h.

Fig. 6 Loss versus epoch for the synthetic yield function shown
in Fig. 5 for the training data set (top) and the testing data set for
cross-validation (bottom). The test data set and the training data
set are mutually exclusive.

Fig. 7 Yield function level set of a new polycrystal microstruc-
ture with increasing accumulated plastic strain

Fig. 8 The discovered yield function can be readily imple-
mented in FEM simulations, replacing the FFT solver. The accu-
mulated plastic strain profile for an FEM simulation and the
predicted stress responses at different points of the domain
against the FFT benchmark simulations are also shown. The
stress measure is in kPa.
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4 Discussion
The proposed algorithm provides a general approach of discover-

ing complex yield surface shapes and their evolution directly from
data. In Sec. 3 of this work, all yield functions and hardening mech-
anisms are predicted by neural networks without any specific
modeler intervention with hand-crafted derivations. All models in
this work, be it models from the plasticity literature or models
designed for new materials, followed identical data preprocessing,
neural network training, and return mapping implementation
procedures.
Our neural network yield functions provide a unique advantage

in crafting interpretable data-driven plasticity models. The capacity
to predict and visualize the entire yield locus at every time-step of
an elastoplastic simulation allows for the anticipation of elastic or
plastic responses and the inspection of thermodynamic consistency
(e.g., convexity). Especially, by adopting a low-dimensional stress
representation (Lode’s coordinates), not only is the model complex-
ity reduced but also a transparent yield surface data sampling
scheme becomes possible. The alternative of random sampling of
strain paths comes with the uncertainty of sufficiently visiting the
yield surface in the entire stress space.

4.1 Physics Underpinning for the Partition of Elastic and
Plastic Strain. Decomposing the elastoplastic behavior prediction
into two simple feed-forward neural networks—a hyperelastic
energy functional and a yield function—is central to the algorithm’s
interpretability and allows for a clear-cut distinction of elastic and
plastic behavior. This is not necessarily true with the classical recur-
rent network approach, such as the common LSTM or GRU
[16,36]. When training neural networks with these architectures,
the elastic and plastic constitutive responses are often indistinguish-
able. This treatment does not only cause issues with interpretability
but also renders the black-box predictions vulnerable to erroneous
causality or correlation structures. For instance, experimental data
of the nonlinear elasticity response may actually affect the yielding
response as there is no explicit mechanism to distinguish the two.
The models trained on monotonic loading data can readily predict
nonmonotonic constitutive responses due to the explicitly defined
elastic range, whereas the black-box alternative cannot (see
Fig. 2). Furthermore, the recurrent network’s dependency on the
input strain rate, the importance of the sampling frequencies in
the time domain, and the more difficult training due to the vanishing
or exploding [37] are rarely addressed in the machine learning plas-
ticity literature.
Note that the machine learning algorithm proposed here does not

exhibit better interpretability than the hand-crafted counterpart, but
is easier to interpret than the RNN and the multi-step ANN
approaches that do not provide definite distinction between the
elastic region and the yielding. An exception is the recent work
by Xu et al. [38], in which the neural network partitioned the
total strain into elastic and plastic components via a
partition-of-unity function. Nevertheless, when a continuous
weighting function (such as sigmoid function) is used to partition
for the elastic and plastic strain, it may introduce a transition zone
where the materials are considered both path independent and
path dependent.

4.2 Representation of Parametric Space and Geometrical
Interpretation of Elastoplasticity Models. Another advantage
of the interpretable machine learning approach is that the geometri-
cal interpretation is helpful for determining the optimal data explo-
ration strategies. Given the fact both real experiments and direct
numerical simulations are often costly to conduct, a Monte Carlo
simulation to randomly sample the parametric space for path-
dependent materials is too costly to be feasible [39]. By introducing
the level set to define the yielding criterion, however, we can con-
ceptualize the elastic range as a multidimensional object in a Euclid-
ean space.

This feature may help us to visual the abstract concept of yielding
on a Euclidean space and help us estimating the sufficiency of the
data by defining a proper metrics in the parametric vector space
and to decide the distribution of data that helps us better capture
important features such as replicating sharp gradient, determining
convexity by checking the Hessian and ensuring connectivity of
the learned models. These tasks are not necessarily impossible
but are difficult to achieve with a black-box model.

4.3 Smoothness of the Machine Learning Plasticity Model.
Training the neural networks of this work with a higher degree of
continuity activation functions and higher-order Sobolev loss func-
tion constraints allows one to control the prediction accuracy of the
derivatives of the approximated functionals. This control of stress
gradient to the yield function is crucial, whereas the automatic dif-
ferentiation used in the back-propagation can help us generate suf-
ficiently smooth elastoplastic tangent operators suitable for PDE
solvers. Conversely, classical black-box neural network elastoplas-
ticity approaches usually do not control the quality of the deriva-
tives of the trained functions. While finite difference methods can
be used to approximate the tangent tensor obtained from the
neural network without Sobolev training if necessary [40], the
smoothness and accuracy of the approximated tangent cannot be
guaranteed. Furthermore, the Sobolev training and higher-order
activation functions allow controlling the smoothness and continu-
ity of the yield surface. This can be a more efficient alternative to the
current practice where a plasticity model with a nonsmooth yield
surface either requires specific algorithmic algorithm to generate
incremental constitutive updates [41] or modified manually into a
smoothed version to bypass the numerical barrier [42,43].
In principle, the approach may generate a sufficiently smooth

yield surface in parametric space of different dimensions (e.g.,
principal stress space, strain space, porosity-stress space).
However, if the yield surface is nonsmooth for physical reasons,
then both (1) specific supervised learning algorithms that detect
the singular point and (2) the corresponding specific treatment to
handle the bifurcated stress gradient of the yield surface are neces-
sary. Furthermore, unlike the classical hand-crafted model or
models generated from geometric learning (see Ref. [44]) that
are designed for an entire class of materials of similar but distinc-
tive microstructures, the proposed algorithm is designed to gener-
ate a surrogate model specifically tailored for one RVE or
specimen.

4.4 Comparison With Parameter Identification of
Predetermined Models. Note that, while both parameter identifi-
cation and supervised machine learning involve solving inverse
problems and, in many cases, multi-objective optimization, the pro-
posed approach does not assume specific forms of equations a priori
for the hyperelasticity energy functional and yield function. With a
sufficient neural network architecture, the neural network approach
may offer more flexibility in finding the optimal forms of equations
(see universal approximation theorem [45]). However, this flexibil-
ity comes at the expense of having to deal with the Banach space
(compared with the studies by Parhi and Nowak [46] and Weinan
and Wojtowytsch [47]) of much higher dimensions (of the neural
network learned function) than the Euclidean space for a typical
parameter identification problem.
A similar analogy can be drawn between nonparametric/sym-

bolic regression and polynomial regression where the lack of prede-
termined form of the former approach not only offers greater
flexibility but also increases the difficulty of the inverse problem.
As demonstrated in the previous work (compared with Wang
et al. [48]), even in the case where the inverse problem is merely
used to determine the optimal set of choices among a handful of pre-
determined components of the elastoplasticity model, the additional
effort and cost to solve the combinatorial optimization on top of the
CPU time required to identify the parameter identification process
can be enormous.
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This complexity motivates us to propose this alternative para-
digm that enable us to learn the elastoplasticity problem in a
divide-and-conquered manner, i.e., (1) learning the elasticity first,
(2) then the initial yield function, and (3) the hardening/softening
rules that evolve the yield function, all with multilayer perceptrons.
In the cases we demonstrated here, there is no need to use recurrent
neural networks that are more difficult to train well and apply reg-
ularization than the simpler multilayer perceptrons [49]. In the
future, we may explore proper ways to generate more complex
rules for the yield function evolution with recurrent neural net-
works, but this is out of the scope of this study.

5 Conclusion
We propose a generalized machine learning paradigm capable of

generating pressure-sensitive and rate-dependent plasticity models
consisting of interpretable components. The component approach
enables geometrical interpretation of the hyperelastic energy and
yield function in the corresponding strain and stress spaces. This
treatment allows us to examine thermodynamic constraints
through geometrical interpretation (e.g., convexity) and provide a
higher degree of modularity and simulatability required to interpret
mechanisms of plastic deformation. In the numerical experiments
presented in this article, we first verify the capacity of the paradigm
to recover existing plasticity models with the corresponding data.
Then, we provide additional examples to show that the revised
Hamilton-Jacobi solution formulated for rate-dependent plasticity
may generate models from experimental data for steel. Finally,
the machine learning paradigm is used to generate a macroscopic
elastoplasticity surrogate model from FFT simulations of a poly-
crystal consisting of FCC grains. The resultant macroscopic surro-
gate model is tested against FFT direct numerical simulations at the
Gauss point level. From the results of the numerical experiments,
we observe that the generated models are not only able to recover
old plasticity laws but also capable of deducing new ones, with a
reasonable level of predictive and descriptive accuracy for the
given amount of data. This interpretability is necessary for ensuring
trustworthiness for engineering applications.
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