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Abstract. Context is usually conceptualized as “external” to a theory or model and treated as
something to be controlled or eliminated in empirical research. We depart from this tradition and
conceptualize context as permeating processual phenomena. This move is possible because digital
trace data is now increasingly available, providing rich and fine-grained data about processes mediated
or enabled by digital technologies. We introduce a novel method for including fine-grained contextual
information from digital trace data within the description of process (e.g., who, what, when, where,
why...). Adding contextual information can result in a very large number of fine grained categories of
events, which is usually considered undesirable. However, we argue that larger numbers of categories
can make process data more informative for theorizing. Including contextual detail enriches our
understanding of processes as they unfold. We demonstrate this by analyzing electronic medical
records (EMR) audit trail data using ThreadNet, an open source software application developed for the
qualitative visualization and analysis of process data. The distinctive contribution of our approach is the
novel way to contextualize events and action in process data. By providing new, usable ways to
incorporate context, it can help researchers ask new questions about the dynamics of processual

phenomena.
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1INTRODUCTION

In this paper, we develop an approach to incorporate context in the analysis and visualization
of digital trace data to theorize about processual phenomena. In empirical research, context is often
seen as an external or situational threat to be controlled or eliminated (Avgerou, 2019). Researchers
try to control for context in an effort to increase generalizability (Schofield, 2002; Whetten, 2009), identify
causality, or improve robustness (Johns, 2006). This is unfortunate, because one of the deepest and
most influential theoretical insights in information systems research has been that context matters
(Avgerou, 2019; Burton-Jones & Volkoff, 2017; Hong, Chan, Thong, Chasalow, & Dhillon, 2014). From
the web model of computing (Kling & Scacchi, 1982), to ensemble view of IT artifacts (Orlikowski &
lacono, 2001), and the sociomaterial view of technology in general (Orlikowski & Scott, 2008), we see
that technology is mangled (Pickering, 2010), entangled (Orlikowski, 2007) and imbricated (Leonardi,
2011) with its social and material context. As Swanson (2019) argues, technologies come alive in the
world to the extent that they inhabit recognizable, repetitive patterns of actions (Feldman & Pentland,
2003; Leonardi, 2011). This entanglement is processual, in the sense that it unfolds and emerges over
time (Emirbayer, 1997; Tsoukas & Chia, 2002). For example, just as work cannot meaningfully be
decoupled from technology anymore (Orlikowski & Scott, 2008), so too is everyday life increasingly
permeated by digital technology (Lyytinen & Yoo, 2002; Yoo, 2010). The context of IS phenomena is
no longer restricted to the organizational container (Winter, Berente, Howison, & Butler, 2014). Context

needs to feature much more prominently in our research (Avgerou, 2019).

The question remains how to operationalize this insight in research practice. In research that
embraces the importance of context, contextual entanglement has most often been described and
analyzed through ethnographic fieldwork (e.g., Burton-Jones & Volkoff, 2017; Orlikowski, 2000).
Because fieldworkers are there, in the situation, they are ideally positioned to see and describe
situational effects in context (Charmaz, 2006). Fieldwork has been extremely fruitful for theory building,
but when the entanglement stretches across time and space, and physical and digital worlds

(Baskerville, Myers, & Yoo, 2020), it may be impractical.

To help remedy this limitation, the use of digital trace data has been proposed as a way to
extend our reach (Berente, Seidel, & Safadi, 2019; Levina & Vaast, 2015). Digital trace data is evidence
of activities and events that is logged and stored digitally (Freelon, 2014, p. 59). Since almost everything

people do is now mediated by digital technologies (Yoo, 2010), digital trace data looms as an exciting
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prospect to qualitative scholars to theorize about the emergence and unfolding of processual
phenomena. In response, calls have been made for qualitative scholars to lean on computational
approaches (Lazer et al., 2009) involving automated data processing and algorithmic pattern
recognition and analysis to help them discover patterns in the vast digital volumes of digital trace data

that may otherwise be undiscoverable even to trained qualitative scholars (Lindberg, 2020).

However, most computational tools available to qualitative scholars interested in process are
strikingly ignorant of context. For example, many kinds of tools exist for process mining and modeling
but they incorporate context to a very limited extent, if at all. Van Der Aalst and Dustdar (2012) advocate
for the importance of context, but they identify four levels of context (instance, process, social and
external) that are all outside the execution of the process. They do not consider contextual factors
within the execution of a process (e.g., who performs what step with what tool). Process mining
(Breuker, Matzner, Delfmann, & Becker, 2016; van der Aalst, 2011b), usually reduces processes to a
single dimension (a stream of time-stamped actions). Process models (Recker, Rosemann, Indulska,
& Green, 2009) show actions and actors as they are designed, but they fail to incorporate the contextual
circumstances under which the dynamics of such a process might change during enactment
(Rosemann, Recker, & Flender, 2008). Likewise, computational tools that can handle processual data
such as social network analysis (Wassermann & Faust, 1994) or sequence analysis (Abbott, 1995)
reduce digital traces to variables such as actors (for social networks) or events (for sequence analysis).
Paradoxically, the analysis of digital trace data for developing process theory is mostly devoid of the
context that is so paramount to the unfolding and situatedness of the processes that scholars seek to

explain.

In this paper, we describe a novel way of representing and visualizing contextual entanglements
in processual phenomena that overcomes this limitation. We build on the concept of narrative networks
(Pentland & Feldman, 2007), a special kind of directed graph where the nodes are categories of events
and the edges represent sequential relations between those events (Pentland, Recker, & Wyner,
2017c). Narrative networks were introduced for the purpose of representing patterns of technology-in-
use. They have been applied in field research and simulation (Pentland, Feldman, Becker, & Liu, 2012),
but the emphasis has been on representing patterns of action. In these action-only models, as with
other techniques for process mining (van der Aalst, Weijters, & Maruster, 2004) and modeling (Breuker

et al., 2016; Recker et al., 2009), processes are disembodied and dissociated from their sociomaterial



context.

Here, we advance the state of the art by incorporating context in a novel, systematic way.
Instead of viewing context as the temporal, geographical, cultural, cognitive, emotional or any other sort
of outside “environing” (Avgerou, 2019, p. 978), we locate context inside processes by using contextual
factors available in digital trace data to define events in the narrative network. This is a key departure
from established traditions that view context as something outside a process (e.g., weather, location)
(Rosemann et al., 2008; van der Aalst & Dustdar, 2012). Instead of stripping these variables from digital
trace data to make the data fit the format of process analysis tools, such as eXtensible Event Stream
(Bala, Mendling, Schimak, & Queteschiner, 2018), we let context permeate everything: we use it to

define the events that make up the process at it unfolds.

The advantage of bringing context inside the process is that contextual factors can be included
at any level of granularity, so that context can change as fast as the process itself. Adding contextual
factors in this way can result in a combinatoric explosion of fine-grained categories of events (who x
what x when x where x how x ...). In ethnographic research, the presence of the researcher helps
manage the combinatoric explosion but the scope of research is limited to the here and now (Myers,
2009). The abundance of digital trace overcomes this limitation but at the cost of data explosion
(Lindberg, 2020). The prevailing wisdom is that this proliferation is undesirable, but as we will

demonstrate, it results in two transformative insights:

The first insight is that large numbers of fine-grained categories can be useful to theory
development. This contradicts prevailing wisdom about the necessity of recoding data into more
abstract 2" or 3™ order categories for rigor, conceptual clarity and theoretical scaling (Gioia, Corley, &
Hamilton, 2013; Urquhart, 2013). We discovered that a larger number of fine-grained categories of
events in a narrative network resulted in a much clearer, more readily interpretable visualization of the

process. By analogy, more pixels make a clearer picture.

The second insight results from the way that absence highlights presence. The relationship
between absence/presence is a general principle in semiotics (Derrida, 1981; Eco, 1976; Rotman,
2016), but it is overlooked in conventional research methods where only presence is considered
relevant. When we visualize hundreds of fine-grained categories as a network of sequentially related

events, it is the absence of connected events (the white space) that makes the processual structure



visible and interpretable. While context is sometimes seen as "muddying the waters" in conventional
research (Avgerou, 2019), adding more contextual factors tends to disentangle and clarify process
visualizations. To the extent that structural regularities are present in the context (e.g., division of labor),
inclusion of more contextual factors will result in more white space (lower density), which will enhance

the clarity and interpretability of the visualization.

To make our approach useful to IS research practice, we operationalize our insights with a
software application called ThreadNet. ThreadNet is an open source R package that we have been
developing with support from the National Science Foundation, as part of a larger research program
(Antecedents of Complexity in Healthcare Routines, NSF SES-1734327). In this paper we introduce
ThreadNet. We demonstrate how to use ThreadNet by visualizing the processes in a dermatology clinic
at the University of Rochester Medical Center. ThreadNet is a flexible software for process data
analysis that allows researchers to freely choose contextual information to be included in the definition
of events that make up a process. It manages the combinatorics of context and makes it easy to see
and compare how social/material contextual factors are entangled with processual phenomena.
Without a convenient tool for visualization, the conceptual insights we describe here would never have

emerged.

We begin by defining the essential theoretical concepts that provide a foundation for our work:
process, events, context, and digital trace data. Then we describe how narrative networks allow us to
define events through context, thereby making the critical conceptual move: bringing context inside the
representation of process rather than leaving it on the outside. We demonstrate this approach by
visualizing the electronic medical record (EMR) audit trail from a dermatology clinic. This example
shows how the recordkeeping process is entangled with its social and material context. The example is
typical of healthcare processes (Plsek & Wilson, 2001), and we show it as the complex socio-materially
entangled mess that all expect it to be (van der Aalst, 2011a). We then demonstrate that, as we add
contextual factors, ThreadNet disentangles the visualization in clearer, more comprehensible ways. We
then compare our approach to other processual and qualitative data analysis tools, to clarify the
conceptual and methodological novelty and transformative potential of our work. Finally, we discuss the
implications, possibilities and limits of this approach for process scholarship in information systems and

beyond.



2. Essential concepts

This paper builds on concepts and terminology from a diverse set of theoretical traditions, from
process mining to structural linguistics. In this section, we present the bare essentials necessary to
understand our analysis of the EMR recordkeeping process. After presenting the example, we compare

the concepts presented here to related work in information systems and other fields.
2.1 Processual phenomena

The framework we present here puts processual phenomena in the foreground (Emirbayer,
1997; Langley and Tsoukas, 2016). By processual phenomena, we mean any progression of events
that unfolds over time (Abbott, 2016; Tsoukas & Chia, 2002), such as routines, projects, workflows, or
business processes. As these examples suggest, we intend to encompass a broad range of processual
phenomena, independent of level of granularity (e.g., sequences of tasks, actions, processes,
workflows, life stages), timing (e.g., by seconds, minutes, years) or extent of formalism (e.g., routine,
business process, action pattern, algorithm). In what follows, we will use the collective label “process”
to refer to any kind of processual phenomena.
2.2 Processes are sequences of events

Processes can be conceptualized as recognizable, repetitive sequences of events that unfold
over time (Abbott, 2016; Pentland, Haerem, & Hillison, 2010; Tsoukas & Chia, 2002). Events are the
abstract categories that formed from instantaneous observations or occurrences (Pentland & Liu, 2017).
This translation from occurrences to events is the essential first step in theorizing about sequential data
(Abbott, 1990): we observe occurrences, but we theorize about events. In particular, the sequential

relation between events describes how a process unfolds over time (Pentland, 1999).

Of course, events with duration can overlap in time (e.g., in preparing spaghetti, one might cook
the pasta while making the sauce). In the data we analyze here, we treat events as instantaneous. To
capture duration and overlap, "cook the pasta" would be represented as a series of finer grained
occurrences (put the pasta in the water, check doneness, drain the pasta...) that mark the start and
stop times of various activities. Overlapping activities could also be modeled as part of the constantly

changing context. Thus, it is always possible to regard events as sequentially related.
2.3 Events are defined by context

Within a process, events are defined by "what happens," but also by contextual specifics such



as the time (now, later, ...), place (here, there, ...), subject (me, you, ...), and so on (Barnes & Law,
1976; Heritage, 2013). Speech acts (Austin, 1962) serve as an illustration for this idea, because their
functional effect depends on the context of the utterance. For example, "l pronounce you husband and
wife," has a different effect depending on who says it and who is present when it is said. In short, events

are defined by context (the circumstances that form the setting for an event).
2.4 Situational and sequential context

Events typically occur as part of larger sequences that form a process, such as a business
process, a workflow, or a routine (Bose & van der Aalst, 2009). To illustrate, Figure 1 shows a set of
typical contextual factors changing over time. Each row represents an event, each column represents
a dimension of context. Figure 1 echoes Van de Ven & Poole’s (1990) classic framework for research

on innovation processes: a set of factors that change over time.

Figure 1 differentiates context into two dimensions: situational and sequential context. In
research paradigms derived from classical linguistics, situational and sequential context would be
referred to as the paradigmatic and syntagmatic dimensions (de Saussure, 1974). Situational context
refers to the situational particulars we might use to describe occurrences in any process, routine, or
story: who, what, where, why... (Burke, 1962). Sequential context arises because, in practice, nothing
happens in isolation; events are always located in an on-going sequence of other events (Bose & van
der Aalst, 2009; Goh & Pentland, 2019). In traditional process terms, this is the timestamp that signals

when an event occurred and which occurrences form part of that event.

Figure 1. Events in processes are defined by situational and sequential context

! This definition of context draws on the idea of frames as the definition of the situation as an
excerpt of ongoing activity (Goffman, 1974, pp. 10-11): Depending on which circumstances are
chosen, the definition of a situation (i.e., an event) changes.
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There are several essential concepts here. First, as Figure 1 shows, context is crucial to the
idea of process (Abbott, 2016; Pettigrew, 1997). Change implies a baseline or a point of reference from
which we discern a difference. Without context, it is impossible to detect or even conceptualize change
(Pettigrew, 2012). Second, context has multiple layers (Rosemann et al., 2008). These layers can
change on different time scales, as shown in Table 1. Some contextual dimensions may change quickly
while others may remain relatively stable, giving them different roles in understanding the process that
unfolds. For example, it is natural to define events in terms of the aspects of context that change fastest
(e.g., specific actions by specific actors). Contextual attributes that change most slowly, such as the
clinic location, are likely to be external dimensions of context and typical dimensions of comparison
(Avgerou, 2019; van der Aalst & Dustdar, 2012). We could compare routines between two or more
clinics, for example. All of these layers of context co-exist in each occurrence, as shown in Figure 1,
but their different type and role have typically not been incorporated into existing approaches to process

analysis and theorizing.

Table 1: Temporal layers of analysis

Event Thread Processual phenomenon
Check-in with Visit to dermatology EMR Record keeping
receptionist clinic (on-going and
(seconds-minutes) (hours) constantly changing)

Another essential concept is that the definition of an event is not pre-determined; it depends on

what contextual dimensions we choose to include. For example, we can define events in terms of



contextual attributes that change more slowly than the data in an event log. For example, it would be
perfectly natural to define each patient visit as a single event (based on the visit ID), although it might
consist of hundreds of fine-grained events from check-in to check-out. As mentioned earlier, this

provides a natural way to represent duration and overlap, if so desired.

Finally, we note that contextual dimensions may be correlated or aligned (Kim et al., 2019) in
varying degrees. For example, in an idealized world, each actor might perform one task with the same
tool in a single location. If so, those contextual dimensions would perfectly be aligned; using an

additional dimension to describe the action would not add information.

To summarize, while the importance of context has long been recognized in process mining
and modeling (Bose & van der Aalst, 2009; Rosemann et al., 2008), it has been conceptualized and
operationalized as something that exists outside of processes (Rosemann et al., 2008). Moreover,
context has usually been seen as static and a-temporal (Pettigrew, 2012). Our conceptual move is to
put context inside the definition of process, allowing it to be as dynamic and performative as the process
itself. Putting context inside the process mixes the “in-here” and the “out-there” (Hernes, 2007, p. 2).
This move sets the stage for a novel approach to conceptualizing and analyzing dynamic, processual
phenomena.

2.3 Narrative networks: A framework to incorporate context explicitly

Narrative networks provide a way to incorporate situational and sequential context into the
definition of events that are constitutive of processual phenomena. The narrative network was
introduced as a method for describing technology-in-use within the repetitive, recognizable patterns of
events that characterize organizational routines (Pentland & Feldman, 2007). Formally, a narrative
network is a weighted, directed graph where the nodes represent categories of events and the edges

represent sequential relationships between those categories (Pentland et al., 2017c).

It is important to be clear about what this class of network does and does not represent. First,
the nodes in a narrative network represent categories of events. For example, in a medical clinic, a
typical event would be: "The nurse takes your blood pressure." Traditional process models represent
the descriptive or constative nature of processes (Recker et al., 2009; van der Aalst, 1998), such as,
for example, the declaration “take blood pressure”, then “record blood pressure.” In contrast, narrative
networks represent performative trajectories (Hernes, 2017), i.e., accounts of what happens, what is

being done. As Hernes (2017, p. 604) argues,
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Events ... are not to be seen as representative of a trajectory, but as performing
the trajectory. Every event takes active part in performing the temporal trajectory, by

defining the present events in the context of its predecessors and antecedent events.

This view entails the assumption that the social world is a continually unfolding process and
thus the “dynamic, unfolding process becomes the primary unit of analysis rather than the constituent
elements themselves” (Emirbayer, 1997, p. 287). So, while each constituent event is performative,
when they are sequentially related in a set of threads (or paths, Goh & Pentland, 2019, or in Hernes’
(2017, p. 604) terms, trajectories), and incorporated into a network of events, the overall performative

effect unfolds.

Second, a narrative network represents sequential relationships between events, defined as
actions, activities, or processes (depending on vocabulary and granularity used to define and label the
nodes). These networks do not correspond to social networks (the nodes are events, not people),
flowcharts or petri nets (they do not model state changes), or Markov models (the nodes do not
represent system states). Unlike these more familiar classes of networks, the nodes represent
categories of events in a domain. The edges indicate temporally sequential adjacency of those events
along a set of observed threads (e.g., “college first, then graduate school”), but they do not necessarily
indicate causality. Past events influence future events but they do not determine them (Goh & Pentland,

2019).

Situational context enters via definition of the nodes of the network. Our conceptual move
is that we broaden how we define the events in narrative networks. Published examples of narrative
networks have included nodes defined by actions, such as those in an invoice processing system
(Pentland et al., 2010). Occasionally, the events have been defined as both actions and actors. Goh et
al. (2011), for example, use narrative networks to identify where and how the introduction of health
information technology changes sequences of actions performed by actors. Yeow and Faraj (2011) use

narrative networks to investigate changes to actors and actions resulting from an ERP implementation.

These examples show that there is merit to representing processual phenomena as events in
a narrative network, but we also see that current applications tend to limit their inclusion of context to
either actions, people or technology, but neither all three simultaneously nor additional context such as

location, reason, date and/or time. Event definitions in the literature to date have generally been limited
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to "action" or "action-actor." We have previously demonstrated how action- or actor-only network
graphs skew our view of what is going on, e.g., what constitutes a handoff (Pentland et al., 2017c). We
now demonstrate below how a richer, more contextualized definition of events changes the narrative
network and thus changes how the processual phenomena are represented — and what we might learn

about them.

Sequential context enters via the edges of the network. The idea of tracing associations
between actions is based on the idea that actions do not happen in isolation — they occur as part of
streams of activity, thus forming an action-centric view of the world (Pentland, Pentland, & Calantone,
2017a). Musicians rarely just play one note; they play tunes. The sequential relationship is determined
empirically by tracing the sequence of actions within a thread. These networks can be automatically
constructed from “traces” (Bala et al., 2018; De Weerdt, vanden Broucke, Vanthienen, & Baesens,
2013) in computerized event logs, middleware or other forms of digital trace data. Using digital trace
data, i.e., digitally recorded and time-stamped logs of sequential events, thus opens new possibilities
to expand our view both conceptually and empirically.

2.4 Contextualizing digital trace data

Methodologically, the value of our approach (defining events by combining relevant contextual
factors) rests on the assumption that data about different layers and changes of context are available.
Ethnographic fieldwork allows researchers to access context through immersion or embeddedness
(Feldman, 1995; Lewis & Russell, 2011). However, fieldwork is ill-equipped to handle the large volume
of data traces now collected and stored on digital platforms (Floridi, 2012). Just as processes of work
and organizing cannot meaningfully be decoupled from technology anymore (Orlikowski, 2007;
Orlikowski & Scott, 2008), all aspects of our life are increasingly mediated by digital technology (Alaimo

& Kallinikos, 2017; Yoo, 2010).

Digital trace data is inherently processual in nature. As the name suggests, it “traces”, i.e.,
connects actions and events enabled or mediated by digital technologies as they unfold over time: it
captures the sequence of events that constitutes a process because it includes time-stamped logs of
activities and events enacted through digital technologies or platforms. This allows more precise and
more voluminous data on actions and events than traditional modes of collection such as observations,

interviews or archival data (Schensul, Schensul, & LeCompte, 1999).

Digital trace data provides opportunities for qualitative scholars (Sundararajan, Provost,
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Oestreicher-Singer, & Aral, 2013) but also requires serious methodological adjustment to the particulars
of this new type of data (George, Osinga, Lavie, & Scott, 2016). For example, when confronted with
digital trace data, qualitative scholars tend to become overwhelmed by the sheer size of these datasets
(Lindberg, 2020). Moreover, digital trace data is organic, not designed, so it is inherently susceptible to
validity issues (Xu, Zhang, & Zhou, 2019). Also, digital trace data can be both heterogeneous and
unstructured (Dhar, 2013), making it difficult to analyze and confront the meaning of digital trace data

as a conceptualization of the events and mechanisms it records (Levina & Vaast, 2015).

In response, computational social science has been advocated as a methodological advance
(Chang, Kauffman, & Kwon, 2014; Lazer et al., 2009) but it comes with a number of challenges. These
include the difficulty of analyzing complex and messy social phenomena, and the tendency of
researchers to oversimplify (naturalize) these complex relationships, thereby curtailing the search for
meaning (Térnberg & Toérnberg, 2018). Scholars have thus been advised to complement and blend
computational analyses of digital trace data with deep qualitative inquiry to account for, and understand,
the context(s) in which that data is generated (Lindberg, 2020; Whelan, Teigland, Vaast, & Butler, 2016).
In essence, scholars are advised to add context to digital trace data “from the outside” through manual
data collection or analysis. We propose an alternative: rather than add context to the computational

analysis of digital trace, we suggest incorporating it inside.

3 Visualizing Record Keeping Routines at a Dermatology Clinic using ThreadNet

3.1 Brief Introduction to Threadnet

Because we aim to contribute to research practice, we want to demonstrate the usefulness of
bringing context inside process data for theorizing about the process. To that end, we introduce
ThreadNet, a software tool for the analysis and interpretation of processes in context based on the idea
of a narrative network (Pentland et al., 2017c). We developed ThreadNet iteratively and presented a
variety of prototypes to the community over the years (Pentland, Recker, & Kim, 2017b; Pentland,
Recker, & Wyner, 2015, 2016). The original version of ThreadNet was developed in MatLab. With
support from the National Science Foundation (NSF SES-1734237), we now made ThreadNet available

as an open source R package on GitHub (http://www.qgithub.com/ThreadNet), together with source

code, instructions, documentation and sample data (http://routines.broad.msu.edu/ThreadNet/).
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Much like other computational approaches (e.g., Gaskin, Berente, Lyytinen, & Yoo, 2014;
Indulska, Hovorka, & Recker, 2012; Larsen & Monarchi, 2004), ThreadNet uses sequential, categorical
data to allow analyses and visualizations of processual phenomena. Metaphorically, it weaves threads
into fabric. The key feature relevant to this paper is that ThreadNet makes it particularly convenient to

choose contextual dimensions to define events and visualize the resulting network.

ThreadNet was developed to help make computational tools for the analysis of digital trace data
accessible by qualitative researchers. This resulted in some straightforward design criteria. First, it
should have a graphical interface that can be used without any coding or programming. We wanted to
remove barriers to use and minimize the learning curve. Thus, we used Shiny R to create the user
interface. Second, the emphasis should be on visualization, not statistics. ThreadNet contains a variety
of simple visualizations for narrative networks. Third, it should not duplicate functionality from other
network or sequence analysis packages (e.g., UCINet or TraMineR). Rather, ThreadNet provides the
capability to export narrative networks for use in other software.

3.2 Research setting: Record Keeping at a Dermatology Clinic

The data we use here stems from a larger research project investigating the antecedents of
complexity in healthcare routines (NSF SES-1734237). The data were collected from the dermatology
clinics at the University of Rochester Medical Center. Superficially, dermatology clinics would seem to
be one of the simplest possible clinical settings. In interviews, clinical staff describe the workflow as a
fairly uniform series of steps: (1) check-in; (2) “rooming” (taking the patient to an examination room); (3)
taking vital signs and history; (4) examining the patient; (5) administering treatment and/or writing
prescriptions; and (6) check-out. However, the data we extracted from the electronic medical record
(EMR) system indicates that the process contains a lot of variation and complexity. This setting provides
a revelatory and representative exemplar of how processes can be analyzed on the basis of digital trace
data —in our case EMR record keeping logs. EMR are a notorious source of digital trace data (Kunzman,
2018; Lee et al., 2017): the traces EMR provides are both rich and noisy, in turn underscoring how

being able to recognize everything “in context” is critical to understanding what is going on.
3.2 The Digital Trace Data

The EMR audit trail is useful for this paper because it contains contextual dimensions that are
typically not present in most digitized event logs available in standardized formats (van der Aalst, 2016).

For example, in addition to the action and the timestamp (what and when), our EMR data contains the
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role of actor (who) and the workstation they used (where). We interpret the workstations as indicating
location, rather than technology, because the EMR user interface is the same for each user at all
workstations. Therefore, each individual is always using the "same system," but they are using it in

different locations.

We focus on the record keeping process at one clinic on one day in February, 2015. The dataset

(available at http://routines.broad.msu.edu/ThreadNet/OneDayOneClinic.csv) includes 24 visits from

that day. The data was completely de-identified, with no identifying information about patients or
providers. Table 2 shows the first five minutes of one visit to the clinic, as captured in the EMR audit
trail. Each row corresponds to an event. Events are described by a timestamp, a visit ID,

Workstation_ID, Action_code, Role and Clinic.

When patients arrive at the clinic, they check in with a receptionist whose formal role in the
system is “Admin_Tech.” The computer workstation at the reception desk is labeled “BCAHHURDRM".
To complete the check-in, the Admin_Tech visits several screens in the EMR system (e.g.,
“MR_SNAPSHOT"). After the patient is checked in, a Licensed Nurse obtains the patient history, and
enters vital signs and the chief complaint. Every patient visit begins with checking in at reception and
ends with printing a visit summary at checkout. But throughout each visit, the situational and sequential

context is constantly changing.

Table 2: The first five minutes of one patient visit

tStamp VISIT WORKSTN_ID ACTION_CODE ROLE CLINIC

2/2/15 8:53 1 BCAHHURDRM CHECKIN TIME Admin Tech A
2/2/15 8:53 1 BCAHHURDRM MR_SNAPSHOT Admin Tech

2/2/15 8:53 1 BCAHHURDRM MR_REPORTS Admin Tech A
2/2/15 8:53 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A
2/2/15 8:53 1 BCAHHURDRM MR_REPORTS Admin Tech A
2/2/15 8:55 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A
2/2/15 8:55 1 BCAHHURDRM MR_REPORTS Admin Tech A
2/2/15 8:56 1 BCAHHURDRM MR_SNAPSHOT Admin Tech A
2/2/15 8:56 1 BCAHHURDRM MR_REPORTS Admin Tech A
2/2/15 8:56 1 URDERMDT3 AC_VISIT_NAVIGATOR Licensed Nurse A
2/2/15 8:56 1 URDERMDT3 MR_HISTORIES Licensed Nurse A
2/2/15 8:56 1 URDERMDT3 MR_ENC_ENCOUNTER Licensed Nurse A
2/2/15 8:56 1 URDERMDT3 MR_VN_VITALS Licensed Nurse A
2/2/15 8:56 1 URDERMDT3 MR_REPORTS Licensed Nurse A
2/2/15 8:56 1 URDERMDTS3 FLOWSHEET Licensed Nurse A
2/2/15 8:56 1 URDERMDT3 MR_VN_CHIEF_COMPLAINT Licensed Nurse A
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2/2/15 8:56 URDERMDT3 MR_REPORTS Licensed Nurse A
2/2/15 8:56 URDERMDT3 MR_SNAPSHOT Licensed Nurse A
2/2/15 8:56 URDERMDT3 MR_REPORTS Licensed Nurse A
2/2/15 8:57 BCAHHURDRM MR_REPORTS Admin Tech A
2/2/15 8:57 BCAHHURDRM MR_SNAPSHOT Admin Tech A
2/2/15 8:58 URDERMXRMI1 MR_REPORTS Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 AC_VISIT_NAVIGATOR Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 MR_ENC_ENCOUNTER Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 MR_HISTORIES Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 MR_REPORTS Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 MR_VN_VITALS Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 FLOWSHEET Licensed Nurse A
2/2/15 8:58 URDERMDT4 MR_REPORTS Physician A
2/2/15 8:58 URDERMXRMI1 MR_VN_VITALS Licensed Nurse A
2/2/15 8:58 URDERMXRMI1 MR_HISTORIES Licensed Nurse A
2/2/15 8:58 1 URDERMXRMI1 MR_HISTORIES Licensed Nurse A

Note how the structure of the data in Table 2 resembles the conceptual layout of Figure 1. The
rows are events, and the columns contain a set of contextual dimensions. Some dimensions change
quickly (e.g., ACTION_CODE), others change slowly (e.g., ROLE), some remain constant for a majority
of events (e.g., CLINIC). An important conceptual move is to treat all of these dimensions on an equal
footing. Rather than privileging the role of the actor (as in much of traditional organizational scholarship),
or the label on the action (as in typical process analysis and process mining), they are both just aspects

of context that we can use to define categories of events.

We have shaded sections of Table 2 to show a typical pattern in the record keeping work. In
each set of shaded rows, a particular actor (e.g., Licensed Nurse) stands at a particular workstation

(e.g., URDERMDT3) to perform a series of actions. They may perform several actions or just one.

We can visualize the whole set of 24 patient visits as a set of threads, as shown in Figure 2.
Each dot represents one event (one row from the Table 2) and each row represents the sequence of
events in patient visit in event time (Poole, Lambert, Murase, Raquel, & Joseph, 2017). The shading of
each dot indicates the corresponding event. Visualizing the threads as straight lines makes it easy to
see that they vary in length and in sequence. No two threads look alike. However, it does not show how
contextual factors shape the overall pattern of action. To see that, we use ThreadNet to visualize how

the events within each thread are related.
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Figure 2: Twenty-five visits to the dermatology clinic
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3.3 The ThreadNet algorithm

Conceptually, ThreadNet constructs narrative networks by making two passes through the
data. Inthe first pass, it identifies the nodes. In the second pass, it traces and counts the edges between

the nodes.

1. Identify the nodes. To define the nodes that will be included in the network, ThreadNet
combines a set of contextual dimensions selected by the user. Nodes are labeled by combining
the values in the columns of the data.? Only the unique combinations that occur in the data

appear in the network.

1. Trace the edges. ThreadNet follows each thread from one event to the next. Whenever the
sequentially adjacent events within a thread are different, it adds an edge between that pair of
events, from one event to the next.> The strength of the tie between those events can be based
on the frequency of each pair of events (how often that transition occurs in the data). The
resulting network is a valued, directed graph that is unimodal (one kind of node) and

unidimensional (one kind of edge).

3.4 Incorporating context make the network easier to interpret

To demonstrate how context changes our analysis and understanding of process, consider how

2 The combination of contextual factors is implemented in R using the unite function from the
tidyr package. This function combines columns in a data frame to create a new column from
the values in the original columns.

3 This functionality is implemented in R using the ngram package to count the 2-grams within
the observed threads. This provides an edge list that can be used to construct the network, as
well as the weight of each edge.
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incorporating context in different ways changes the apparent structure of the narrative network that
describes the record keeping process. To illustrate, Figure 3 shows how we used Threadnet to display
the same 25 visits with the nodes defined in four different ways: (1) role only, (2) action only, (3) action
+ role, (4) action + role + workstation. Figure 3 also displays some quantitative information about each

row (the entropy of the data and the density of the graph) that helps explain the visualizations.

In the left-hand column of Figure 3, we see the frequency of categories within each contextual
dimension (or combination of dimensions) rendered as pie charts. For example, in the first row (Role
Only), we see that there are six roles, and the Resident was involved in 54.3% of the record keeping
that day. By hovering over the pie chart with the mouse in Threadnet, we would see that the Technician
was the second most active, with 38.8%.- In the right-hand column of Figure 3, we see the narrative
network with the nodes defined by the contextual dimension shown in the left-hand column.* It is worth

considering the differences between these four visualizations in some detail.

Figure 3: Contextualizing an event in four different ways changes the apparent

structure of the process

Contextual Frequency of occurrences Narrative Network
dimensions (n=4060)

of event

definition

Role Only

Density=0.78

N=6, Entropy = 0.98

4 Note that colors are assigned independently in the right-hand v. left-hand column.
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Action Only

N=48, Entropy = 2.9

Action +
Role
N=98, Entropy = 3.7
Action + W
Role + - mﬁ

COMBINED MR_VN_VITALS+Residenl+CLIS upP
5,
»

Workstation

Density = 0.0098

N = 458, Entropy =5.5

The first row shows the relation between the six roles in the clinic (Resident, Technician,
Admin_tech, Physician, Registered_Nurse, and Staff). As we noted above, the network graph is an
event network, not a social network, but it does provide an actor-centric perspective on the hand-offs
between the roles in the clinic (Pentland et al., 2017c). The graph is extremely dense (density = 0.78),

which obscures any underlying processes (Pentland et al., 2017a). Each role in the clinic handed off
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recordkeeping to nearly every other role at least once during the day. We can see that all the roles are

involved, but we cannot see what they are doing.

In the second row, we see same data with nodes defined by the Action (n=48). This would be
the typical way to define nodes in process mining and discovery (van der Aalst, 2011b). Due to the
highly variable nature of the work, this graph looks like the classic “hairball” (Dianati, 2016). In principle,
process mining tools could be used to refine and filter this representation (usually by frequency of
occurrence) to get a “comprehensible” model, which is what most applications of process mining try to
achieve (Breuker et al., 2016; van der Aalst, 2011a). Rather than attempting to simplify or reduce the

data to reveal an idealized model, we embrace the complexity that is present in the data.

To illustrate, instead of recoding the data into more abstract categories as proposed in
traditional inductive qualitative analysis (Gioia et al., 2013; Urquhart, Lehmann, & Myers, 2010), we add
more situational context. In the third row, we combine the actions and the roles to define the nodes in
the network. This combination results in 98 unique action-role values, each of which becomes a node
in the graph. When we construct the graph this way, it begins to reveal regions of activity associated
with each clinical role. The two large clusters correspond to the Resident role and the Technician role.
We are adding context in the events by including the role that takes each action. Adding context starts
to make the graph less dense (density = 0.083). The increase in “white space” (absence) allows us to
begin to see structure in the process. As work is carried out, some roles frequently have handoffs with

others, while other roles carry out their work without frequent interactions with others.

For example, the group of actions carried out by the Physician (sparse set of orange nodes in
the upper left) is mainly connected to the actions carried out by the Resident (the relatively dense set
of green nodes in the upper right). The group of actions carried out by the Technician is also relatively
dense, but separated from the Physician. We can see that Physicians have frequent handoffs with
Residents, but less frequently with the Technicians. For all of these roles, the most frequent handoff
occurs via "MR_REPORTS", which is a kind of landing screen in the EPIC user interface (as reflected

by its frequent occurrence in Table 1).

In the fourth row, we add more situational context by adding “workstation” into the definition of
the nodes. This combination results in 458 unique values for action-role-workstation events. When we

construct the graph with these 458 nodes, the sociomaterial structure of the work process becomes
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more clearly visible. The clusters in the graph correspond to activity at the workstations around the
clinic. The influence of the material technology (specific workstations) is clearly visible in the patterns
of action because the clusters in the network correspond to workstations. The visibility increases
because adding context adds both presence (the clusters of action-role-workstation that do occur) and
absence (combinations of action-role-workstation that never occur). By adding context we add both
information and white space to the graph, which helps us see what Hernes (2007, p. 1) called the

“tangled world.”
3.5 Entanglement and Disentanglement through context

Based on this example, we can begin to generalize about the ways that contextual
dimensions can influence the visualization. Not all contextual dimensions are equally informative. If a
dimension never changes, or if it co-varies with other dimensions, it does not add information.
Conceptually, adding more dimensions of context is only valuable if they add information (Kim et al.,
2019). Context only matters when it changes. For example, if we added a dimension for Continent, it

would have the same value for all visits to all clinics at the University Rochester Medical Center.

By contrast, some contextual dimensions may have multiple values, but the observed threads
never cross between them. In other words, those dimensions are not visibly entangled by the process.
Threadnet can help us see such a situation in the dermatology audit trail data quite easily if we expand
our view of the process to include clinic as a contextual dimension. To illustrate, consider nodes in the
graph defined with three dimensions: action-role-clinic. So, when a nurse takes an action in one clinic,
we treat that as a different event than a nurse taking the same action in a different clinic. The University
of Rochester Medical Center operates multiple dermatology clinics, each of which is at a distinct
physical site. Visits to one clinic do not usually extend to the other clinics. Figure 4(a) shows one full
day at two clinics (51 visits) and Figure 4(b) includes 3 clinics (76 visits). Comparing both network
graphs it becomes immediately apparent where context was entangled with the process and where it
was not: Two of the clinics had a single interaction that day, the third clinic was completely disconnected.
Hence, when we include the situational context clinic in the definition of the nodes, it disentangles the
graph. This is because patient visits tend to be localized to particular clinical sites; the threads do not
cross these contextual boundaries very often. When the analysis shows that they do, it allows
“constructing mystery” in theorizing (Alvesson & Karreman, 2007): the graph clearly shows the path, it

allows us to see what happened during these exceptions. Spotting such deviant cases through
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traditional qualitative fieldwork involves complex methodological and analytical work (Mertens et al.,

2016). With our approach, it can be computed.

Figure 4: Context disentangles the graph

o

(a) Two clinics (b) Three Clinics

In a tangled world, however, threads cross organizational boundaries (Avgerou, 2019; Winter
et al., 2014). For example, in-patient medical care may involve multiple clinical specializations,
specialized labs, specialized treatment facilities, and so on. These seemingly distinct units become
entangled in practice. When this happens, our intuition about the resulting processual phenomena is
weak, at best. Digital data sources that trace such processes typically span multiple systems and
technologies, making it even more difficult to identify and reason about the events that that unfold. But
aside from technological difficulties in constructing the digital trace data (Bala et al., 2018) we also need
to explore different conceptualizations of “what happened” to theorize about the process. Our
conceptualization of context within an event allows for this conceptual latitude (Burton-Jones, McLean,
& Monod, 2015) because it allows constructing views on the process constituted by different
conceptualizations of “context” to find structure and meaning in the graph that informs theorizing about

what is going on.

4 DISCUSSION AND IMPLICATIONS

Context is clearly important to our understanding and analysis of processes, but it has been
difficult to put this idea into practice. Context is usually conceptualized and operationalized as
something that exists outside of processes (Rosemann et al., 2008); moreover, context is usually seen

as static and a-temporal (Pettigrew, 2012). When we conceptualize context as something "out there",
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in the background, then we might investigate the role of context in process by asking if the workflow is
different in one clinic vs. another (Avgerou, 2019; van der Aalst & Dustdar, 2012) or if it changes by
season (Rosemann et al., 2008). But when we conceptualize context as constitutive of the events within
a process, as we have done here, it takes us on an entirely different scholarly journey. The
visualizations in Figures 3 and 4 embody a novel way to incorporate context in the description of
processual phenomena. Putting context inside the conceptualization mixes the “in-here” and the “out-
there” (Hernes, 2007, p. 2). Adding contextual dimensions into the definition of events in a process
changes how a process looks both through presence and absence of new information. ThreadNet
provides a convenient way for researchers to incorporate and visualize the influence of context on the
structure of a process. It allows researchers to bring deep qualitative inquiry of the context of digital
trace data (Lindberg, 2020; Whelan et al., 2016) right into the computational analysis rather than adding

it as a complement. In the following sections, we discuss the implications of this innovation.

4.1 Comparison to other approaches to processual analysis

We start by explaining how our approach and implementation in ThreadNet is different to typical
ways for analyzing process data. We sampled a range of leading analysis tools potentially suitable for
process scholarship that are based on different underlying conceptual frameworks (specifically, NVivo,
ATLAS.ti, TraMineR, ProM and BupaR). Our comparison is by no means comprehensive. For example,
we have excluded an enormous set of other sequence analysis tools, many of which are specific to
bioinformatics or content analysis, but can be adapted to organizational research (see, e.g., Gaskin et
al., 2014). Likewise, we excluded several approaches to social network analysis (Borgatti, Everett, &
Johnson, 2013) even though they too can at least to some extent be used to implement similar ideas
(e.g., events as nodes in semantic networks). Instead, we sampled the two most prominent types of
tools used for process scholarship — those traditionally used in qualitative data analysis (Flick, 2018,
pp. 519-536) such as NVivo or ATLAS.ti and those typically used in digital trace data analysis
(Gabadinho, Ritschard, Muller, & Studer, 2011; van der Aalst, 2016). We inspected the capacity of both
the conceptual frameworks and the concrete features of the chosen tools to allow for our
conceptualization of processes as sequences of contextualized events in a narrative network. Table 3

summarizes our insights.
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Table 3: Alternative frameworks for processual analysis

Conceptual Open State Process Narrative
framework coding sequences mining networks
Example NVivo ProM
softwgre TraMineR ThreadNet
ATLAS i BupaR
One XES (xml .CSV with one
document with time-stamped
Text, sequence L
Input data ' specialized event per row
fieldnotes, per row, one
structure . structure for and contextual
images, etc. state per . ; ,
column timestamped afttributes in
events) columns
Limited
No incorporation of
. . o Any number of
incorporation | context: actions contextual
How is of context: may be . ;
In text and . . dimensions can
context diagrams states are associated with be included as
represented? 9 defined by a resource or coded
single-value | other attributes .
codes such as categories
location
How are Events are Events and noEc‘i/:gt?S;rtis
events and In text and implicit in states explicitly are irr; licit in
states diagrams sequence of modeled in se uel;)) ce of
represented? states Petri Net C(Iavents

Open coding. Open coding is the ultimate in flexibility, but it is also labor intensive and thus
not well suited to handling digital trace data (Indulska et al., 2012). Most qualitative analysis is based
on coding of text or some other kind of document. Tools like NVivo, for example, allow the creation of
“nodes” and “node hierarchies.” These can be used to code contextual categories, and could be used
to code sequential categories, as well. However, working directly with text, even with a tool like NVivo,
it would be difficult to keep track of hundreds of categories and their sequential relationships in a large
corpus of data. Also, since ethnographic field notes and interviews are often focused on the
“ethnographic present” (Sanjek, 1991), time or sequence are often not present in the original data
sources. In contrast, ThreadNet traces all of the sequential relations between every unique combination

of contextual categories.
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State-sequence analysis. Career progressions provide the archetypal example of a state
sequence analysis in social science research (Abbott & Hrycak, 1990). The state-sequence framework
is instantiated in TraMineR (Gabadinho et al., 2011), along with a broad array of sophisticated sequence
analysis tools. TraMineR has mainly been applied in sociological research on life course progression,
although the methods are applicable to a broad range of problems (Poole et al., 2017). States are
defined by a single attribute (e.g., married or unmarried). Each row is a case (e.g., a career) and each
state occupies one column, so here is no way to show multiple states (attributes) at the same time. In
contrast, ThreadNet can handle events defined by any combination of attributes and it allows users to

change the combination at will.

Process mining. We use the term “process mining” to refer to a large, diverse, and evolving
set of tools and ideas (van der Aalst, 2016). What we focus on here corresponds largely to what is
considered “classical’” process mining. The ProM framework (van Dongen, Alves de Medeiros,
Verbeek, Weijters, & van der Aalst, 2005) is a platform where researchers can publish new tools and
techniques in the form of software plug-ins. Outside of ProM, BupaR (Janssenswillen & Depaire, 2017)

is an R package that implements basic process mining capabilities.

In many, but not all, applications of process mining and modeling, the goal is to find a clean
model that provides a reference for the execution of a process. Most process mining algorithms assume
that the underlying process is stable such that discovery of the stable process and conformance
checking are the primary applications (van der Aalst, 2005, 2011b). To that end, a typical goal of
visualization has been to simplify overly cluttered graphs into comprehensible models (Breuker et al.,
2016; van der Aalst, 2011a). In contrast, our explicit goal is to reveal the extent of the mess and to

display processes as they unfold in event time.

Our approach. In contrast to these other frameworks for processual analysis, the narrative
network, on which ThreadNet is based, provides a way to embrace and internalize context. It can
handle a fluid notion of events constituted by changing context. This is important because even in a
repetitive process or routine, there is no a priori reason to expect that events will repeat in an exact
pattern. Especially on longer time scales, it is reasonable to expect on-going change (Pentland et al.,

2012).

As we show in our illustration of the EMR record keeping trace data, our approach is capable
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of revealing structure and paths of the clinical routine that would be invisible using any of the alternative
frameworks in Table 3: open coding would potentially lead to a rich description of certain observed
occurrences or the surfacing of particular salient patterns or classifications, but it does not provide an
effective method for looking at the patterns that emerge from 458 unique combinations of role, actor,
and workstation. Process mining and state-sequence analysis do not provide complex representations
that, as we show above, can help disentangle and explain what is really going on. They typically either

abstract away such complexity by design or only reveal the “hairball” that is the work on its surface.

4.2 Implications

Using contextual information potentially available in digital trace data to relax our assumptions
of what constitutes the context of events in processes has interesting implications for process

scholarship.

Abstraction and richness of processual data. The conventional wisdom is that large
numbers of first-order categories need to be reduced into a smaller number of higher order categories
(Berente et al., 2019; Gioia et al., 2013). We suggest taking the opposite approach: include as much
detail as possible. As more context informs the definition of events, the number of categories of events
increases, with each event category becoming one node in the narrative network. Yet, the total number
of event categories that actually occurs in the data — the actualized combinations — remains relatively
small: in the data we use here, 458 actualized event nodes exist, making up about 7.2% of the
combinations that could occur. If every role performed every action at every workstation, there would
be 6 roles x 48 actions x 22 workstations = 6336 combinations. If we analyzed a larger sample, that
fraction would undoubtedly rise, but overall it will remain low because the world is full of structure and
specialization: not everyone uses every tool to do every task in every location. In other words, more
categories do not simply clutter the graph. They present meaningful new information while also adding
clarifying absence into the visualization. When we include more contextual dimensions in the definition
of events, we can begin to visualize that structure in a novel and interesting way, which helps inductive

theorizing.

This approach is a dramatic departure from standard research practice. In most analyses, we
strive to keep the number of codes (categories) to a minimum. Tools like NVivo or ATLAS.ti can be

used for any number of first order constructs, but their key feature is to make it easy to reduce the
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number of second order constructs (Gioia et al., 2013) in order to speed up data analysis (Flick, 2018,
p. 520). Second order constructs assist theoretical abstraction and scaling (Urquhart et al., 2010), but
they also reduce the richness of the description by reducing entropy. Fewer codes are more
manageable and easier to write about (Myers, 2009). The same approach is seen in process mining,
as well. In process mining, less frequent paths are often just filtered out to make a cleaner looking
process model (van der Aalst, 2009), one that is easier to comprehend (Breuker et al., 2016). In terms
of Weick’s (1969) trade-off between simplicity, accuracy and generality, a small number of abstract

categories favors simplicity and generality at the expense of accuracy.

Entropy, density, and absence as context. While our contribution is primarily of qualitative
value, it rests on quantitative properties: as we add contextual dimensions, we get more categories,
and the entropy of the data increases.® Entropy is a measure of information content, so more entropy
means more information. When we go from a lexicon of 48 unique actions to a lexicon of 458 unique
action-role-workstation combinations, as shown in Figure 3, we have much more information available.

Whether or not one calls these visualizations “richer,” they are definitely more informative.

At the same time, the density of the network drops dramatically. This is because a rather small
increase in number of edges (sequential relations between the nodes) is spread out over a much larger
set of possible nodes.® Visually, we are able to see the sequential relationships that occurred in the
data because they stand out more clearly against the background of the relationships that do not occur.
The blank space makes the shapes more visible. And in a world with social and technical division of
labor, where some actors use some tools to do some tasks, there is a lot of blank space. Most
combinations never occur just as most affordances are never actualized (Strong et al., 2014). By
incorporating more contextual information in the description of the process, we not only change the
apparent structure, we improve the visualization. This effect is demonstrated vividly by the images in

Figure 3.

The effect we are describing here is the result of including sequential context in our analysis.

Sequential context is an essential aspect of all processual phenomena (what happened before? What

5 Threadnet computes the entropy values shown in Figure 3 using the standard Shannon formula:
-).plogp, where p is the probability of each category in the data. This is the entropy of the data
as shown in the pie charts, which shows the relative frequency of each category in the pie. It does
not include any information about sequence.

6 Threadnet computes density using the standard formula for a directed graph: edges/nodes?.
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will happen next?). When we capture sequential relations between events in a narrative network, it
creates an exponential canvas of possibilities. To build on the visual metaphor, this canvas has n?
pixels, where n is the number of possible events we use to describe the process. Thus, the white space

(the absence) grows exponentially faster than the observed events (the presence).

Absence as context is a powerful idea. The things that never occur provide a background for
interpreting the things that do. The absent and the invisible are key issues with processual phenomena,
especially where safety or any kind of undesirable outcome is at risk. For example, consider medical
procedures or flight operations (Gawande, 2009). The work process may include checklists or other
actions that are intended to prevent bad things from happening (e.g., infections, crashes). These
elements can only be understood in light of what doesn’t happen. Checklists can seem like a waste of
time because the value they add shows up in what does not happen. Why does a team pause in the
operating theatre before proceeding? Why does a doctor write on the patient's left elbow before going

in to operate? The value added depends on what is prevented (the absence).

5 Future Research Directions

The approach we outline here has the potential to generate new research directions on the
basis of digital trace data and contextual process analysis. It emphasizes processes as units of analysis
(rather than objects or actors). It provides a formal way to represent process as a narrative network, as
suggested by Pentland and Feldman (2007). Because more and richer digital traces are becoming
available, the network approach is not only more feasible. We showed how such a network can include

more context, as well.
5.1 The role of context in process dynamics

Our approach provides a foundation for process dynamics as network dynamics (Goh &
Pentland, 2019). By dynamics, we mean changes to the structure of a process over time. Digitized
processes are a prime candidate for exploring such questions (Pentland, Liu, Kremser, & Heaerem,
2019). We can also use this approach for diachronic (or longitudinal) comparison (Barley, 1990; Berente
et al., 2019). In diachronic analysis, we are interested in change over time: What is the trajectory of the
process? What keeps it on track? What causes it to change? The first step in answering these

questions is to represent the process within the context in which it unfolds.
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Diachronic analysis further sets the stage for inquiry into why processes take the form they do.
Beyond describing and modeling processes, we can begin to explain and predict how processes form
and change over time. These are central themes in research on routine dynamics (Feldman, Pentland,
D'Adderio, & Lazaric, 2016). What we present here is purely descriptive: one day at one clinic. Echoing
Gregor (2006), the opportunity (and challenge) is now to move from level 1 (description) to higher levels

(explanation and prediction).

5.2 Processual perspective on heterogeneous ensembles

Because we allow varied definition of context, our approach generalizes easily to non-human
actors. While traditional behavioral science assumes that actors are human, recent theories of
sociomateriality point towards the increasing importance of technology in the constitution and
emergence of agency (D'Adderio, 2008, 2011; Faulkner & Runde, 2009; Leonardi, 2011). With digital
technology becoming increasingly malleable, performative, and editable (Ekbia, 2009; Kallinikos,
Aaltonen, & Marton, 2013; Yoo, Henfridsson, & Lyytinen, 2010), agency in routines is becoming less
pre-defined, more distributed and no longer solely human-centric (Beane & Orlikowski, 2015; Leonardi,
2011; Orlikowski, 2007). As we allow more situational context to enter the definition of an event (e.g.,
actor and artefact), we now place social and material agents on equal footing: we “de-center” traditional
categories because we treat everything equally. Actors, artifacts, actions are all just aspects of context.
As artificial intelligence increasingly plays a role in organizational and private processes and routines,

our approach allows visualizing, and analyzing how social and material agents interact.

5.3 Process theorizing with contextual digital trace data

The application of narrative networks with context is dependent on the availability, richness and
quality of digital trace data, and the ability to collect and encode sequential trace data that contains
meaningful contextual categories. At present, several issues remain that condition the possible use of
our approach and require further research and development:

1. Granularity. Granularity is always an issue in processual analysis (Poole et al., 2017). The
idea of incorporating situational and sequential context into process analysis benefits from data
that includes multiple levels of temporal granularity, as some contextual dimensions can change
at different rates. To gain meaningful insights, at least some contextual dimensions must be

captured at the time scale of the phenomena being investigated or faster.

29



Observability. Observability is another fundamental concern (Poole et al., 2017). Only
observable aspects of context can be included. For example, if one wanted to include what
people were thinking as a contextual factor, these data would need to be captured somehow.
Systems that record event logs, by contrast, have ability to record context data independent of
pace of change; however, most process-aware information systems tend to record only a
limited amount of observable context.

Sequential coherence. This framework requires data that have a coherent, narrative structure.
To create a meaningful narrative networks, one must start from meaningful narratives --
sequences of events that are related. For example, in our EMR data, events are related
because they are part of a patient visit.

Data quantity. In principle, our approach does not require large amounts of data. For example,
the methodology outlined by Pentland and Liu (2017) assumes that data are collected through
structured interviews. However, digital trace data makes it possible to compare processes
across time and space in ways that would be difficult with interviews or observations. Still,
processes unfold across technological and organizational containers, which makes it difficult to
trace events at the same level of observability and granularity and which may require imputing
their sequential coherence (Bala et al., 2018; Bayomie, Di Ciccio, la Rosa, & Mendling, 2019)

Pre-coding is required. To incorporate context into processual analysis requires that
contextual categories are coded. This is the hard work that qualitative researchers perform
using tools like NVivo and ATLAS.ti. For example, a corpus of email messages, where the
main body of the data is un-coded text, cannot be directly analyzed. The messages would need
to be coded. In many kinds of digital trace data (like the EMR data reported here), some
categorization (e.g., into actions, actors or location) is available, but data quality and coding
remains an important precondition (Bose, Mans, & van der Aalst, 2013).

Limits of Dimensionality. While adding contextual dimensions can be helpful, we cannot add
dimensions indefinitely. As Bellman (1957) pointed out, as the dimensionality of a feature space
increases, the number of configurations grows exponentially. For the reasons we explain
above, this can work in our favor when visualizing processes as narrative networks. At the same
time, we must be mindful of the corollary challenge: the number of configurations covered by

given set of observations can decrease. Thus, we may be seeing only a fraction of possible
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process patterns. Fortunately, using 3-4 dimensions to represent a process is safely within

normal human experience.

6 CONCLUSION

Bringing context into the description of processual phenomena involves a re-orientation in our
methods and our thinking, beyond switching figure and ground, by putting actions in the foreground and
actors in the background. It allows re-examining what counts as figure and ground in order to analyze

and ultimately theorize about processual phenomena in different ways from digital trace data.

Our contribution is primarily conceptual, not computational, but our working software Threadnet
provides the computational support necessary to make the concepts useful in practice. Traditionally,
with a moderate corpus of field notes, it is feasible to code the data and construct networks by hand.
But as we have shown here, restricting our analysis to a modest number of categories (regardless of
how defined) tends to suppress the richness of how we see and interpret processual phenomena.
Bringing context inside provides a new approach — not for proposing answers, but for asking new and
different questions, an ability that will gain prominence as more and more digital trace data becomes
available for study.” And as calls for computational methods for theorizing are increasing (Berente et
al., 2019; Lindberg, 2020), a strong conceptual focus on context and its role in process theorizing allows
us to shift our focus away from “what explains the process” (Van de Ven & Poole, 1995) to more
nuanced questions around “how does it change, and why?”, “how is it different?” and other inquiries of

comparison, dynamics and emergence in a digital world.
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