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ABSTRACT
We show that the multiplicity of the second normalized adjacency

matrix eigenvalue of any connected graph of maximum degree Δ

is bounded by 𝑂 (𝑛Δ7/5/log1/5−𝑜 (1) 𝑛) for any Δ, and improve this

to 𝑂 (𝑛 log1/2 𝑑/log1/4−𝑜 (1) 𝑛) for simple 𝑑-regular graphs when

𝑑 ≥ log
1/4 𝑛. In fact, the same bounds hold for the number of eigen-

values in any interval of width 𝜆2/log1−𝑜 (1)Δ 𝑛 containing the second

eigenvalue 𝜆2. The main ingredient in the proof is a polynomial (in

𝑘) lower bound on the typical support of a closed random walk of

length 2𝑘 in any connected graph, which in turn relies on new lower

bounds for the entries of the Perron eigenvector of submatrices of

the normalized adjacency matrix.
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1 INTRODUCTION
The eigenvalues of matrices associated with graphs play an im-

portant role in many areas of mathematics and computer science,

so general phenomena concerning them are of broad interest. In

their recent beautiful work on the equiangular lines problem, Jiang,

Tidor, Yao, Zhang, and Zhao [13] proved the following novel result

constraining the distribution of the adjacency eigenvalues of all
connected graphs of sufficiently low degree.
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Theorem 1.1. If𝐺 is a connected graph of maximum degree Δ on
𝑛 vertices, then the multiplicity of the second largest eigenvalue of its
adjacency matrix 𝐴𝐺 is bounded by 𝑂 (𝑛 logΔ/log log(𝑛)).

For their application to equiangular lines, [13] only needed to

show that the multiplicity of the second eigenvalue is 𝑜 (𝑛), but
they asked whether the 𝑂 (𝑛/log log(𝑛)) dependence in Theorem

1.1 could be improved, noting a huge gap between this and the best

known lower bound of Ω(𝑛1/3) achieved by certain Cayley graphs

of PSL(2, 𝑝) (see [13, Section 4]). Apart from Theorem 1.1, there are

as far as we are aware no known sublinear upper bounds on the

second eigenvalue multiplicity for any general class of graphs, even

if the question is restricted to Cayley graphs (unless one imposes a

restriction on the spectral gap; see Section 1.2 for a discussion).

Meanwhile, in the theoretical computer science community, the

largest eigenvalues of the normalized adjacency matrix 𝐴̃𝐺 :=

𝐷
−1/2
𝐺

𝐴𝐺𝐷
−1/2
𝐺

(for 𝐷𝐺 the diagonal matrix of degrees) have re-

ceived much attention over the past decade due to their relation

with graph partitioning problems and the unique games conjecture

(see e.g. [1–3, 16, 18, 19, 21, 24]); in particular, many algorithmic

tasks become easier on graphs with few large normalized adjacency

eigenvalues. Thus, it is of interest to know how many of these

eigenvalues there can be in the worst case.

In this work, we prove significantly stronger upper bounds than

Theorem 1.1 on the second eigenvalue multiplicity for the normal-

ized adjacency matrix. Graphs are undirected and allowed to have

multiedges and self-loops, unless specified to be simple. Order the

eigenvalues of 𝐴̃𝐺 as 𝜆1 (𝐴̃𝐺 ) ≥ 𝜆2 (𝐴̃𝐺 ) ≥ . . . ≥ 𝜆𝑛 (𝐴̃𝐺 ), and let

𝑚𝐺 (𝐼 ) denote the number of eigenvalues of 𝐴̃𝐺 in an interval 𝐼 .

Theorem 1.2. If𝐺 is a connected graph of maximum degree Δ on
𝑛 vertices with 𝜆2 (𝐴̃𝐺 ) = 𝜆2, then1

𝑚𝐺

(
[(1 −

log logΔ 𝑛

logΔ 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · Δ7/5

log
1/5 𝑛

)
. (1)

Because of the relationship 𝐴̃𝐺 = 1

𝑑
𝐴𝐺 when 𝐺 is regular,

(1) gives a substantial improvement on Theorem 1.1 in the reg-

ular case (in the non-regular case, the results are incomparable

as they concern different matrices). In addition to the stronger

𝑂 (𝑛/polylog(𝑛)) bound, a notable difference between our result

and Theorem 1.1 is that we control the number of eigenvalues in a

small interval containing 𝜆2. Though we do not know whether the

1
All asymptotics are as 𝑛 → ∞ and the notation 𝑂 ( ·) suppresses polyloglog(𝑛)
terms.
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exponents in (1) are sharp, we show in Section 5.1 that constant de-

gree bipartite Ramanujan graphs have at least Ω(𝑛/log3/2 𝑛) eigen-
values in the interval appearing in (1), meaning 𝑂 (𝑛/polylog(𝑛))
is the correct regime for the maximum number of eigenvalues in

such an interval when Δ is constant.

Theorem 1.2 is nontrivial for all Δ = 𝑜̃ (log1/7 𝑛); as remarked

in [13], Paley graphs have degree Ω(𝑛) and second eigenvalue

multiplicity Ω(𝑛), so some bound on the degree is required to

obtain sublinear multiplicity. In Section 1.1, we present a variant

of Theorem 1.2 (advertised in the abstract) which yields nontrivial

bounds in the special case of simple 𝑑−regular graphs with degrees

as large as 𝑑 = exp(log1/2−𝛿 𝑛), which is considerably larger than

the regime 𝑑 = 𝑂 (polylog(𝑛)) handled by [13].

The main new ingredient in the proof of Theorem 1.2 is a polyno-

mial lower bound on the support of (i.e., number of distinct vertices

traversed by) a simple random walk of fixed length conditioned

to return to its starting point. The bound holds for any connected

graph and any starting vertex and may be of independent interest.

Theorem 1.3. Suppose 𝐺 is connected and of maximum degree Δ
on𝑛 vertices and 𝑥 is any vertex in𝐺 . Let𝛾2𝑘𝑥 = (𝑥 = 𝑋0, 𝑋1, . . . , 𝑋2𝑘 )
denote a random walk of length 2𝑘 < 𝑛 sampled according to the
simple random walk on 𝐺 starting at 𝑥 . Then

P(support(𝛾2𝑘𝑥 ) ≤ 𝑠 |𝑋
2𝑘 = 𝑋0) ≤ exp

(
− 𝑘

65Δ7𝑠4

)
for 𝑠 ≤ 1

4

(
𝑘

Δ7
logΔ

)
1/5

. (2)

In particular, this means that for constant Δ, the typical support

of a closed random walk of length 2𝑘 is least Ω(𝑘1/5). It may be

tempting to compare Theorem 1.3 with the familiar fact that a

random closed walk of length 2𝑘 on Z (or in continuous time, a

standard Brownian bridge run for time 2𝑘) attains a maximum

distance of Ω(
√
𝑘) from its origin. However, as seen in Figure 1,

there are regular graphs for which a closed walk of length 2𝑘 from a

particular vertex 𝑥 travels a maximum distance of only polylog(𝑘)
with high probability. Theorem 1.3 reveals that nonetheless the

number of distinct vertices traversed is always typically poly(𝑘). We

do not know if the specific exponent of 𝑘1/5 supplied by Theorem

1.3 is sharp, but considering a cycle graph shows that it is not

possible to do better than 𝑘1/2.
Given Theorem 1.3, our proof of Theorem 1.2 follows the strategy

of [13]: since most closed walks in𝐺 have large support, the number

of suchwalksmay be drastically reduced by deleting a small number

of vertices from 𝐺 . By a moment calculation relating the spectrum

to self return probabilities and a Cauchy interlacing argument, this

implies an upper bound on the multiplicity of 𝜆2 (𝐴̃𝐺 ). The crucial
difference is that we are able to delete only 𝑛/polylog(𝑛) vertices
whereas they delete 𝑛/poly log log(𝑛).

The key ingredient in our proof of Theorem 1.3 is a result re-

garding the Perron eigenvector (i.e., the unique, strictly positive

eigenvector with eigenvalue 𝜆1) of a submatrix of 𝐴̃.

Theorem 1.4. For any graph 𝐺 = (𝑉 , 𝐸) of maximum degree Δ,
take any set of vertices 𝑆 ⊊ 𝑉 such that the induced subgraph on 𝑆 is
connected, and let𝜓𝑆 be the ℓ2-normalized Perron vector of 𝐴̃𝑆 , the
principal submatrix of 𝐴̃ corresponding to vertices in 𝑆 . Then there is

Figure 1: For a regular graph composed of a near-clique at-
tached to an infinite tree, a closed walk of length 2𝑘 start-
ing fromwithin the near-clique does not typically go deeper
than 𝑂 (log𝑘) down the tree. However, the support of such a
closed walk is typically 𝑘Θ(1) . See Section B for a more de-
tailed discussion.

a vertex 𝑢 ∈ 𝑆 which is adjacent to 𝑉 \ 𝑆 such that

𝜓𝑆 (𝑢) ≥ 1/(Δ5/2𝜆1 (𝐴̃𝑆 ) |𝑆 |5/2) . (3)

Whenwe restrict this result to𝐺 being a𝑑-regular graph and pass

to the adjacency matrix, we achieve a result about the unnormalized

adjacency matrix of irregular graphs that may be of independent

interest.

Corollary 1.5. Let 𝐻 = (𝑉 , 𝐸) be an irregular connected graph
of maximum degree Δ with at least two vertices, and let 𝜙𝐻 be the
ℓ2-normalized Perron vector of 𝐴𝐻 . Then there is a vertex 𝑢 ∈ 𝑉 with
degree strictly less than Δ satisfying

𝜙𝐻 (𝑢) ≥ 1/(Δ2𝜆1 (𝐴𝐻 ) |𝑉 |5/2). (4)

Corollary 1.5 may be compared with existing results in spectral

graph theory on the “principal ratio” between the largest and small-

est entries of the Perron vector of a connected graph. The known

worst case lower bounds on this ratio are necessarily exponential

in the diameter of the graph [7, 28]. Corollary 1.5 articulates that

there is always at least one vertex of non-maximal degree for which

the ratio is only polynomial in the number of vertices.

The proof of Theorem 1.4 is based on an analysis of hitting times

in the simple random walk on 𝐺 via electrical flows, and appears

in Section 2. Combined with a perturbation-theoretic argument, it

enables us to show that any small connected induced subgraph 𝑆 of

𝐺 can be extended to a slightly larger induced subgraph with signifi-

cantly larger Perron value 𝜆1 (𝐴̃𝑆 ). With some further combinatorial

arguments, this implies that closed walks cannot concentrate on

small sets, yielding Theorem 1.3 in Section 3, which is finally used

to deduce Theorem 1.2 in Section 4.

We show in Section 5.2 via an explicit example (Figure 2) that the

exponent of 5/2 appearing in Corollary 1.5 is sharp up to polyloga-

rithmic factors. We conclude with a discussion of open problems in

Section 6.

Note that an update of the preprint of [13] generalizes Theorem

1.1 to the multiplicity of the 𝑗th eigenvalue. Our results can also
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Figure 2: An example of a graph where all vertices 𝑢 that are
not of maximum degree have 𝜓 (𝑢) = 𝑂̃ (𝑛−5/2). The circled
sets𝑋0,𝑋1 and𝑋2 will be used in the analysis of the graph in
Section 5.2.

be generalized in this manner by some nominal changes to the

arguments in Section 4, but for simplicity we focus on 𝜆2 in this

paper.

1.1 Higher Degree Regular Graphs
If 𝐺 = (𝑉 , 𝐸) is a simple, 𝑑-regular graph, and 𝑆 ⊊ 𝑉 such that

|𝑆 | ≤ 𝑑 , then necessarily all vertices of 𝑆 are adjacent to vertices in

𝑉 \ 𝑆 . Therefore we can improve the bound from Theorem 1.4 by

assuming the vertex 𝑢 on the boundary 𝑢 is the maximizer of the

Perron vector, which has value𝜓𝑆 (𝑢) ≥ 1/
√
|𝑆 |. This leads to the

following variants of our main results for simple, regular graphs of

sufficiently high degree.

Theorem 1.6. 𝐺 is simple, 𝑑−regular, and connected with 𝜆2 =

𝜆2 (𝐴𝐺 ). Call𝑚 =𝑚𝐺

(
[(1 − log log𝑑 𝑛

log𝑑 𝑛
)𝜆2, 𝜆2]

)
. Then

𝑚 =


𝑂

(
𝑛
𝑑

)
when 𝑑 = 𝑜 (log1/4 𝑛)

𝑂

(
𝑛 log1/2 𝑑

log
1/4 𝑛

)
when 𝑑 = Ω(log1/4 𝑛).

(5)

The above theorem is based on the following corresponding

result for closed walks.

Theorem 1.7. If𝐺 is simple,𝑑−regular, and connected on𝑛 vertices
and 𝛾 is a random closed walk of length 2𝑘 < 𝑛 started at any vertex
in 𝐺 , then:

Pr(support(𝛾) ≤ 𝑠) ≤ exp

(
− 𝑘

100𝑠3

)
for 𝑠 ≤ min

{
1

8

(
𝑘

log𝑑

)
1/4

,
𝑑

2

}
. (6)

The proofs of both theorems appear in Appendix A.

1.2 Related Work
Eigenvalue Multiplicity. Despite the straightforward nature of

the question, relatively little is known about eigenvalue multiplicity

of general graphs. As discussed in [13], if one assumes that 𝐺 is a

bounded degree expander graph, then the bound of Theorem 1.1

can be improved to 𝑂 (𝑛/log𝑛). On the other hand, if 𝐺 is assumed

to be a Cayley graph of bounded doubling constant 𝐾 (indicating

non-expansion), then [17] show that the multiplicity of the second

eigenvalue is at most exp(log2 𝐾). In the context of Cayley graphs,

one interesting new implication of Theorem 1.6 is that all Cay-

ley graphs of degree 𝑂 (exp(log1/2−𝛿 𝑛)) have second eigenvalue

multiplicity 𝑂 (𝑛/log𝛿/2 𝑛).
Sublinear multiplicity does not necessarily hold for eigenvalues

in the interior of the spectrum even assuming bounded degree. In

particular, Rowlinson has constructed connected 𝑑−regular graphs
with an eigenvalue of multiplicity at least 𝑛(𝑑 − 2)/(𝑑 + 2) [26] for
constant 𝑑 .

Distance regular graphs of diameter𝐷 have exactly𝐷 +1 distinct
eigenvalues (see [12] 11.4.1 for a proof). However, besides the top

eigenvalue (which must have multiplicity 1), generic bounds on

the multiplicity of the other eigenvalues are not known. As ex-

panding graphs have diameter Θ(log𝑑 𝑛), the average multiplicity

of eigenvalues besides 𝜆1 for expanding distance regular graphs

is Θ(𝑛/log𝑑 𝑛). It is tempting to see this as a hint that the multi-

plicity of the second eigenvalue could be Ω(𝑛/log𝑑 𝑛); however,
as noted above, multiplicity on eigenvalues in the interior of the

spectrum can be quite different from multiplicities near the edge of

the spectrum.

Higher Order Cheeger Inequalities. The results of [18, 19] imply

that if a 𝑑−regular graph 𝐺 has a second eigenvalue multiplicity

of𝑚, then its vertices can be partitioned into Ω(𝑚) disjoint sets
each having edge expansion 𝑂 (

√
𝑑 (1 − 𝜆2) log𝑚). Combining this

with the observation that a set cannot have expansion less than the

reciprocal of its size shows that𝑚 = 𝑂 (𝑛/polylog(𝑛)) whenever
1 − 𝜆2 (𝐴̃𝐺 ) ≤ 1/log𝑐 𝑛 for any 𝑐 > 1, i.e., the graph is sufficiently

non-expanding. Our main theorem may be interpreted as saying

that this phenomenon persists for all graphs.

Support of Walks. There are as far as we are aware no known

lower bounds for the support of a random closed walk of fixed

length in a general graph (or even Cayley graph). It is relatively

easy to derive such bounds for bounded degree graphs if the length

of the walk is sufficiently larger than the mixing time of the simple

random walk on the graph; the key feature of Theorem 1.3, which

is needed for our application, is that the length of the walk can be

taken to be much smaller.

The support of open walks (namely removing the condition that

the walk ends at the starting point) is better understood. There are

Chernoff-type bounds on the size of the support of a random walk

based on the spectral gap [11, 15]. Such bounds and their variants

are an important tool in derandomization.

Entries of the Perron Vector. There is a large literature concerning
the magnitude of the entries of the Perron eigenvector of a graph —

see [27, Chapter 2] for a detailed discussion of results up to 2014.

Rowlinson showed sufficient conditions on the Perron eigenvector

for which changing the neighborhood of a vertex increases the spec-

tral radius [25]. Cvetković, Rowlinson, and Simić give a condition

which, if satisfied, means a given edge swap increases the spectral

radius [8]. Cioabă showed that for a graph of maximum degree Δ
and diameter 𝐷 , Δ − 𝜆1 > 1/𝑛𝐷 [5]. Cioabă, van Dam, Koolen, and

Lee then showed that 𝜆1 ≥ (𝑛 − 1)1/𝐷 [6]. The results of [29] prove

a lemma similar to Lemma 3.2, giving upper and lower bounds on

the change in spectral radius from the deletion of edges. However,
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their result does not quite imply Lemma 3.2, and we prove a slightly

different statement.

1.3 Notation
All logarithms are base 𝑒 unless noted otherwise.

Electrical Flows. We use Reff𝐻 (·, ·) to denote the effective resis-

tance between two vertices in 𝐻 , viewing each edge of the graph

as a unit resistor. See e.g. [9] or [4, Chapter IX] for an introduction

to electrical flows and random walks on graphs.

Graphs. For a matrix𝑀 , we use𝑀𝑆 to denote the principal sub-

matrix of 𝑀 corresponding to the indices in 𝑆 . Consider a graph

𝐺 = (𝑉 , 𝐸) and a subset 𝐻 ⊂ 𝑉 . Let 𝑃 := 𝐴𝐷−1
be the transition

matrix of the simple random walk matrix on 𝐺 , where 𝐴 is the

adjacency matrix and 𝐷 is the diagonal matrix of degrees. We will

also use the normalized adjacency matrix 𝐴̃ := 𝐷−1/2𝐴𝐷−1/2
. Note

that 𝑃 and 𝐴̃ are similar, and that 𝐴̃ is symmetric. 𝑃𝑆 and 𝐴̃𝑆 are

submatrices of 𝑃 and 𝐴̃; they are not the transition matrices and

normalized adjacency matrices of the induced subgraph on 𝑆 . Note

𝑃𝑆 and 𝐴̃𝑆 are also similar.

Perron Eigenvector. We use𝜓𝑆 to denote the ℓ2-normalized eigen-

vector corresponding to 𝜆1 (𝐴̃𝑆 ), which is a simple eigenvalue if 𝑆

is connected. Note that for connected 𝑆 , 𝜓𝑆 is strictly positive by

the Perron-Frobenius theorem.

A simple graph refers to a graph without multiedges or self-loops.

We assume Δ ≥ 2 for all connected regular graphs, since otherwise

the graph is just an edge, so logΔ > 0.

2 LOWER BOUNDS ON THE PERRON
EIGENVECTOR

In this section we prove Theorem 1.4, which is a direct consequence

of the following slightly more refined result. In a graph 𝐺 = (𝑉 , 𝐸),
define the boundary of 𝑆 as the set of vertices in 𝑆 adjacent to 𝑉 \𝑆
in 𝐺 .

Theorem 2.1 (Large Perron Entry). Let 𝐺 = (𝑉 , 𝐸) be a con-
nected graph of maximum degree Δ and 𝑆 ⊊ 𝑉 such that the induced
subgraph on 𝑆 is connected. Then there is a vertex 𝑢 ∈ 𝑆 on the
boundary of 𝑆 such that

𝜓𝑆 (𝑢)/𝜓𝑆 (𝑡) ≥ 1/(Δ5/2𝜆1 (𝐴̃𝑆 ) |𝑆 |2) (7)

where 𝑡 = argmax𝑤∈𝑆 𝜓𝑆 (𝑤).

At a high level, the proof proceeds as follows. First, we show

that there exists a vertex 𝑥 ∈ 𝑆 adjacent to the boundary of 𝑆 such

that a random walk started at 𝑥 is somewhat likely to hit 𝑡 before it

hits the boundary of 𝑆 . Second, we express the ratio of 𝐷
1/2
𝑆
𝜓𝑆 (𝑥)

and 𝐷
1/2
𝑆
𝜓𝑆 (𝑡) as a limit as 𝑘 → ∞ of the ratio P𝑌𝑘𝑥 /P𝑌𝑘𝑡 , where

𝑌𝑘𝑣 is the event that the simple random walk started at 𝑣 remains in

𝑆 for 𝑘 steps; we bound this ratio from below using the hitting time

estimate from the first step. Third, by the eigenvector equation the

ratio of the entries of an eigenvector at two neighboring vertices is

bounded. Hence, 𝑥 is adjacent to some vertex 𝑢 on the boundary of

𝑆 satisfying the theorem.

Figure 3: In Step 1 of the proof of Theorem 2.1, we lower
bound the probability that a random walk started at a cer-
tain vertex 𝑥 adjacent to 𝐵 reaches 𝑡 before reaching 𝐵. We
do this by contracting 𝐵 to a vertex 𝑠, then lower bounding
the current from 𝑠 to 𝑡 , which establishes the existence of
the desired 𝑥 . The left graph in the figure is 𝐺 and the right
graph is the contracted graph 𝐾 , with the dotted lines indi-
cating edges leaving the set of interest 𝑆 = 𝑀 ⊔ 𝐵.

Proof. Write 𝑆 = 𝑀 ⊔ 𝐵, where 𝐵 is the boundary of 𝑆 and

𝑀 = 𝑆 \ 𝐵. If 𝑡 ∈ 𝐵 then we are done, so assume not. Let P𝐺𝑥 (·) de-
note the law of the simple random walk (SRW) (𝑋𝑖 )∞𝑖=0 on𝐺 started

at 𝑋0 = 𝑥 , and for any subset 𝑇 ⊂ 𝑉 , let 𝜏𝑇 := {min 𝑖 : 𝑋𝑖 ∈ 𝑇 }
denote the hitting time of the SRW to that subset; if 𝑇 = {𝑢} is a
singleton we will simply write 𝜏𝑢 .

Step 1. We begin by showing that there is a vertex 𝑥 ∈ 𝑀 adjacent

to 𝐵 for which the random walk started at 𝑥 is reasonably likely to

hit 𝑡 before 𝐵. To do so, we use the well-known connection between

hitting probabilities in random walks and electrical flows. Define a

new graph𝐾 = (𝑉 ′ = 𝑉 \𝐵∪{𝑠}, 𝐸 ′) by contracting all vertices in 𝐵
to a single vertex 𝑠 . Let 𝑓 : 𝑉 ′ → [0, 1] be the vector of voltages in
the electrical flow in𝐾 with boundary conditions 𝑓 (𝑠) = 0, 𝑓 (𝑡) = 1,

regarding every edge as a unit resistor. By Ohm’s law, the current

flow from 𝑠 to 𝑡 is equal to 1/Reff𝐾 (𝑠, 𝑡). We have the crude upper

bound

Reff𝐾 (𝑠, 𝑡) ≤ distance𝐾 (𝑠, 𝑡) ≤ |𝑆 |,
since 𝑆 is connected, so the outflow of current from 𝑠 is at least

1/|𝑆 |. By Kirchhoff’s current law, there must be a flow of at least

1/(|𝑆 | deg𝐾 (𝑠)) on at least one edge (𝑠, 𝑥) ∈ 𝐸 ′. By Ohm’s law

again, for this particular 𝑥 ∈ 𝑉 ′
we must have

𝑓 (𝑥) ≥ 1

|𝑆 | deg𝐾 (𝑠)
=

1

|𝑆 | |𝜕𝐺𝐵 |
≥ 1

Δ|𝑆 |2
, (8)

where 𝜕𝐺𝐵 denotes the edge boundary of 𝐵 in 𝐺 . Appealing to

e.g. [4, Chapter IX, Theorem 8], this translates to the probabilistic

bound

P𝐺𝑥 (𝜏𝑡 < 𝜏𝐵) = P𝐾𝑥 (𝜏𝑡 < 𝜏𝑠 ) = 𝑓 (𝑥) ≥
1

Δ|𝑆 |2
. (9)

Once again using Kirchhoff’s current law, as there is no current

outside of 𝑆 , 𝑓 (𝑠) = 𝑓 (𝑦) = 0 for every 𝑦 ∈ 𝑉 ′ \ 𝑆 . Therefore we
must in fact have 𝑥 ∈ 𝑀 .

Step 2. We now use (9) to show that 𝜓𝑆 (𝑥) is large. Because 𝐴̃𝑆 =

𝐷
−1/2
𝑆

𝑃𝑆𝐷
1/2
𝑆

, the top eigenvector of 𝑃𝑆 is 𝐷
1/2
𝑆
𝜓𝑆/∥𝐷1/2

𝑆
𝜓𝑆 ∥. Let

𝑃 ′ : (𝑃 + 𝐼 )/2 denote the lazy random walk
2
on 𝐺 , and to ease

2
This modification is only to ensure non-bipartiteness; if 𝑆 is not bipartite we may

take the simple random walk
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notation let P′𝑥 (·) := P′𝑥
𝐺 (·) denote the law of the lazy random

walk on 𝐺 started at 𝑥 . Note that the eigenvectors of 𝑃𝑆 , as well as

P𝑥 (𝜏𝑡 < 𝜏𝐵), do not change when passing to 𝑃 ′
𝑆
.

For the lazy random walk, the Perron-Frobenius theorem implies

that

(𝐷1/2
𝑆
𝜓𝑆 ) (𝑤)

∥𝐷1/2
𝑆
𝜓𝑆 ∥

= lim

𝑘→∞

1𝑇
𝑆
𝑃 ′
𝑆
𝑘𝑒𝑤

∥1𝑇
𝑆
𝑃 ′
𝑆
𝑘 ∥
,

for every𝑤 ∈ 𝑆 , where 1𝑆 ∈ R𝑆 is the all ones vector. We further

have

1𝑇𝑆 𝑃
′
𝑆
𝑘
𝑒𝑤 = P′𝑤 (𝜏𝑉 \𝑆 > 𝑘),

namely the probability a random walk of length 𝑘 starting at 𝑤

stays in 𝑆 .

We are interested in the ratio

(𝐷1/2
𝑆
𝜓𝑆 ) (𝑥)

(𝐷1/2
𝑆
𝜓𝑆 ) (𝑡)

= lim

𝑘→∞

P′𝑥 (𝜏𝑉 \𝑆 > 𝑘)
P′𝑡 (𝜏𝑉 \𝑆 > 𝑘) . (10)

Fix an integer 𝑘 > 0. The numerator of (10) is bounded as

P′𝑥 (𝜏𝑉 \𝑆 > 𝑘) ≥ P′𝑥 (𝜏𝑉 \𝑆 > 𝑘 |𝜏𝑡 < 𝜏𝐵)P′𝑥 (𝜏𝑡 < 𝜏𝐵)

≥ 1

Δ|𝑆 |2
P′𝑥 (𝜏𝑉 \𝑆 > 𝑘 |𝜏𝑡 < 𝜏𝐵) by (9).

Therefore

P′𝑥 (𝜏𝑉 \𝑆 > 𝑘)

≥ 1

Δ|𝑆 |2
𝑘−1∑
𝜃=0

P′𝑥 (𝜏𝑉 \𝑆 > 𝑘 |𝜏𝑡 = 𝜃, 𝜏𝑡 < 𝜏𝐵)P′𝑥 (𝜏𝑡 = 𝜃 |𝜏𝑡 < 𝜏𝐵),

(11)

and

P′𝑥 (𝜏𝑉 \𝑆 > 𝑘) ≥ 1

Δ|𝑆 |2
𝑘−1∑
𝜃=0

P′𝑡 (𝜏𝑉 \𝑆 > 𝑘 − 𝜃 )P′𝑥 (𝜏𝑡 = 𝜃 |𝜏𝑡 < 𝜏𝐵)

≥ 1

Δ|𝑆 |2
𝑘−1∑
𝜃=0

P′𝑡 (𝜏𝑉 \𝑆 > 𝑘)P′𝑥 (𝜏𝑡 = 𝜃 |𝜏𝑡 < 𝜏𝐵) . (12)

Observe that E′𝑥𝜏𝐵 < ∞ since 𝐺 is connected. Thus,

𝑘−1∑
𝜃=0

P′𝑥 (𝜏𝑡 = 𝜃 |𝜏𝑡 < 𝜏𝐵) = 1 − P′𝑥 (𝜏𝑡 ≥ 𝑘 |𝜏𝑡 < 𝜏𝐵)

≥ 1 − P
′
𝑥 (𝜏𝐵 ≥ 𝑘)
P′𝑥 (𝜏𝑡 < 𝜏𝐵)

≥ 1 − E
′
𝑥𝜏𝐵

𝑘
· Δ|𝑆 |2 by Markov and (9).

Combining this bound with (12), we have

P′𝑥 (𝜏𝑉 \𝑆 > 𝑘) ≥ 1

Δ|𝑆 |2

(
1 − E

′
𝑥𝜏𝐵

𝑘
· Δ|𝑆 |2

)
P′𝑡 (𝜏𝑉 \𝑆 > 𝑘)

Taking the limit as 𝑘 → ∞ in (10) yields

(𝐷1/2
𝑆
𝜓𝑆 ) (𝑥)

(𝐷1/2
𝑆
𝜓𝑆 ) (𝑡)

≥ 1

Δ|𝑆 |2
.

Step 3. Since 𝑥 is adjacent to 𝐵, we can choose a 𝑢 ∈ 𝐵 adjacent to 𝑥 .

The eigenvector equation and nonnegativity of the Perron vector

now imply Δ𝜆1 (𝐴𝑆 )𝜓𝑆 (𝑢) ≥ 𝜓𝑆 (𝑥), whence

(𝐷1/2
𝑆
𝜓𝑆 ) (𝑢) ≥

1

𝜆1 (𝐴̃𝑆 )Δ2 |𝑆 |2
(𝐷1/2
𝑆
𝜓𝑆 ) (𝑡). (13)

Therefore, as 𝐷 is a diagonal matrix, and the entries of 𝐷 range

from 1 to Δ, it must be the case that

𝜓𝑆 (𝑢) ≥
1

𝜆1 (𝐴̃𝑆 )Δ5/2 |𝑆 |2
𝜓𝑆 (𝑡) .

□

As the proof shows, the right-hand side of (7) may be replaced

with 1/Δ3/2𝜆1 (𝐴̃𝑆 ) |𝜕𝐺𝐵 |𝑅, where 𝐵 is the boundary of 𝑆 in 𝐺 and

𝑅 is the maximum effective resistance between two vertices in 𝑆 .

Proof of Corollary 1.5. Given an irregular graph𝐻 , construct

a Δ−regular graph 𝐺 containing 𝐻 as an induced subgraph (it is

trivial to do this if we allow 𝐺 to be a multigraph). We repeat the

above proof on 𝐺 with 𝑆 = 𝐻 . Boundary vertices of 𝐻 are exactly

the vertices of degree less than Δ. Note that 𝐷
1/2
𝑆

is a multiple of

the identity since 𝐺 is regular, so the normalized adjacency matrix

of 𝐺 is just a rescaled version of the adjacency matrix of 𝐺 . 𝐴𝑆 is

then a rescaled version of the adjacency matrix of 𝐻 . Therefore (13)

yields the desired conclusion. □

3 SUPPORT OF CLOSEDWALKS
In this section we prove Theorem 1.3, which is an immediate conse-

quence of the following slightly stronger result. Let𝑊 2𝑘,𝑠
denote

the event a simple random walk of length 2𝑘 has support at most 𝑠

and ends at its starting point.

Theorem 3.1 (Implies Theorem 1.3). If 𝐺 is connected and of
maximum degree Δ on 𝑛 vertices, then for every vertex 𝑥 ∈ 𝐺 and
𝑘 < 𝑛/2,

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ exp

(
− 𝑘

65Δ7𝑠4

)
P𝑥 (𝑊 2𝑘,2𝑠 )

for 𝑠 ≤ 1

4

(
𝑘

Δ7
logΔ

)
1/5

. (14)

The proof requires a simple lemma lower bounding the increase

in the Perron value of a subgraph upon adding a vertex in terms of

the Perron vector.

Lemma 3.2 (Perturbation of 𝜆1). Consider the normalized adja-
cency matrix 𝐴̃ := 𝐷−1/2𝐴𝐷−1/2 of a graph𝐺 = (𝑉 , 𝐸) of maximum
degree Δ. Moreover, consider a subset of vertices 𝑆 ⊊ 𝑉 and vertex
𝑢 ∈ 𝑆 on the boundary of 𝑆 , so that ∃𝑣 ∼ 𝑢, 𝑣 ∉ 𝑆 . Then

𝜆1 (𝐴̃𝑆∪{𝑣 }) ≥
1

2

(
𝜆1 (𝐴̃𝑆 ) +

√
𝜆1 (𝐴̃𝑆 )2 + Δ−2𝜓𝑆 (𝑢)2

)
.

Proof. The largest eigenvalue of 𝐴̃ is at least the quadratic form

associated with the unit vectors

𝑔𝛼 (𝑥) =
{ √

1 − 𝛼2𝜓𝑆 (𝑥) 𝑥 ∈ 𝑆
𝛼 𝑥 = 𝑣

for 0 ≤ 𝛼 ≤ 1. We have

𝑔𝑇𝛼 𝐴̃𝑔𝛼 = (1 − 𝛼2)𝜆1 (𝐴̃𝑆 ) + 𝑑−1/2𝑢 𝑑
−1/2
𝑣 𝛼

√
1 − 𝛼2𝜓𝑆 (𝑢),
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where 𝑑𝑢 is the degree of 𝑢 in 𝐺 . This quantity is maximized when

𝛼 =

√√√√
1

2

− 𝜆1 (𝐴̃𝑆 )

2

√
𝜆1 (𝐴̃𝑆 )2 + 𝑑−1𝑢 𝑑−1𝑣 𝜓𝑆 (𝑢)2

,

at which

𝑔𝑇𝛼 𝐴̃𝑔𝛼 =
1

2

(
𝜆1 (𝐴̃𝑆 ) +

√
𝜆1 (𝐴̃𝑆 )2 + 𝑑−1𝑢 𝑑−1𝑣 𝜓𝑆 (𝑢)2

)
.

□

Combining Lemma 3.2 and Theorem 2.1 yields a bound on the

increase of the top eigenvalue of the submatrix corresponding to

an induced subgraph that may be achieved by adding vertices to it.

Lemma 3.3 (Support Extension). For any connected graph 𝐺 =

(𝑉 , 𝐸) of maximum degree Δ, consider its normalized adjacency ma-
trix 𝐴̃. For any connected subset 𝑆 ⊊ 𝑉 such that 2 ≤ |𝑆 | = 𝑠 < |𝑉 |/2,
there is a connected subset𝑇 ⊂ 𝑉 containing 𝑆 such that |𝑇 | = 2𝑠 and

𝜆1 (𝐴̃𝑇 ) ≥ 𝜆1 (𝐴̃𝑆 )
(
1 + 5

128Δ7𝑠4

)
.

Proof. Define 𝜆1 := 𝜆1 (𝐴̃𝑆 ) and note that 𝜆1 ≥ 1/Δ since 𝑆

contains at least one edge. As 𝜓𝑆 is a normalized vector with 𝑠

entries, 𝜓𝑆 (𝑡) ≥ 1/
√
𝑠 . Therefore 𝜓𝑆 (𝑢) ≥ 1/(Δ5/2𝜆1𝑠5/2). Take 𝑣

to be any vertex in 𝑉 \ 𝑆 that neighbors 𝑢 in 𝐺 . By Lemma 3.2,

𝜆1 (𝐴̃𝑆∪{𝑣 }) ≥
1

2

(
𝜆1 +

√
𝜆2
1
+ Δ−2𝜓𝑆 (𝑢)2

)
≥ 𝜆1 +

𝜓𝑆 (𝑢)2

4𝜆1Δ2
− 𝜓𝑆 (𝑢)4

16𝜆3
1
Δ4

≥ 𝜆1 +
1

6𝜆3
1
Δ7𝑠5

as𝜓𝑆 (𝑢)2/𝜆21 ≤ Δ2

≥ 𝜆1 +
1

6Δ7𝑠5
since 𝜆1 ≤ 1. (15)

Assuming that 𝑠 < |𝑉 |/2, we can iterate this process 𝑠 times,

adding the vertices {𝑣1, . . . 𝑣𝑠 }. At each step we add the vertex 𝑣𝑖

and increase the Perron eigenvalue of 𝐴̃𝑆∪{𝑣1,...,𝑣𝑖−1 } by at least

1/(6Δ7 (𝑠 + 𝑖 −1)5). Therefore, defining𝑇 = 𝑆 ∪ {𝑣1, . . . 𝑣𝑠 }, we have

𝜆1 (𝐴̃𝑇 ) ≥ 𝜆1 +
1

6Δ7

𝑠∑
𝑖=1

1

(𝑠 + 𝑖 − 1)5
≥ 𝜆1 +

5

128Δ7𝑠4
,

where the last inequality follows from approximating the sum with

the integral. As 𝜆1 ≤ 1, this translates to the desired multiplicative

bound. □

Proof of Theorem 3.1. We begin by showing (14). Let Γ𝑠𝑥 be

the set of connected subgraphs of 𝐺 with 𝑠 vertices containing 𝑥 .

Choose 𝑆 to be the maximizer of 𝑒𝑇𝑥 𝐴̃
2𝑘
𝑆
𝑒𝑥 among 𝑆 ∈ Γ𝑠𝑥 , and let

𝑇 ∈ Γ2𝑠𝑥 be the extension of 𝑆 guaranteed by Lemma 3.3 to satisfy

𝜆1 (𝐴̃𝑇 ) ≥
(
1 + 5

128Δ7𝑠4

)
𝜆1 (𝐴̃𝑆 ).

𝑃2𝑘
𝑆

has the same diagonal entries as 𝐴̃2𝑘
𝑆
, so

P𝑥 (𝑊 2𝑘,𝑠 ) ≤
∑
𝑆′∈Γ𝑠𝑥

𝑒𝑇𝑥 𝐴̃
2𝑘
𝑆′ 𝑒𝑥 ,

since each walk of length 2𝑘 satisfying𝑊 2𝑘,𝑠
is contained in at

least one 𝑆 ′ ∈ Γ𝑠𝑥 . Furthermore, |Γ𝑠𝑥 | ≤ Δ2𝑠
since each subgraph of

Γ𝑠𝑥 may be encoded by one of its spanning trees, which may in turn

be encoded by a closed walk rooted at 𝑥 traversing the edges of the

tree. We then have

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ |Γ𝑠𝑥 |𝑒𝑇𝑥 𝐴̃2𝑘
𝑆 𝑒𝑥

≤ Δ2𝑠𝜆1 (𝐴̃𝑆 )2𝑘

≤ Δ2𝑠

(
1 + 5

128Δ7𝑠4

)−2𝑘
𝜆1 (𝐴̃𝑇 )2𝑘 . (16)

We will bound the right hand side in terms of P𝑥 (𝑊 2𝑘,2𝑠 ).
We claim that for every 𝑧 ∈ 𝑇 ,

𝑒𝑇𝑥 𝐴̃
2𝑘
𝑇 𝑒𝑥 ≥ Δ−4𝑠𝑒𝑇𝑧 𝐴̃

2𝑘−4𝑠
𝑇 𝑒𝑧 . (17)

To see this, let 𝜋 be a path in 𝑇 of length ℓ ≤ 2𝑠 between 𝑥 and 𝑧,

which must exist since 𝑇 is connected and has size 2𝑠 . Then every

closed walk of length 2𝑘 − 2ℓ in𝑇 rooted at 𝑧 may be extended to a

walk of length 2𝑘 in 𝑇 rooted at 𝑥 by attaching 𝜋 and its reverse.

Performing the walk of 𝜋 twice occurs with probability at least

Δ−2ℓ
. Since all of the walks produced this way are distinct, we have

𝑒𝑇𝑥 𝐴̃
2𝑘
𝑇 𝑒𝑥 ≥ Δ−2ℓ𝑒𝑇𝑧 𝐴̃

2𝑘−2ℓ
𝑇 𝑒𝑧 .

By the same argument 𝑒𝑇𝑧 𝐴̃
2𝑘−2ℓ
𝑇

𝑒𝑧 ≥ Δ−4𝑠+2ℓ𝑒𝑇𝑧 𝐴̃
2𝑘−4𝑠
𝑇

𝑒𝑧 , and in-

equality (17) follows.

Choose 𝑧 ∈ 𝑇 to be the maximizer of 𝑒𝑇𝑧 𝐴̃
2𝑘−4𝑠
𝑇

𝑒𝑧 , for which we

have:

𝑒𝑇𝑧 𝐴̃
2𝑘−4𝑠
𝑇 𝑒𝑧 ≥ 1

2𝑠
Tr(𝑃2𝑘−4𝑠𝑇 ) ≥ 𝜆1 (𝐴̃𝑇 )2𝑘−4𝑠

2𝑠
.

Combining this with (17) and substituting in (16), we obtain

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ Δ6𝑠 · 2𝑠
(
1 + 5

128Δ7𝑠4

)−2𝑘
𝜆1 (𝐴̃𝑇 )4𝑠𝑒𝑇𝑥 𝐴̃2𝑘

𝑇 𝑒𝑥

≤ Δ6𝑠 · 2𝑠
(
1 + 5

128Δ7𝑠4

)−2𝑘
𝜆1 (𝐴̃𝑇 )4𝑠P𝑥 (𝑊 2𝑘,2𝑠 ) .

Applying the inequality 𝑒𝑥/2 ≤ 1 + 𝑥 for 0 < 𝑥 < 1 and the

bound 𝜆1 (𝐴̃𝑇 ) < 1, we obtain

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ exp

(
6𝑠 logΔ + log(2𝑠) − 5𝑘

128Δ7𝑠4

)
P𝑥 (𝑊 2𝑘,2𝑠 ),

(18)

which implies

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ exp

(
− 𝑘

65Δ7𝑠4

)
P𝑥 (𝑊 2𝑘,2𝑠 )

whenever

𝑠 ≤ 1

4

(
𝑘

Δ7
log(Δ)

)
1/5

,

establishing (14).

□

4 BOUND ON EIGENVALUE MULTIPLICITY
In this section we prove Theorem 1.2, restated below in slightly

more detail.
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Theorem 4.1 (Detailed Theorem 1.2). Let 𝐺 be a maximum
degree Δ connected graph on 𝑛 vertices. If3 Δ ≤ log

1/7 𝑛/log log𝑛
then the spectrum of the normalized adjacency matrix 𝐴̃ satisfies

𝑚𝐺

(
[(1 −

log logΔ 𝑛

logΔ 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · Δ

7/5 (log2/5 Δ) log log𝑛
log

1/5 𝑛

)
.

(19)

Proof. For now, assume that |𝜆𝑛 (𝑃) | ≤ |𝜆2 (𝑃) |. Let P(·) denote
the law of an SRW 𝛾 of length 2𝑘 on 𝐺 , started at a vertex cho-

sen uniformly at random (i.e., not from the stationary measure

of the SRW). Let𝑊 2𝑘
:= 𝑊 2𝑘,𝑛

denote the event that 𝛾 returns

to its starting vertex after 2𝑘 steps. In an abuse of notation, let

𝑊 2𝑘,≥𝑠+1
:= 𝑊 2𝑘\𝑊 2𝑘,𝑠

be the event that a walk of length 2𝑘 is

closed and has support at least 𝑠 + 1.

Set 𝑘 := 1

3
logΔ 𝑛 and 𝑐 := 2 log𝑘 and let 𝑠 be a parameter satis-

fying

P(𝑊 2𝑘,𝑠 ) ≤ 𝑒−𝑐P(𝑊 2𝑘 ) (20)

to be chosen later. Delete 𝑐𝑛/𝑠 vertices from𝐺 uniformly at random

and call the resulting graph 𝐻 .

If 𝛾 has support at least 𝑠 + 1, then the probability that none of

the vertices of 𝛾 are deleted is at most(
1 − 𝑠

𝑛

) 𝑐𝑛
𝑠 ≤ 𝑒−𝑐 .

Thus,

E𝐻P(𝛾 ⊂ 𝐻 |𝛾 ∈𝑊 2𝑘,≥𝑠+1) ≤ 𝑒−𝑐 ,
where E𝐻 is the expectation over 𝐻 . It then follows by the proba-

bilistic method that there exists a deletion such that the resulting

subgraph 𝐻 of 𝐺 satisfies

P(𝑊 2𝑘,≥𝑠+1 ∩ {𝛾 ⊂ 𝐻 }) ≤ 𝑒−𝑐P(𝑊 2𝑘,≥𝑠+1) .

Write 𝜆2 := 𝜆2 (𝐴̃𝐺 ) and let𝑚′
be the number of eigenvalues of

𝐻 in the interval [(1 − 𝜖)𝜆2, 𝜆2] for 𝜖 := 𝑐/2 logΔ (𝑛). Since 2𝑘 is

even,

𝑚′(1 − 𝜖)2𝑘𝜆2𝑘
2

≤ (𝐴̃2𝑘
𝐻 )

= 𝑛P(𝑊 2𝑘 ∩ {𝛾 ⊂ 𝐻 })

= 𝑛(P(𝑊 2𝑘,𝑠 ∩ {𝛾 ⊂ 𝐻 }) + P(𝑊 2𝑘,≥𝑠+1 ∩ {𝛾 ⊂ 𝐻 }))

≤ 𝑛(P(𝑊 2𝑘,𝑠 ) + 𝑒−𝑐P(𝑊 2𝑘,≥𝑠+1)) by our choice of 𝐻

≤ 𝑛(𝑒−𝑐P(𝑊 2𝑘 ) + 𝑒−𝑐P(𝑊 2𝑘,≥𝑠+1)) by (20)

≤ 2𝑒−𝑐 (𝐴̃2𝑘
𝐺 )

≤ 2𝑒−𝑐 (𝑛𝜆2𝑘
2

+ 1) .

We may assume that the diameter of 𝐺 is at least 4 as otherwise

Δ ≥ 𝑛1/4, making the theorem statement vacuous. Because of

the diameter, we can take two edges (𝑢1, 𝑣1), (𝑢2, 𝑣2) such that the

distance between the edges is at least 2. Then consider the vectors

𝜙1, 𝜙2 such that for 𝑖 ∈ {1, 2}

𝜙𝑖 (𝑥) =
{

1 𝑥 ∈ {𝑢𝑖 , 𝑣𝑖 }
0 otherwise.

3
If Δ ≥ log

1/7 𝑛/log log𝑛 then (1) is vacuously true.

Choose real numbers 𝛼 and 𝛽 such that at least one is nonzero.

We have

(𝛼𝜙1 + 𝛽𝜙2)𝑇𝐷−1/2𝐴𝐷−1/2 (𝛼𝜙1 + 𝛽𝜙2)
(𝛼𝜙1 + 𝛽𝜙2)𝑇 (𝛼𝜙1 + 𝛽𝜙2)

≥
1

Δ (𝛼
2 + 𝛽2)

2(𝛼2 + 𝛽2)
≥ 1

2Δ
.

Therefore by Courant Fisher

𝜆2 ≥ min

𝛼,𝛽

(𝛼𝜙1 + 𝛽𝜙2)𝑇𝐷−1/2𝐴𝐷−1/2 (𝛼𝜙1 + 𝛽𝜙2)
(𝛼𝜙1 + 𝛽𝜙2)𝑇 (𝛼𝜙1 + 𝛽𝜙2)

≥ 1

2Δ
.

By our choice of 𝑘 , this means 𝑛𝜆2𝑘
2

≥ 1. Moreover,

𝜖 ≤ 2 log log𝑛

2 logΔ 𝑛
≤ logΔ log log𝑛

log𝑛
< 1/2,

based on our assumptions on Δ. Thus, 1 − 𝜖 ≥ 𝑒−1.5𝜖 . Combining

these facts,

𝑚′𝜆2𝑘
2

≤ 4𝑒3𝑘𝜖−𝑐𝑛𝜆2𝑘
2
,

yielding

𝑚′ ≤ 4𝑛𝑒3𝑘𝜖−𝑐 ≤ 4𝑛𝑒−𝑐/2 = 𝑂
(

𝑛

logΔ 𝑛

)
.

As we created 𝐻 by deleting 𝑐𝑛/𝑠 vertices, it follows by Cauchy

interlacing that the number of eigenvalues of 𝐴̃ in [(1 − 𝜖)𝜆2, 𝜆2]
is at most

𝑐𝑛

𝑠
+𝑂

(
𝑛

logΔ 𝑛

)
.

We now show that taking

𝑠 :=
1

4

(
𝑘

Δ7
logΔ

)
1/5

satisfies (20). Applying Theorem 3.1 equation (14) to each 𝑥 ∈ 𝐺
and summing, we have

P(𝑊 2𝑘,𝑠 )
P(𝑊 2𝑘 )

≤ exp

(
− 𝑘

65Δ7𝑠4

)
≤ exp

(
−Ω

(
log𝑛 log2/5 Δ

Δ7/5

))
≪ exp(−𝑐) = exp(−Θ(log logΔ 𝑛)),

satisfying (20) for sufficiently large 𝑛, and we conclude that

𝑚𝐺

(
[(1 −

log logΔ 𝑛

logΔ 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · Δ

7/5
log

2/5 Δ log log𝑛

log
1/5 𝑛

)
,

as desired.

If |𝜆𝑛 | > |𝜆2 |, we can do a lazy walk with probability of moving

𝑝 = 1

2
, therefore making all eigenvalues nonnegative. This is equiv-

alent to doubling the degree of every vertex by adding loops. This

is the equivalent of taking the simple random walk on a graph with

maximum degree 2Δ, requiring 𝑠 ≤ 1

11

(
𝑘

Δ7
logΔ

)
1/5

, yielding the

same asymptotics. □
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5 EXAMPLES
In this section, we consider examples demonstrating some of the

points raised in the introduction regarding the tightness of our

results. As most of our results in this section are combinatorial

rather than probabilistic, we will consider multiplicity in the non-

normalized adjacency matrix 𝐴. For regular graphs, this is equiva-

lent.

5.1 Bipartite Ramanujan Graphs
We show that bipartite Ramanujan graphs (see [20]; known to exist

for every 𝑑 ≥ 3 by [22]) have high multiplicity near 𝜆2. This means

that the bound of 𝑛/logΘ(1) 𝑛 of Theorem 1.2 is tight.

Theorem 5.1 (Friedman [10] Corollary 3.6). Let 𝐺 be a 𝑑-
regular graph on 𝑛 vertices. Then

𝜆2 (𝐴𝐺 ) ≥ 2

√
𝑑 − 1(1 −𝑂 (1/log2 𝑛)) .

Lemma 5.2 (McKay [23] Lemma 3). The number of closed walks
on the infinite 𝑑-regular tree of length 2𝑘 starting at a fixed vertex is

Θ
(
4
𝑘 (𝑑−1)𝑘
𝑘3/2

)
.

Proposition 5.3. There exists a constant 𝛼 > 0 such that for
fixed 𝑑 , every bipartite 𝑑-regular bipartite Ramanujan graph 𝐺 on 𝑛
vertices satisfies

𝑚𝐺

(
[𝜆2 (1 − 𝛼

log log(𝑛)
log(𝑛) ), 𝜆2]

)
= Ω(𝑛/log3/2 (𝑛)) .

Proof. By Theorem 5.1,

𝜆2

(
1 − 𝛼 log log(𝑛)

log(𝑛)

)
≤ 2

√
𝑑 − 1

(
1 − 1

2

𝛼
log log(𝑛)
log(𝑛)

)
,

for sufficiently large 𝑛. Let 𝑘 = 𝛽 log𝑛 for some constant 𝛽 to be

set later and suppose that there are 𝑚 eigenvalues of 𝐴𝐺 in the

interval [2
√
𝑑 − 1

(
1 − 1

2
𝛼
log log(𝑛)
log(𝑛)

)
, 𝜆2]. Recall that the spectrum

of a bipartite graph is symmetric around 0. From Lemma 5.2 it

follows that for some constant 𝐶 ,

𝐶𝑛

(
4
𝑘 (𝑑 − 1)𝑘

𝑘3/2

)
≤

𝑛∑
𝑖=1

𝜆𝑖 (𝐴𝐺 )2𝑘 ,

so

𝐶𝑛

(
4
𝑘 (𝑑 − 1)𝑘

𝑘3/2

)
≤

2𝑑2𝑘+(𝑛−2𝑚)
(
2

√
𝑑 − 1

(
1 − 1

2

𝛼
log log(𝑛)
log(𝑛)

))
2𝑘

+2𝑚(2
√
𝑑 − 1)2𝑘 .

If we let 𝛽 be sufficiently small and 𝛼 > 3

2𝛽
, rearranging yields

𝑚

𝑛
≥
𝐶

4
𝑘 (𝑑−1)𝑘
𝑘3/2

− 2𝑑2𝑘

𝑛 −
(
2

√
𝑑 − 1

(
1 − 1

2
𝛼
log log(𝑛)
log(𝑛)

))
2𝑘

2(2
√
𝑑 − 1)2𝑘 ·

(
1 −

(
1 − 1

2
𝛼
log log(𝑛)
log(𝑛)

)
2𝑘

)
= Ω

©­­«
1 − 2𝑛2𝛽−1

𝑘3/2
−

(
1 − 1

2
𝛼
log log(𝑛)
log(𝑛)

)
2𝑘

1 −
(
1 − 1

2
𝛼
log log(𝑛)
log(𝑛)

)
2𝑘

ª®®¬
= Ω

(
1

𝑘3/2
− 1

𝑒𝛼𝛽 log log(𝑛)

)
= Ω

(
1

𝑘3/2

)
.

□

5.2 Mangrove Tree
This section shows that the dependence on |𝑉 | in Corollary 1.5 is

tight up to polylogarithmic factors. Our example begins with a path

of multiedges containing 𝑛 vertices, where each multiedge of the

path is composed of 𝑑/2 edges for some even 𝑑 . At both ends of the

path, we attach a tree of depth log𝑑−1 𝑛. The roots have degree 𝑑/2
and all other vertices (besides the leaves) have degree 𝑑 . Therefore

the only vertices in the graph that are not degree 𝑑 are the leaves of

the two trees. Call this graph𝑄 . An example of this graph is shown

in Figure 2.

Proposition 5.4. For every vertex𝑢 of degree less than𝑑 ,𝜓𝑄 (𝑢) =
𝑂̃ (𝑛−5/2), where 𝑂̃ suppresses dependence on logarithmic factors and
𝑑 .

Therefore, we cannot hope to do significantly better than our

analysis in Lemma 3.3, in which we find a vertex 𝑢 of non-maximal

degree with𝜓 (𝑢) ≥ 1/(𝑑𝜆1𝑛5/2).

Proof. For simplicity, call 𝜆1 (𝐴𝑄 ) = 𝜆1 and 𝜓𝑄 = 𝜓 . By the

symmetry of the graph, the value of 𝜓 at vertices in the tree is

determined by the distance from the root. Call the entries of 𝜓

corresponding to the tree 𝑟0, 𝑟1, . . . , 𝑟ℓ , where the index indicates

the distance from the root.

By the discussion in the proof of Kahale [14] Lemma 3.3, if we

define

𝜃 := log

©­« 𝜆1

2

√
𝑑 − 1

+

√
𝜆2
1

4(𝑑 − 1) − 1

ª®¬ ,
then for 0 ≤ 𝑖 ≤ ℓ , entries of the eigenvector must satisfy

𝑟𝑖

𝑟0
=

sinh((ℓ + 1 − 𝑖)𝜃 ) (𝑑 − 1)−𝑖/2
sinh((ℓ + 1)𝜃 )

where ℓ is the depth of the tree.

Therefore, 𝑟ℓ/𝑟0 = sinh(𝜃 ) (𝑑−1)−ℓ/2
sinh( (ℓ+1)𝜃 ) . Examining the various terms,

sinh(𝜃 ) ≤ 𝑑 and (𝑑 − 1)−ℓ/2 = 1√
𝑛
. To bound the third term, we use

the definition sinh(𝑥) = (𝑒𝑥 − 𝑒−𝑥 )/2, which yields

sinh((ℓ + 1)𝜃 ) ≥ 1 − 𝑜𝑛 (1)
2

©­« 𝜆1

2

√
𝑑 − 1

+

√
𝜆2
1

4(𝑑 − 1) − 1

ª®¬
log𝑑−1 𝑛+1

.
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𝜆1 is at least the spectral radius of the path of length 𝑛 with 𝑑/2
multiedges between vertices. Define𝜂𝑛,𝑑 := 𝑑 (1− 𝜋2

2𝑛2
). This spectral

radius is 𝑑 cos(𝜋/(𝑛 + 1)) ≥ 𝜂𝑛,𝑑 . This gives

sinh((ℓ + 1)𝜃 ) ≥
1 − 𝑜𝑛 (1)

2(2
√
𝑑 − 1)log𝑑−1 𝑛+1

(
𝜂𝑛,𝑑 +

√
𝜂2
𝑛,𝑑

− 4(𝑑 + 1)
)
log𝑑−1 𝑛+1

.

Therefore

sinh((ℓ + 1)𝜃 ) ≥

1 − 𝑜𝑛 (1)
2(2

√
𝑑 − 1)log𝑑−1 𝑛+1

(𝑑 + 𝑑 − 2)log𝑑−1 𝑛+1
(
1 −𝑂

(
𝑑

𝑛2

))
log𝑑−1 𝑛+1

and

sinh((ℓ + 1)𝜃 ) ≥ 1 − 𝑜𝑛 (1)
2

𝑒−𝑂 (𝑑 log𝑑−1 𝑛/𝑛2)
√
𝑛 ≥

√
𝑛

3

for large enough 𝑛. Therefore

𝑟ℓ

𝑟0
=

sinh(𝜃 ) (𝑑 − 1)−ℓ/2
sinh((ℓ + 1)𝜃 ) ≤ 3𝑑

𝑛
. (21)

At this point, we know the ratio between 𝑟ℓ and 𝑟0, but still need

to bound the overall mass of the eigenvector on the tree. A “regular

partition” is a partition of vertices 𝑉 =
⊔𝑘
𝑖=0 𝑋 𝑗 where the number

of neighbors a vertex 𝑢 ∈ 𝑋𝑖 has in 𝑋 𝑗 does not depend on 𝑢. We

can create a quotient matrix, where entry 𝑖, 𝑗 corresponds to the

number of neighbors a vertex 𝑢 ∈ 𝑋𝑖 has in 𝑋 𝑗 . For an overview of

quotient matrices and their utility, see Godsil, [12, Chapter 5]. In

our partition, every vertex in the path is placed in a set by itself. The

vertices of each of the two trees are partitioned into sets according

to their distance from the two roots. Call the matrix according

to this partition 𝐵𝑄 . We denote by 𝐵𝑄 (𝑋𝑖 , 𝑋 𝑗 ) the entry in 𝐵𝑄
corresponding to edges from a vertex in 𝑋𝑖 to 𝑋 𝑗 .

Define 𝑋0, . . . 𝑋ℓ as the sets corresponding to vertices in the

first tree of distance 0, . . . , ℓ from the root. For 1 ≤ 𝑗 ≤ ℓ − 1,

𝐵𝑄 (𝑋0, 𝑋1) = 𝑑/2. 𝐵𝑄 (𝑋 𝑗 , 𝑋 𝑗+1) = 𝑑 − 1. Moreover, for 0 ≤ 𝑗 ≤
ℓ − 1, 𝐵𝑄 (𝑋 𝑗+1, 𝑋 𝑗 ) = 1. All values between vertices in the path are

unchanged at 𝑑/2.
Consider the diagonal matrix 𝐷 with 𝐷𝑖,𝑖 := |𝑋𝑖 |−1/2. 𝐷−1𝐵𝑄𝐷

is a symmetric matrix. Define 𝐶 := 𝐷−1𝐵𝑄𝐷 We now have

𝐶 (𝑋 𝑗+1, 𝑋 𝑗 ) = 𝐶 (𝑋 𝑗 , 𝑋 𝑗+1) =
√
𝑑 − 1

for 1 ≤ 𝑗 ≤ ℓ − 1, and 𝐶 (𝑋0, 𝑋1) = 𝐶 (𝑋1, 𝑋0) =
√
𝑑/2.

If a vector 𝜙 is an eigenvector of𝐶 , then 𝐷𝜙 is an eigenvector of

𝐵𝑄 with the same eigenvalue. By the definition of 𝐷 this means

𝜓𝐶 (𝑋𝑖 )2 =
∑
𝑢∈𝑋𝑖

𝜓𝐴𝑄
(𝑢)2 . (22)

Define 𝐶𝑋0:ℓ
as the submatrix of 𝐶 corresponding the the sets

{𝑋0, . . . , 𝑋ℓ }, then extended with zeros to have the same size as

𝐶 . Every entry of 𝐶 + 𝑑/2−
√
𝑑−1√

𝑑−1
𝐶𝑋0:ℓ

is less than or equal to the

corresponding entry of the adjacency matrix of a path of length

𝑛 + 2 log𝑑−1 𝑛 with 𝑑/2 edges between pairs of vertices. Also, 𝜓𝐶

is a nonnegative vector. Therefore the quadratic form 𝜓𝑇
𝐶
(𝐶 +

𝑑/2−
√
𝑑−1√

𝑑−1
𝐶𝑋0:ℓ

)𝜓𝐶 is at most the spectral radius of this path. Namely

𝜓𝑇𝐶𝐶𝜓𝐶 + 𝑑/2 −
√
𝑑 − 1

√
𝑑 − 1

𝜓𝑇𝐶𝐶𝑋0:ℓ
𝜓𝐶 ≤ 𝑑 cos(𝜋/(𝑛 + 2 log𝑑−1 𝑛 + 1)) .

Because𝐶 contains the path of length 𝑛,𝜓𝑇
𝐶
𝐶𝜓𝐶 ≥ 𝑑 cos(𝜋/(𝑛+1)).

Putting these together yields

𝜓𝑇𝐶𝐶𝑋0:ℓ
𝜓𝐶 ≤

√
𝑑 − 1

𝑑/2 −
√
𝑑 − 1

· 𝑑 (cos(𝜋/(𝑛 + 2 log𝑑−1 𝑛 + 1))

− cos(𝜋/(𝑛 + 1))) ≤ 𝑑
√
𝑑 − 1

𝑑/2 −
√
𝑑 − 1

3𝜋2 log𝑑 𝑛

𝑛3
. (23)

Define𝜓𝐶 (𝑋1:ℓ ) as the projection of𝜓𝐶 on {𝑋1, . . . 𝑋ℓ }.𝐶𝜓𝐶 (𝑋1:ℓ ) =
𝐶𝑋0:ℓ

𝜓𝐶 (𝑋1:ℓ ), so

𝜓𝑇𝐶𝐶𝑋0:ℓ
𝜓𝐶 ≥ 𝜆1∥𝜓𝐶 (𝑋1:ℓ )∥2 ≥ 𝑑 (cos(𝜋/(𝑛 + 1)))∥𝜓𝐶 (𝑋1:ℓ )∥2

(24)

Combining (23) and (24) yields

∥𝜓𝐶 (𝑋1:ℓ )∥2 ≤
√
𝑑 − 1

𝑑/2 −
√
𝑑 − 1

(
3𝜋2 log𝑑 𝑛

𝑛3

)
/cos(𝜋/𝑛 + 1)

≤
(
21𝜋2 log𝑑 𝑛

𝑛3

)
assuming 𝑑 ≥ 4 and 𝑛 is sufficiently large.

Using (22) and the eigenvalue equation, we obtain

𝜓𝑄 (𝑟0) = 𝜓𝐶 (𝑋0) ≤ 𝜆1 (𝐴𝐶 )∥𝜓𝐶 (𝑋1:ℓ )∥ ≤ 𝑑 ·
5𝜋 log

1/2
𝑑

𝑛

𝑛3/2
.

Therefore, according to (21)

𝑟ℓ ≤
15𝑑2𝜋 (log1/2

𝑑
𝑛)

𝑛5/2
.

□

6 OPEN PROBLEMS
We conclude with some promising directions for further research.

6.1 Beyond the Trace Method: Polynomial
Multiplicity Bounds

There is a large gap between our upper bound of 𝑂 (𝑛/log1/5 𝑛) on
the multiplicity of the second eigenvalue and the lower bound of

𝑛1/3 mentioned after Theorem 1.1. It is very natural to ask, whether

the bound of this paper may be improved. To improve the bound

beyond 𝑂 (𝑛/polylog(𝑛)), however, it appears that a very different

approach is needed.

Open Problem 1 (Similar to Question 6.3 of [13]): Let 𝑑 > 1

be fixed integer. Does there exist an 𝜀 > 0 such that for every

connected 𝑑-regular graph 𝐺 on 𝑛 vertices, the multiplicity of the

second largest eigenvalue of 𝐴𝐺 is 𝑂 (𝑛1−𝜀 )?
In the present paper, we rely on the trace method to bound

eigenvalue multiplicity through closed walks. There are three draw-

backs to this approach that stops a bound on the second eigenvalue

multiplicity below 𝑛/polylog(𝑛). First, considering walks of length

𝜔 (log(𝑛)) makes the top eigenvalue dominate the trace, leaving

no information behind. Second, considering the trace Tr𝐴𝑘
𝐺

for

𝑘 = 𝑂 (log(𝑛)) it is impossible to distinguish eigenvalues that differ
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by𝑂 (1/log(𝑛)). Third, as covered in Section 5.1, there exist graphs

such that there are Ω(𝑛/polylog(𝑛)) eigenvalues in a range of that

size around the second eigenvalue. Thus, the trace method reaches

a natural barrier at 𝑛/polylog(𝑛)).

6.2 Eigenvalue Multiplicity for Unnormalized
Irregular Graphs

Another natural question is whether Theorem 1.2 may be extended

to hold for the (non-normalized) adjacency matrix of non-regular

graphs.

Open Problem 2: Let Δ > 1 be a fixed integer. Does it hold

for every connected graph 𝐺 on 𝑛 vertices of maximum degree

Δ that the multiplicity of the second largest eigenvalue of 𝐴𝐺 is

𝑜 (𝑛/log log(𝑛))?
In order to handle unnormalized irregular graphs via the ap-

proach in this paper, the key ingredient needed would be an “un-

normalized” analogue of Theorem 1.3, showing that a uniformly

random closed walk (from the set of all closed walks) in an irregu-

lar graph must have large support. We exhibit in Appendix B an

irregular “lollipop” graph for which the typical support of a closed

walk from a specific vertex is only 𝑂 (polylog(𝑘)). It remains plau-

sible that when starting from a random vertex, a randomly selected

closed walk has poly(𝑘) support in irregular graphs.

6.3 Sharper Bounds for Closed Random Walks
We have no reason to believe that the exponent of 1/5 appearing in
Theorem 1.3 is sharp. In fact, we know of no example where where

the answer is 𝑜 (𝑘1/2). An improvement over Theorem 1.3 would

immediately yield an improvement of Theorem 1.2.

Open Problem 3: Let 𝑑 > 1 be a fixed integer. Does there exist

an 𝛼 > 1/5 such that for every connected 𝑑-regular graph 𝐺 on 𝑛

vertices and every vertex 𝑥 of 𝐺 , a random closed walk of length

2𝑘 < 𝑛 rooted at 𝑥 has support Ω(𝑘𝛼 ) in expectation? Is 𝛼 = 1/2
true? Does such a bound hold for SRW in general?
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A PROOFS FOR HIGH DEGREE REGULAR
GRAPHS

Theorem A.1 (Detailed Theorem 1.7). If 𝐺 is 𝑑-regular, has
exactly ℎ self-loops at every vertex, and no multi-edges4, then

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ exp

(
− 𝑘

100𝑠3

)
P𝑥 (𝑊 2𝑘,2𝑠 )

for 𝑠 ≤ min

{
1

8

(
𝑘

log𝑑

)
1/4

,
𝑑 − ℎ
2

}
. (25)

4
This technical assumption is used to handle the case when |𝜆𝑛 (𝐴𝐺 ) | > 𝜆2 (𝐴𝐺 ) in
Theorem A.2. Here we take ℎ = 0.

Proof. We show this via a small modification of the proof of

Theorem 3.1. Assume 𝑠 ≤ (𝑑 − ℎ)/2. The key observation is that

each vertex has at least 𝑑 − ℎ edges in 𝐺 to other vertices, so in a

subgraph of size at most 2𝑠 − 1 every vertex has at least one edge in

𝐺 leaving the subgraph. In this case, we can simply choose 𝑢 ∈ 𝑆 as
𝑢 := argmax𝑤∈𝑆 𝜓𝑆 (𝑤) in Lemma 3.3. Therefore, considering the

adjacency matrix, (15) can be improved to

𝜆1 (𝐴𝑆∪{𝑣 }) ≥
1

2

(
𝜆1 +

√
𝜆2
1
+𝜓𝑆 (𝑢)2

)
≥ 𝜆1 +

𝜓𝑆 (𝑢)2

6𝜆2
1

≥ 𝜆1 +
1

6𝜆2
1
𝑠
.

Therefore, after adding 𝑠 vertices to 𝑆 according to the process

of Lemma 3.3, we find a set 𝑇 ∈ Γ2𝑠𝑥 satisfying

𝜆1 (𝐴𝑇 ) ≥ 𝜆1 +
1

6𝜆2
1

𝑠∑
𝑖=1

1

𝑠 + 𝑖 − 1

≥ 𝜆1 +
log 2

6𝜆2
1

≥ 𝜆1

(
1 + 1

10𝜆3
1

)
.

Using this improved bound, and keeping in mind that 𝜆1 (𝐴𝑇 ) ≤
2𝑠 , we can replicate the argument above to get to the following

improvement over (18):

P𝑥 (𝑊 2𝑘,𝑠 )

≤ exp

(
2𝑠 log𝑑 + 4𝑠 log(2𝑠) + log(2𝑠) − 𝑘

80𝑠3

)
P𝑥 (𝑊 2𝑘,2𝑠 ).

This implies

P𝑥 (𝑊 2𝑘,𝑠 ) ≤ exp

(
7𝑠 log𝑑 − 𝑘

80𝑠3

)
P𝑥 (𝑊 2𝑘,2𝑠 )

≤ exp

(
− 𝑘

100𝑠3

)
P𝑥 (𝑊 2𝑘,2𝑠

𝑥 )

whenever

𝑠 ≤ 1

8

(
𝑘

log𝑑

)
1/4

,

establishing (25). □

Theorem A.2 (Detailed Theorem 1.6). If 𝐺 is simple and 𝑑-
regular, then if 𝑑 log1/2 𝑑 ≤ 𝛼 log1/4 𝑛 then

𝑚𝐺

(
[(1 −

log log𝑑 𝑛

log𝑑 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · log𝑑 log log𝑛

𝑑

)
.

If 𝑑 log1/2 𝑑 ≤ 𝛼 log1/4 𝑛, then

𝑚𝐺

(
[(1 −

log log𝑑 𝑛

log𝑑 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · log

1/2 𝑑 log log𝑛

log
1/4 𝑛

)
for all5 𝑑 ≤ exp(

√
log𝑛), where 𝛼 :=

4
√
3/4.

Proof. The proof is the same as the proof of Theorem 1.2 in

Section 4, except we choose different 𝑠 .

(1) If 𝑑 log1/2 𝑑 < 𝛼 log1/4 𝑛 set

𝑠 := min

{
1

8

(
𝑘

log𝑑

)
1/4

,
𝑑 − ℎ
2

}
=
𝑑

2

with ℎ = 0. Applying Theorem A.1 it is easily checked that

(20) is satisfied for large enough 𝑛, yielding a bound of

𝑚𝐺

(
[(1 −

log log𝑑 𝑛

log𝑑 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · log𝑑 log log𝑛

𝑑

)
.

5
If 𝑑 ≥ exp(

√
log𝑛) then (A.2) is vacuously true.
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(2) If 𝐺 is simple, 𝑑-regular and 𝑑 log1/2 𝑑 ≥ 𝛼 log1/4 𝑛, set

𝑠 := min

{
1

8

(
𝑘

log𝑑

)
1/4

,
𝑑 − ℎ
2

}
=

1

8

(
log𝑛

log
2 𝑑

)
1/4

with ℎ = 0. Then (20) is again satisfied by applying Theorem

3.1 equation (25), and we conclude that

𝑚𝐺

(
[(1 −

log log𝑑 𝑛

log𝑑 𝑛
)𝜆2, 𝜆2]

)
= 𝑂

(
𝑛 · log

1/2 𝑑 log log𝑛

log
1/4 𝑛

)
.

□

B LOLLIPOP
Here, we show that if we do not assume that our graph is regular,

the average support of a uniformly chosen (from the set of all such

walks) closed walk of length 𝑘 from a fixed vertex is no longer

necessarily 𝑘Θ(1)
(as opposed to the average support of a random

walk) . We take the lollipop graph, which consists of a clique of

(𝑑 + 1) vertices for fixed 𝑑 ≥ 3 and a path of length 𝑛 {𝑢1, . . . , 𝑢𝑛}
attached to a vertex 𝑣 of the clique, where 𝑛 ≫ 𝑘 . Here𝜓 := 𝜓 (𝐴)
and 𝜆1 := 𝜆1 (𝐴) are the Perron eigenvector and eigenvalue of the

adjacency matrix of the graph.

Lemma B.1. 𝜓 (𝑣) ≥ 1/
√
𝑑 + 2.

Proof. By symmetry, the value on all entries of the clique be-

sides 𝑣 are the same. Call this value𝜓 (𝑏). Then by the eigenvalue

equation we have 𝜆1𝜓 (𝑏) = 𝜓 (𝑣) + (𝑑 − 1)𝜓 (𝑏), so as 𝜆1 ≥ 𝑑 , it

must be that𝜓 (𝑣) ≥ 𝜓 (𝑏).
Similarly, to satisfy the eigenvalue equation, vertices on the path

must satisfy the recursive relation

𝜆1𝜓 (𝑢𝑖 ) = 𝜓 (𝑢𝑖−1) +𝜓 (𝑢𝑖+1) 1 ≤ 𝑖 ≤ 𝑛 − 1

𝜆1𝜓 (𝑢𝑛) = 𝜓 (𝑢𝑛−1)
where we define 𝑣 = 𝑢0. To satisfy this equation, we must have

𝜓 (𝑢𝑖 ) ≥ (𝜆1 − 1)𝜓 (𝑢𝑖+1) for each 𝑖 , so as 𝜆1 ≥ 𝑑 ≥ 3, 𝜓 (𝑣) ≥∑𝑛
𝑖=1𝜓 (𝑢𝑘 ). As the Perron vector is nonnegative, it must be that

𝜓 (𝑣)2 ≥ ∑𝑛
𝑖=1𝜓 (𝑢𝑘 )2, and

(𝑑 + 2)𝜓 (𝑣)2 ≥ 𝜓 (𝑣)2 + 𝑑𝜓 (𝑏)2 +
𝑛∑
𝑖=1

𝜓 (𝑢𝑘 )2 = 1,

so𝜓 (𝑣) ≥ 1/
√
𝑑 + 2. □

Call 𝛾2𝑘𝑣 the number of closed walks of length 2𝑘 , and 𝛾
2𝑘,≥ℓ+𝑑+1
𝑣

as the subset of these walks with support at least ℓ + 𝑑 + 1.

Proposition B.2. For ℓ ≥ 2 log(𝑘)/log(𝜆1/2),

|𝛾2𝑘,≥ℓ+𝑑+1𝑣 | = 𝑂 (𝑘−2) |𝛾2𝑘𝑣 |.

Proof. For a closed walk to have support ℓ+𝑑+1, it must contain

𝑢ℓ . For such walks, once the path is entered, at least 2ℓ steps must be

spent in the path, as the walk must reach 𝑢ℓ and return. Therefore,

closed walks starting at 𝑣 that reach𝑢ℓ can be categorized as follows.

First, there is a closed walk from 𝑣 to 𝑣 . Then there is a closed walk

from 𝑣 to 𝑣 going down the path containing 𝑢ℓ . On this excursion,

the walk can only go forward or backwards, and it spends at least

2ℓ steps within the path. For each of these steps, there are 2 options.

If we remain in the path after 2ℓ steps, upper bound the number of

choices until returning to 𝑣 by 𝜆1 at each step. After returning to

𝑣 , the remaining steps form another closed walk. The number of

closed walks from 𝑣 of length 𝑖 is at most 𝜆𝑖
1
. Therefore the number

of closed walks with an excursion to 𝑢ℓ is at most

2𝑘∑
𝑖=0

𝜆𝑖
1
2
2ℓ𝜆2𝑘−2ℓ−𝑖

1
= (2𝑘 + 1)𝜆2𝑘−2ℓ

1
2
2ℓ .

The total number of closed walks starting at 𝑣 is at least𝜓 (𝑣)2𝜆𝑛
1
.

Therefore the fraction of closed walks that have support at least ℓ

is at most

(2𝑘 + 1)22ℓ𝜆2𝑘−2ℓ
1

𝜆2𝑘
1
/(𝑑 + 2)

=
(𝑑 + 2) (2𝑘 + 1)22ℓ

𝜆2ℓ
1

so for ℓ ≥ 2(log𝑘)/log(𝜆1/2), this is 𝑂 (𝑘−2).
□

Note that we can add a tree instead of a path (as exhibited in

Figure 1). According to the same analysis, the probability a walk

reaches depth further thanΘ(log𝑘) is small. Therefore, in Theorem

1.3 we can not get a sufficient bound on support from passing to

depth, but must deal with support itself.
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