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ABSTRACT

We show that the multiplicity of the second normalized adjacency
matrix eigenvalue of any connected graph of maximum degree A
is bounded by O(nA7/5/logl/5_°(1) n) for any A, and improve this
to O(nlogl/2 d/log1/4_o(1) n) for simple d-regular graphs when
d> logl/ 4 1. In fact, the same bounds hold for the number of eigen-
values in any interval of width A5/ loglA_o(l) n containing the second
eigenvalue Az. The main ingredient in the proof is a polynomial (in
k) lower bound on the typical support of a closed random walk of
length 2k in any connected graph, which in turn relies on new lower
bounds for the entries of the Perron eigenvector of submatrices of
the normalized adjacency matrix.
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1 INTRODUCTION

The eigenvalues of matrices associated with graphs play an im-
portant role in many areas of mathematics and computer science,
so general phenomena concerning them are of broad interest. In
their recent beautiful work on the equiangular lines problem, Jiang,
Tidor, Yao, Zhang, and Zhao [13] proved the following novel result
constraining the distribution of the adjacency eigenvalues of all
connected graphs of sufficiently low degree.
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THEOREM 1.1. IfG is a connected graph of maximum degree A on
n vertices, then the multiplicity of the second largest eigenvalue of its
adjacency matrix Ag is bounded by O(nlog A/loglog(n)).

For their application to equiangular lines, [13] only needed to
show that the multiplicity of the second eigenvalue is o(n), but
they asked whether the O(n/loglog(n)) dependence in Theorem
1.1 could be improved, noting a huge gap between this and the best
known lower bound of Q(n!/3) achieved by certain Cayley graphs
of PSL(2, p) (see [13, Section 4]). Apart from Theorem 1.1, there are
as far as we are aware no known sublinear upper bounds on the
second eigenvalue multiplicity for any general class of graphs, even
if the question is restricted to Cayley graphs (unless one imposes a
restriction on the spectral gap; see Section 1.2 for a discussion).

Meanwhile, in the theoretical computer science community, the

largest eigenvalues of the normalized adjacency matrix Ag :
Dal/ ZAGDE;I/ z (for D the diagonal matrix of degrees) have re-
ceived much attention over the past decade due to their relation
with graph partitioning problems and the unique games conjecture
(see e.g. [1-3, 16, 18, 19, 21, 24]); in particular, many algorithmic
tasks become easier on graphs with few large normalized adjacency
eigenvalues. Thus, it is of interest to know how many of these
eigenvalues there can be in the worst case.

In this work, we prove significantly stronger upper bounds than
Theorem 1.1 on the second eigenvalue multiplicity for the normal-
ized adjacency matrix. Graphs are undirected and allowed to have
multiedges and self-loops, unless specified to be simple. Order the
eigenvalues of Ag as M (Ag) = A2(Ag) > ... = M (Ag), and et
mg(I) denote the number of eigenvalues of Ag in an interval I.

THEOREM 1.2. If G is a connected graph of maximum degree A on
n vertices with Ay(Ag) = A, then!

7/5
n- IAI_/S) (1)
og'”n

Because of the relationship Ag = %AG when G is regular,
(1) gives a substantial improvement on Theorem 1.1 in the reg-
ular case (in the non-regular case, the results are incomparable
as they concern different matrices). In addition to the stronger
O(n/polylog(n)) bound, a notable difference between our result
and Theorem 1.1 is that we control the number of eigenvalues in a
small interval containing 3. Though we do not know whether the

loglogy n

me ([(1- mm]) -5

logp n

1All asymptotics are as n — oo and the notation O(-) suppresses polyloglog(n)
terms.
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exponents in (1) are sharp, we show in Section 5.1 that constant de-
gree bipartite Ramanujan graphs have at least Q(n/ loga/ 2 1) eigen-
values in the interval appearing in (1), meaning O(n/polylog(n))
is the correct regime for the maximum number of eigenvalues in
such an interval when A is constant.

Theorem 1.2 is nontrivial for all A = o(log™/’ n); as remarked
in [13], Paley graphs have degree Q(n) and second eigenvalue
multiplicity Q(n), so some bound on the degree is required to
obtain sublinear multiplicity. In Section 1.1, we present a variant
of Theorem 1.2 (advertised in the abstract) which yields nontrivial
bounds in the special case of simple d—regular graphs with degrees

1/7

aslargeasd = exp(log1/2_5 n), which is considerably larger than
the regime d = O(polylog(n)) handled by [13].

The main new ingredient in the proof of Theorem 1.2 is a polyno-
mial lower bound on the support of (i.e., number of distinct vertices
traversed by) a simple random walk of fixed length conditioned
to return to its starting point. The bound holds for any connected
graph and any starting vertex and may be of independent interest.

THEOREM 1.3. Suppose G is connected and of maximum degree A
on n vertices and x is any vertex in G. Lety,z(k = (x = Xo0, X1, - .-, Xok)
denote a random walk of length 2k < n sampled according to the
simple random walk on G starting at x. Then

2k _
P(support(yy") < s|Xor = Xo) < exp (—m)
1 k 1/5
< -\ . 2
for 8_4(A7logA) @

In particular, this means that for constant A, the typical support
of a closed random walk of length 2k is least Q(k/%). It may be
tempting to compare Theorem 1.3 with the familiar fact that a
random closed walk of length 2k on Z (or in continuous time, a
standard Brownian bridge run for time 2k) attains a maximum
distance of Q(\/E) from its origin. However, as seen in Figure 1,
there are regular graphs for which a closed walk of length 2k from a
particular vertex x travels a maximum distance of only polylog(k)
with high probability. Theorem 1.3 reveals that nonetheless the
number of distinct vertices traversed is always typically poly(k). We
do not know if the specific exponent of k'/3 supplied by Theorem
1.3 is sharp, but considering a cycle graph shows that it is not
possible to do better than K2,

Given Theorem 1.3, our proof of Theorem 1.2 follows the strategy
of [13]: since most closed walks in G have large support, the number
of such walks may be drastically reduced by deleting a small number
of vertices from G. By a moment calculation relating the spectrum
to self return probabilities and a Cauchy interlacing argument, this
implies an upper bound on the multiplicity of A3 (Ag). The crucial
difference is that we are able to delete only n/polylog(n) vertices
whereas they delete n/poly log log(n).

The key ingredient in our proof of Theorem 1.3 is a result re-
garding the Perron eigenvector (i.e., the unique, strictly positive
eigenvector with eigenvalue A;) of a submatrix of A.

THEOREM 1.4. For any graph G = (V, E) of maximum degree A,
take any set of vertices S G V such that the induced subgraph on S is
connected, and let s be the £,-normalized Perron vector ofAs, the
principal submatrix of A corresponding to vertices in S. Then there is
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Figure 1: For a regular graph composed of a near-clique at-
tached to an infinite tree, a closed walk of length 2k start-
ing from within the near-clique does not typically go deeper
than O(log k) down the tree. However, the support of such a
closed walk is typically k8, See Section B for a more de-
tailed discussion.

a vertexu € S which is adjacent toV \ S such that

Us(u) = 1/(A221(Ag)ISIP/?). 3)

When we restrict this result to G being a d-regular graph and pass
to the adjacency matrix, we achieve a result about the unnormalized
adjacency matrix of irregular graphs that may be of independent
interest.

COROLLARY 1.5. Let H = (V,E) be an irregular connected graph
of maximum degree A with at least two vertices, and let ¢g be the
ty-normalized Perron vector of Apy. Then there is a vertex u € V with
degree strictly less than A satisfying

P (u) = 1/(A* 21 (Am)VI?). )

Corollary 1.5 may be compared with existing results in spectral
graph theory on the “principal ratio” between the largest and small-
est entries of the Perron vector of a connected graph. The known
worst case lower bounds on this ratio are necessarily exponential
in the diameter of the graph [7, 28]. Corollary 1.5 articulates that
there is always at least one vertex of non-maximal degree for which
the ratio is only polynomial in the number of vertices.

The proof of Theorem 1.4 is based on an analysis of hitting times
in the simple random walk on G via electrical flows, and appears
in Section 2. Combined with a perturbation-theoretic argument, it
enables us to show that any small connected induced subgraph S of
G can be extended to a slightly larger induced subgraph with signifi-
cantly larger Perron value 1 (Ag). With some further combinatorial
arguments, this implies that closed walks cannot concentrate on
small sets, yielding Theorem 1.3 in Section 3, which is finally used
to deduce Theorem 1.2 in Section 4.

We show in Section 5.2 via an explicit example (Figure 2) that the
exponent of 5/2 appearing in Corollary 1.5 is sharp up to polyloga-
rithmic factors. We conclude with a discussion of open problems in
Section 6.

Note that an update of the preprint of [13] generalizes Theorem
1.1 to the multiplicity of the jth eigenvalue. Our results can also
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loggn depth

Figure 2: An example of a graph where all vertices u that are
not of maximum degree have (u) = O(n~5/2). The circled
sets Xp, X1 and X, will be used in the analysis of the graph in
Section 5.2.

be generalized in this manner by some nominal changes to the
arguments in Section 4, but for simplicity we focus on Ay in this

paper.

1.1 Higher Degree Regular Graphs

If G = (V,E) is a simple, d-regular graph, and S ¢ V such that
|S| < d, then necessarily all vertices of S are adjacent to vertices in
V'\ S. Therefore we can improve the bound from Theorem 1.4 by
assuming the vertex u on the boundary u is the maximizer of the
Perron vector, which has value ys(u) > 1/ \/E . This leads to the
following variants of our main results for simple, regular graphs of
sufficiently high degree.

THEOREM 1.6. G is simple, d—regular, and connected with Ay =

log I
A2(Ag). Callm = mg ([(1 - pREL) ), Az]). Then

5(%) when d = o(log!/* n)

-l

The above theorem is based on the following corresponding
result for closed walks.

®)

nlog"?d
i,

— 1/4
o ) when d = Q(log'/* n).

THEOREM 1.7. IfG is simple, d—regular, and connected on n vertices
andy is a random closed walk of length 2k < n started at any vertex
in G, then:

100s3 )

1 K\t a
for ngm{g(logd) 5} 6)

The proofs of both theorems appear in Appendix A.

Pr(support(y) < s) < exp (—

1.2 Related Work

Eigenvalue Multiplicity. Despite the straightforward nature of
the question, relatively little is known about eigenvalue multiplicity
of general graphs. As discussed in [13], if one assumes that G is a
bounded degree expander graph, then the bound of Theorem 1.1
can be improved to O(n/logn). On the other hand, if G is assumed
to be a Cayley graph of bounded doubling constant K (indicating
non-expansion), then [17] show that the multiplicity of the second

398

STOC °21, June 21-25, 2021, Virtual, Italy

eigenvalue is at most exp(log? K). In the context of Cayley graphs,
one interesting new implication of Theorem 1.6 is that all Cay-
ley graphs of degree O(exp(log!/?7% n)) have second eigenvalue
multiplicity O(n/ log‘s/ Zn).

Sublinear multiplicity does not necessarily hold for eigenvalues
in the interior of the spectrum even assuming bounded degree. In
particular, Rowlinson has constructed connected d—regular graphs
with an eigenvalue of multiplicity at least n(d — 2)/(d + 2) [26] for
constant d.

Distance regular graphs of diameter D have exactly D +1 distinct
eigenvalues (see [12] 11.4.1 for a proof). However, besides the top
eigenvalue (which must have multiplicity 1), generic bounds on
the multiplicity of the other eigenvalues are not known. As ex-
panding graphs have diameter ©(log, n), the average multiplicity
of eigenvalues besides A; for expanding distance regular graphs
is ©(n/log, n). It is tempting to see this as a hint that the multi-
plicity of the second eigenvalue could be Q(n/log, n); however,
as noted above, multiplicity on eigenvalues in the interior of the
spectrum can be quite different from multiplicities near the edge of
the spectrum.

Higher Order Cheeger Inequalities. The results of [18, 19] imply
that if a d—regular graph G has a second eigenvalue multiplicity
of m, then its vertices can be partitioned into Q(m) disjoint sets
each having edge expansion O(+/d(1 — A2) log m). Combining this
with the observation that a set cannot have expansion less than the
reciprocal of its size shows that m = O(n/polylog(n)) whenever
1-22(Ag) < 1/log€ n for any ¢ > 1, i.e., the graph is sufficiently
non-expanding. Our main theorem may be interpreted as saying
that this phenomenon persists for all graphs.

Support of Walks. There are as far as we are aware no known
lower bounds for the support of a random closed walk of fixed
length in a general graph (or even Cayley graph). It is relatively
easy to derive such bounds for bounded degree graphs if the length
of the walk is sufficiently larger than the mixing time of the simple
random walk on the graph; the key feature of Theorem 1.3, which
is needed for our application, is that the length of the walk can be
taken to be much smaller.

The support of open walks (namely removing the condition that
the walk ends at the starting point) is better understood. There are
Chernoff-type bounds on the size of the support of a random walk
based on the spectral gap [11, 15]. Such bounds and their variants
are an important tool in derandomization.

Entries of the Perron Vector. There is a large literature concerning
the magnitude of the entries of the Perron eigenvector of a graph —
see [27, Chapter 2] for a detailed discussion of results up to 2014.
Rowlinson showed sufficient conditions on the Perron eigenvector
for which changing the neighborhood of a vertex increases the spec-
tral radius [25]. Cvetkovi¢, Rowlinson, and Simi¢ give a condition
which, if satisfied, means a given edge swap increases the spectral
radius [8]. Cioaba showed that for a graph of maximum degree A
and diameter D, A — A; > 1/nD [5]. Cioaba, van Dam, Koolen, and
Lee then showed that A1 > (n— l)l/D [6]. The results of [29] prove
a lemma similar to Lemma 3.2, giving upper and lower bounds on
the change in spectral radius from the deletion of edges. However,
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their result does not quite imply Lemma 3.2, and we prove a slightly
different statement.

1.3 Notation

All logarithms are base e unless noted otherwise.

Electrical Flows. We use Reff (-, -) to denote the effective resis-
tance between two vertices in H, viewing each edge of the graph
as a unit resistor. See e.g. [9] or [4, Chapter IX] for an introduction
to electrical flows and random walks on graphs.

Graphs. For a matrix M, we use Mg to denote the principal sub-
matrix of M corresponding to the indices in S. Consider a graph
G = (V,E) and a subset H C V. Let P := AD™1 be the transition
matrix of the simple random walk matrix on G, where A is the
adjacency matrix and D is the diagonal matrix of degrees. We will
also use the normalized adjacency matrix A := D™Y2AD /2 Note
that P and A are similar, and that A is symmetric. Ps and Ag are
submatrices of P and A; they are not the transition matrices and
normalized adjacency matrices of the induced subgraph on S. Note
Pg and Ag are also similar.

Perron Eigenvector. We use /s to denote the ¢»-normalized eigen-
vector corresponding to A1 (As), which is a simple eigenvalue if S
is connected. Note that for connected S, /s is strictly positive by
the Perron-Frobenius theorem.

A simple graph refers to a graph without multiedges or self-loops.
We assume A > 2 for all connected regular graphs, since otherwise
the graph is just an edge, so log A > 0.

2 LOWER BOUNDS ON THE PERRON
EIGENVECTOR

In this section we prove Theorem 1.4, which is a direct consequence
of the following slightly more refined result. In a graph G = (V, E),
define the boundary of S as the set of vertices in S adjacent to V'\S
in G.

THEOREM 2.1 (LARGE PERRON ENTRY). Let G = (V, E) be a con-
nected graph of maximum degree A and S C 'V such that the induced
subgraph on S is connected. Then there is a vertexu € S on the
boundary of S such that

Ys () [Ys (1) = 1/(A2 21 (As)|SI?)

where t = arg max,yes ¥s(w).

™

At a high level, the proof proceeds as follows. First, we show
that there exists a vertex x € S adjacent to the boundary of S such
that a random walk started at x is somewhat likely to hit ¢ before it

hits the boundary of S. Second, we express the ratio of D;/ z Us(x)

and D;/zllls(t) as a limit as k — oo of the ratio PY)]{‘/IP’Yk, where

Yf is the event that the simple random walk started at v remains in
S for k steps; we bound this ratio from below using the hitting time
estimate from the first step. Third, by the eigenvector equation the
ratio of the entries of an eigenvector at two neighboring vertices is
bounded. Hence, x is adjacent to some vertex u on the boundary of
S satisfying the theorem.
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Figure 3: In Step 1 of the proof of Theorem 2.1, we lower
bound the probability that a random walk started at a cer-
tain vertex x adjacent to B reaches ¢ before reaching B. We
do this by contracting B to a vertex s, then lower bounding
the current from s to t, which establishes the existence of
the desired x. The left graph in the figure is G and the right
graph is the contracted graph K, with the dotted lines indi-
cating edges leaving the set of interest S = M LI B.

Proor. Write S = M U B, where B is the boundary of S and
M =S\ B.If t € B then we are done, so assume not. Let ]P’)CC;(-) de-
note the law of the simple random walk (SRW) (X;);2, on G started
at Xp = x, and for any subset T c V, let 77 := {mini : X; € T}
denote the hitting time of the SRW to that subset; if T = {u} isa
singleton we will simply write 7.

Step 1. We begin by showing that there is a vertex x € M adjacent
to B for which the random walk started at x is reasonably likely to
hit ¢ before B. To do so, we use the well-known connection between
hitting probabilities in random walks and electrical flows. Define a
new graph K = (V' = V\ BU{s}, E’) by contracting all vertices in B
to a single vertex s. Let f : V/ — [0, 1] be the vector of voltages in
the electrical flow in K with boundary conditions f(s) =0, f(¢) = 1,
regarding every edge as a unit resistor. By Ohm’s law, the current
flow from s to ¢t is equal to 1/Reffg (s, t). We have the crude upper
bound
Reffx (s, t) < distanceg (s, t) < |S],

since S is connected, so the outflow of current from s is at least
1/|S|. By Kirchhoft’s current law, there must be a flow of at least
1/(|S| degg (s)) on at least one edge (s,x) € E’. By Ohm’s law
again, for this particular x € V’ we must have

fx) > 1 1 S 1

x) > = 2 )
S| deg(s)  ISllogBl — AlS|?
where dgB denotes the edge boundary of B in G. Appealing to

e.g. [4, Chapter IX, Theorem 8], this translates to the probabilistic
bound

®)

1
—_—. 9
S ©)
Once again using Kirchhoff’s current law, as there is no current

outside of S, f(s) = f(y) = 0 for every y € V' \ S. Therefore we
must in fact have x € M.

PC(r < 78) = PR (5 < 1) = f(x) >

Step 2. We now use (9) to show that /s (x) is large. Because Ag =
D;l/zPsD;/z, the top eigenvector of Pg is D;/Zl//5/||D;/21ﬁ5||. Let
P’ : (P +1)/2 denote the lazy random walk? on G, and to ease

2This modification is only to ensure non-bipartiteness; if S is not bipartite we may
take the simple random walk
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notation let P (-) := P,Y(-) denote the law of the lazy random
walk on G started at x. Note that the eigenvectors of Pg, as well as
Px(7¢ < 7p), do not change when passing to Py.

For the lazy random walk, the Perron-Frobenius theorem implies
that

(DY) (w) 11Pzke

= lim —=——=——,
IDY2ysl ko TP
for every w € S, where 15 € RS is the all ones vector. We further
have

1LPtFe,, = P (ty\s > K),
namely the probability a random walk of length k starting at w

stays in S.
We are interested in the ratio
(D)) | Phlns > ) w0
(D;/Zlﬁs)(t) k—)oo P; s > k)
Fix an integer k > 0. The numerator of (10) is bounded as
P;C(TV\S > k) > P, (TV\S > kl'[t < TB)P;((Tt < 1B)
A|S|2P S (tv\s >kl < 7B) by (9).
Therefore
Pﬁc(f\/\s > k)
k-1
> A|S|2 ZP (tv\s > klzt = 0,7 < 1B)Pl(1y = 0|7y < 1),
6=0
(11)
and
k-1
P (ty\s > k) > A|5|2 ZPt(TV\S >k — 0)P,(r; = 0]z, < 7p)
> A|5|2 ZP (ty\s > K)PL(z = O]z < 7p). (12)

Observe that E,7p < co since G is connected. Thus,
k-1

ZP’/‘(T’ = 0|t < )
6=0

1-Pr(r > k|ry < 7B)

_Pl(zg2k)
Py (7 < 7B)

v
—_

vV

Eltp 2
1- a A|S|* by Markov and (9).

Combining this bound with (12), we have
.
A|S|? k
Taking the limit as k — co in (10) yields
(DY) () 1
(DY ys)(t) ~ AISE

P)’c(TV\S > k) > : A|S|2) P;(TV\S > k)
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Step 3. Since x is adjacent to B, we can choose a u € B adjacent to x.
The eigenvector equation and nonnegativity of the Perron vector
now imply Ad; (As)¥s(u) > ¢s (x) whence

(DY) (w) = (DY) (0). (13)

M (As)AZISI2
Therefore, as D is a diagonal matrix, and the entries of D range
from 1 to A, it must be the case that

Ys(u) > s ().

1
M1 (Ag)A¥/2|S)2
O

As the proof shows, the right-hand side of (7) may be replaced
with 1/A3/2/11 (As)|0GBJR, where B is the boundary of S in G and
R is the maximum effective resistance between two vertices in S.

ProOF oF COROLLARY 1.5. Given an irregular graph H, construct
a A-regular graph G containing H as an induced subgraph (it is
trivial to do this if we allow G to be a multigraph). We repeat the
above proof on G with § = H. Boundary vertices of H are exactly
the vertices of degree less than A. Note that Dl/ %isa multiple of
the identity since G is regular, so the normahzed adjacency matrix
of G is just a rescaled version of the adjacency matrix of G. Ag is
then a rescaled version of the adjacency matrix of H. Therefore (13)
yields the desired conclusion. O

3 SUPPORT OF CLOSED WALKS

In this section we prove Theorem 1.3, which is an immediate conse-
quence of the following slightly stronger result. Let W2ks denote
the event a simple random walk of length 2k has support at most s
and ends at its starting point.

THEOREM 3.1 (IMPLIES THEOREM 1.3). If G is connected and of
maximum degree A on n vertices, then for every vertex x € G and
k <n/2,

Py (W) < exp (— )PX(WZk’ZS)

65A7s4

1/5
k ) . (19)

1
< =
for s<y (A7logA

The proof requires a simple lemma lower bounding the increase
in the Perron value of a subgraph upon adding a vertex in terms of
the Perron vector.

LEMMA 3.2 (PERTURBATION OF A1). Consider the normalized adja-
cency matrix A == D™Y2AD~1/2 of a graph G = (V, E) of maximum
degree A. Moreover, consider a subset of vertices S C V and vertex
u € S on the boundary of S, so that 3v ~ u,v ¢ S. Then

MAsoio) = 3 (o) +nAs)? + a2y (w2

Proor. The largest eigenvalue of A is at least the quadratic form
associated with the unit vectors

ga(x) = { V1 — 05¢S(x)

xeS
xX=v
for 0 < @ < 1. We have

9hAge = (1— a®)1 (As) +dy 2dy P a1 - a2y (w),
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where dy, is the degree of u in G. This quantity is maximized when

M(As)
2y (As)? +dg1d; s (u)?

a =

1
2
at which

GAge =1 (Al (is) [ Gis? g 5 s )

]

Combining Lemma 3.2 and Theorem 2.1 yields a bound on the
increase of the top eigenvalue of the submatrix corresponding to
an induced subgraph that may be achieved by adding vertices to it.

LEMMA 3.3 (SUPPORT EXTENSION). For any connected graph G =
(V,E) of maximum degree A, consider its normalized adjacency ma-
trix A. For any connected subset S C V such that2 < |S| = s < |V|/2,
there is a connected subset T C V containing S such that |T| = 2s and

~ ~ 5
M(AT) =2 M(Ag) |1+ ——— | -
1(Ar) = A1( s)( +128A7s4)

Proor. Define Ay = 1;(Ag) and note that Ay > 1/A since S
contains at least one edge. As s is a normalized vector with s
entries, s (t) > 1/+/s. Therefore yg(u) > 1/(A5/2245%/2). Take v
to be any vertex in V' \ S that neighbors u in G. By Lemma 3.2,

M(Asu(o}) = % (11 + \/lf + A‘2¢s(u)2)

. ys(?®  Ys(w)?

>
P anAZ T 163
>N+ ——— as w)? /A2 < A?
o Vs
1
>N+ —— since A1 < 1. 15
s | (15)

Assuming that s < |V|/2, we can iterate this process s times,
adding the vertices {v1, ...vs}. At each step we add the vertex v;
and increase the Perron eigenvalue of ASU{UI,"_,UH} by at least
1/(6A7 (s+i—1)°). Therefore, defining T = SU {oy, ..

. 1 < 1
M(AT) = A4+ — > 2
1(4r) 2 4 6A7;(s+i—1)5 !

where the last inequality follows from approximating the sum with
the integral. As A; < 1, this translates to the desired multiplicative
bound. |

.0s}, we have

L5
128A7s%’

PrOOF OF THEOREM 3.1. We begin by showing (14). Let I} be
the set of connected subgraphs of G with s vertices containing x.
Choose S to be the maximizer of ezAgkex among S € I}, and let

T € I'? be the extension of S guaranteed by Lemma 3.3 to satisfy
. 5 .
M(AT) 2 |1+ ——— | 11 (As).
1 (Ar) ( 128A7s4) 1(As)

ng has the same diagonal entries as A%k 5o

PX(WZIC,S) < Z e;];Aé]/cex,
S’ ely
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since each walk of length 2k satisfying W2k is contained in at
least one S’ € T'$. Furthermore, || < A% since each subgraph of
I} may be encoded by one of its spanning trees, which may in turn
be encoded by a closed walk rooted at x traversing the edges of the
tree. We then have

P (W) < |1Sef A% e,

< Azs/ll (AS)ZIC
5 -2k i
< AZS (1 + m) /11 (AT)Z . (16)

We will bound the right hand side in terms of Py ( Ww2ki2s),
We claim that for every z € T,

e,{A%kex > A_4SeZTA%k_4sez.

(17)

To see this, let 7 be a path in T of length ¢ < 2s between x and z,
which must exist since T is connected and has size 2s. Then every
closed walk of length 2k — 2¢ in T rooted at z may be extended to a
walk of length 2k in T rooted at x by attaching 7 and its reverse.
Performing the walk of 7 twice occurs with probability at least
A% Since all of the walks produced this way are distinct, we have

T i2k —2¢,T jek-2¢
exATex 2 A e, AT ey

By the same argument eZTAsz_Zer > A_‘“JrZ"eZTA?Tk_“S ez, and in-
equality (17) follows.
Choose z € T to be the maximizer of eZTAZTk"ls ez, for which we
have:
()4
2s '
Combining this with (17) and substituting in (16), we obtain

T ;2k-4 1 2k—4
e, AR ¥e, > ZTr(PT 5) >

M(Ar)*sel A%e,

—2k
P (W2Ks) < ASS o5 |14+ —>—
x( ) 128A7s4

A (A7) Bx (W),

—2k
<A 25|14 ———
128A7s%

Applying the inequality e*/2 < 1+ x for 0 < x < 1 and the
bound A; (A1) < 1, we obtain

5k
Px(WZk’S) < exp (6s log A +log(2s) — m) Px(WZk’ZS),
(18)
which implies
k
Px(Wzk,S) < exp (_m) PX(WZk,ZS)

whenever

1 k 1/5

s< ||
4 (N log(A) )

establishing (14).

4 BOUND ON EIGENVALUE MULTIPLICITY

In this section we prove Theorem 1.2, restated below in slightly
more detail.
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THEOREM 4.1 (DETAILED THEOREM 1.2). Let G be a maximum
degree A connected graph on n vertices. If A < log1/7 n/loglogn

then the spectrum of the normalized adjacency matrix A satisfies

loglogp n

A7/5(log2/5 A)loglogn
logy n ’

logl/5 n

mg | [(1 )12,/12])20 n

(19)

ProoF. For now, assume that |, (P)| < |A2(P)|. Let P(-) denote
the law of an SRW y of length 2k on G, started at a vertex cho-
sen uniformly at random (i.e., not from the stationary measure
of the SRW). Let W2k := w2k denote the event that y returns
to its starting vertex after 2k steps. In an abuse of notation, let
wek:zst1 .— y2k\2ks be the event that a walk of length 2k is
closed and has support at least s + 1.

Set k := % logy n and ¢ := 2logk and let s be a parameter satis-
fying

P(W?ks) < e p(W?k) (20)

to be chosen later. Delete cn/s vertices from G uniformly at random
and call the resulting graph H.

If y has support at least s + 1, then the probability that none of
the vertices of y are deleted is at most

cn

(1—5) f<e
n

EyP(y € Hly € W2hzstly < g€,

Thus,

where Epj is the expectation over H. It then follows by the proba-
bilistic method that there exists a deletion such that the resulting
subgraph H of G satisfies

P(Wzk,st n {Y c H}) < e*C]P(WZk,ZS+1).

Write A3 := A2(Ag) and let m’ be the number of eigenvalues of
H in the interval [(1 — €)A2, A2] for € := ¢/2log, (n). Since 2k is
even,

m’(1- €)% 2k < (A%

=nP(W? n{y c H})

=n(P(W?S 0 {y c H}) + W22+ 1 {y € HY}))
< n(P(W?) 4 e~ *P(W?525+1)) by our choice of H

< n(e *P(W?k) + e CP(W2E:2541)) by (20)
—c( F2
< 2¢7¢(A%)
< 27 (nA2k +1).
We may assume that the diameter of G is at least 4 as otherwise
A > n'/%, making the theorem statement vacuous. Because of
the diameter, we can take two edges (u1,v1), (u2,v2) such that the

distance between the edges is at least 2. Then consider the vectors
¢1, ¢2 such that for i € {1,2}

x € {uj, vi}
otherwise.

$i(x) = { (1)

3IF A > log!7 n/loglog n then (1) is vacuously true.
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Choose real numbers o and f such that at least one is nonzero.
We have

(ag + o) D 2AD V2 (agy + fg) K (e +57)
(agy + pd2)T (a1 + 2) = (a4 f2)

Therefore by Courant Fisher

1
> —.
2A

(ags + Bgo) " DPADTV 2 (agy + fpa)
(agr + pg2)T (ad1 + Bg2) N

Ay > min

1
T ap 2A°

By our choice of k, this means nlgk > 1. Moreover,

2logl log Alogl
¢ < oglogn _ log ogogn<1/2,

2logy n logn

based on our assumptions on A. Thus, 1 — € > e 1:5€, Combining
these facts,

m’ﬂgk < 4e3ke_cn/1%k,

yielding

n
m’ < 4ne3k€=¢ < ane=¢2 = 0 .
logp n

As we created H by deleting cn/s vertices, it follows by Cauchy
interlacing that the number of eigenvalues of A in [(1 — €)Ag, A2]
is at most

Trol——|.
s logp n

We now show that taking

1 k 1/5
si=—|——
4 \A7log A

satisfies (20). Applying Theorem 3.1 equation (14) to each x € G
and summing, we have

P(WZIC,S) ( k )
——— — <exp|—
P(W2k) 65A7s4
log nlog?/® A
< exp (—Q —n

< exp(—c) = exp(—O(loglog, n)),

satisfying (20) for sufficiently large n, and we conclude that

loglogy n
me [(l_lgi
OgAn

)Az,/lz]) =0(n

A7/ logz/5 Aloglogn
logl/5 n ’

as desired.

If |[A| > |A2], we can do a lazy walk with probability of moving
p= %, therefore making all eigenvalues nonnegative. This is equiv-
alent to doubling the degree of every vertex by adding loops. This
is the equivalent of taking the simple random walk on a graph with

1/5
) , yielding the
m]

. .. 1 k
maximum degree 2A, requiring s < 11 (m

same asymptotics.
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5 EXAMPLES

In this section, we consider examples demonstrating some of the
points raised in the introduction regarding the tightness of our
results. As most of our results in this section are combinatorial
rather than probabilistic, we will consider multiplicity in the non-
normalized adjacency matrix A. For regular graphs, this is equiva-
lent.

5.1 Bipartite Ramanujan Graphs

We show that bipartite Ramanujan graphs (see [20]; known to exist
for every d > 3 by [22]) have high multiplicity near A,. This means
that the bound of n/10g®(1) n of Theorem 1.2 is tight.

THEOREM 5.1 (FRIEDMAN [10] COROLLARY 3.6). Let G be a d-
regular graph on n vertices. Then

X2(Ag) = 2Vd —1(1 - O(1/log? n)).

LEMMA 5.2 (McKay [23] LEMMA 3). The number of closed walks
on the infinite d-regular tree of length 2k starting at a fixed vertex is

o (=)

ProPoOsSITION 5.3. There exists a constant & > 0 such that for
fixed d, every bipartite d-regular bipartite Ramanujan graph G onn
vertices satisfies

log log(n)

mG ([/12(1 - a—log(n)

xhﬂ:mwmmm»

Proor. By Theorem 5.1,

loglog(n)
log(n)

1 loglog(n)
- g

M@'“ 2 Tlog(n)

)SZ\/dTl(l

for sufficiently large n. Let k = flogn for some constant f to be
set later and suppose that there are m eigenvalues of Ag in the

interval [2Vd — 1 (1 - %aloig)(g,f)") ) , A2]. Recall that the spectrum
of a bipartite graph is symmetric around 0. From Lemma 5.2 it

follows that for some constant C,

)sZMM@%
i=1

ak(d — 1)k
k3/2

SO

k(1 ik
o (4 (d-1)
K3/2

E

2k
2d** +(n—2m) (2% (1 _ 1, loglog(n) )) +2m(2Vd - 1)**.

2 log(n)
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If we let 8 be sufficiently small and & > % rearranging yields

G L 1 loglog(n) %
m . K372 —T—<2 d—l(l—za log(n) ))
- 2k
n 2(2‘/d _ l)zk . (1 _ (1 _ %alolg()g(gn()n)) )

loglog(n)
log(n)

)Zk
)Zk

1 — on2b-1 (1 - %a
k3/2 -

_ (1 — 1, loglog(n)
1= (1 bt

1 1
Q (m - eafloglog(n) )

5.2 Mangrove Tree

This section shows that the dependence on |V| in Corollary 1.5 is
tight up to polylogarithmic factors. Our example begins with a path
of multiedges containing n vertices, where each multiedge of the
path is composed of d/2 edges for some even d. At both ends of the
path, we attach a tree of depth log,;_; n. The roots have degree d/2
and all other vertices (besides the leaves) have degree d. Therefore
the only vertices in the graph that are not degree d are the leaves of
the two trees. Call this graph Q. An example of this graph is shown
in Figure 2.

PROPOSITION 5.4. For every vertexu of degree less thand, o (u) =

O(n™5/2), where O suppresses dependence on logarithmic factors and
d.

Therefore, we cannot hope to do significantly better than our
analysis in Lemma 3.3, in which we find a vertex u of non-maximal

degree with ¢/(u) > 1/(dAnd7?).

Proor. For simplicity, call A1(Ag) = A1 and g = ¢. By the
symmetry of the graph, the value of ¢ at vertices in the tree is
determined by the distance from the root. Call the entries of
corresponding to the tree ro, rq, ..., rp, where the index indicates
the distance from the root.

By the discussion in the proof of Kahale [14] Lemma 3.3, if we

define
M A
6:=1o + -1,
g(zVELf \i@-1

then for 0 < i < ¢, entries of the eigenvector must satisfy
_sinh((£+1-1)0)(d - 1)7/?
ro sinh((£ +1)0)
where ¢ is the depth of the tree.

sinh(8) (d—1)~/2
sinh((£+1)0)

sinh(f) < dand (d—1)"¢/2 = Ln To bound the third term, we use
the definition sinh(x) = (e* — e7*)/2, which yields

ri

Therefore, rp/ro = . Examining the various terms,

log,_y n+1

1—o0n() [ X A

sinh((¢£+1)0) 2 — i1 Na@-n - !
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A1 is at least the spectral radius of the path of length n with d/2
multiedges between vertices. Define ,, 4 := d(1— %) This spectral
radius is d cos(7/(n+1)) > 1, 4. This gives

sinh((¢ +1)0) >

1-o0p(1) ( 3 logy ; n+1
+ —4(d+1 ) .
2avaTyoga s \nd T AT g~ 4@+

Therefore

sinh((¢ +1)0) >

1
1—-0,(1) (d+d—2)10gd*1 n+1 (1_0(1)) 0811
2(2‘/d _ 1)logd_1 n+1 n2

and

Vi

sinh((¢+1)0) > l_oTn(l)e_o(dlogdq n/n) \Jn >
for large enough n. Therefore

sinh(0)(d — 1)~¢/2 .

sinh((¢£+1)0) ~ n’

%= 21)
ro

At this point, we know the ratio between r, and ro, but still need
to bound the overall mass of the eigenvector on the tree. A “regular
partition” is a partition of vertices V = |_|£“:0 Xj where the number
of neighbors a vertex u € X; has in X; does not depend on u. We
can create a quotient matrix, where entry i, j corresponds to the
number of neighbors a vertex u € X; has in Xj. For an overview of
quotient matrices and their utility, see Godsil, [12, Chapter 5]. In
our partition, every vertex in the path is placed in a set by itself. The
vertices of each of the two trees are partitioned into sets according
to their distance from the two roots. Call the matrix according
to this partition Bg. We denote by Bo(Xi, X;) the entry in Bg
corresponding to edges from a vertex in Xj to X;.

Define X, ... X, as the sets corresponding to vertices in the
first tree of distance 0,...,¢ from the root. For 1 < j < ¢ -1,
Bp(Xo,X1) = d/2. Bo(Xj,Xj+1) = d — 1. Moreover, for 0 < j <
£ -1, Bo(Xj+1,X;) = 1. All values between vertices in the path are
unchanged at d/2.

Consider the diagonal matrix D with D; ; := |X,~|_1/2. D_lBQD
is a symmetric matrix. Define C := D_IBQD We now have

C(Xj+1,Xj) =C(Xj,Xj+1) = Vd -1

for1<j<¢-1,and C(Xp,X1) = C(X1,X0) =+/d/2.
If a vector ¢ is an eigenvector of C, then D¢ is an eigenvector of
Bg with the same eigenvalue. By the definition of D this means

YeX) = ) Yap ).

ueX;

(22)

Define Cy,,, as the submatrix of C corresponding the the sets
{Xo,...,X¢}, then extended with zeros to have the same size as

C. Every entry of C + MCXW is less than or equal to the

Vd-1
corresponding entry of the adjacency matrix of a path of length
n+ 2log,_; n with d/2 edges between pairs of vertices. Also,

is a nonnegative vector. Therefore the quadratic form ¢g(C +
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d/z;—\/%_lC Xo.p ) YC is at most the spectral radius of this path. Namely
d/2-~Nd-1
lﬁgCtﬁc + /—lﬁgCXMlﬁc < dcos(r/(n+2logy;_,n+1)).

Vd -1
Because C contains the path of length n, tﬁgCl,//c > dcos(m/(n+1)).
Putting these together yields

Vd-1
dj2—Vd-1

—cos(r/(n+1))) <

lﬁgcxwlﬁc < -d(cos(r/(n+2logy_;n+1))

dVd -1
dj2-Nd-1
Define /¢ (X1:¢) as the projection of yc on { X, ... X¢}. Cyc (Xi:¢) =
Cxy. ¥ (X1:¢), 50

YECx Ve = Mllye (Xro)lI? > d(cos(/(n+ 1)) Ige (Xie) |12

372 logy n

(24)
Combining (23) and (24) yields
d-1 3ntlogyn
e (Xuo)l* < ( ) [cos(z/n+1)
¢ dj2—Vd-1 n3
217
< mlogyn
n3
assuming d > 4 and n is sufficiently large.
Using (22) and the eigenvalue equation, we obtain
51 log(li/ “n
Yo (ro) = yc(Xo) < (Ao lYe(Xip)ll < d- 372
Therefore, according to (21)
15d%7(logly* n)
re < —5/2
n
[m}

6 OPEN PROBLEMS

We conclude with some promising directions for further research.

6.1 Beyond the Trace Method: Polynomial

Multiplicity Bounds

There is a large gap between our upper bound of O(n/logl/5 n) on

the multiplicity of the second eigenvalue and the lower bound of
n!/3 mentioned after Theorem 1.1. It is very natural to ask, whether
the bound of this paper may be improved. To improve the bound
beyond O(n/polylog(n)), however, it appears that a very different
approach is needed.

Open Problem 1 (Similar to Question 6.3 of [13]): Letd > 1
be fixed integer. Does there exist an ¢ > 0 such that for every
connected d-regular graph G on n vertices, the multiplicity of the
second largest eigenvalue of Ag is O(n'7%)?

In the present paper, we rely on the trace method to bound
eigenvalue multiplicity through closed walks. There are three draw-
backs to this approach that stops a bound on the second eigenvalue
multiplicity below n/polylog(n). First, considering walks of length
w(log(n)) makes the top eigenvalue dominate the trace, leaving
no information behind. Second, considering the trace TrAX, for

G
k = O(log(n)) it is impossible to distinguish eigenvalues that differ
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by O(1/log(n)). Third, as covered in Section 5.1, there exist graphs
such that there are Q(n/polylog(n)) eigenvalues in a range of that
size around the second eigenvalue. Thus, the trace method reaches
a natural barrier at n/polylog(n)).

6.2 FEigenvalue Multiplicity for Unnormalized
Irregular Graphs

Another natural question is whether Theorem 1.2 may be extended
to hold for the (non-normalized) adjacency matrix of non-regular
graphs.

Open Problem 2: Let A > 1 be a fixed integer. Does it hold
for every connected graph G on n vertices of maximum degree
A that the multiplicity of the second largest eigenvalue of Ag is
o(n/loglog(n))?

In order to handle unnormalized irregular graphs via the ap-
proach in this paper, the key ingredient needed would be an “un-
normalized” analogue of Theorem 1.3, showing that a uniformly
random closed walk (from the set of all closed walks) in an irregu-
lar graph must have large support. We exhibit in Appendix B an
irregular “lollipop” graph for which the typical support of a closed
walk from a specific vertex is only O(polylog(k)). It remains plau-
sible that when starting from a random vertex, a randomly selected
closed walk has poly(k) support in irregular graphs.

6.3 Sharper Bounds for Closed Random Walks

We have no reason to believe that the exponent of 1/5 appearing in
Theorem 1.3 is sharp. In fact, we know of no example where where
the answer is 0(k'/2). An improvement over Theorem 1.3 would
immediately yield an improvement of Theorem 1.2.

Open Problem 3: Let d > 1 be a fixed integer. Does there exist
an o > 1/5 such that for every connected d-regular graph G on n
vertices and every vertex x of G, a random closed walk of length
2k < n rooted at x has support Q(k%) in expectation? Is & = 1/2
true? Does such a bound hold for SRW in general?
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A PROOFS FOR HIGH DEGREE REGULAR
GRAPHS

THEOREM A.1 (DETAILED THEOREM 1.7). If G is d-regular, has
exactly h self-loops at every vertex, and no multi-edges®, then

Px(wzk,S) < exp (_ )PX(WZk,ZS)

1( k AR 25)
8 \logd) = 2 |’

4This technical assumption is used to handle the case when |1,,(Ag)| > A2(Ag) in
Theorem A.2. Here we take h = 0.

k
100s3

for s< min{
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Proor. We show this via a small modification of the proof of
Theorem 3.1. Assume s < (d — h)/2. The key observation is that
each vertex has at least d — h edges in G to other vertices, so in a
subgraph of size at most 2s — 1 every vertex has at least one edge in
G leaving the subgraph. In this case, we can simply choose u € S as
u := arg max,,es ¥s(w) in Lemma 3.3. Therefore, considering the
adjacency matrix, (15) can be improved to

ysw? PR
6A2

1 2 2
A (ASU{U}) > E ().1 + 1M.1 + s (u) ) > M+ 6,1%3.

Therefore, after adding s vertices to S according to the process
of Lemma 3.3, we find a set T € ['° satisfying

1 < 1 log 2 1
MAT) 2 M+ — 2h+— 24|1+—].
1(A7) 1+6/1f Listvio1 1+ M% 1( +1OA?)

Using this improved bound, and keeping in mind that 11 (A7) <

2s, we can replicate the argument above to get to the following
improvement over (18):

Pr (W)
< logd 1 1 _ L 2k,2s
< exp [2slogd + 4slog(2s) + log(2s) e Py (W=E22),
This implies

k
Px(WZk’S) < exp (75 logd — —) PX(WZk,ZS)
80s3

k 2k,2s
< - P ’
P ( 10033) (W)
whenever
1 kM
s < - s
8 (logd)
establishing (25). m]
THEOREM A.2 (DETAILED THEOREM 1.6). If G is simple and d-
regular, then ifdlog'/? d < alog!/* n then
loglog, n logdloglogn
e (11= ZE 2B 1y 1)) = 0 - PETERER),
ogyn d
Ifallogl/2 d< otlogl/4 n, then
loglog,n log!/? dloglog n
me ([(1 - lg;g”’uz,m) =0(n & 8081
08q 1 log!/4n

for alP d < exp(/logn), where a := \/3/4.

Proor. The proof is the same as the proof of Theorem 1.2 in
Section 4, except we choose different s.
(1) Ifallogl/2 d< alog1/4 n set
1 kMt d-n
= 1 - — _— =
e logd) 2
with h = 0. Applying Theorem A.1 it is easily checked that

(20) is satisfied for large enough n, yielding a bound of

mG([(l— loglﬂm,m) =O(n )

log,n
SIfd > exp(y/log n) then (A.2) is vacuously true.

d
2

logdloglogn
d
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(2) If G is simple, d-regular and allogl/2 d>a logl/4 n, set
logn

1 k \"* d-n|] 1 1/4
§(logd) ) =§(10g2d)

with A = 0. Then (20) is again satisfied by applying Theorem
3.1 equation (25), and we conclude that

$ := min

log1 1/2
mG([(l——olg Ogdn)Az,/lz]) = 0|n. g dloglogn dll/‘jlgl"g"
0gq 1 log/*n
m}
B LOLLIPOP

Here, we show that if we do not assume that our graph is regular,
the average support of a uniformly chosen (from the set of all such
walks) closed walk of length k from a fixed vertex is no longer
necessarily kO (as opposed to the average support of a random
walk) . We take the lollipop graph, which consists of a clique of
(d + 1) vertices for fixed d > 3 and a path of length n {uy, ..., u,}
attached to a vertex v of the clique, where n > k. Here ¢ := /(A)
and A1 := A1 (A) are the Perron eigenvector and eigenvalue of the
adjacency matrix of the graph.

LemMA B.1. ¢(v) > 1/Vd + 2.

ProOOF. By symmetry, the value on all entries of the clique be-
sides v are the same. Call this value ¥/(b). Then by the eigenvalue
equation we have ,1y/(b) = ¥ (v) + (d — D¢(b), so as 4; > d, it
must be that ¢(v) > ¥/(b).

Similarly, to satisfy the eigenvalue equation, vertices on the path
must satisfy the recursive relation

Ay (i) = Y (ui-1) + Y (uiv1)
My (un) = Y (un-1)
where we define v = ug. To satisfy this equation, we must have

Y(ui) = (A — 1)Y(ujyq) for each i, soas 43 > d > 3, ¥(v) >
1 ¥(ug). As the Perron vector is nonnegative, it must be that

¥(v)? > p ¥(ug)?, and

1<i<n-1

(d+2)y(0)* = Y(0)” +dy(b)* + ) Y(we)* =1,
i=1

]

soy(v) > 1/Vd + 2.

Call yzz,k the number of closed walks of length 2k, and yzz,k’ 2lrd+l

as the subset of these walks with support at least £ +d + 1.
PROPOSITION B.2. Fort > 2log(k)/log(A1/2),
k. d -
vooF = oI

Proor. For a closed walk to have support £+d+1, it must contain
up. For such walks, once the path is entered, at least 2¢ steps must be
spent in the path, as the walk must reach u, and return. Therefore,
closed walks starting at o that reach u can be categorized as follows.
First, there is a closed walk from v to . Then there is a closed walk
from v to v going down the path containing u,. On this excursion,
the walk can only go forward or backwards, and it spends at least
2¢ steps within the path. For each of these steps, there are 2 options.
If we remain in the path after 2¢ steps, upper bound the number of
choices until returning to v by A; at each step. After returning to
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v, the remaining steps form another closed walk. The number of
closed walks from v of length i is at most A]. Therefore the number
of closed walks with an excursion to u, is at most

2k
Z Aizzf)’%k—zf—i — (Zk + I)A%k—Z{’zz{_
i=0

The total number of closed walks starting at v is at least Iﬁ(U)ZA?.
Therefore the fraction of closed walks that have support at least ¢
is at most

(2k + 1)22002k=2 _ (d+2)(2k+1)2*
22k (d +2) 2%
so for £ > 2(log k) /log(A1/2), this is O(k72).

[m]

Note that we can add a tree instead of a path (as exhibited in
Figure 1). According to the same analysis, the probability a walk
reaches depth further than ®(log k) is small. Therefore, in Theorem
1.3 we can not get a sufficient bound on support from passing to
depth, but must deal with support itself.
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