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Research publications are the major repository of scientific knowledge. However, their unstructured

and highly heterogenuous format creates a significant obstacle to large-scale analysis of the

information contained within. Recent progress in natural language processing (NLP) has provided

a variety of tools for high-quality information extraction from unstructured text. These tools are

primarily trained on non-technical text and struggle to produce accurate results when applied to

scientific text, involving specific technical terminology. During the last years, significant efforts in

information retrieval have been made for biomedical and biochemical publications. For materials

science, text mining (TM) methodology is still at the dawn of its development. In this review, we

survey the recent progress in creating and applying TM and NLP approaches to materials science

field. This review is directed at the broad class of researchers aiming to learn the fundamentals

of TM as applied to the materials science publications.
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1 Introduction & Background

The first example of statistical analysis of publications dates back to 1887 when Thomas C. Mendenhall

suggested a quantitative metric to characterize authors’ writing styles (Mendenhall, 1887). At that time, the

analysis of the literature was widely used to resolve authorship disputes, and, of course, was entirely manual.

In the 1940-1960s, the development of computers gave a significant boost to the growth of linguistic analysis.

The work of Stephen C. Kleene on regular expressions and finite automata (Kleene, 1956), subsequent formal

language theory described by Noam Chomsky (1956), and the important fundamental work on information

theory by Claude Shannon (1951) became the foundation for what is now known as natural language

processing (NLP). The following decades brought diverse research results along different aspects of text

mining (TM) and NLP: automated generation of article abstracts (Luhn, 1958), regular expressions compilers

(Thompson, 1968), automated dialog assistant (Weizenbaum, 1983), the first structured text collection – the

Brown University Standard Corpus of American English (www.korpus.uib.no/icame/manuals), and many

others (Miner et al., 2012).

In the 1990s, technological progress permitted storage and access to large amounts of data. This shifted

NLP and machine learning (ML) from a knowledge-based methodology towards data-driven approaches

(Kurgan and Musilek, 2006). The accelerated development of the Internet and the Web during this decade

facilitated information sharing and exchange. This is also reflected in the rapid growth of scientific publications

(Bornmann and Mutz, 2015) over this period. Our analysis of the papers indexed in the Web of Science

repository shows that since the beginning of 2000s, the number of publications in different fields of materials

science has increased exponentially (Figure 1).

There are significant opportunities in leveraging data to guide materials research, which is driven by such

aspects as property prediction, the search for novel materials, identifying synthesis routes, or determining

device parameters. Data is central to the materials informatics enterprise as the availability of large quantities

of machine-readable data is a prerequisite to leverage statistical approaches to accelerate materials research

(Ramprasad et al., 2017). Not surprisingly, early work on data-driven learning approaches therefore focused

on the few highly curated datasets in the materials field, such as crystal structure data (Fischer et al., 2006;

Hautier et al., 2011) or on computed property data which can be generated homogeneously and at high rate

(Jain et al., 2013; de Jong et al., 2015; Ricci et al., 2017).

However, knowledge acquisition in materials science must generally be performed across insufficient,

diverse, and heterogeneous data. These data range across disparate materials systems and a multitude

of characterization approaches to comprehend thermomechanical, electromagnetic and chemical properties

(Morgan and Jacobs, 2020). Publications are still the primary way to communicate within the scientific

discipline. Therefore, there is substantial potential in capturing unstructured information from the vast and

ever-growing number of scientific publications.

Textual information exists in an unstructured or highly heterogeneous format. Manual data extraction

is expensive, labor-intensive, and error-prone (although some powerful examples exist in the materials
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community (Blokhin and Villars, 2020; Gallego et al., 2016b; Gallego et al., 2016a)). As a result, there

are tremendous opportunities for large-scale automated data extraction to transform materials science into

a more quantitative and data-rich field.

This review discusses recent advances in automated text processing and information extraction from a

large corpus of chemical, physical and materials science publications. We first discuss the methods and

approaches widely used in TM and NLP (Section 2). Then we survey some prominent case studies that are

focused on data collection and data mining (Section 3). We highlight some major challenges and obstacles in

scientific TM (Section 4). Lastly, we discuss potential future research developments for NLP in its application

to materials science (Section 5).

2 Text Mining of Scientific Literature

Modern computers encode text as a monotonic sequence of bits representing each character, but without

reflecting its internal structure or other high-order organization (e.g. words, sentences, paragraphs). Building

algorithms to interpret the sequences of characters and to derive logical information from them is the primary

purpose of TM and NLP. Unlike standard texts on general topics, such as newswire or popular press,

scientific documents are written in specific language requiring sufficient domain knowledge to follow the

ideas. Application of general-purpose TM and NLP approaches to the chemical or materials science domain

requires adaptation of both methods and models, including development of an adequate training sets that

comply with the goals of the TM project.

Generally, a scientific TM pipeline breaks down into the following steps (Figure 2): i) retrieval of

documents and conversion from markup languages or PDF into plain text; ii) text pre-processing, i.e.

segmentation into sentences and tokens, text normalization and morphological parsing; iii) text analysis

and information extraction; iv) data normalization and database structuring. The resulting collection either

serves as a final product of the TM or provides a source of data for further mining and analysis.

While a comprehensive discussion of the algorithms and methods used to accomplish each task of the

pipeline is beyond the scope of this review, we cover in this Section those methods that are widely applied

in scientific TM. We also revise state-of-the-art NLP parsing tools needed to handle chemical and materials

science texts. We emphasize the challenges arising along the way and discuss possible solutions. For details

and theoretical background on TM and NLP models in general, we refer the reader to the following books:

(Miner et al., 2012) and (Jurafsky and Martin, 2009).

2.1 Obtaining the text corpus

In computational linguistics, a large organized set of human-created documents is referred to as a text

corpus. Scientific discourse generally occurs across a wide variety of document formats and types: abstracts

in proceedings, research articles, technical reports and pre-prints, patents, e-encyclopedias, and many more.
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There are two primary ways to obtain the text corpus: i) by using existing indexed repositories with the

available text-mining application programming interfaces (APIs) and search tools; or ii) by having access to

an individual publisher’s content.

Text databases. A comprehensive overview of scientific text resources can be found in review of Kolářik et

al. (2008). Table 1 lists some common repositories for scientific texts in the domain of chemistry and material

science, their document types, and access options. The main advantage of using established databases for text

mining is the uniform format of their metadata, a convenient API, and sometimes analysis tools. However,

the majority of the publications in these repositories are heavily biased toward biomedical and biochemical

subjects with a smaller fraction belonging to physics, (in)organic chemistry, and materials science. Moreover,

the access to the content is limited: it either requires having a subscription or provides a search over open-

access publications only.

Individual publisher access. Implementation of a customized scraping routine to screen the publisher’s

web-pages and download the content requires more effort. However, this approach allows for accessing

content from those resources that are not providing an API, for example, e-print repositories. In most cases,

downloading and accessing significant publisher content require text and data mining (TDM) agreements.

We note that this TDM agreement differs from a standard academic subscription granted to the libraries

of the institutions, because scraping and downloading large volumes, affect the operation of the publishers’

server.

Web-scraping not only requires a substantial amount of work, but it also has to respond to dynamic web

pages in which content is generated by a client browser. In our recent work, we implemented such a solution

for Elsevier, RSC, ECS, and AIP publishers (Kononova et al., 2019). Similarly, ChemDataExtractor (Swain

and Cole, 2016) provides the web-scrapers for Elsevier, RSC and Springer. In the research fields where most

of the literature has an open access repository, e.g. physics, mathematics or the rapidly growing literature

collection on COVID-19 (Trewartha et al., 2020), the corpus acquisition step will be considerably easier.

2.2 Conversion into raw text

In general, the retrieved content includes the targeted text and other metadata, such as journal name, title,

authors, keywords, and others. Querying text databases, as those in Table 1, provide a structured output

with raw text ready for processing and analysis. In contrast, web-scraped content usually consists of a

complete paper files requiring the additional step to convert it into a raw text. Nowadays, most of the text

sources provide as HTML/XML/JSON documents, whereas older papers are usually available as embedded

or image PDFs (Figure 1).

While parsing of HTML/XML markups can be performed with various programming tools, extraction of

the plain text from PDF files is more laborious. Embedded PDFs usually have a block structure with the
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text arranged in columns and intermixed with tables, figures, and equations. This affects the accuracy of

conversion and text sequence. Some work has been done attempting to recover a logical text structure from

PDF-formatted scientific articles by utilizing rule-based (Constantin et al., 2013) and ML (Tkaczyk et al.,

2015; Luong et al., 2010) approaches. However, the accuracy of these models measured as F1-score is still

below ~80%. The authors’ experience demonstrates that this can dramatically impact the final output of

the extraction pipeline (Fig. 2). Hence, the decision on whether to include PDF text strongly depends on

the tasks that are being solved.

A great number of documents, in particular, those published before the 1990s, are only available as

an image PDF (Figure 1). Conversion of these files into a raw text requires advanced optical character

recognition (OCR), and, to the best of our knowledge, the currently available solutions still fail to provide

high enough accuracy to reliably extract chemistry (Mouchère et al., 2016; Mahdavi et al., 2019). Often,

interpretation errors in PDFs originate from subscripts in chemical formulas and equations, and from

confusion between symbols and digits. Creating a rigorous parser for PDF articles, and especially an OCR

for scientific text is an area of active research in the computer science and text mining community (Memon

et al., 2020; Ramakrishnan et al., 2012).

2.3 Text pre-processing, grammatical and morphological parsing

The raw documents proceed through normalization, segmentation, and grammar parsing. During this step,

the text is split into logical constitutes (e.g. sentences) and tokens (e.g. words and phrases), that are used

to build a grammatical structure of the text. Depending on the final TDM goal, the text tokens may be

normalized by stemming or lemmatization and processed through the part of speech tagging (POS tagging),

and dependencies parsing to build the sentences structure. These are explained below.

Paragraph segmentation and sentence tokenization identify, respectively, the boundaries of the

sentences and word phrases (tokens) in a text. In general, finding the start/end of a sentence segment

requires recognition of certain symbolic markers, such as period (“.”), question mark (“?”), and exclamation

mark (“!”), which is usually performed with (un)supervised ML models (Read et al., 2012). State-of-the-

art implementations attain ~95-98% accuracy (measured as F1-score). However, applying these models to

scientific text requires modification. Commonly used expressions such as “Fig. X”, “et al.” and a period in

chemical formulas often result in over-segmentation of a paragraph. Conversely, citation numbers at the end

of a sentence promote the merging of two sentences together. There is no generally accepted solution to this

problem, and it is usually approached by hard-coding a set of rules that capture particular cases (Leaman

et al., 2015).

Sentence tokenization, i.e. splitting a sentence into logical constituents, is a crucial step on the way

to information extraction, because the errors produced in this step tend to propagate down the pipeline

(Figure 2) and affect the accuracy of the final results. Tokenization requires both unambiguous definition of
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grammatical tokens and robust algorithms for identification of the token boundaries. For general-purpose

text, tokenization has been the subject of extensive research resulting in the development of various advanced

methods and techniques (Jurafsky and Martin, 2009). However, for chemical and materials science text,

accurate tokenization still requires substantial workarounds and revision of the standard approaches. Table 2

displays some typical examples of sentence tokenization produced by general-purpose tokenizers such as

NLTK (Bird et al., 2009) and SpaCy (Honnibal and Johnson, 2015). As in the case of sentence segmentation,

the major source of errors is the arbitrary usage of punctuation symbols within chemical formulas and other

domain-specific terms. The chemical NLP toolkits such as OSCAR4 (Jessop et al., 2011), ChemicalTagger

(Hawizy et al., 2011), and ChemDataExtractor (Swain and Cole, 2016) solve this problem by implementing

their own rules- and dictionaries-based approaches to solve the over-tokenization problem. The advantage

of chemical NLP toolkits is that they provide good performance on chemical terms, even if the rest of the

text may have lower tokenization accuracy.

However, another prominent reason for tokenization errors is the lack of generally accepted rules regarding

tokenization of chemical terms consisting of multiple words For instance, complex terms such as “lithium

battery” or “yttria‐doped zirconium oxide” or “(Na0.5K0.5)NbO3 + x wt% CuF2” often become split into

separate tokens “lithium” and “battery”, “yttria‐doped” and “zirconium” and ”oxide”, “(Na0.5K0.5)NbO3”

and “+” and “x wt% CuF2”. This significantly modifies the meaning of the tokens and usually results in

lowered accuracy of the named entity recognition (see below). Currently, this problem is solved case-by-case

by creating task-specific wrappers for existing tokenizers and named entity recognition models (Huang and

Ling, 2019; Alperin et al., 2016; He et al., 2020). Building a robust approach for chemistry-specific sentence

tokenization and data extraction requires a thorough development of standard nomenclature for complex

chemical terms and materials names. We discuss this challenge in detail in Section 4 below.

Text normalization, part-of-speech tagging, and dependency parsing are often used to reduce

the overall document lexicon and to design words’ morphological and grammatical features used as an input

for entity extraction and other TM tasks (Leaman et al., 2015). Text normalization usually consists of

lemmatization and/or its simpler version – stemming. While during the stemming the inflected word is cut

to its stem (e.g. “changed” becomes “chang”), lemmatization aims to identify a word’s lemma, i.e. a word’s

dictionary (canonical) form (e.g. “changed” becomes “change”) (Jurafsky and Martin, 2009). Stemming

and/or lemmatization help to reduce the variability of the language, but the decision whether to apply it or

not, depends on the task and expected outcome. For instance, recognition of chemical terms will benefit less

from stemming or lemmatization (Corbett and Copestake, 2008) as it may truncate a word’s ending resulting

in a change of meaning (compare “methylation” vs. “methyl”). But when a word identifies, for example, a

synthesis action, lemmatization helps to obtain the infinitive form of the verb and avoids redundancy in the

document vocabulary (Kononova et al., 2019).

Part-of-speech (POS) tagging identifies grammatical properties of the words and labels them with the
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corresponding tags, i.e. noun, verb, article, adjective, and others. This procedure does not modify the text

corpus but rather provides linguistic and grammar-based features of the words that are used as input for

ML models. A challenge in identifying the POS tags in scientific text often arises due to the ambiguity

introduced by the word’s context. As an example, compare two phrases: “the chemical tube is on the

ground” and “the chemical was finely ground”. In first case, the general-purpose POS tagger will work

correctly, while in the second example, it will likely misidentify “chemical” and “ground” as adjective and

noun, respectively. Therefore, using a standard POS tagger often requires re-training of the underlying NLP

model, or post-processing and correction of the obtained results.

Dependency parsing creates a mapping of a linear sequence of sentence tokens into a hierarchical structure

by resolving the internal grammatical dependencies between the words. This hierarchy is usually represented

as a dependency tree, starting from the root token and going down to the terminal nodes. Parsing grammatical

dependencies helps to deal with the arbitrary order of the words in the sentence and establishes semantic

relationships between words and parts of the sentence (Jurafsky and Martin, 2009). Grammatical dependency

parsing is a rapidly developing area of NLP research providing a wealth of algorithms and models for general-

purpose corpus (see www.nlpprogress.com for specific examples and evaluation).

Application of the currently existing dependency parsing models to scientific text comes with some

challenges. First, sentences in science are often depersonalized, with excessive usage of passive and past verbs

tense, and limited usage of pronouns. These features of the sentence are not well captured by general-purpose

models. Secondly, the accuracy of the dependency tree construction is highly sensitive to punctuation and

correct word forms, particularly verb tenses. As the scientific articles do not always exhibit perfect language

grammar, the standard dependency parsing models can produce highly unpredictable results. To the best of

our knowledge, these specific challenges of dependency parsing for scientific text have not yet been addressed

or explored in detail.

2.4 Text representation modeling

The application of ML models requires mapping the document into a linear (vector) space. A common

approach is to represent a text as a collection of multidimensional (and finite) numerical vectors that preserve

the text features, e.g. synonymous words and phrases should have a similar vector representation, and

phrases having an opposite meaning should be mapped into dissimilar vectors (Harris, 1954). Modeling of

the vectorized text representation is a broad and rapidly developing area of research (Liu et al., 2020). In

this section, we highlight only some of the approaches applied to scientific TM, whereas a more detailed

discussion of the methods can be found elsewhere (Jurafsky and Martin, 2009).

The bag-of-words model is one of the simplest models of text representation. It maps a document into

a vector by counting how many times every word from a pre-defined vocabulary occurs in that document.

While this model works well for recognizing specific topics defined by keywords, it does not reflect word

context and cannot identify the importance of a particular word in the text. The latter can be solved by
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introducing a normalization factor and applying it to every word count. An example of such normalization

is the tf-idf model (term frequency-inverse document frequency) which combines two metrics: the frequency

of a word in a document and the fraction of the documents containing the word. The method can thereby

identify the terms specific to a particular document. Bag-of-words and tf-idf are the most commonly used

models to classify scientific documents or to identify parts of text with relevant information (Court and Cole,

2018; Kim et al., 2017c; Hiszpanski et al., 2020).

While bag-of-words and tf-idf are relatively versatile, they do not identify similarity between words across

documents. This can be done through topic modeling approaches (Blei, 2012). Topic modeling is a statistical

model that examines the documents corpus and produces a set of abstract topics – clusters of the keywords

that characterize a particular text. Then, every document is assigned with a probability distribution over

topical clusters. Latent Dirichlet Allocation, a specific topic modeling approach, (Blei et al., 2003) has been

applied to analyze the topic distribution over materials science papers on oxide synthesis (Kim et al., 2017c)

and to classify these papers based by synthesis method used in the paper (Huo et al., 2019).

Significant progress in TM and NLP has been achieved with the introduction of word embedding models

which construct a vectorized representation of a single word rather than of the entire document. These

approaches use the distributional hypothesis (Harris, 1954) and are based on neural networks trained to

predict word context in a self-supervised fashion. Multiple variations of word embeddings models include

GloVe (Pennington et al., 2014), ELMo (Peters et al., 2018), word2vec (Mikolov et al., 2013) and FastText

(Bojanowski et al., 2017). Besides being intuitively simple, the main advantage of word embedding models

is their ability to capture similarity and relations between words based on mutual associations. Word

embeddings are applied ubiquitously in materials science TM and NLP to engineer words features that are

used as an input in various named entity recognition tasks (Kononova et al., 2019; Kim et al., 2020a; Huang

and Ling, 2019; Weston et al., 2019). Moreover, they also seem to be a promising tool to discover properties

of materials through words association (Tshitoyan et al., 2019).

Recently, research on text representation has shifted toward context-aware models. A breakthrough

was achieved with the development of sequence-to-sequence models (Bahdanau et al., 2016) and, later, an

attention mechanism (Vaswani et al., 2017) for the purpose of neural machine translation. The most recent

models such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019) and

Generative Pre-trained Transformer (GPT) (Radford et al., 2019; Brown et al., 2020) are multi-layered

deep neural networks trained on very large unlabeled text corpora, and demonstrate state-of-the-art NLP

performance. These models offer fascinating opportunities for the future NLP development in domain of

materials science (Kuniyoshi et al., 2020; Vaucher et al., 2020). We discuss them in greater details in the

Section 5.
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2.5 Retrieval of information from the text

Information retrieval (IR) represents a broad spectrum of NLP tasks that extract various types of data from

the pre-processed corpus (Figure 3). The most ubiquitous IR task is named entities recognition (NER) which

classifies text tokens in a specific category. In general-purpose text, these categories are usually names of

locations, persons, etc., but in scientific literature the named entities can include chemical terms as well

as physical parameters and properties. Extraction of action graphs of chemical synthesis and materials

fabrication is another class of IR task that is closely related to NER. This task requires identification of

action keywords, linking of them into a graph structure, and, if necessary, augmenting with the corresponding

attributes characterizing the action (e.g. the action “material mixing” can be augmented with the attribute

“mixing media” or “mixing time”). Lastly, data extraction from figures and tables represents another class

of information that can be retrieved from scientific literature. This requires not only TM methods but also

image recognition approaches. In this section we will mainly review the recent progress for chemical and

materials NER and action graphs extraction, and will provide a brief survey of the efforts spent on mining

of scientific tables and figures.

Chemical named entities recognition (NER) is a broadly defined IR task. It usually includes

identification of chemical and materials terms in the text, but can also involve extraction of properties,

physical characteristics and synthesis actions. The early applications of chemical NER were mainly focused

on extraction of drugs and biochemical information to perform more effective document searches (Corbett

and Copestake, 2008; Jessop et al., 2011; Rocktäschel et al., 2012; Garcı́a-Remesal et al., 2013). Recently,

chemical NER has shifted towards (in)organic materials and their characteristics (Swain and Cole, 2016; He

et al., 2020; Weston et al., 2019; Shah et al., 2018), polymers (Tchoua et al., 2019), nanoparticles (Hiszpanski

et al., 2020), synthesis actions and conditions (Vaucher et al., 2020; Hawizy et al., 2011; Kim et al., 2017c;

Kononova et al., 2019). The methods used for NER vary from traditional rule-based and dictionary look-up

approaches to modern methodology built around advanced ML and NLP techniques, including conditional

random field (CRF) (Lafferty et al., 2001), long short-term memory (LSTM) neural networks (Hochreiter

and Schmidhuber, 1997), and others. A detailed survey on the chemical NER and its methods can be found

in recent reviews (Krallinger et al., 2017; Gurulingappa et al., 2013; Olivetti et al., 2020).

Extraction of chemical and materials terms has been a direction of intensive development in the past

decade (Krallinger et al., 2017; Eltyeb and Salim, 2014). The publicly available toolkits use rules- and

dictionaries-based approaches (e.g LeadMine (Lowe and Sayle, 2015)), statistical models (e.g OSCAR4

(Jessop et al., 2011)), and, predominantly, the CRF model (e.g. ChemDataExtractor (Swain and Cole,

2016), ChemSpot (Rocktäschel et al., 2012), tmChem (Leaman et al., 2015)) to assign labels to chemical

terms. Some recent works implemented advanced ML models such as bi-directional LSTM models (He et

al., 2020; Weston et al., 2019; Kuniyoshi et al., 2020) as well as a combination of deep convolutional and

recurrent neural networks (Korvigo et al., 2018) to identify chemical and material terms in the text and use
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context information to assign their roles. Table 3 shows a few examples of the NER output obtained using

some of these tools and compares it to non-scientific NER models implemented in NLTK (Bird et al., 2009)

and SpaCy (Honnibal and Johnson, 2015) libraries.

Often, the objective of scientific NER task is not limited to the identification of chemicals and materials,

but also includes recognition of their associated attributes: structure and properties, amounts, roles and

actions performed on them. Assigning attributes to the entities is usually accomplished by constructing a

graph-like structure that links together all the entities and build relations between them. A commonly used

graph structure is the grammatical dependency tree for a sentence (see Section 2.3). Traversing the sentence

trees allows for resolving relations between tokens, hence, link the entities with attributes. ChemicalTagger

(Hawizy et al., 2011) is one of the most robust frameworks that extends the OSCAR4 (Jessop et al., 2011)

functionality and provides tools for grammatical parsing of chemical text to find the relation between entities

and the corresponding action verbs. Similarly, ChemDataExtractor (Swain and Cole, 2016) can identify the

chemical and physical characteristics (e.g. melting temperature) in the text and assign it to a material

entity. A rules- and dictionaries-based relation-aware chemical NER model has been proposed by Shah et

al. (2018) to build a search engine for publications. Weston et al. (2019) used the random forest decision

model to resolve synonyms between chemical entities and materials-related terms. He et al. (2020) applied

a two-step LSTM model to resolve the role of materials in a synthesis procedure. Onishi et al. (2018) used

convolutional neural network model to build relations between materials, their mechanical properties and

processing conditions which were extracted from publications by keywords search. Lastly, a combination of

advanced NLP models has been recently used to extract the materials synthesis steps and link them into an

action graph of synthesis procedures for solid-state battery materials (Kuniyoshi et al., 2020) and inorganic

materials in general (Mysore et al., 2017).

Despite significant effort, the accuracy of the NER for chemical names and formulas is still relatively low

compared to the general state-of-the-art NER models (Baevski et al., 2019; Li et al., 2020). Figure 4a displays

the overall precision and recall for different chemical NER models reported in the corresponding publications.

Both, precision and recall of the models vary from 60% to 98% (Figure 4a), whereas for the general-purpose

NER, these values are >91% (see www.nlpprogress.com). There are two major challenges that obstruct

training of high-accuracy chemical NER models: i) the lack of unambiguous definitions of the chemical

tokens and their boundaries, and ii) the lack of the robust annotation schema as well as comprehensive

labeled training sets for the supervised ML algorithms. Oftentimes, researchers manually create their own

training set for specific tasks but with limited use for more general goals. Therefore, the success of chemical

NER becomes a trade-off between the size of the annotated set and model complexity: either using simple

model with limited capabilities on a small set of labeled data, or investing effort into annotation of a large

dataset and using it with advanced models providing a higher accuracy of data extraction.

An early attempt in creating a labeled dataset for the chemical NER task was done by Kim et al. (2003)

and Krallinger et al. (2015). The GENIA and CHEMDNER sets provide annotation schema and labeled
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data of chemicals and drugs extracted from MEDLINE and PubMed abstracts, respectively. However, these

corpora are heavily biased toward biomedicine and biochemical terms with only a small fraction of organic

materials names present. The progress of the past few years brought a variety of annotated corpora to the

materials science domain. Among the publicly available labeled dataset, there is the NaDev corpus consisting

of 392 sentences and 2,870 terms on nanocrystal device development (Dieb et al., 2015), the dataset of 622

wet lab protocols of biochemical experiments and solution syntheses (Kulkarni et al., 2018), a set of 9,499

labeled sentences on solid oxide fuel cells (Friedrich et al., 2020), and an annotated set of 230 materials

synthesis procedures (Mysore et al., 2019).

Extraction of information from tables and figures is another branch of scientific IR that has been

rapidly developing in the past few years. The specific format of the figures and tables in scientific papers

imposes substantial challenges for the data retrieval process. First, it is common that images (and sometimes

the tables) are not directly embedded in the HTML/XML text but instead contain a link to an external

resource. Second, connecting tables/images to the specific part of the paper text is an advanced task that

does not have a robust solution to date. Third, both tables and images can be very complex: images

can include multiple panels and inserts that require segmentation, while tables may have combined several

rows and columns imposing additional dependencies on the data. To the best of our knowledge, only a

few publications have attempted to parse tables from the scientific literature using heuristics and machine

learning approaches (Jensen et al., 2019; Milosevic et al., 2019).

Image recognition methods have been broadly used in materials science but have so far been primarily

focused on extracting information about the size, morphology, and the structure of materials from microscopy

images. To date, the existing solutions for interpretation of microscopy images use variations of convolutional

neural networks, and address diverse spectra of materials science problems (Azimi et al., 2018; Matson et al.,

2019; Maksov et al., 2019; Roberts et al., 2019). While these models demonstrate a remarkable accuracy

when applied directly to microscopy output, they are not intended to separate and process the images

embedded in scientific articles. Steps toward parsing of article’s images were reported recently. Mukaddem

et al. (2020) developed the ImageDataExtractor tool that uses a combination of OCR and CNN to extract

the size and shape of the particles from microscopy images. Kim et al. (2020b) used Google Inception-V3

network (Szegedy et al., 2016) to create the Livermore SEM Image Tools for electron microscopy images.

This tool was later applied by Hiszpanski et al. (2020) to ~35,000 publications to obtain information about

the variability of nanoparticles sizes and morphologies.

3 Using Text Mining in Materials Science: Case Studies

Data-driven materials discovery usually relies either on computational methods to calculate the structure

and properties of materials and collect them in databases (Jain et al., 2013), or on experimental datasets that

have been painstakingly collected and curated. Development of advanced approaches for scientific TM creates
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broad opportunities to augment such data with a large amount of reported but uncollected experimental

results. A few large-scale datasets extracted from the scientific publications have become available over the

last few years (Court and Cole, 2018; Huang and Cole, 2020; Kim et al., 2017c; Jensen et al., 2019; Kononova

et al., 2019). In this Section, we survey the publicly available datasets created by retrieval of information

from chemistry, physics, and materials science publications, and discuss the most interesting results obtained

from them.

3.1 Publicly available collections of text-mined data

While recently several data collections have been obtained by automated TM and NLP-based pipelines, there

are a few large-scale datasets that have been manually extracted from scientific publications and are worth

mentioning here.

The Pauling File Project (Blokhin and Villars, 2020) is one of the biggest manually curated collections

of data for inorganic crystalline substances, covering crystallographic data, physical properties, and phase

diagrams. The Pauling File Project provides data for the Materials Platform for Data Science (www.mpds.io),

Pearson’s Crystal Data (www.crystalimpact.com), and Springer Materials (www.materials.springer.com).

Together, it contains more than 350,000 crystalline structures, 150,000 physical properties and 50,000 phase

diagrams extracted from the scientific literature in materials science, engineering, physics, and inorganic

chemistry from 1891 to present. The quality and accuracy of the extracted records are high, and they

include expert interpretation and a summary of the original text. Nonetheless, significant human labor is

required to maintain and update this database. Moreover, due to the human interpretation of the data, the

records are highly heterogeneous and may require additional processing and normalization.

The Dark Reactions Project (www.darkreactions.haverford.edu) is another prominent dataset extracted

manually from laboratory journals containing 3,955 parameters of failed hydrothermal synthesis experiments

(Raccuglia et al., 2016). So-called “negative” sampling data are critical for ML applications that need to

predict a “yes/no” answer. Unfortunately, the “no” results, i.e. unsuccessful experimental outcomes, are

rarely published or made available to the broad research community. The Dark Reaction Project represents

the first attempt to demonstrate the importance of sharing negative-result data within the chemistry and

materials science domain.

A substantial effort in the automated extraction of materials properties from scientific publications has

been done by the research group of J. Cole (University of Cambridge, UK). They developed ChemDataExtractor

(Swain and Cole, 2016), an NLP toolkit for chemical text, and used it to build a large collection of phase

transition temperatures of magnetic materials (Court and Cole, 2018), and a dataset of electrochemical

properties of battery materials (Huang and Cole, 2020). The first set contains 39,822 records of Curie and

Néel temperatures for various chemical compounds retrieved from 68,078 research articles (Court and Cole,

2018). These data augment the MAGNDATA database – a collection of ~1,000 magnetic structures manually

extracted from publications by Gallego et al. (Gallego et al., 2016a; Gallego et al., 2016b). The battery
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dataset includes 292,313 records collected from 229,061 papers covering electrochemical properties of battery

materials such as capacity, voltage, conductivity, Coulombic efficiency, and energy density. It enhances by

more than an order of magnitude the manually constructed dataset of Ghadbeigi et al. (2015) containing

16,000 property entries for Li-ion battery materials extracted from 200 publications.

A large-scale text-mined data collection of materials synthesis parameters has been developed by our team

during the past few years. Kim et al. (2017c) generated a dataset of synthesis operations and temperatures

for 30 different oxide systems mined from 640,000 full-text publications. Later on, this set was extended by

1,214 sol-gel-synthesis conditions for germanium-based zeolites (Jensen et al., 2019). A collection of 19,488

solid-state ceramics synthesis reactions containing precursors chemicals, synthesis steps and their attributes

was generated from 53,538 materials science papers by Kononova et al. (2019).

It is important to highlight that although the TM and NLP methods help to generate large-scale datasets,

the output can suffer from lower accuracy of extraction as compared to any manually curated dataset. For

instance, the extraction precision of the Curie and Néel temperatures are ~82% (Court and Cole, 2018),

and that of the electrochemical properties – ~80% (Huang and Cole, 2020), meaning that up to ~20% of

the obtained records have one or more attributes incorrectly extracted. The dataset of oxides synthesis

parameters shows categorical accuracy (i.e. the fraction of the predicted labels of the text tokens that match

the true labels) for the chemical NER task of ~81% (Kim et al., 2017c). For the dataset of solid-state

synthesis reactions, precision (i.e. fraction of correctly extracted entities) of extracted synthesis parameters

varies from ~62% for fully accurate retrieval of synthesis conditions, to ~97-99% for extraction of precursor

materials and final products (Kononova et al., 2019).

3.2 Text-mining-driven materials discoveries

Research exploring TM-based data-driven approaches to provide insights on materials emerged well before

any progress in the development of robust NLP tools had been made. Several groups have attempted manual

information extraction from a narrow set of publications with a specific scope.

The group of T. Sparks (University of Utah, US) explored the correlation between materials performance

and the elemental availability for high-temperature thermoelectric materials (Gaultois et al., 2013) and Li-ion

battery materials (Ghadbeigi et al., 2015). In both of these publications, the sets of physical parameters for

materials classes were manually retrieved from queried materials science literature, and augmented with data

on market concentration and Earth abundance for chemical elements. Based on this data the importance of

considering global market state and geopolitical factors when designing materials was discussed.

An analysis of cellular toxicity of cadmium-containing semiconductor quantum dots was performed by

applying random forest models to the 1,741 data samples manually collected from 307 relevant publications

(Oh et al., 2016). The authors found that the toxicity induced by quantum dots strongly correlates with

their intrinsic properties, such as diameter, surface ligand, shell, and surface modification.

The dataset of failed hydrothermal synthesis reactions collected in the course of the Dark Reactions
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Project (see above) was used to explore synthesis routes for organically templated vanadium selenites and

molybdates (Raccuglia et al., 2016). In particular, the authors applied support vector machine and decision

tree models to define the upper/lower boundaries of the synthesis parameters that lead to formation of

crystals from solution. The suggested synthesis routes were tested against real experiments and showed 89%

success rate exceeding human intuition by 11%.

Although the manual approach to abstract a large text corpus is very laborious, it allows for obtaining

high-quality data from the tables and figures as well as from the text, thus justifying the small size of these

datasets. Nonetheless, a growing amount of research uses the automated TM pipelines to obtain a collection

from which to initiate data-driven materials discoveries.

Young et al. (2018) developed a semi-automated TM pipeline to extract and analyze the growth conditions

for four different oxide materials synthesized with pulsed laser deposition technique. They were able to obtain

the range of growth temperatures and pressures, and predict the relative values of critical temperatures by

applying a decision tree classifier.

Cooper et al. (2019) applied a TM pipeline to effectively screen and sort organic dyes for panchromatic

solar cells. Their approach identified 9,431 dye candidates which were then narrowed down to five prospective

molecules for experimental validation. This work is an important step toward a so-called “design-to-device”

approach to fabrication of advanced materials (Cole, 2020). The approach consists of the four steps of i)

data extraction from literature, ii) data augmentation with computations, iii) AI-guided materials design,

and iv) experimental validation.

In other work, Court and Cole (2020) used the records of Curie and Néel temperatures text-mined from

the scientific literature (Court and Cole, 2018) (see previous section) to reconstruct the phase diagrams

of magnetic and superconducting materials. They used the materials bulk and structural properties as

descriptors in ML models to predict the critical temperature for a magnetic phase transition. The trained

models are formulated into a web application that provides multiple options for predicting and exploring

magnetic and superconducting properties of arbitrary materials (www.magneticmaterials.org).

Our team has extensively used TM aiming to uncover insights about materials synthesis from scientific

publications. Kim et al. (2017b) explored the parameters of hydrothermal and calcination reactions for metal

oxides by analyzing the data extracted from 22,065 scientific publications. They found a strong correlation

between the complexity of the target material and the choice of reaction temperature. A decision tree model

applied to predict synthesis routes for titania nanotubes identified the concentration of NaOH and synthesis

temperature as the most important factors that lead to nanotube formation. A similar approach was used to

predict the density of germanium-containing zeolite frameworks and to uncover their synthesis parameters

(Jensen et al., 2019).

In other work, Kim et al. (2017a) applied a variational autoencoder to learn the latent representation

of synthesis parameters and to explore the conditions for the synthesis of TiO2 brookite and for polymorph

selection in the synthesis of MnO2. Their results showed that the use of ethanol as a reaction medium
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is sufficient but not necessary condition to form the brookite phase of TiO2. Their latent representation

of synthesis parameters also captures the requirement of alkalai ions for the generation of certain MnO2

polymorph, consistent with ab initio findings (Kitchaev et al., 2017). A conditional variational autoencoder

was also used to generate a precursors list for some perovskite materials (Kim et al., 2020a).

Building relations between materials, their properties and applications and combining them into a so-

called knowledge graph structure is an emerging area of research in materials science that became enabled

by the development of scientific TM. Onishi et al. (2018) implemented the Computer-Aided Material Design

(CAMaD) system which is an elegant TM framework that reconstructs and visualizes a knowledge graph

in the form of a process-structure-property-performance chart for desired materials. While the presented

performance of the CAMaD system is still limited, it demonstrates the capabilities of TM to create a

comprehensive knowledge-based structure that can be used for optimization of materials design.

The relation between materials reported in the different application areas of materials science was explored

by Tshitoyan et al. (2019). They applied the word2vec model (Mikolov et al., 2013) to 3 million abstracts

to learn a vectorized representation of words, and materials specifically. Interestingly, the model was able to

not only learn some aspects of the chemistry underlying the relations between materials but also to draw a

similarity between materials for different applications. In particular, it was demonstrated that such a cross-

field correlation between the material properties required in different application could be used to predict

novel thermoelectric materials. This work highlights an important aspect of scientific TM and NLP: its

capability to uncover latent knowledge about a subject by comprehending a large amount of unstructured

data – a task that is not possible for a human.

The question of materials similarity was also studied in recent work by He et al. (2020). In their work, a

measure of similarity for synthesis precursors was defined by two parameters: i) the probability to substitute

one precursor with another in the synthesis reaction for a common target material, and ii) the area of overlap

of synthesis temperature distributions for two precursors. The results demonstrate that some of the empirical

rules widely used by researchers when choosing the precursors for materials synthesis can be learned from

text data.

4 Challenges and Caveats of the Text-Mining-Driven Research

While TM and NLP are tremendously promising tools to extract the enormous amount of information locked

up in published research, several challenges for the approach remain. We categorize these below.

Lack of annotated data. The lack of a large dataset corresponding to a “gold standard” of annotated data

significantly slows down the development of robust high-precision methods for chemical NER. The majority

of the existing annotated sets have been created to serve a specific purpose or subfield of materials science

and their broad application is not straightforward. Current attempts to create standardization for annotated

data in materials science are limited to chemical named entities with emphasis on organic chemistry (Corbett

15



et al., 2007; Krallinger et al., 2015; Kim et al., 2003). Building more structured databases of experimental

data that can be related to the papers from which the data are sourced, could potentially help to test the

performance of NLP methods. One can even conceive creating machine-annotated data based on an existing

relation between data and publications. We are however not hopeful that the scientific community can

come together around central data deposition without an incentive structure from publishers or government

agencies, which further stresses the important role that TM will have in generating large amounts of materials

data.

Ambiguity and lack of standard nomenclature to describe and categorize complex materials.

An engineering material is not merely a compound that requires a chemical description. It can be a

doped system, inhomogeneous, a multi-phase system, or a composite. Each of these complexities comes

with its morphology and length scale. While for common chemical terms, IUPAC provides nomenclature

recommendations, writers usually prefer to simplify them or use arbitrary notations for materials names if

no standard terminology is established. For instance, even for a basic concept such as a doped material,

various nomenclatures are used e.g. “Sc2(MoO4)3:Eu3+”, “Sc2(MoO4)3 + x% Eu3+” or “Eu3+-doped

Sc2(MoO4)”. Composites and mixtures can be written in various ways (e.g. (1-x)Pb(Zr0.52Ti0.48)O3-

xBaTiO3 or Pb(Zr0.52Ti0.48)O3 + x wt% BaTiO3). The abbreviated names of chemicals and materials

(e.g. EDTA, BNT-BT-KNN, LMO) are also ubiquitous. Even within one journal or publisher no standards

are applied. This complicates comparison and aggregation of extracted data across papers and requires

substantial data post-processing in order to normalize and unify the results. In some cases it creates

ambiguity that cannot be resolved, or whose resolution leads to errors.

Positive bias. Authors often “cherry-pick” data in the main body of a paper, either leaving out less

successful data or moving it to supplementary information (which is often only available as PDF and with

too low information content to do meaningful automated data extraction). This positive bias introduces

substantial problems for ML models trained on these data, and requires caution when choosing the questions

which one asks from ML models. In recent work, Jia et al. (2019) explored the effect of human bias in the

choice of starting materials for the synthesis of metal organic crystals. They found a strong preference in

the literature for selecting some reagents over others which was attributed to historically established rule-

of-thumbs. In their explicit experimental testing they found no value of the implied precursor selection bias,

something that a ML based on the published data would not have been able to resolve without additional

data. In our own work on the prediction of novel compounds (Fischer et al., 2006; Hautier et al., 2011)

or their synthesis methods (Kim et al., 2017b), the lack of negative information is severely limiting. For

example, the lack of a known compound at a given composition in a complex phase diagram may mean

that no compound exists at that composition, or, that nobody has looked carefully for it. These are very

different pieces of input information for a ML model that tries to predict which compositions are compound

forming or not. One can imagine that some researchers may have investigated the specific composition, but
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because they did not find anything, the investigation was not reported. In a similar problem, failed synthesis

experiments are rarely reported. This lack of negative data prevents one from capturing the boundaries on

the space of possible ML outcomes. The effect of human bias on the quality of ML model predictions has

not been investigated in detail and remains a challenging aspect of NLP-based data collections.

Language complexity and error accumulation. The narrative of a research paper is known to have a

very specific style and language. It was shown for the corpus of newspapers of various subjects that the texts

covering a scientific topic have the lowest readability score as compared to other topics, such as sports or

weather (Flaounas et al., 2013). To explore the dependence between complexity of a scientific paragraph and

the quality of the data extraction, we computed the categorical accuracy (fraction of predicted values that

match with actual values) of data extraction for ~100 manually annotated paragraphs on materials synthesis

and their corresponding Flesch-Kincaid grade level (FKGL) score (Kincaid et al., 1975). Figure 4b shows

the obtained extraction accuracy of synthesis steps and material entities calculated using the NLP models

developed by our team previously (Kononova et al., 2019; He et al., 2020) plotted against the corresponding

FKGL score. Although the data are highly scattered, the negative correlation trend between the extraction

accuracy and the FKGL score can be noticed. The computed Pearson correlation coefficients between the

value of the FKGL score and the extraction accuracy of synthesis steps and materials entities are -0.42 and

-0.38, respectively. It is worth noting that the correlation is stronger when the NLP model is applied to

extract synthesis steps rather than materials entities. This can be explained with the fact that the context

of a sentence defining a synthesis action is more ambiguous than that for materials terms (Kim et al.,

2019). This complexity stresses the need to improve the general NLP tools to deal with scientific text. The

accuracy of the text processing along the TM pipeline is crucial as errors usually accumulate from step to

step, leading to a strong reduction in quality and size of the output (Kononova et al., 2019). As was noted

before, the problem with sentence tokenization significantly affect the outcome of information extraction, in

particular, chemical NER. Overcoming this problem may be possible by developing a hybrid NLP methods

that introduces domain knowledge.

The accuracy of scientific NLP imposes constraints on the potential range of questions that the extracted

data can address. Kauwe et al. (2019) have investigated the viability and fidelity of ML modeling based

on a text-mined dataset. They used various ML algorithms and material structure models to predict the

discharge capacity of battery materials after 25 cycles based on a dataset extracted from the literature and

found inconclusive results. While one can speculate on the origin of this outcome, it is clear that the high level

of uncertainty of the predictions can arise from invalid descriptors or models, as well as from the human bias

and imperfectness of the experimental measurements (Kauwe et al., 2019). As the “no-free-lunch” theorem

states, there is no any particular ML model that will work best for a given task. Therefore, interpretation of

results obtained by application of ML algorithms to text mined data should always be treated with caution,

and keeping the limitations of the input data in mind. In general, limitations of ML predictions are much

17



more likely to be caused by limitations of input data than by problem with the ML method.

5 Future Directions

Data is considered the 4th paradigm of science (Tolle et al., 2011). Access to a large amount of data

allows the quantification and more accurate testing of hypothesis, and even potentially the machine learning

of the relation between composition, structure, processing and properties of materials. The Materials

Genome Initiative (MGI) (Holden, 2011) led to some highly successful data-driven research projects (e.g.

www.mgi.gov, www.nsf.gov/funding/pgm_summ.jsp?pims_id=505073 and Jain et al. (2013) and Jain et al.

(2016)). But the personal experience of one of the authors in helping launch MGI is that experimental data

is unlikely to be collected one piece at a time, by having scientists enter it in databases, the way it was

envisioned by some when MGI started. While ML is an exciting new direction for materials research, it

is telling that much of published ML work is either on computed datasets (which can be generated with

high-throughput computing) (Jain et al., 2011), or on very small experimental datasets, often containing

no more than 50-100 data items. Because of this failure to collect experimental data in more organized

ways, TM and NLP are likely to play a critical role in enabling more data-driven materials research. The

willingness of publishers to share access to their large corpus for TM and several new developments in the

NLP field are likely to lead to increased volume and quality of extracted information from scientific text.

The most notable advance in NLP in recent years has been the advent of transformer models, which have

dramatically improved state-of-the-art performance on almost all benchmark tasks. The transformer utilizes

an idea of sequence encoding-decoding (Bahdanau et al., 2016), and creates a latent vectorized representation

of a text. The advantage of the model is its attention functionality (Vaswani et al., 2017) that allows for

the model to recognize the key parts of a sequence that are crucial for understanding the meaning of text.

The transformers have ushered in a new paradigm in NLP, whereby very large general-purpose models (with

typically hundreds of millions of parameters) are pre-trained on publicly available corpora with unsupervised

objective, before being fine-tuned to individual tasks. This so-called transfer learning approach allows the

transformer to have high performance on supervised-training tasks with only a small number of training

examples, significantly reducing the burden on human annotation.

From a materials science perspective, the transfer learning still meets some difficulties. The publicly

available transformer models are pre-trained on general-purpose corpora, thus performing poorly on tasks

involving scientific language. Moreover, the computational cost to train them “from scratch” is also significant:

training BERTLarge on a corpus of 3.3 billion words with 64 TPU cores took 4 days (Devlin et al., 2019).

There have been a number of recent efforts to pre-train domain-specific transformer models on scientific

text, including SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2019), and MedBERT (Rasmy et al.,

2020). Although the corpus of available materials science publications (Figure 1) is of comparable size to

the corpora used to train the original BERT models, no materials science-specific pre-trained BERT-style
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model is publicly available to date. Training and release of such a model would be of tremendous impact for

the materials science community.

Prominent progress has been also achieved for Neural Machine Translation (NMT), providing an opportunity

to apply TM on scientific literature written in non-English languages. While NMT has reached parity with

human translation in a number of languages (Hassan et al., 2018), the dominant methodology relies on

supervised training on a large bilingual corpus with parallel texts in source and target languages. However,

there are significant difficulties in implementing the parallel-translation approach tailored specifically to the

peculiarities of the scientific text. The domain-specific vocabulary of scientific texts requires a significant

bilingual corpora for training the parallel-translation model (Tehseen et al., 2018). The latest development in

unsupervised NMT models (Lample et al., 2018; Artetxe et al., 2017; Lample et al., 2017) utilizes monolingual

corpora, escaping the need for parallel texts. This opens possibilities for domain-specific training of the NMT

and its application to the non-English scientific text.

As mentioned previously, the lack of large-scale annotated datasets often obstructs application of advanced

NLP techniques for scientific TM. Crowd-sourcing for data collection may be a solution to this problem.

Diverse approaches to collaborative data management have been widely used in projects such as OpenEI

(www.openei.org), Folding@home (www.foldingathome.org) and others (Zhai et al., 2013; Doan et al., 2011),

and have proven to be highly efficient for gathering a large amount of data. To date, only a few projects

have utilized crowd-sourcing in materials science TM research (Young et al., 2018; Tchoua et al., 2016).

But development of a collaborative data collection platform for application of NLP in materials science

meets several challenges. First, building and maintenance of the software part requires a substantial labor

investment one for which government science agencies do not seem quite ready for. Second, efficient data

collection and annotation requires well established standards for labeling of scientific texts that can be

unambiguously applied to a wide variety of research tasks.

The accelerated development of high-throughput computations and emergence of “big data” in materials

science in the past few years has shifted focus towards data management and curation. This has resulted

in engineering and production of high-quality databases with flexible graphical interfaces and programming

APIs that provide facile and convenient access to the data for their mining and analysis (Alberi et al., 2018).

Rapidly growing sets of the data extracted from scientific publications call for development of a similar

advanced infrastructure for representations, maintenance and distribution of these data.

Prevalent, broad and accurate data is a pillar of science. It inspires, negates, or validates theories. In

society and business, data has become a highly valued commodity from which to take strategic decision,

construct more effective marketing campaigns, or to improve products. For materials science to fully benefit

from the new data paradigm significantly more effort will need to be directed towards data collection. TM

and NLP are clearly a tool to make the results of hundred years of materials research available toward the

realization of this paradigm.
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Figures

Figure 1. Publication trend over the past 14 years. Top panel: Number of publications appearing every

year in different fields of materials science. All data were obtained by manually querying Web of Science

publications resource. The analysis includes only research articles, communications, letters, and conference

proceedings. The number of publications is on the order of 103. Bottom panel: Relative comparison of the

fraction of scientific papers available on-line as image PDF or embedded PDF versus articles in HTML/XML

format. The grey arrow marks time intervals for both top and bottom panels.

Figure 2. Schematic representation of the standard text mining pipeline for information extraction from

the scientific publications.

Figure 3. Schematic representation of various information types that can be extracted from a typical

materials science paper.

Figure 4. Panel a: Precision and recall of the published models for chemical NER manually extracted

from the reports. Color denotes the primary algorithm underlying the model. Panel b: Accuracy of the

data extracted from materials synthesis paragraphs plotted against the complexity of the paragraphs. The

accuracy is computed using chemical NER models developed by our team (Kononova et al., 2019; He et al.,

2020) to the manually annotated paragraphs. The text complexity is calculated as a Flesch-Kincaid grade

level (FKGL) score indicating the education level required to understand the paragraph (Kincaid et al.,

1975). ρ is a Pearson correlation coefficient between the accuracy of NER model and the FKGL score.
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Tables

Data Repository Documents Types Access Reference

CAplus research articles,

patents, reports

subscription www.cas.org/support/documentation/references

DOAJ research articles

(open-access only)

public doaj.org

PubMed Central research articles public www.ncbi.nlm.nih.gov/pmc

Science Direct (Elsevier) research articles subscription dev.elsevier.com/api_docs.html

Scopus (Elsevier) abstracts public dev.elsevier.com/api_docs.html

Springer Nature research articles,

books chapters

subscription dev.springernature.com/

Table 1: List of the some common text repositories in chemistry and material science subjects that provide

an API for querying. Note 1: Elsevier provides API for both Science Direct (collection of Elsevier published

full-text) and Scopus (collection of abstracts from various publishers). Note 2: Springer Nature provides

access only to its own published full texts.
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Reagents (NH4)2HPO4 and Sm2O3 were mixed

NLTK Reagents | ( | NH4 | ) | 2HPO4 | and | Sm2O3 | were | mixed

SpaCy Reagents | ( | NH4)2HPO4 | and | Sm2O3 | were | mixed

OSCAR4 Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemicalTagger Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemDataExtractor Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

We made Eu2+-doped Ba3Ce(PO4)3 at 1200 °C for 2 h

NLTK We | made | Eu2+-doped | Ba3Ce | ( | PO4 | ) | 3 | at | 1200 | °C | for | 2 | h

SpaCy We | made | Eu2 | + | -doped | Ba3Ce(PO4)3 | at | 1200 | ° | C | for | 2 | h

OSCAR4 We | made | Eu2+ | - | doped | Ba3Ce(PO4)3| at | 1200 | °C | for | 2 | h

ChemicalTagger We | made | Eu2+-doped | Ba3Ce(PO4)3 | at | 1200 | °C | for | 2 | h

ChemDataExtractor We | made | Eu2+ | - | doped | Ba3Ce(PO4)3 | at | 1200 | ° | C | for | 2 | h

Lead-free a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 ceramics were investigated

NLTK Lead-free | a | ( | Bi0.5Na0.5 | ) | TiO3-bBaTiO3-c | ( | Bi0.5K0.5 | ) |

TiO3 | ceramics | was | investigated

SpaCy Lead | - | free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 |

ceramics | was | investigated

OSCAR4 Lead | - | free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 |

ceramics | was | investigated

ChemicalTagger Lead-free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ceramics |

was | investigated

ChemDataExtractor Lead-free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ceramics |

was | investigated

Table 2: Examples of how different tokenizers split sentences into tokens. NLTK (Bird et al., 2009) and

SpaCy (Honnibal and Johnson, 2015) are general-purpose tokenizing tools, whereas ChemDataExtractor

(Swain and Cole, 2016), OSCAR4 (Jessop et al., 2011), ChemicalTagger (Hawizy et al., 2011) are the tools

trained for a scientific corpus. Tokens are bound by “|” symbol.
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An aqueous solution was prepared by dissolving lithium, cobalt, and manganese nitrates in de-ionized water

NLTK –

SpaCy ‘manganese’ (nationalities or religious or political groups)

OSCAR4 ‘aqueous’, ‘lithium’, ‘cobalt’, ‘manganese’, ‘nitrates’, ‘water’

tmChem ‘lithium’, ‘cobalt’, ‘manganese nitrates’

ChemDataExtractor ‘lithium’, ‘cobalt’, ‘manganese nitrates’

ChemSpot ‘lithium’, ‘cobalt’, ‘manganese nitrates’, ‘water’

Bi-LSTM ChNER ‘lithium, cobalt, and manganese nitrates’, ‘water’

A series of Ce3+-Eu2+ co-doped Ca2Si5N8 phosphors were successfully synthesized

NLTK –

SpaCy –

OSCAR4 ‘Ce3+’, ‘Eu2+’, ‘Ca2Si5N8’

tmChem ‘Ce3+-Eu2+’, ‘Ca2Si5N8’

ChemDataExtractor ‘Ce3+-Eu2+’, ‘Ca2Si5N8’

ChemSpot ‘Ce3+-Eu2’, ‘co’, ‘Ca2Si5N8’

Bi-LSTM ChNER ‘Ce3+-Eu2+ co-doped Ca2Si5N8’

High-purity Bi(NO3)3·5H2O, Ni(NO3)2·6H2O and Cu(CH3COO)2·H2O were

used as starting materials for Bi2Cu1-xNixO4 powders

NLTK ‘NO3’, ‘NO3’, ‘CH3COO’ (organizations); ‘Ni’, ‘Cu’ (countries, cities, states)

SpaCy ‘Bi2Cu1-xNixO4’ (person)

OSCAR4 ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’

tmChem ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’, ‘Bi2Cu1-xNixO4’

ChemDataExtractor ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’, ‘Bi2Cu1-xNixO4’

ChemSpot ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’, ‘Bi2Cu1-xNixO4’

Bi-LSTM ChNER ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’, ‘Bi2Cu1-xNixO4’

Table 3: Examples of the chemical named entities extracted by the general-purpose NER tools NLTK

(Bird et al., 2009) and SpaCy (Honnibal and Johnson, 2015), and the tools trained on chemical corpus

OSCAR4 (Jessop et al., 2011), tmChem (Leaman et al., 2015), ChemSpot (Rocktäschel et al., 2012),

ChemDataExtractor (Swain and Cole, 2016), Bi-LSTM chemical NER (He et al., 2020). For the general-

purpose tools, the assigned labels are given in parenthesis. For the chemical NERs, only entities labeled as

chemical compounds are shown.
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