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Abstract—We propose multi-microphone complex spectral map-
ping, a simple way of applying deep learning for time-varying
non-linear beamforming, for speaker separation in reverberant
conditions. We aim at both speaker separation and dereverber-
ation. Our study first investigates offline utterance-wise speaker
separation and then extends to block-online continuous speech sep-
aration (CSS). Assuming a fixed array geometry between training
and testing, we train deep neural networks (DNN) to predict the
real and imaginary (RI) components of target speech at a reference
microphone from the RI components of multiple microphones. We
then integrate multi-microphone complex spectral mapping with
minimum variance distortionless response (MVDR) beamforming
and post-filtering to further improve separation, and combine it
with frame-level speaker counting for block-online CSS. Although
our system is trained on simulated room impulse responses (RIR)
based on a fixed number of microphones arranged in a given
geometry, it generalizes well to a real array with the same geometry.
State-of-the-art separation performance is obtained on the simu-
lated two-talker SMS-WSJ corpus and the real-recorded LibriCSS
dataset.

Index Terms—Complex spectral mapping, speaker separation,
microphone array processing, deep learning.

I. INTRODUCTION

DRAMATIC progress has been made in talker-independent
speaker separation since deep clustering [1] and permu-

tation invariant training (PIT) [2] were proposed to address
the label permutation problem. To improve separation, subse-
quent studies leverage spatial information afforded by micro-
phone arrays [3]–[6], frequency-domain phase estimation [7],
time-domain optimization [8], complex ratio masking [9], and
extra information such as speaker embeddings [10] and visual
cues [11].
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Our study tackles speaker separation in reverberant conditions
from the angle of microphone array processing. Since target
speakers are directional sources with distinct spatial origins,
spatial information provides a potentially important cue for
speaker separation. Conventionally, multi-microphone beam-
forming followed by monaural post-filtering is the most widely
adopted approach for multi-channel speech separation [12], [13].
This approach requires the accurate estimates of direction of
arrival, power spectral density or spatial covariance matrix. With
the recent introduction of deep learning in microphone array pro-
cessing, all these estimates can now be dramatically improved.
The key idea is to use DNN to identify time-frequency (T-F) units
dominated by a single source and perform spatial processing
based on these T-F units that contain cleaner phase. Representa-
tive work includes masking-based beamforming [14]–[16] and
speaker localization [17], where DNNs are trained on spectral
features to estimate a T-F mask for each microphone, and the
estimated masks at different microphones are then pooled to
identify T-F units dominated by the same source at all the
microphones for covariance matrix computation. Subsequent
studies incorporate spatial features such as inter-channel phase
differences (IPD) [18], [4], target direction compensated IPD
[3], beamforming results [3], and stacked phases and magnitudes
[19] as a way of leveraging spatial information to improve
mask estimation. However, these studies aim at improving mask
or magnitude estimation and do not deal with phase. In ad-
dition, they assume that these models are designed for arrays
of unknown geometry. Although this generality is desirable, in
real-world products such as Amazon Echo and Google Home,
the number of microphones and their geometry are fixed. How
to leverage fixed-array geometry is a potentially important issue
for multi-channel speech processing.

Assuming fixed array geometry, we propose a multi-
microphone complex spectral mapping approach for speaker
separation, where the real and imaginary (RI) components of
multiple microphones are input to a DNN to predict the RI
components of the direct-path target speakers captured at a ref-
erence microphone. The initial separation results can be utilized
to compute target and non-target spatial covariance matrices for
MVDR beamforming. The RI components of the beamforming
results can be combined with the RI components of multiple
microphone signals for post-filtering.

Why would this approach work? We believe that, for a fixed-
geometry array, the inter-channel phase patterns are almost the
same for signals coming from a particular direction, and the
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DNN could learn to separate speech arriving from a particular
direction by exploiting the fixed and stable spatial informa-
tion contained in multiple microphones. This approach is in a
way similar to classification based sound source localization
for fixed-geometry arrays [20], where a DNN is trained to
learn a one-to-one mapping from inter-channel phase patterns
to discretized target directions. Based on deep learning, the
proposed approach simultaneously exploits the spectral and
spatial information contained in multi-channel inputs to directly
predict target speech. The learned DNN model itself can be
considered as a non-linear beamformer. In contrast, conven-
tional beamforming techniques compute a filter based on es-
timated covariance matrices to linearly combine multi-channel
signals [12].

A key question is, can a DNN trained using simulated RIRs
generated by an RIR simulator based on a given geometry
generalize to a real array with the same geometry? An affirmative
answer is far from clear, as real recordings exhibit various mis-
matches from training, such as channel variations and different
acoustic environments. In addition, the geometry of a real ar-
ray, even well calibrated, contains manufacturing imperfections,
meaning that the actual geometry would be slightly different
from theoretical design. Based on LibriCSS [21], a real-recorded
dataset designed for continuous speech separation, we show that
our trained models generalize reasonably well to a real array,
producing state-of-the-art separation on LibriCSS.

Our study makes three major contributions:
1) We propose multi-microphone complex spectral mapping,

a simple and effective way of using deep learning for
time-varying non-linear beamforming on fixed-geometry
arrays. Compared with single-microphone complex spec-
tral mapping [22], [23], which trains DNNs based on
single-microphone RI components, in multi-microphone
complex spectral mapping we directly train DNNs on
stacked multi-channel RI components. This simple ex-
tension can effectively exploit the spectral and spatial
information contained in multiple microphones, produc-
ing clear improvements over monaural complex spectral
mapping while introducing a negligible number of pa-
rameters and a small amount of computation when used
with convolutional neural networks. It also shows better
performance over a time-invariant MVDR (TI-MVDR)
beamformer [12], [22], [23], a strong time-varying MVDR
beamformer [24], [23], and a strong time-domain ap-
proach [25], [5]. In Section IV.A, we discuss in more
details why this supervised learning based approach works
well on fixed-geometry arrays;

2) We integrate multi-microphone complex spectral mapping
with conventional MVDR beamforming and post-filtering
for better separation. For MVDR beamforming, we design
a circular shift mechanism for utilizing a single trained
multi-microphone model to compute spatial covariance
matrices. For post-filtering, we find that enhancing target
speakers one by one rather than predicting them all at once
deals with reverberation better. Our experiments show
that the immediate separation outputs from our multi-
microphone models yield much better recognition results

than TI-MVDR, while many previous studies found that
TI-MVDR works better for robust ASR [4], [14]–[16],
[21], [23], [26], as it produces low speech distortion;

3) We demonstrate that the trained multi-microphone models
based on a simulated array generalize reasonably well to
a real device with a matched geometry.

These contributions together lead to state-of-the-art sepa-
ration performance on the public SMS-WSJ [27] and Lib-
riCSS [21] datasets recently constructed for utterance-wise and
continuous-input speaker separation. An earlier version [28] of
this study has been published in ICASSP 2020, but it only tackles
speech dereverberation, not separation.

The rest of this paper is organized as follows. We present the
physical model and objectives in Section II. In Section III, we
extend single-microphone complex spectral mapping, which has
been successfully applied to geometry-invariant multi-channel
speech dereverberation [22] and enhancement [23], to multi-
channel speaker separation. In Section IV, we extend this tech-
nique to perform multi-microphone complex spectral mapping
on fixed-geometry arrays. Section V details the DNN architec-
tures of our models. Experimental setup and evaluation results
are detailed in Section VI and VII. Section VIII concludes this
paper.

II. PHYSICAL MODEL AND OBJECTIVES

Given a P -channel time-domain signal y[n] ∈ RP×1

recorded in a noisy-reverberant setting with C speakers, the
physical model in the short-time Fourier transform (STFT)
domain is formulated as

Y (t, f) =

C∑
c=1

X (c, t, f) +N (t, f)

=
C∑
c=1

(S (c, t, f) +H (c, t, f)) +N (t, f)

=
C∑
c=1

(d (c, f ; q)Sq (c, t, f) +H (c, t, f)) +N (t, f) ,

(1)

where Y (t, f), S(c, t, f), X(c, t, f), and N(t, f) ∈ CP×1 re-
spectively denote the complex STFT vectors of the received
mixture, direct-path signal of speaker c, reverberant image of
speaker c, and reverberant noise, at time t and frequency f .
Assuming that each speaker does not move within a single
utterance, we have X (c, t, f) = S(c, t, f) +H (c, t, f) =
d(c, f ; q)Sq(c, t, f) +H(c, t, f) , where Sq(c, t, f) ∈ C is the
complex STFT coefficient of the direct-path signal of source
c captured by a reference microphone q, d(c, f ; q) the time-
invariant relative transfer function (RTF) of source cwith respect
to microphone q and with the qth element equal to one, and
H(c, t, f) the early reflections plus late reverberation of source
c. In the following sections, when we drop t and f from the
notation, we refer to the corresponding complex spectrogram.
For example, Sq(c) denotes the spectrogram of speaker c at
microphone q, and Yq denotes that of the mixture.
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Fig. 1. SISO1 system for 2-speaker separation and dereverberation.

Our goal is to estimate Sq(c) for each source at the refer-
ence microphone based on the spectral and spatial information
contained in the multi-channel mixture.

Our study assumes a uniform circular array geometry. This
type of geometry is very common, including two-microphone
linear arrays (or two microphones arranged in a binaural
setup), three-microphone equilateral-triangle arrays and four-
microphone square arrays. We assume that the same array is
used for training and testing. The first microphone on the circle
is always considered as the reference microphone, i.e., q = 1.

III. SINGLE-MICROPHONE COMPLEX SPECTRAL MAPPING

Fig. 2 illustrates one of the proposed systems, SISO1-BF-
SISO2, which contains a single-microphone separation net-
work and a single-microphone enhancement network, and a
TI-MVDR beamforming module in between. The separation
network performs single-microphone complex spectral mapping
at each microphone to compute initial separation results, which
are then aligned across microphones and used to compute, for
each source, a TI-MVDR beamformer to point towards and
perform beamforming on that source. The beamforming results
are combined with the mixture, i.e.,Yq , and the outputs of the first
network to train a single-microphone complex spectral mapping
based enhancement network to enhance all the target speakers.
The MVDR beamforming results are considered as a spatial
feature [3], which encodes spatial information and can be used
by DNNs to improve separation. As the two networks essentially
do single-channel modeling, SISO1-BF-SISO2 can be applied
to arrays with diverse geometry. This section describes each
module in SISO1-BF-SISO2.

A. SISO1

We employ single-microphone complex spectral mapping
[29], [22], [23] for both separation and dereverberation. The key
idea is to predict the RI components of direct sound from the mix-
ture. We denote this method as SISO1 (single-microphone input
and single-microphone output). See Fig. 1 for an illustration.
Building upon utterance-level PIT (uPIT) [2], the loss function
is defined on the predicted RI components and the resulting
magnitude, following [22] and [23],

Lq,uPIT = min
ψqεΨ

C∑
c=1

(∥∥∥R̂(k)
q (ψq (c))− Real (Sq (c))

∥∥∥
1

+
∥∥∥Î(k)q (ψq (c))− Imag (Sq (c))

∥∥∥
1

+

∥∥∥∥
√
R̂

(k)
q (ψq (c))

2 + Î
(k)
q (ψq (c))

2 − |Sq (c)|
∥∥∥∥
1

)
, (2)

where Ψ denotes the set of all the permutations of C sources,
ψq refers to a permutation (or a pairing of speaker and DNN
output) at microphone q. R̂q and Îq are the estimated RI
components produced by linear activation in the output layer,
Real(·) and Imag(·) respectively extract the real and imaginary
components, | · | computes magnitude, ‖.‖1 computes the L1

norm, and k ∈ {1, 2} denotes which DNN produces the output
since we will have two DNNs in our later multi-channel system.
The separation result is obtained as Ŝ(k)

q = R̂
(k)
q + jÎ

(k)
q . The

network input is the RI components of Yq . We will describe the
DNN architecture in Section V.

Following uPIT, we assume that there are at most C speakers
in each mixture in the offline utterance-wise case and at most C
speakers in each block in the block-online continuous case, for
both system training and deployment.

B. SISO1-BF and MVDR Beamforming

For multi-channel processing, we apply SISO1 to each micro-
phone and use the predicted multi-channel complex spectra to
compute statistics for MVDR beamforming (denoted as SISO1-
BF). See the TI-MVDR part in Fig. 2.

We emphasize that before beamforming, the source alignment
module in Fig. 2 is needed to align uPIT results across micro-
phones, as SISO1 is applied to each microphone independently
and the uPIT results at different microphones may exhibit differ-
ent permutations of speakers. The prime in, say, Ŝ(1)′

q in Fig. 2 is

used to differentiate the notation from Ŝ
(1)
q , as we align speakers

across microphones. The alignment is done by simply aligning
the outputs at each non-reference microphone to the outputs at
the reference microphone based on their magnitude distance.

We use estimated complex spectra to compute target and

non-target covariance matrices, Φ̂
(s)

(c, f) and Φ̂(v)(c, f), for
MVDR beamforming

Φ̂(s) (c, f) =
1

T

∑
t

Ŝ (c, t, f) Ŝ(c, t, f)H

Φ̂(v) (c, f) =
1

T

∑
t

V̂ (c, t, f) V̂ (c, t, f)H, (3)

where T is the total number of frames within a mixture (or
a sliding block) and V̂ (c, t, f) = Y (t, f)− Ŝ(c, t, f). An
earlier way [14], [3] of using DNNs to compute covariance
matrices is by first using a DNN to estimate a real-valued mask
λ(c, t, f) for each source at each T-F unit, and then using it
to compute a weighted sum of mixture outer products, namely
1
T

∑
t

λ(c, t, f)Y (t, f)Y (t, f)H. It is suggested in [22], [23],

[30] that Eq. (3) leads to better covariance matrix estimation
than using real-valued masks, as long as the estimated complex
spectra exhibit better phase than the mixture.
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Fig. 2. SISO1-BF-SISO2 system for two-speaker separation and dereverberation.

As a target speaker can be viewed as a point source, following
[15], [12] we compute its steering vector r̂(c, f) as follows

r̂ (c, f) = P
{
Φ̂(s) (c, f)

}
(4)

d̂ (c, f ; q) = r̂ (c, f) /r̂q (c, f) , (5)

where P{·} extracts the principal eigenvector. We further divide
r̂(c, f) by its qth element to obtain an estimate of the RTF with
respect to the reference microphone.

An MVDR beamformer is computed as

ŵ (c, f ; q) =
Φ̂(v)(c, f)−1d̂ (c, f ; q)

d̂(c, f ; q)HΦ̂(v)(c, f)−1d̂ (c, f ; q)
(6)

and beamforming resultŝBF q(c, t, f) are computed as

̂BF q (c, t, f) = ŵ (c, f ; q)HY (t, f) . (7)

C. SISO1-BF-SISO2

Next, the MVDR beamforming results are combined with the
mixture and the SISO1 separation results, all at the reference
microphone, to train another SISO network to improve the
separation (see Fig. 2). This second SISO network is essentially
a post-filter, which performs enhancement and does not need to
resolve the permutation problem. It estimates all theC speakers
by using 〈Yq,̂BF q(1), . . . ,̂BF q(C), Ŝ(1)

q (1), . . . , Ŝ
(1)
q (C)〉 as

inputs to predict 〈Sq(1), . . . , Sq(C)〉 (denoted as SISO1-BF-
SISO2). The loss function is defined on the predicted RI com-
ponents and their magnitudes, similar to Eq. (2) but without
resolving permutations. Note that we use different subscripts,
say SISO1-BF-SISO2, to denote different SISO models, as they
take in different features. This convention applies to all of our
models.

Although the second network takes in the MVDR beamform-
ing results in its inputs, we still consider it doing single-channel
complex spectral mapping, where the beamforming results are
viewed as a spatial feature [3] that can leverage spatial informa-
tion to improve separation.

We tried to replace the TI-MVDR in SISO1-BF-SISO2 with
various time-varying beamformers [23], [31]. However, we
do not observe clearly better performance, likely because the
sources do not move within each mixture in this study.

IV. MULTI-MICROPHONE COMPLEX SPECTRAL MAPPING

For fixed-geometry arrays, we replace each SISO network
in the SISO1, SISO1-BF and SISO1-BF-SISO2 systems with a
MISO (multi-microphone input and single-microphone output)
network, which includes multi-microphone inputs as features
for multi-microphone complex spectral mapping. This leads to
our MISO1, MISO1-BF and MISO1-BF-MISO2 systems (see
Fig. 3(a) and (b)). Each one of them is better than its single-
microphone counterpart, since the DNNs are trained directly on
multi-microphone inputs to leverage spatial information. The
following subsections describe each of the systems. Section IV.C
introduces a MISO1-BF-MISO3 system (see Fig. 3(c)), where
the second DNN enhances target speakers one by one, rather
than enhancing all of them at once. The last subsection discusses
the application of MISO1-BF-MISO3 with a speaker counting
module for block-online CSS.

A. MISO1

In a multi-microphone setup, SISO1-BF-SISO2 does not use
DNNs to directly model multiple microphones. We propose
MISO1 networks, illustrated in Fig. 3(a), for multi-channel
speaker separation, where we stack the RI components of mul-
tiple microphone signals 〈Yq, . . . , YP , Y1, . . . , Yq−1〉 to predict
the RI components of all the speakers 〈Sq(1), . . . , Sq(C)〉 at a
reference microphone q. The loss function is Lq,uPIT. We will
talk about the DNN architecture in Section V.

This approach is in spirit similar to the classic multi-channel
Wiener filter [12], where a linear filter is computed per T-F unit
to project the mixture onto target speech. Our study trains a
DNN to do this. Implicitly broadband and capable of exploiting
a large context window along time and frequency by using,
for example, dilated convolution, recurrence or self-attention,
the DNN essentially learns to perform time-varying non-linear
beamforming. Although this would be difficult to learn for
unknown arrays, where test geometry differs from the trained
geometry, it would likely work well if array geometry is the same
between training and testing, as the inter-channel phase patterns
do not change for signals coming from a particular direction. In
such a case, the DNN would likely be able to exploit such fixed
patterns for better separation than using just a single microphone.
This approach is conceptually simple, computationally efficient,
and can be easily modified for online real-time processing.
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Fig. 3. (a) MISO1; (b) MISO1-BF-MISO2; and (c) MISO1-BF-MISO3 systems for two-speaker separation and dereverberation.

Different from the convolutional beamformer approach [32]
and approaches that use DNN to first predict beamforming filters
and then perform linear filtering [33], [5], [34], our approach
directly uses a DNN to predict target speech from multi-channel
inputs and the DNN itself is the beamformer. Another related
study [19] stacks the magnitude and phase of the multi-channel
mixture as inputs to a DNN to estimate a real-valued mask,
which can be used for direct enhancement or computing time-
varying speech and noise covariance matrices for beamforming.
However, this approach does not use DNN for phase estimation.
In addition, the noise covariance matrix is computed based on
recursive averaging, which usually cannot lead to sufficient
noise suppression at each T-F unit, because the covariance
matrix computed based on averaging more frames surrounding
a T-F unit would be more different from the instantaneous noise
outer product that can, in the oracle case, lead to perfect noise
suppression at that T-F unit.

Although there are time-domain approaches using multi-
microphone waveforms as the inputs for DNNs to predict target

waveforms at a reference microphone for speech enhancement
and speaker separation, similar to the proposed MISO approach
[5], [6], [25], [35], [36], their success in environments with
significant reverberation is less impressive [37] than in anechoic
conditions, and their generalization to realistic noisy-reverberant
recordings is unclear. In addition, our study integrates multi-
microphone complex spectral mapping with beamforming and
post-filtering, which produce further improvements.

B. MISO1-BF

Similar to SISO1-BF, we use the separation results by MISO1

to compute an MVDR beamformer for each source (denoted as
MISO1-BF). See the TI-MVDR part in Fig. 3(b). Since MISO
is trained on multi-channel inputs, it can provide better signal
statistics for MVDR than SISO.

To compute covariance matrices using Eq. (3), we need to
have an estimate of the target speech at each microphone. Since
in our experiments MISO1 is trained on the concatenation of an
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ordered list of microphones 〈Y1, . . . , YP 〉 to predict S1, at run
time we cannot feed in 〈Y1, . . . , YP 〉 to MISO1 to estimate say
S2. One cumbersome way is to train another model to predict
S2. In this way, one has to train P different models, one at
each microphone. We instead circularly shift the microphones
at run time for the prediction of each microphone signal, i.e.,
we feed 〈Yp, . . . , YP , Y1, . . . , Yp−1〉 to MISO1 to predict Sp
for p ∈ {1, . . . , P}, essentially rotating the array. This strategy
should work if the microphones are arranged uniformly on a
circle, since using 〈Yp, . . . , YP , Y1, . . . , Yp−1〉 as inputs to
predict Sp is essentially the same as what MISO1 is trained to
do.

What if microphones are configured in a popular Amazon
Echo setup where the first P − 1 microphones are on a cir-
cle and the last at the circle center? In such a case, we can
circularly shift the microphones on the circle, and always put
the center microphone at last in the ordered list, i.e., we use
〈Yp, . . . , YP−1, Y1, . . . , Yp−1, YP 〉 to predict Sp, for p ∈
{1, . . . , P − 1}. In this case, we can only use the P − 1 mi-
crophones on the circle for later MVDR beamforming, which
should not be much worse than using P microphones if P is
not small and the aperture sizes are the same. An alternative
is to use T-F masks estimated on the P − 1 microphones to
compute a pooled mask to perform mask-based beamforming
on P microphones. When P is large, the quality of the pooled
mask computed from P − 1 masks should be very close to that
computed from P masks. We leave this alternative for future
investigation.

We cannot use this shifting trick for many non-circular ar-
rays such as linear arrays with more than two microphones.
In such cases, we can train a multi-microphone input and
multi-microphone output (MIMO) network that predicts the
target speech at all the microphones [28]. However, in the
circular-array case, a MIMO network is found to produce worse
estimation of target speech at each microphone than a MISO
network, because MIMO has more signals to predict than MISO
[28].

C. MISO1-BF-MISO2 and MISO1-BF-MISO3

Different from SISO1-BF-SISO2, the beamforming results
̂BF q are combined with the multi-channel inputs and initial

separation results Ŝ
(1)
q to train another MISO network

to further predict Sq (see Fig. 3(b) or (c)). This MISO
network is designed to leverage multi-microphone modeling
for post-filtering. It essentially performs enhancement
and does not need to resolve the permutation problem,
as the problem has already been resolved by the first
network. It can estimate C speakers all at once by using
〈Yq, . . . , YP , Y1, . . . , Yq−1,̂BF q(1), . . . ,̂BF q(C), Ŝ

(1)
q (1),

. . . , Ŝ
(1)
q (C)〉 as inputs to predict 〈Sq(1), . . . , Sq(C)〉

(denoted as MISO1-BF-MISO2, see Fig. 3(b)), or
predict each target speaker one by one by using
〈Yq, . . . , YP , Y1, . . . , Yq−1,̂BF q(c), Ŝ

(1)
q (c)〉 to predict Sq(c)

(denoted as MISO1-BF-MISO3, see Fig. 3(c)). We find that the
latter produces better separation, likely because each speaker is

Fig. 4. Task illustration of continuous speech separation.

convolved with a different RIR and hence it is better to enhance
the speakers individually. In addition, the DNN only needs to
model the pattern of a single target speaker rather than that
of multiple speakers combined, and does not need to learn to
deal with the varying energy levels between the speakers. The
downside is that the second DNN needs to be used C times at
run time, once for each speaker.

Although the MISO networks in MISO1-BF-MISO3 (or
MISO1-BF-MISO2) can be viewed as non-linear beamformers,
we find that adding the TI-MVDR beamformer in between
dramatically improves the performance of the second network.
This is likely because an MVDR beamformer is built based on
signal processing principles. It can produce reliable separation
especially in conditions with low reverberation and noise, if
it is pointed towards a target speaker and puts null beams
on the other speakers. Such reliable separation could provide
complementary information to boost MISO based separation.
In contrast, the MISO models alone are built from supervised
learning. They are data-driven and cannot leverage the gains pro-
vided by conventional signal processing. To show the benefits of
including a TI-MVDR beamformer, in our experiments we will
compare MISO1-BF-MISO2 with a MISO1-MISO4 baseline,
where MISO4 is trained in the same way as MISO2, but not
taking in the TI-MVDR results as inputs. Similarly, we will also
compare MISO1-BF-MISO3 with a MISO1-MISO5 baseline,
where MISO5 is trained in the same way as MISO3, but not
taking in the TI-MVDR results.

D. Block-Online MISO1-BF-MISO3 for CSS

Continuous-input speech separation [21] deals with the sce-
nario where signals from an unknown number of speakers,
possibly degraded by reverberation, noise and various degrees of
speaker overlap, come as a continuous stream. Following [21],
we focus on separating the input stream into two streams, each
being enhanced and free of concurrent speech, as illustrated in
Fig. 4. This processing can be useful for streaming for example
conversational speech recognition systems.

We follow the overlap-block idea proposed in [21] for block-
online CSS. Following [21], we assume that each short block
(in our study 2.424 s) contains at most two speakers so that
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Fig. 5. Illustration of block-online CSS. The separation results in the over-
lapped frames between consecutive blocks are used for block stitching. In block
2 and 4, the two estimates are swapped in the stitching process.

a two-speaker PIT model can be used in each block. This is
a reasonable assumption in meeting scenarios, as long as turn
taking does not happen frequently. The MISO-BF-MISO model
is applied to each block independently, i.e., considering each
block as a different mixture and not using any information from
future frames. Since our networks produce two estimates at each
block, we need to align the two estimates in the current block
with those in the previous block so that any continuous speaker
segment spanning the two blocks can be put into the same output
stream (see Fig. 5 for an illustration). This alignment procedure,
often referred to as speaker tracking or block stitching [21], is
performed by comparing the separation results in the overlapped
regions between consecutive blocks. The inevitable delay is the
block shift size if a non-causal model is applied in each block.
Fig. 5 illustrates this idea.

On the LibriCSS dataset used in our experiments, we em-
pirically observe that, when a model trained on two-speaker
mixtures is applied to process utterances containing only one
speaker, it sometimes cannot put the speaker in one stream and
set the other to silence, resulting in very weak but intelligible
speech residual in the other stream. To suppress the residual, we
train a frame-level speaker counting network to (1) count the
number of speakers at each frame of the current block; (2) find
segments of frames containing only one speaker based on the
frame-level counting results; (3) merge the stream with weaker
energy to the other stream for each detected one-speaker segment
within the block; and (4) suppress the weaker-stream segment
by multiplying it with a small constant. We perform three-class
classification (i.e., zero, one or two speakers) for frame-wise
speaker counting. The network architecture will be discussed in
the following section.

V. DNN ARCHITECTURE

Fig. 6 shows the DNN architecture of our SISO and MISO
models. Similar architectures have shown strong performance
in a number of tasks including speaker separation [9], speech
dereverberation [22], [28] and speech enhancement [23]. The
architecture is a temporal convolutional network (TCN) [38]
clamped by a U-Net [39] which includes an encoder for down-
sampling and a decoder for up-sampling along frequency. We

Fig. 6. Example network architecture of MISO1 for predicting the RI
components of Sq from multi-channel inputs 〈Yq , . . . , YP , Y1, . . . , Yq−1〉.
The tensor shape after each encoder-decoder block is in the format: fea-
tureMaps × timeSteps × frequencyChannels. Each one of Conv2D, De-
conv2D, Conv2D+ELU+IN and Deconv2D+ELU+IN blocks is specified
in the format: kernelSizeTime × kernelSizeFreq, (stridesTime, stridesFreq),
(paddingsTime, paddingsFreq), featureMaps. Each DenseBlock (g1,g2) con-
tains five Conv2D+ELU+IN blocks with growth rate g1 for the first four layers
and g2 for the last layer. The tensor shape after each TCN block is in the format:
featureMaps× timeSteps. Each IN+ELU+Conv1D block is specified in the
format: kernelSizeTime, stridesTime, paddingsTime, dilationTime, featureMaps.

add DenseNet blocks [40] at multiple frequency scales in the
encoder and decoder. The motivation of this network design
is that U-Net can maintain local fine-grained structure via its
skip connections and model contextual information along fre-
quency through down- and up-sampling, TCN can leverage long-
range information by using dilated convolutions along time,
and DenseNet blocks encourage feature re-use and improve
discriminability. The encoder contains one two-dimensional
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(2D) convolution, and seven convolutional blocks, each with 2D
convolution, exponential linear units (ELU) non-linearity and
instance normalization (IN), for down-sampling. The decoder
includes seven blocks of 2D deconvolution, ELU and IN, and
one 2D deconvolution, for up-sampling. The TCN contains
two layers, each with seven dilated convolutional blocks. We
use one-dimensional (1D) depth-wise separable convolution
in the dilated convolutional blocks to reduce the number of
parameters. We stack RI components as features maps in the
network input and output. Different models share the same
network architecture and differ only in the network input and
output. Each SISO or MISO network contains around 6.9 million
parameters.

This convolutional encoder-decoder achitecture performs
convolution directly on multi-microphone RI components to
simultaneously exploit the spectral and spatial information con-
tained in multi-microphone inputs. Increasing the number of
microphones only incurs a small number of parameters and a
small amount of computation. For the network architecture in
Fig. 6, a MISO network only has ((P − 1)× 2)× 24× 3× 3
more parameters than a SISO network, whereP is the number of
microphones, 24 the number of feature maps in the first 2D con-
volution, 3× 3 the kernel size, and 2 is because we stack real and
imaginary components. The increased amount of computation of
MISO over SISO is only from the first convolutional layer, which
is negligible relative to the rest of the network. In contrast, earlier
studies encode spatial information using inter-channel phase
patterns [18], [4], [6], [21], [41] by decoupling multi-channel
RI components into separate IPDs and magnitudes. As the
decoupled features exhibit different patterns less suitable for
direct convolution, typical methods [4], [6] use a fully-connected
input layer (or 1D convolution) to compress disparate IPDs and
magnitudes into lower-dimensional fixed-length vectors, which
however may lose phase information before later processing.
In addition, these methods introduce many more parameters
when the number of microphones increases, because of the
fully-connected layer. Further, they typically only consider the
IPDs between a reference microphone and other microphones
to reduce parameters. This may not be optimal as not all the
microphone pairs are leveraged. In contrast, our MISO networks
with encoder-decoder structure perform convolution directly on
multi-microphone RI components to exploit inter-channel phase
patterns among all the microphones. The short-cut connections
from the encoder to the decoder (shown as the “Concatenate”
lines in Fig. 6) can better flow the multi-channel phase informa-
tion inside the network.

For the speaker counting network used in our CSS algorithm,
we only use the encoder and the TCN components, and re-
move the decoder. We add a softmax layer on the ouptut of
TCN for frame-wise classification, and train the model using
cross-entropy. The input feature is the same as that in MISO1

in the multi-channel case and SISO1 in the monaural case. On
our simulated reverberant two-speaker validation set (introduced
later in Section VI.C), the accuracy of our frame-level speaker
counting model in the seven-channel case is around 97%, which
is quite accurate.

VI. EXPERIMENTAL SETUP

Our algorithms are evaluated on two datasets, SMS-WSJ [27]
and LibriCSS [21]. The first one is for two-talker separation in
simulated and matched reverberant conditions, and the second
for CSS in real-recorded and unmatched reverberant conditions.
Both datasets contain weak environmental noise. This section
describes each dataset, our simulated training data for LibriCSS,
the training procedure of our DNN models, system configura-
tions for the evaluation on LibriCSS, benchmark systems, and
evaluation metrics.

A. SMS-WSJ Dataset

SMS-WSJ [27] contains two-speaker mixtures in reverberant
conditions. The sampling rate is 8 kHz. The clean sources
are drawn from the WSJ0 and WSJ1 datasets. The database
contains 33561, 982, and 1332 two-speaker mixtures for train-
ing, validation, and testing, respectively. The array is circular
with six microphones uniformly spaced on a circle with 10 cm
radius. The speaker-to-array distance is sampled from the range
[1.0, 2.0] m, and the reverberation time (T60) is drawn from
the range [0.2, 0.5] s. A weak white noise is added to simulate
sensor noise. The speaker angles in each mixture are randomly
sampled from [−π,+π]. For ASR, we use the default back-
end acoustic model, which is trained by using single-speaker
reverberant-noisy speech as inputs and the clean alignments of
its corresponding direct sound as labels. A default task-standard
trigram language model is used for decoding. For separation,
we consider direct sound as the training target and perform
both dereverberation and separation. This is different from the
official SMS-WSJ setup, which considers direct sound plus early
reflections as the target for metric computation. We think that
this modification is reasonable for ASR tasks, as early reflec-
tions smear spectral patterns, although not as severely as late
reverberation. It also aligns with beamforming, as beamforming
methods are designed for extracting point sources.

In addition to one- and six-channel separation, we consider
two-channel separation, based on the first and the fourth micro-
phone on the circle, and three-channel separation, using the first,
third and fifth microphones.

B. LibriCSS Dataset

LibriCSS [21] contains ten hours of conversational speech
data recorded by playing LibriSpeech signals through loud
speakers in reverberant rooms. The sampling rate is 16 kHz.
The task is to perform conversational speech recognition with
room reverberation and a wide range of speaker overlaps. There
are ten one-hour sessions, each consisting of six ten-minute
mini-sessions with different speaker overlap ratios ranging from
0% to 40%, including 0S (no overlap with short inter-utterance
silence between 0.1 and 0.5 seconds), 0L (no overlap with long
inter-utterance silence between 2.9 and 3.0 seconds), and 10%,
20%, 30% and 40% overlaps. The recording device has seven
microphones, with six of them uniformly arranged on a circle
with a 4.25 cm radius, and one at the circle center. The distance
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between loud speakers to the array ranges from 33 to 409 cm.
This dataset contains two kinds of ASR evaluations, utterance-
wise evaluation and continuous-input evaluation, both expecting
frontend processing to produce two streams. The former assumes
that each utterance has been accurately segmented and the goal is
to recognize the segmented utterance. The ASR backend scores
both streams and the one with lower WER is considered the
final WER. The latter segments each mini-session to 60- to 120-
second long segments, each with 8 to 10 utterances from at most
eight speakers. The goal is to recognize all the utterances in each
segment. The ASR backend scores both streams, but combines
the two decoding results to compute the final WER. This is
different from the utterance-wise setup, where the lower WER
is picked. As a result, in one-speaker segments the continuous
setup requires one stream to contain the speaker and the other
to be completely silent. This is why we introduced a speaker
counting network in Section IV.D to suppress speech residuals.

C. Simulated Training Data for LibriCSS

Since LibriCSS only contains testing data, we need to simulate
training and validation data for separation by ourselves. Our
training data includes 76750 (∼129 hours) seven-channel two-
speaker mixtures with moderate levels of room reverberation
and weak air conditioning noise. Among all the frames, 12%
contain no speaker, 55% one speaker and 33% two speak-
ers. We sample clean source signals from the train-clean-
{100, 360} set of LibriSpeech. Assuming the array geometry
of the LibriCSS recording device, we use an RIR generator [42]
to simulate seven-microphone RIRs. T60 is sampled from the
range [0.2, 0.6] s. The average distance between speaker and
array center is sampled from [0.75, 2.5] m. The average direct-
to-reverberation energy ratio of the RIRs is −0.3 dB with 3.9 dB
standard deviation. The angles of the two speakers are randomly
sampled from [−π,+π] and ensured to be at least 10◦ apart.
The energy level between the two speakers is sampled from the
range [−7, 7] dB. We sample an air conditioning noise from the
REVERB corpus for each reverberant two-talker mixture. The
SNR between the anechoic two-source mixture and the noise is
drawn from the range [10, 30] dB.

The labels used for training the speaker counting model are
obtained by first applying a pre-trained DNN based voice activity
detector [43] to the spatialized anechoic signal of each one of the
two speakers at the reference microphone, and then combining
the two VAD results to get the number of speakers at each frame.

We cut each training mixture into 300-frame segments to
train our models. Based on the oracle frame-level VAD results
computed from the anechoic speech of each speaker, 24% of
these segments have only one speaker and 76% two speakers.
One-speaker segments are hence reasonably represented in our
training data.

D. Miscellaneous Configurations for LibriCSS

For offline speaker separation, we normalize the sample vari-
ance of each multi-channel signal to one before any processing.
This can deal with random gains in mixtures, and would be im-
portant for mapping based methods [22], [23]. For block-online
processing, we compute sample variance online, i.e., using all

the samples up to the current block to normalize the current
block. After obtaining the separation results at the current block,
we reverse the normalization to recover the original levels before
stitching. We normalize input features globally to zero mean
and unit variance. When performing global normalization on RI
components, the mean is set to zero due to the randomness of
phase, and the statistics for standard deviation is collected from
both the real and imaginary components within each freqeuncy
so that the phase remains the same after scaling RI components.
Note that scaling RI components using different factors modifies
the underlying phase.

For STFT, the window size is 32 ms, the shift is 8 ms, and
the analysis window is the square root of Hann window. We
use 512-point discrete Fourier transform (DFT) to extract 257-
diminensional complex spectra for 16 kHz sampling rate, and
256-point DFT to extract 129-dimenisonal complex spectra for
8 kHz sampling rate.

Following [21], [41], we set the run-time block size to 2.424
seconds for CSS. It corresponds to 300 frames as our STFT
window size is 32 ms and window shift is 8 ms. The block shift
is set to 1.2 seconds. This means that our block-online system has
a 1.2-second inherent delay, as in [21], [41]. For the utterance-
wise evaluation, at run time we use this overlapped-block idea
for the first network, as the speaker in a segmented utterance
could overlap with the preceding and the succeeding speakers,
while we use full-utterance information for beamforming and
post-filtering.

As our study focuses on separation, we mainly use the default
ASR backend provided by LibriCSS for recognition to facilitate
comparisons with or by other studies. We also employ a more
powerful end-to-end ASR backend to improve recognition. We
feed resynthesized signals to backends for recognition.

E. Training Procedure

We use our simulated training set (for LibriCSS) and MISO1-
BF-MISO3 as an example to describe how we train the systems.
MISO1 is trained to predict S1 based on 〈Y1, . . . , YP 〉 using
the 76750 seven-channel mixtures. We train the model using
300-frame segments. We then run MISO1 on each full-length
training mixture to compute Ŝ(c) following the circular shifting
idea, and use all the frames in the mixture to compute the
covariance matrices for TI-MVDR beamforming (with the ref-
erence microphone index set to one). We then train the MISO3

network also on 300-frame segments. The two networks are
trained sequentially. All the other systems are trained in a similar
way.

All DNNs are trained using the Adam optimizer for at most
100 epochs. The learning rate starts at 0.001 and is halved if the
validation loss is not improved for three epochs. We stop the
training process when the learning rate decays to 3.125e-5.

F. Benchmark Systems

Based on SMS-WSJ, we consider the following benchmarks:
1) We compare MISO1, MISO1-BF and MISO1-BF-

MISO2 respectively with SISO1, SISO1-BF and
SISO1-BF-SISO2. This can show the effectiveness
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of direct multi-microphone modeling on fixed-geometry
arrays over single-microphone modeling;

2) We compare MISO1 with a strong DNN-supported time-
varying MVDR beamformer, computed by using the out-
puts of MISO1 to calculate time-varying covariance ma-
trices. This beamformer is considered as an improved
version of the beamformer proposed in [19]. This com-
parison can show the effectiveness of MISO over more
conventional time-varying beamforming. Following [24]
and [23], the beamformer is computed by replacing the
time-invariant non-target covariance matrix Φ̂(v)(c, f) in
Eq. (6) with a time-varying one

Φ̂(v) (c, t, f) = α

∑t+Δ
t′= t−Δ V̂ (c, t′, f)V̂ (c, t′, f)H

trace(
∑t+Δ

t′=t−Δ V̂ (c, t′, f)V̂ (c, t′, f)H)/P

+ (1− α)
Φ̂(v)(c, f)

trace(Φ̂(v)(c, f))/P
, (8)

where Δ denotes the context window size in frames on
each side and α (set to 0.5 in this study) a weighting
term. It is a combination of the short- and long-term
estimates of the non-target covariance matrix. The RTF is
still computed in a time-invariant way using Eq. (5), as the
target speaker is assumed not moving within an utterance.
Decreasing Δ makes Φ̂(v)(c, t, f) more time-varying, but
also suffer more from the errors in V̂ (c, t, f), as DNNs
cannot estimate complex spectra perfectly;

3) We compare our system with a popular spatial clustering
technique provided with SMS-WSJ, which is based on
complex angular central GMM (cACGMM) with or with-
out further TI-MVDR beamforming [27]. We consider it as
a representative conventional approach for multi-channel
speaker separation;

4) We compare our systems with representative time-domain
end-to-end approaches such as the monaural DPRNN-
TasNet [44], an improved version of Conv-TasNet [8],
the multi-channel FaSNet with TAC modules [5], a repre-
sentative time-domain beamforming technique extending
monaural DPRNN-TasNet for multi-channel separation,
and a multi-channel Conv-TasNet [45]. All of them are
popular in speaker separation. We implement them using
the Asteroid toolkit;

5) For LibriCSS, we compare our system with two strong
block-online systems recently reported in [21] and [41],
which use real-valued masking in the monaural case and
MVDR beamforming in the multi-channel case.They are
proposed by the authors of LibriCSS.

G. Evaluation Metrics

We consider scale-invariant signal-to-distortion ratio (SI-
SDR) [46], perceptual evaluation of speech quality (PESQ) [47],
extended short-time objective intelligibility (eSTOI) [48] and
word error rates (WER) as the evaluation metrics for SMS-
WSJ, and report WER for LibriCSS. For PESQ, we report
narrow-band MOS-LQO scores based on the ITU P.862.1 stan-
dard [44] using the python-pesq toolkit.

The time-domain signal corresponding to Sq(c) is used as the
references for metric computation.

VII. EVALUATION RESULTS

This section reports evaluation results on SMS-WSJ and
LibriCSS. Based on SMS-WSJ, we analyze the robustness of
our trained models to geometry mismatches in Section VII.B.

In our experiments on LibriCSS, we find that including the
magnitude features of the reference microphone in addition to
the RI components for model training shows better ASR perfor-
mance. The rationale is that the pattern of magnitude is more sta-
ble than RI components (or waveforms), and including it could
lead to more robust separation on real-recorded data. We also add
magnitude features for our experiments on SMS-WSJ. Although
adding these features does not make a big difference in perfor-
mance as the training and testing sets of SMS-WSJ are matched,
we add these results for completeness. More specifically, for
example for MISO1, we use 〈Yq, . . . , YP , Y1, . . . , Yq−1, |Yq|〉
to predict 〈Sq(1), . . . , Sq(C)〉. For the architecture in Fig. 6,
adding this feature only introduces 1× 24× 3× 3 parameters
(to the first convolutional layer).

A. Results on SMS-WSJ

Table I reports the performance of single- and multi-channel
separation and dereverberation on SMS-WSJ, along with oracle
results such as direct sound, direct sound plus early reflections,
and oracle T-F masks such as the spectral magnitude mask
(SMM) and phase-sensitive mask (PSM) [13].

We mainly comment on the single- and six-channel results,
because similar trends are observed in the two- and three-
channel cases. We only go over the results obtained by includ-
ing magnitude features. We observe clear improvement using
MISO1 over SISO1 (10.2 vs. 5.9 dB SI-SDR), suggesting that
MISO is capable of exploiting spatial in addition to spectral
information on fixed-geometry arrays. Comparing MISO1-BF
and SISO1-BF (5.9 vs. 4.9 dB SI-SDR), we find that MISO1

produces better covariances for MVDR beamforming. By us-
ing MISO for post-filtering, MISO1-BF-MISO2 produces much
better performance over MISO1 and MISO1-BF (13.4 vs. 10.2
and 5.9 dB SI-SDR), and is 1.2 dB better than SISO1-BF-
SISO2 (13.4 vs. 12.2 dB), indicating the benefit of replacing
the two single-microphone networks in SISO-BF-SISO with
MISO. By predicting target speakers one by one, MISO1-BF-
MISO3 further improves SI-SDR to 15.6 dB, amounting to 2.2
dB improvement over MISO1-BF-MISO2 (15.6 vs. 13.4 dB),
9.7 dB improvement over single-channel processing (15.6 vs.
5.9 dB), and 21.1 dB improvement over no processing (15.6 vs.
-5.5 dB). Similar trends are observed from PESQ, eSTOI and
WER results. MISO1-BF-MISO3 yields 8.28% WER, which
is very close to the 6.40% WER obtained by using the oracle
direct sound of each source for decoding. MISO1-BF-MISO2

produces clearly better performance than MISO1-MISO4 (13.4
vs. 11.6 dB), and MISO1-BF-MISO3 is also clearly better than
MISO1-MISO5 (15.6 vs. 13.2 dB). These two comparisons show
the effectiveness of using a TI-MVDR module between the two
networks.
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TABLE I
SI-SDR, PESQ, ESTOI AND WER ON SMS-WSJ TEST SET

Our algorithm shows much better WER over conventional
spatial clustering based on cACGMM with or without further
MVDR beamforming (8.28% vs. 18.7% and 39.0% WER).

Compared with monaural DPRNN-TasNet [44], our SISO1

model shows clearly better PESQ and WER (2.44 vs. 2.28
and 26.86% vs. 38.12%) and slightly better eSTOI (0.753 vs.
0.734), and worse SI-SDR (5.9 vs. 6.5 dB) which is a time-
domain metric. Our multi-channel models such as MISO1 and
MISO1-BF-MISO3 produce much better performance on all
the four metrics over FaSNet with TAC modules [5] (10.2 and
15.6 vs. 8.6 dB in SI-SDR, 3.06 and 3.76 vs. 2.37 in PESQ,
0.862 and 0.942 vs. 0.771 in eSTOI, and 13.92% and 8.28%
vs. 29.8% in WER). Multi-channel Conv-TasNet [45] produces
strong SI-SDR results in the three- and six-microphone cases,
but not PESQ, eSTOI and WER results. Note that, similarly to the
proposed algorithms, FaSNet and multi-channel Conv-TasNet
also have the advantage of knowing array geometry.

Table II compares the performance of MISO1 with the time-
varying MVDR beamformer detailed in Section VI.F. In both
two- and six-channel cases, the time-varying beamformer (de-
noted as MISO1-tvBF) shows better performance over MISO1-
BF, but is worse than MISO1.

These results indicate the outstanding effectiveness of our
proposed algorithms on fixed-geometry arrays. A sound demo
page1 is available online for comparing different systems.

1https://zqwang7.github.io/demos/SMSWSJ_demo/taslp20_SMSWSJ_
demo.

TABLE II
SI-SDR, PESQ, ESTOI AND WER COMPARISON OF MISO1 WITH A

TIME-VARYING MVDR ON SMS-WSJ TEST SET (INCLUDING MAGNITUDE

FEATURES)

B. Sensitivity to Geometry Mismatch

To investigate the sensitivity of our trained models to geom-
etry mismatches, we add small perturbations to the microphone
positions in SMS-WSJ to simulate manufacturing errors. For
each microphone position of each test mixture, the perturbations
(in millimeters) along the X, Y and Z axis are independently
sampled from a Gaussian distribution with zero mean and stan-
dard deviation σ. Table III reports the results. Such perturbations
have no influence on SISO1 and SISO1-BF-SISO2. This is as
expected since the models are essentially monaural, although
SISO1-BF-SISO2 considers MVDR results as a spatial feature
for SISO2. The perturbations only slightly deteriorate the per-
formance of MISO1 and MISO1-BF-MISO3. Even for a large σ
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TABLE III
SI-SDR (DB) ON SMS-WSJ TEST SET WITH PERTURBED MICROPHONE

POSITIONS (6CH, INCLUDING MAGNITUDE FEATURES)

TABLE IV
WER (%) ON LIBRICSS (UTTERANCE-WISE EVALUATION, 7CH)

TABLE V
WER (%) ON LIBRICSS (UTTERANCE-WISE EVALUATION, 1CH)

(5 mm), which is unlikely to happen in modern manufacturing,
our models still perform comparably well to not applying any
perturbations.

C. Results on LibriCSS

Table IV presents utterance-wise evaluation results on the
seven-channel task of LibriCSS. We observe that using mag-
nitude features leads to clear improvements for MISO1. Using
MISO based post-filtering that predicts target speakers one
by one, MISO1-BF-MISO3 yields large improvements over
MISO1, especially for high overlap ratios (e.g., 8.3% vs. 13.0%
WER on 40% overlap).

Table V reports the performance of monaural processing on
the utterance-wise task of LibriCSS. Using magnitude features
in SISO1 also leads to some improvement, for example from
10.0% to 9.2% WER in the 0S condition. The SISO1-SISO3

system stacks two SISO networks, where SISO1 resolves the
permutation problem and SISO3 predicts target speakers one by

TABLE VI
WER (%) ON LIBRICSS (CONTINUOUS-INPUT EVALUATION, 7CH).

TABLE VII
WER (%) ON LIBRICSS (CONTINUOUS-INPUT EVALUATION, 1CH).

one by using 〈Yq, Ŝ(1)
q (c)〉 as inputs to estimate Sq(c). Better

performance is observed by using a second SISO network.
Table VI and Table VII respectively present the continu-

ous evaluation results on the seven- and one-channel tasks
of LibriCSS. We observe that using magnitude features in
MISO1 and SISO1 also helps. MISO1+SC means that we use
a dedicated speaker counting (SC) network to count speakers
at each frame, and use the counting results to merge MISO1

outputs. Clear improvement is obtained over MISO1. Similar to
the utterance-wise evaluation, MISO1-BF-MISO3+SC, which
applies speaker counting results to merge the outputs of MISO3,
produces clearly better performance over MISO1+SC.

Compared with monaural models, our seven-channel mod-
els yield large improvements in both utterance-wise and
continuous-input evalutions. These results clearly demonstrate
the effectiveness of DNN and MISO based time-varying non-
linear beamforming and post-filtering, and most importantly, the
strong generalizability of our trained models to real arrays with
the same geometry.

Based on the default ASR backend, our best seven-channel
frontend produces much better WER on LibriCSS over the
current best results reported in [41], which uses magnitudes and
IPDs to compute block-online masking based MVDR for sepa-
ration. For example, on 40% overlap, MISO1-BF-MISO3+SC
obtains 11.3% WER in continous-input evaluation and MISO1-
BF-MISO3 gets 8.3% in utterance-wise evaluation. They are
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much better than 19.6% and 15.1% WER reported in [41].
We believe that TI-MVDR alone cannot sufficiently suppress
non-target speakers, although it maintains each target speaker
distortionlessly. Our single-channel models, which combine a
TCN with a dense U-Net for complex spectral mapping, also
obtain better performance over the monaural ones in [21] and
[41], which use BLSTM and conformer for real-valued T-F
masking.

We further apply an end-to-end (E2E) ASR backend for ASR.
It is a conformer-based model trained on the LibriSpeech corpus
using ESPnet. On the test-clean set of LibriSpeech, the model
obtains 2.1% WER, which is almost the same as the 2.08%
WER obtained by the E2E ASR backend used in [41]. Combined
with our frontend, the E2E backend gets overall better results
than [41] (for example on 40% overlap, 4.7% vs. 6.2% WER
in Table IV, 12.3% vs. 17.1% in Table V, 7.6% vs. 10.0% in
Table VI, and 15.2% vs. 19.3% in Table VII), although the
performance is slightly worse (or comparable) in the 0S and
0L conditions.

VIII. CONCLUDING REMARKS

We have proposed a multi-microphone complex spectral
mapping approach to address both speaker separation and
dereverberation. The superior separation and ASR results on
SMS-WSJ indicate that two-speaker separation in simulated
reverberant conditions can now be addressed very well by
exploiting the spectral and spatial information afforded by a
fixed six-microphone array using frequency-domain methods,
even though our study considers dereverberation in addition
to separation and does not leverage extra information such as
speaker embeddings and visual cues.

Time-domain approaches recently gain popularity in monau-
ral speaker separation. On SMS-WSJ, our single-channel models
show better PESQ, eSTOI and WER, and worse SI-SDR over
monaural DP-RNN. Our multi-channel models obtain much
better PESQ, eSTOI and WER results and competitive SI-SDR
results compared with FaSNet with TAC modules, and multi-
channel Conv-TasNet. Similarly to the proposed methods, FaS-
Net and multi-channel Conv-TasNet also have the advantage of
knowing array geometry. Importantly, our models also produce
strong recognition performance on the more realistic LibriCSS
corpus.

Although trained on simulated RIRs, the proposed MISO and
MISO-BF-MISO models generalize well to the real device used
in LibriCSS. This is a significant finding, as it suggests that we
can train models on simulated multi-channel conditions, which
can be readily simulated, and expect them to generalize well to
real devices with matched array geometry.

Our study shows that using the direct outputs from a strong
DNN can produce much better ASR results over time-invariant
beamforming, at least in speaker separation in reverberant con-
ditions with weak and relatively stationary noise. This finding
contrasts that in single-speaker robust ASR [16], [26], where
only one speaker is assumed active in noisy-reverberant en-
vironments. The reason could be that multi-talker speech is
more harmful for recognition, and therefore frontend processing

needs to dramatically suppress non-target speakers. In addition,
competing speakers are easier to suppress as speech signal
shows strong patterns unlike reverberation and noise. On the
other hand, for single-speaker robust ASR, there is only one
active speaker and speech distortion is more of a concern, as
multi-condition training can deal with noise and reverberation to
some extent. Future research shall consider multi-speaker ASR
in reverberant conditions with challenging noises. In addition,
the application of this approach to multi-channel speech en-
hancement is straightforward.

The major limitation of our current study for CSS comes
from the assumption that each short processing block contains
at most two concurrent speakers. To deal with more than two
speakers, we could just do say 3- or 4-speaker PIT, or use
recursive separation [49] in each block. Another weakness is
that the first MISO network needs to run P times, once for each
microphone to compute the statistics for beamforming in order to
get the best performance, resulting in high computational costs.
One solution would be to replace it with a MIMO network that
can predict all the target speakers at all the microphones [28].
Another possible way is to run MISO only for the reference
microphone and use mask-based beamforming [31], at a cost of
some performance degradation.
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