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We derive a dimension-free Hanson-Wright inequality for quadratic forms of independent sub-
gaussian random variables in a separable Hilbert space. Our inequality is an infinite-dimensional
generalization of the classical Hanson-Wright inequality for finite-dimensional Euclidean random
vectors. We illustrate an application to the generalized K-means clustering problem for non-
Euclidean data. Specifically, we establish the exponential rate of convergence for a semidefinite
relaxation of the generalized K-means, which together with a simple rounding algorithm imply
the exact recovery of the true clustering structure.
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1. Introduction

The Hanson-Wright inequality is a fundamental tool for studying the concentration phe-
nomenon for quadratic forms in sub-gaussian random variables [11, 31]. Recently, it
has triggered a wide range of statistical applications such as semidefinite programming
(SDP) relaxations for K-means clustering [21, 10] and Gaussian approximation bounds
for high-dimensional U-statistics (of order two) [6]. Classical form of the Hanson-Wright
inequality bounds the tail probability for the quadratic form of a finite-dimensional ran-
dom vector in a Euclidean space. Below is a version that is frequently cited in literature
(cf. Theorem 1.1 in [22]).

*MSC 2010 classification: 60F10, 62H30.
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2 X. Chen and Y. Yang

Theorem 1.1 (Hanson-Wright inequality for quadratic forms of independent sub-gaus-
sian random variables in R). Let X = (X1,...,X,) € R™ be a random vector with inde-
pendent components X; such that E[X;] = 0 and || X;|ly, = sup,s, ¢~ /*(B|X;]1)Y1 <
L. Let A be an n x n matriz. Then there exists a universal constant C > 0 such that for
every t > 0,

t2 t
PXTAX —B[XTAX]| >t) < 2exp [—Cmin ( , )] , (1.1)
| [ I LA Allgs™ L[| Allop

where ||Al|lgs = (szzl afj)l/2 is the Hilbert-Schmidt (i.e., Frobenius) norm of A and
|Allop = max(yeprn:|z|o=1} [|AZ]|2 is the fo — Lo operator (i.e., spectral) norm of A.

There are some variants of the finite-dimensional Hanson-Wright inequality. Sharp up-
per and lower tail inequalities for quadratic forms of independent Gaussian random vari-
ables are derived in [15]. [20] and [4] derive the Hanson-Wright inequality for zero-diagonal
matrix A with independent Bernoulli and centered sub-gaussian random variables, respec-
tively. [13] establishes an upper tail inequality for positive semidefinite quadratic forms
in a sub-gaussian random vector with dependent components. [29] proves a dimension-
dependent concentration inequality for a centered random vector under the convex con-
centration property. [1] further improves the inequality of [29] by removing the dimension
dependence in R™.

In this paper, we first derive an infinite-dimensional analog of the Hanson-Wright in-
equality (1.1) for sub-gaussian random variables taking values in a Hilbert space, which
can be seen as a unified generalization of the aforementioned papers in finite dimensions.
Motivation of deriving the dimension-free Hanson-Wright inequality stems from the gen-
eralized K-means clustering for non-Euclidean data with non-linear features, which covers
the functional data clustering and kernel clustering as special examples. It is well-known
that the (classical) Euclidean distance based K-means clustering is computationally NP-
hard in the worst case. Various SDP relaxations in literature (cf. [18, 16, 7, 21, 10])
aim to provide exact and partial recovery of the true clustering structure. However, it
remains a challenging task to provide strong statistical guarantees for computationally
tractable (i.e., polynomial-time) algorithms to cluster non-Euclidean data taking values
in a general Hilbert space with non-linear features. As we shall see in Section 3, the
Hilbert space version of the Hanson-Wright inequality offers a powerful tool to establish
the exponential rate of convergence for an SDP relaxation of the generalized K-means.
This partial recovery bound implies the exact recovery of the generalized K-means clus-
tering via a simple rounding algorithm. In contrast to the heuristic greedy algorithms
often employed in the kernel clustering setting (cf. [24]), our result provides a principled
SDP relaxed kernel clustering algorithm with exact recovery guarantees.

2. Hanson-Wright inequality in Hilbert spaces

To state the Hanson-Wright inequality in a general Hilbert space, we first need to properly
specify the sub-gaussian random variables therein.
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Hanson- Wright inequality in Hilbert spaces 3
2.1. Sub-gaussian random variables in Hilbert spaces

Let H be a real separable Hilbert space and B(H) be the class of bounded linear operators
Y : H — H. If the operator ¥ € B(H) is positive definite (i.e., it is self-adjoint ¥* = ¥ and
(¥z,2) > 0 for all z € H), then there is a unique positive definite (and thus self-adjoint)
square root operator X.'/2 € B(H) satisfying $'/2%1/2 = ¥ (cf. Theorem 3.4.3 in [12]).

Definition 2.1 (Trace class of linear operators on a separable Hilbert space). Let
¥ € B(H). Then X is trace class if

2]l == D ((EE) 3¢5, ¢5) < oo,
j=1
where (e;)52, is a complete orthonormal system (CONS) of H. In this case, ||X|s is the

trace norm of X.

Note that the trace norm does not depend on the choice of the CONS. A self-adjoint
and positive definite trace class linear operator Y is compact and it plays a similar
role as a covariance matrix, where the trace norm is simply the trace of the covariance
matrix. In particular, if ¥ is positive definite trace class, then ||X|s, = Z;’;l(Zej, ej) =

Py [%1/2¢;||2. Let (€2, %,P) be a probability space.

Definition 2.2 (Hilbert space valued sub-gaussian random variable). Let Z be a ran-
dom variable in H and I' : H — H be a positive definite trace class linear operator. Then
Z is sub-gaussian with respect to T' (denote as Z ~ sub-gaussian(T")) if there exists an
a > 0 such that for all z € H,

E [e<z,z—E[z]>} < e’ (T22)/2 (2.1)

where the expectation E[Z] = [, ZdP is defined as a Bochner integral (cf. Chapter
2.6 in [12]). Moreover, if Z ~ sub-gaussian(I') with mean p = E[Z], then the 15 (or
sub-gaussian) norm of Z with respect to I' is defined as

[1Z]] . = inf {a >0:E [e<zvz"‘>] < e (M22)/2 vy, ¢ H} .

Note that Definition 2.2 corresponds to the R-sub-gaussianity in [2], and it is an
infinite-dimensional analog of the sub-gaussian random vectors in R? (see for example
[28] and [13]). Unsurprisingly, the Gaussian random variables in H is a special case of
sub-gaussian random variables in H.

Definition 2.3 (Hilbert space valued Gaussian random variable). A random variable
Z in H is Gaussian with respect to I' and with mean p = E[Z] (denote as Z ~ N(u,I))
if for all z € H,

E [e(z,Z—u)} — o(Tz2)/2 (2.2)
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4 X. Chen and Y. Yang

Lemma 2.4. If Z ~ N(u,T), then ||Z||p,r =1 and ¥ =T, where & := E[(Z — ) ®
(Z — )] is the covariance operator of Z. More generally, if Z ~ sub-gaussian(T") with
mean p = E[Z], then ¥ < 4||Z||12bz,l“r’ ie., (4||Z||127FF — X)) is positive semidefinite.

For a,b € H, the tensor product a ® b : HH — H is a linear operator defined as
(a ®b)z = (b, z)a for all z € H. Lemma 2.4 is proved in Appendix A.2.

Notation. We shall use ¢, cg,c1,C,Cy,C1,... to denote positive and finite universal
constants, whose values may vary from place to place. For a,b € R, denote a Vb =
max(a,b) and a A b =min(a,b). For ¥ € B(H), the operator norm ||X||op of X is defined
as the square root of the largest eigenvalue of X*¥. If Z;’il [Ze;|> < oo, then ¥ is a

Hilbert-Schmidt (HS) operator and [|S[lus = (3232, [|Se;[|?)/2. For a matrix Z € R™*™,
121 =320 25 1 2

2.2. Hanson-Wright inequality in Hilbert spaces

Throughout Section 2.2, we assume that H is a real separable Hilbert space and T" €
B(H) is a positive definite trace class operator on H. First, we present a Hanson-Wright
inequality with zero diagonal in Proposition 2.5.

Proposition 2.5 (Hanson-Wright inequality for quadratic forms of sub-gaussian ran-
dom variables in Hilbert spaces: zero diagonal). Let X;,i = 1,...,n, be a sequence of
independent centered sub-gaussian(I') random variables in H and L; = ||X;||y,,r. Let
A = (aij); =1 be an n x n matrix and S = 7, ., ,;, a;;(X;, X;). Then there exists a
universal constant C' > 0 such that for any ¢ > 0,

t? t
P(S>t)<exp {—C’min ( , )} , (2.3)
LT | Allfrs ™ L2 Tllop [ Allop

where L = maxigign Lz

Remark 2.1. Proposition 2.5 is a dimension-free version of the Hanson-Wright in-
equality with a zero diagonal weighting matrix for independent sub-gaussian random
variables in R [22]. Specifically, Theorem 1.1 (i.e., Theorem 1.1 in [22]) is a special case
of Proposition 2.5 with H = R and (X;, X;) = X;X;. In this case, we may take I' = 1
and thus ||T'||op = ||T'|lus = 1. Different from Theorem 1.1, Proposition 2.5 is also able
to capture the (component-wise) dependency encoded in I' for general Hilbert spaces,
thus covering certain quadratic forms in a finite-dimensional sub-gaussian random vector
with dependent components. We emphasize that, although our general proof strategy of
decoupling the off-diagonal dependence is based on that of Theorem 1.1 in [22], a key
step in our proof to remove the dependency in the Hilbert space valued sub-gaussian
random variables is diagonalizing the operator I' (together with the decoupling). Such
diagonalization procedure allows us to perform the calculations in an isometric £2 space
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Hanson- Wright inequality in Hilbert spaces 5

of H, where linear operators can be conveniently represented by (infinite-dimensional)
matrices. This turns out to be the crux to obtain the trade-off between ||T'||us and ||T'||op
in the tail probability bound for the off-diagonal sum S. |

Our next result is an upper tail inequality (i.e., one-sided Hanson-Wright inequality)
with non-negative diagonal weights in Theorem 2.6 below.

Theorem 2.6 (Upper tail inequality for quadratic forms of sub-gaussian random vari-
ables in Hilbert spaces: non-negative diagonal). Let X;,i = 1,...,n, be a sequence of
independent centered sub-gaussian(I') random variables in H and L; = || X;||y, r. Let
A = (aij);j=1 be an n x n matriz such that a;; > 0, and Q = szzl a;;(X;, X;). Then
there exists a universal constant C > 0 such that for any t > 0,

- 12 t
PlQ> ai L?||T||r +t ] < 2exp {—C’min( , )] ,
( 2l LA BslAls” 22T op 1 Allop

i=1
(2.4)

where L = maxigign Li-
Both Proposition 2.5 and Theorem 2.6 allow X;,7 = 1,...,n, to have different covari-

ance operators Y;, provided that 3; < 4||XZ-||12/}2’F1" (cf. Lemma 2.4).

Remark 2.2 (Connections to the existing upper tail inequality in finite-dimensional
Euclidean spaces). First, we mention that the upper tail probability bound (2.4) (also
cf. Lemma A.2) is sharper than the one-dimensional Bernstein’s inequality for the non-
negatively weighted diagonal sum of squared norm of independent sub-gaussian random
variables in H. Indeed, if we simply apply Bernstein’s inequality (cf. Theorem 2.8.1 in
[28]) for the real-valued sub-exponential random variables || X;||? (cf. Lemma A.4), then
the diagonal sum in @ has the following probability bound: for any ¢ > 0,

P ( > t>
(2.5)

cron o )
exp | —C min , .
h LATIE 325 a3 " L2 Tl maxy cicn |asil

Note that the right-hand side of (2.5) is controlled by one parameter |T'||s;, which is
strictly less sharp than (2.4) since ||T'||op < ||T']tr and |T|IHs < [IT]loplITller < [IT)|%. For
instance, if X; € RP, then I is often the p X p covariance matrix of X;. In the special case
for T' = I, then ||T'[|op = 1, |T|lus = p'/?, and ||T||¢» = p. Therefore, direct application
of the diagonal sum bound (2.5) does not yield the probability bound in Proposition 2.5.
In particular, for the generalized K-means clustering problem, this implies that a much
more restrictive lower bound condition on the signal-to-noise ratio is required for exact
recovery of the true clustering structure for high-dimensional data (more details can be
found in the discussion after Theorem 3.3).

S a1~ E[XP)

i=1
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6 X. Chen and Y. Yang

Second, for non-negative diagonal weights, Theorem 2.6 is an infinite-dimensional
(and thus dimension-free) generalization of the tail inequality for quadratic forms a sub-
gaussian random vector with dependent components in R? [13]. In particular, if X =
(X1,...,Xp) is a centered sub-gaussian random vector in R? (i.e., there exists a ¢ > 0
such that ]E[eZTX] < ell?139%/2 for all 2 € RP), then Theorem 2.1 in [13] states that: for
any positive semidefinite matrix > and ¢ > 0,

P (XTTX > 02(ITflu + 2T fls Ve + 2| Topt) ) < e

The last inequality is a special case (up to a universal constant) of (2.4) with n = 1,
A=1 H=Rr, I'"V/2X ~ sub-gaussian(c21,), and L? = ¢%. In addition, we note that
the positive semidefinite condition is not needed in our Theorem 2.6. Instead, only a
weaker condition on the non-negativity of the diagonal entries in the weighting matrix
is required. |

There are two limitations of Theorem 2.6. First, @ is typically not centered at Y/, a;; L?||T|¢.-
For the generalized K-means application in Section 3, this means that consistency of so-
lutions of the SDP relaxation (3.3) cannot be attained unless Y ; a;; L?||T'||¢; tends to
E[Q]. Second, the non-negativity condition on the diagonal weights a;; > 0 in Theorem
2.6 is not entirely innocuous for obtaining a concentration inequality for @ (i.e., two-sided
Hanson-Wright inequality). Without imposing additional assumptions, we cannot expect
a lower tail bound for sub-gaussian random variables even in R™ [1]. To simultaneously
fix these two issues and obtain a concentration inequality for @ — E[Q], we make the
following Bernstein-type assumption on the squared norm, in addition to the assumption
that X7q,...,X,, are independent sub-gaussian(T") with mean zero.

Assumption 2.7 (Bernstein condition on the squared norm). There exists a universal
constant C' > 0 such that

E||1X:]? - B I1X2|" < CRIEE2|T)5 2 SillEs Yk =3,4,.., (2.6)

where ¥; = E[X; ® X;] is the covariance operator of X;,i=1,...,n.

Remark 2.3 (Comments on Assumption 2.7). Since ||;[,, = E || X;||?, Assumption 2.7
is a mild condition on the sub-exponential tail behavior of || X;||%—||%;]|¢.. For H = R, (2.6)
is an automatic consequence of the sub-gaussianality (2.1). For H = R?, if X = %1/27,
where Z = (Z1,...,7Z,)T has independent components Z; with bounded sub-gaussian
norms, then

E[IX|? - E[X[*)? = BZTSZ - tr(D)) < [ Blfs-

Such linear transformation of an independent random vector in RP with sub-gaussian
components is a popular statistical model for the K-means clustering [10, 21]. For the
general Hilbert space H, it is easy to verify that Gaussian random variable Z ~ N(0,T")
in H satisfies (2.6). Comparing with the “centering” term Y., a;; L?||T'||¢; in (2.4), we
shall see that the correct centering terms I || X;||? in (2.6) together with the parameters
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Hanson- Wright inequality in Hilbert spaces 7

(Li||T||op, ||X:|lrs) are crucial to yield a concentration inequality for Q —E[Q]. By Lemma
2.4, we know that 4LZ||T||¢x = [|Zi]|er for any X; ~ sub-gaussian(I'). In fact, even in
R, it is easy to construct a random variable X ~ sub-gaussian(y?) such that 72 >>
0? where 02 = Var(X) (cf. Example 4.1 and 4.2 in [6]). In particular, here we give a
counterexample in R (so that L; = 1). Let Y,, follow a mixture of Gaussian distributions
F, = (1 -€,)N(0,1) + ¢,N(0,a2), where a,, > 1 and ¢, = a,*. Then we have 02 :=
Var(Y,) = 1—a,*+a,? and Y,, ~ sub-gaussian(v?2), where 72 = Ca? for some sufficiently
large constant C' > 0. Thus if a,, — 0o as n — oo, then o2 =< 1 and

E|Y2 - EY2]" S a2 E|Z]* = o242k — DI < 4k1(202)5 > S K(12)F(02)%,

where Z ~ N(0,1). Hence (Y,,)n=1,2,... is a sub-gaussian random variable satisfying As-
sumption 2.7 and 02 < 2, provided that a, — 0o as n — oc. |

Now we are ready to state the Hanson-Wright inequality for the general case.

Theorem 2.8 (Hanson-Wright inequality for quadratic forms of sub-gaussian random
variables in Hilbert spaces: general version). Let X;, i = 1,...,n, be a sequence of
independent centered sub-gaussian(I') random wvariables in H and L; = || X;|y, r. Let
A = (aig)} ;=1 be annxn matriv and Q = 377,y a;j(Xi, X;). If in addition Assumption
2.7 holds, then there exists a universal constant C' > 0 such that for any t > 0,

2 t
P(Q - Q) > 1) < 2exp [cm( , )] TS
LT3 ATs LT opll ATy

where L = maxi<ign L.

[29] and [1] derive Hanson-Wright inequalities under the convex concentration property
of a finite-dimensional random vector, which is difficult to verify in general. In contrast,
our Theorem 2.8 holds under more transparent conditions (i.e., the sub-gaussian and
Bernstein-type assumptions). Note that Theorem 2.8 can be seen as a unified gener-
alization of the finite-dimensional Hanson-Wright inequality to Hilbert spaces for both
independent sub-gaussian random variables in R [22] and a sub-gaussian random vector
with dependent components in R? [13].

3. K-means clustering in Hilbert spaces and its
semidefinite relaxation

In this section, we apply the Hanson-Wright inequality in Section 2.2 (i.e., Theorem
2.8) to the clustering problem of n data points into K clusters such that K < n. Let
X1,..., X, be asequence of independent random variables taking values in a measurable
space (X, X) on (2, %4, P). Suppose that there exists a clustering structure G7,..., G
(ie., a partition on [n] := {1,...,n} satisfying UX_,G; = {1,...,n} and G; NG}, = 0 if
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8 X. Chen and Y. Yang

1 <k # m < K) on the n data points with X; ~ Py, for i € G, where P, ..., Pk are dis-
tinct distributions on (X, X'). We emphasize that X does not need to be a Euclidean space.
Our goal is to develop a statistically correct and computationally tractable algorithm
for recovering the true clustering structure based on the similarity of the observations
X1y, Xp.

3.1. K-means in Hilbert spaces: 0-1 integer program formulation

Perhaps one of the most widely used clustering methods is the Euclidean distance-based
K-means clustering, due to the existence of computationally efficient heuristic algorithms
(such as Lloyd’s algorithm [17]). This is a particularly attractive feature for large datasets.
Given a sequence of observations X1,..., X, € R? (i.e., X = RP), the (classical) K-means
clustering method minimizes the total intra-cluster squared Euclidean distances

K
1
i — X — X2
ci?.l,%f(;w S IX - X

=1 1,J€G

over all possible partitions on [n], where |Gy| is the cardinality of Gy. Dropping the sum
of squared norms >, || X;||?, we see that the K-means clustering is equivalent to the
maximization of the total intra-cluster correlations

1
max E —_
G1WqGKk7 |G

Here, X1 X ; can be viewed as a similarity measure specified by the Euclidean space inner
product a;; = (X;, X;)re. In general, if space X is a Hilbert space H, then it is natural
to generalize this procedure by replacing (-, -)g» with the inner product (-, -)g associated
with H, yielding a;; = (X;, X;)u. Henceforth, we will refer to such a K-means that uses
the inner product in a Hilbert space as a generalized K-means.

Example 3.1 (Functional data clustering). In many applications, data to be clustered
are recorded as curves, surfaces or other things varying over a continuum, such as a time
interval and a space span. The random variable underlying data is naturally modelled as a
stochastic process X = {X(¢) : t € T} in Hilbert space (H, (-, -)i), where the sequence of
observations X, ..., X,, € His an i.i.d. sample of random variables drawn from the same
distribution as X. In clustering problems, the law of X is often assumed to be a mixture
distribution over H, with each mixture component as a cluster. When 7 = [0, 1] is the unit
interval, we can choose H as the L? function space L2[0,1] = {f : [0,1] = R: | f||?. =
fol |f(t)|?dt < oo} with L2-inner product (f,g): = fol f®)g(t)dt for f,g € L2[0,1].
Suppose we have prior information that the observations {X;} are smooth functions, then
we can choose a stronger norm to capture the similarity in the (higher-order) derivatives.
For example, in [14, 25] and [8], H are recommended as the Sobolev space with some
order k € {1,2} as S¥[0,1] = {f : [0,1] = R : [|[f®)[2, = fol | ) ()|? dt < 0o} equipped
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Hanson- Wright inequality in Hilbert spaces 9

with inner product (f, g)gx = Z?:o (f9), gWY 2, where f*) denotes the kth derivative of
a function f € S¥[0,1]. As we will see in Section 3.4, a higher smoothness order k in the
generalized K-means generally leads to larger separations among cluster centers (between
cluster variation) without significantly increasing fluctuations within clusters (within
cluster variation), thereby increasing the clustering signal-to-noise ratio (see Theorem 3.3
for a precise definition). |

Example 3.2 (Kernel clustering). In pattern recognition and natural language pro-
cessing, it is often crucial to capture the non-linear similarity for non-Euclidean data
(such as images and words). A widely used approach is the kernel method [23], where the
similarity a;; between X; and X is characterized by a nonlinear positive semi-definite
kernel function p : X x X — R through a;; = p(X;, X;). Commonly used kernel functions
include polynomial kernels p(z,y) = ({(x,y) + ¢)” for some positive integer order r and
radial basis function (RBF) kernel p(z,y) = exp{—|z — y||?/(2h?)} for some bandwidth
parameter h > 0, where z,y € RP are the Euclidean embeddings of the original observa-
tions (image pixel level vectorizations or word embeddings). According to the celebrated
Mercer’s theorem, kernel clustering can also be viewed as K-means in a high-dimensional
feature space: there always exists a Hilbert space (feature space) H equipped with inner
product (-, -)g and a feature map ¢ : X — H, such that

p(l‘, y) = <¢<.’L‘), (b(y))IHh vay e X.

More details about a construction of the feature map can be found in Section A.1. From
this identity, kernel K-means that uses a nonlinear similarity measure a,; = p(X;, X;)
can be cast into the framework of K-means in Hilbert spaces by identifying X; as ¢(X;).
On the other hand, explicit representations for the feature map ¢ and the Hilbert space
H are not necessary in order to implement the kernel K-means, which is one of the main
practical attractiveness of the method. By choosing a proper kernel p, we may capture
the non-linear similarity in non-Euclidean spaces through implicitly mapping the original
data space X into a “high-dimensional” feature space, in which linear boundaries can be
drawn to separate the data points. For example, the polynomial kernel maps into the
space spanned by the products of all monomials up to degree r. In particular, clusters
with centers (expectations under P;’s) that are overlapped in the original Euclidean
space may have separated centers (expectations under ¢ (P;)’s, where ¢4 (1) denotes the
pushforward of measure x defined through (¢4 (u))(B) = p(¢~1(B)) for every measurable
subset B C H) in the feature space. ]

For a general inner product (-,-)y, quadratic sample complexity is needed for the
generalized K-means to compute the similarity matrix A [9]. Observe that, for every
partition Gi,...,Gg, there is a one-to-one n x K assignment matric H = (h;;) €
{0,1}"*E such that h;; = 1if i € Gy and h;; = 0 if i ¢ Gj. Thus the K-means
clustering problem can be written as a 0-1 integer program:

max {(A, HBH") : H € {0,1}"*® H1yx =1,}, (3.1)
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10 X. Chen and Y. Yang

where 1,, denotes the nx1 vector of all ones, a;; = (X;, X;)m, and B = diag(|G1|™1,...,|Gk|™!).
The generalized K-means clustering problem (3.1) is typically computationally in-

tractable, namely polynomial-time algorithms with exact solutions only exist in certain

cases [24]. For instances, the (classical) K-means clustering is a worst-case NP-hard

integer programming problem with a non-linear objective function [18]. Exact and par-

tial recovery properties of various SDP relaxations for the K-means [18, 16, 7, 21, 10]

are studied in literature. However, it remains a challenging task to provide statistical

guarantees for the generalized K-means clustering to capture the non-linear features of

non-Euclidean data taking values in a general Hilbert space.

3.2. SDP relaxation for K-means in Hilbert spaces

We consider the SDP relaxations for the generalized K-means clustering. Note that every
partition G, ...,Gk of [n] can be represented by a partition function o : [n] — [K] via
Gr = o7 (k),k = 1,...,n. If we change the variable Z = HBH?" in the 0-1 integer
program formulation (3.1) of the generalized K-means, then Z satisfies the following
properties:

K K
7' =2, Z=0, w(Z)=)Y |Gklbrk:, (Z1n)i =Y |Gklboiy, i =1,...,n. (3.2)
k=1 k=1

For the generalized K-means B = diag(|G1|7!,...,|Gk|™!), the last constraint in (3.2)
reduces to Z1,, = 1,,, which does not depend on the partition function o. Thus we can
relax the generalized K-means clustering to the SDP problem:

Z =argmax{(A,2): Ze€ €} with ¢ ={2" =2,Z = 0,tx(Z) = K, Z1,, =1,,Z >0},
where Z > 0 means that 7 is p0§itive semidefinite and Z > 0 means that all entries of Z
are non-negative. We shall use Z to estimate the true “membership matrix” Z*, where

« | 1/ng ifijeGy

Zij = { 0 otherwise ’ (3-4)
where ni = |G}|. Note that Z* € ¢ is a projection matrix such that Z*Z* = Z*. If
Xi,..., X, €RP (ie,, X =RP) and a;; = XiTXj is the Euclidean space inner product,
then (3.3) is the SDP proposed in [18]. Observe that the SDP relaxation (3.3) does not
require the knowledge of the cluster sizes other than the number of clusters K. Thus it
can handle the general case for unequal cluster sizes.

3.3. Rate of convergence of SDP for K-means in Hilbert spaces

Now we are in the position to state the rate of convergence for the SDP relaxation (3.3)
for the generalized K-means clustering. For simplicity, we assume that the trace norms
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Hanson- Wright inequality in Hilbert spaces 11

of the covariance operators for the K-cluster distributions Py, ..., Px are equal. If the
trace norms are not all equal, then a similar de-biased SDP in [5] can be considered.
Denote the minimum cluster size as n = mini¢r<x M-

Theorem 3.3 (Exponential rate of convergence of SDP for generalized K-means). Let
X1,..., X, be a sample of independent random variables in Hilbert space H such that
X; ~ Py fori € Gj. Let (-,-)u and || - ||m be the associated inner product and Hilbert
norm with H, and pr, = EX;, 3 = E[(X; — pr) @ (X; — k)] be the covariance operator
of X;,1 € Gj.. Suppose that H is separable, and X; ~ sub-gaussian(Xy) for i € G}, such
that || X;||y,,5, < L and Assumption 2.7 holds with I'; = X, therein being equal to X In

addition, assume (Xg)E_, to be positive definite trace class, and |1 = = |Zk [|r-
Define
A? nA*
SNR? = A= th A = mi = 1y
P, Tl S T i Tl

as the squared signal-to-noise ratio, and suppose ¥ = Xy for all k = 1,..., K. Then
there exist universal constants cg, ¢y, ¢, C1,Ca > 0 such that as long as SNR? > ¢ n/n
and n2K > cjn, it holds that

|Z — Z*|, < Oy exp(—C,SNR?) (3.5)
with probability at least 1 — c/n?.

This theorem characterizes the hardness of clustering through the squared signal-to-
noise ratio SNR? that depends on the ratio of squared between-cluster separation rate A2
to within-clustering variation L?||X||,, or L?||X||zs. We postpone its proof to Section 4.2.
It turns out that both terms in SNR? are necessary depending on different regimes of
parameters A and Y. For the optimality of the exponent SNR? in the convergence rate
for Euclidean space clustering, namely H = RP, we refer to Section 3.3 of [10] for a
detailed discussion. In particular, if we instead use the weaker version of the concentration
inequality (2.5), then an extra p factor will appear in the denominator of each term in
SNR?, which is clearly suboptimal.

Our proof is based on the inequality (A4,Z*) < (A4, Z>, which is true due to the
optimality of Z and the feasibility of Z*. In particular, in the analysis of (A, Z-Z *) by
decomposing the similarity matrix A as a sum of its expectation and random fluctuations,
one remainder term caused by the random fluctuations involves a quadratic form over
Hilbert space H as the ) in Theorem 2.8. In particular, we prove a uniform version
of the Hanson-Wright inequality that leads to the exponential convergence rate (3.5)
in Theorem 3.3 by combining our Theorem 2.8 with a careful union bound technique
developed in [7] that utilizes the geometric structure of A and improves upon a naive
union bound argument via covering.

Theorem 3.3 provides a partial recovery bound for clustering. Next, we show that exact
recovery can be achieved by properly rounding the SDP solution Z. More specifically,
we consider the rounding algorithm that proceeds as follows: 1. let j; = 1 and Gy
be the set of all indices 7 such that Zjli > Zj ; 2. let jo be the smallest index in

1 .
2 1J19
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12 X. Chen and Y. Yang

[n] \ G1 and G be the set of all indices i such that Z,; > i Zinini -, end until the

remainder index set [n] \ Ué{:1 G, becomes empty for some K > 1. Thanks to Theorem

3.3, exact recovery of the true clustering structure is an immediate consequence when
SNR? > max{n/n, logn}.

Corollary 3.4 (Exact recovery of SDP for generalized K-means). In the setting of
Theorem 3.3, suppose SNR? > ¢; max{n/n, logn} and n?K > cyn for some universal
constants ¢y, co > 0, then

P(K=Kand Gy =G}, Vk=1,...,K) >1—Cn?

for some universal constant C > 0.

3.4. Implications in functional data clustering

In this subsection, we discuss the consequence of applying Theorem 3.3 to Example 3.1.
For simplicity, we assume that for each k =1, ..., K, the sampling measure P is a Gaus-
sian process (GP) over Hilbert space .20, 1] with inner product (-,-)p2. In particular,
we use Theorem 3.3 to study and compare the uses of different inner products (such as
Sobolev inner products with different orders) in constructing the similarity matrix A in
the generalized K-means for functional data clustering.

Recall the definition of a Gaussian random variable in a Hilbert space in Definition 2.3.
When the Hilbert space is a function space, the law N(p,X) of a GP is completely
determined by its mean function p : [0,1] — R € L2[0,1] and covariance function
¥ [0,1]2 — L2[0,1], where u(t) = E[X ()] and 3(t,#') = BI(X (£) — u(t) (X (') — u(t'))]
for any GP realization X = {X(¢) : t € [0,1]}. The covariance function ¥ can be
identified with the covariance operator through

Yf(t) = /01 S(t, ) f(t')dt', for all f € 1L2[0,1] and ¢ € [0, 1].

Suppose now we have another Hilbert space H' C H, such as the Sobolev space S¥[0, 1]
for some k > 1, such that the second moment of || X — p||g is still bounded relative to
the stronger norm || - |lw associated with H', that is E[||X — p||%/] < oco. This implies
X — p € H almost surely, and (h, X — )y is Gaussian for all h € H'. As a consequence,
X — p remains a Gaussian random variable in the new Hilbert space H' [26], as long as
E[||X — pl|3/] < oo. Here  may or may not belong to H' depending on whether ||u|m
is finite or infinite. We use ¥’ to denote its covariance operator as a Gaussian random
variable in H'. In cases where ¥ has rapid eigenvalue decay (polynomial or exponential),
the operator and the Hilbert-Schmidt norms of ¥ and ¥’ will be dominated by their
respective top eigenvalues, henceforth comparable in magnitudes.

Returning to the functional data clustering, we assume X; ~ N(ug,Xg) for ¢ € G,
as Gaussian random variables in H. Consider two choices a;; = (X;, X;)m and agj =
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Hanson- Wright inequality in Hilbert spaces 13

(Xi, X;)m for constructing the similarity matrix A in the SDP for the generalized K-
means clustering. From our previous discussion, we know that X; — uj remains Gaussian
in H' as long as E[|| X; — pxl|3/] < co. We use ¥} to denote the covariance operator of
X; — p as a Gaussian random variable in H’. We can then apply Theorem 3.3 with
Hilbert space H and H' to obtain the signal-to-noise ratios under these two choices,

A? nA*
SNR? = N HhA = mi il and
L2 LS (il = plle, - an
A/)Q n(A’)4
SNR')? = ( n Hh A ) il
( ) L2 |lop L4HZ,”%{S w1 1<?£%K”“ pg | e s

where ¥ > ¥, and ¥’ > X} for each k. The denominators of SNR? and (SNR')? are
comparable when ¥ and X’ have rapid eigenvalue decay, while the signal strength A’
can be much larger than A, making the overall (SNR")? larger as well. For functional
data with H = L2[0, 1], faster eigenvalue decay in the covariance operator corresponds
to a higher smoothness order of the sample path. For example, if vy > v5 > ... are
ordered eigenvalues of ¥ with ~; ~ j728=1 for j =1,2,... and some § > 0, then sample
paths from N(0,X) are at least 8 times differentiable [19] almost surely. If we choose H’
to be S¥[0,1] for any 0 < k < 8], where | 3] denotes the largest integer smaller than
B, then E[|X; — pr|l%] < oo. On the other hand side, A’ can be much larger than A
when the difference {y; — p; : 1 < 4 # j < K} has smoothness order (characterized
via the decay rate of coefficients with respect to eigenfunctions {e;} of 3) lower than k.
In such scenarios, using the inner product induced by a stronger norm in constructing
the similarity matrix A may increase the signal-to-noise ratio and reduce the SDP error
|Z = 2|1

4. Proof of main results

4.1. Proof of main results in Section 2.2
In this subsection, we prove Proposition 2.5, Theorem 2.6, and 2.8.

Proof of Proposition 2.5. By Markov’s inequality, we have for any A > 0 and ¢ > 0,
P(S >t) < e ME[M].

Step 1: decoupling. Let d1,...,d, € {0,1} be i.i.d. symmetric Bernoulli random vari-
ables (i.e., P(§; = 0) = P(4; = 1) = 1/2) that are independent of X7, ..., X,. Since

B -0 ={ ), is)

we have S = 4 E5[S;], where S5 = 377", 8i(1-0;)a;;(Xi, X;) and Es[] is the expectation
taken with respect to the random variables ¢;. Below, Ex[-] is similarly defined. By
Jensen’s inequality, we get

E[e*] < Ex s[e*%].
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14 X. Chen and Y. Yang

Let As = {i € [n] : 6; = 1}. Then we can write

S(; = Z Z G,ij<Xi,Xj> = Z <Z aini,X]).

i€As JEAS JEAS i€As

.....

(Xi)ien,), it follows from the assumption X; are independent sub-gaussian(I') with mean
zero that

2 _2
¢S5] <8N

j)jeAg[ )

where 02 = > jens LT (X ien, @i Xi)s (Xien, @ijXi))- Thus we get
EX[€4)\S,;] g EX |:68)\20'§:| .

Step 2: reduction to Gaussian random variables. For j = 1,...,n, let g; be
independent N (0, 16L§F) random variables in H that are independent of X1, ..., X,, and

01, --,0,. Define
T .= Z <gj7 Z (lini>.

JEAS  i€As
Then, by the definition of Gaussian random variables in H, we have

ByleT] = T By el Fiens 00|
JEAS

=exp 8)\2 Z L?<F(Z aini), (Z aini)> = exp (8/\20'(?) .

JEAS i€hs i€As

So it follows that
EX [64/\55] < EX’Q[GAT].

Since T' = ZieA5<ZjeAg a;;jg;j, Xi), we have

/\2
E(x.)icn, [€M] < exp 5 DOLET(Y ] aiig), (D aig)) |

i€As JEAS JEAS
which implies that
Ex[e*%] < T, [exp (N*75/2)] (4.1)

where 7_62 = Zie/\g Lz? <F(ZjeAg aijgj)a (Zje/\g aijgj)>-

Step 3: diagonalization. Since I' € B(H) is trace class (thus compact) and positive
definite, it follows from Theorem 4.2.4 in [12] that the eigendecomposition of T' is given
by

D=3 ler®er),
k=1
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where 5, > 0 are eigenvalues of I' and (ey)72 , are eigenfunctions forming a CONS of
Im(T); namely Th = > 72, vi(h, ex)er for every h € H. Here, ® denotes the tensor
product and Tm(T) denotes the closure of the image of I'. In addition, there exists a
unique positive definite square root operator I''/2 € B(H) such that F1/2F1/2 =T (cf.

Theorem 3.4.3 in [12]). Then we have I''/2g; = Y72 7,1/2<gj, er)er and

5= LIV aijgy), TV aiig)) =Y LYY aijg))ll

ichs JEAS JEAS i€As JEAS
= Z L Z GZJFI/QQJHQ Z L Z’Y Z Qij 9]76k>)ek||
1E€EAs JEAS i€As JEAS
2
oo
=2 ) | 2 Liwilgen) )
k=1 1€As \JEAS

where the last step follows from Parseval’s identity. Note that
T 2ep||* = (Tew, ex) = (yer, ex) = u-
Thus for any A € R,
| eMaier) — BLIN (Tener) _ BLIN|TY 2er|® _ SLIN
which implies that Gji := (gj,ex),j = 1,...,n, are independent N (0, 16L§’yk) random
variables. Now let f = (i ff,v72fs,...)", where fi, = (Gig,...,Gui)? for k =

1,2,.... Then f ~ N(0,T), where T' = (T )3%,,—; with Ty = diag(Egm,11, - - - Ekm.nn)
and Expm_ jj = /Tk¥m E[G;xGjm]. Note that

E[G1Gjm] =E[({g), ex) g5, em)] = (E(g; @ gj))ek, em)
=16L3(Tex, em) = 16L3 (yier, €m) = 16L31(k = m).

Thus L'jy, is an n x n matrix of all zeros if k # m, and Ty, = 16v2diag(L3,...,L2).
Step 4: bound the eigenvalues. Let P5 : R" — R" be the restriction matrix such
that Ps;; = 1 if ¢ € As and Ps;; = 0 otherwise. Let further R; = diag(PsA(I, —
Ps), PsA(I, — Ps),...) and Z = (Z1,Z,...)", where A = (a;;)7;_, with @;; = Liay;
and Z; are i.i.d. standard Gaussian random variables in R. By the rotational invariance
of Gaussian distributions, we have

~ 2 ~ ~ e
= |Raf|* £ |RaT22|| = 2T TVRT R 2 £ Y 2,
k=1

where (s2)7°, are the eigenvalues of T'/2RT R;T"'/2. So it follows that

max s < || Rsl|3, | Tllop < 413 1 llep < L2[A]3, I Tllop,
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16 X. Chen and Y. Yang

where
= 2 2 2 2
IFllop < 16( max 1313, (max+7) < 1627 T2,

In addition, we also have

Y st =tr(TV2RIRsT?) = tr(RsTRY) = ) tr([Ps A(I — P)| T [PsA(I, — P5)]")
k k=1

<D 6L PsA(L, — Ps)llfis < ) 16093 Allfis < 16L*|T[fs[|Alfs:
k=1 k=1
Invoking (4.1), we get
oo
Ex[e%] < ] Ezlexp(A*si2¢/2)).
k=1

Since Z? are i.i.d. x? random variables with the moment generating function IE[etZI3 | =

(1—2t)~Y2 for t < 1/2, we have
- 1

EX[64AS(§] g —_—

kl;[l V1— A%t

Using (1 — 2)~'/2 < e* for z € [0,1/2], we get that if 16L*|| A2 2IIT([2,A% < 1, then

if max/\Qsi < 1.
k

Ex[e"%] < exp(A* ) i) < exp(16X”LY||T[fis]| Al fis)-
k=1

Note that the last inequality is uniform in é. Taking expectation with respect to ¢, we
obtain that
Ex[e*’] < Exsle"™¥] < exp(16A°LY|T ||| Allfs),

whenever 0 < A < (4L2|| Al|op [T lop) ~*
Step 5: conclusion. Now we have

P(S > t) < exp(=At + 16X L*|T[[fis[| Allfrs)  for 0 < X < BL?[|Allop|Tllop) "

Optimizing in A, we deduce that there exists a universal constant C' > 0 such that

12 t
P(S>t) <exp [Cmin ( , )] ,
LT s Allfs ™ L2 lop 1 Allop

as desired in (2.3). [ |

imsart-bj ver. 2014/10/16 file: hw_hilbert_BJ_v.2.1_accepted.tex date: July 11, 2020
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Proof of Theorem 2.6. Decompose Q = Y 7", a;;||X;||*+S, where S = D or<izicn @ij{Xis Xj).
In view of the off-diagonal sum bound for S in Proposition 2.5, it suffices to show the
following inequality for the diagonal sum: for any t > 0,

P (Z aii| Xl = as LT[l + t)
i=1 =1 (42)

o { Cmi ( t2 t )}
exp | —C min , ,
b L4||F||HS Zz 1a2 LQHFHopmaXKignaii

since Y i, a? < ||A|}g and @ := maxigi<n aii < ||A]|op. By Markov’s inequality and
Lemma A.3, we have for any A > 0 and ¢t > 0,

n n
P (Z aii (| Xil* = LE|Tl|er) > t> Sy ] 2 G
=1 1=1

n

n
e ML e EIs < exp (—At +20° 0 afnL‘*nr@Is)
i=1

i=1
holds for all 0 < A < (4L?||T'||opa) ~!. Choosing

t 1
4(27, 1 u)L4HFHHS SELQHFHOP7

we get (4.2). [ |

A=

Proof of Theorem 2.8. Under Assumption 2.7, we have the following standard mo-
ment generating function bound

2 2
E[emnxiutmnxiu%]ge% WA < ——
2| Tflop

See for example Chapter 2 in [30]. Then we have for any A > 0 and ¢ > 0,
n n 1

P (Z ai([|X]* = B X)) > t) < exp (‘At + C>\2(Z a?i)”“%ls) VAl < BT,
i=1 i=1 op

where @ := maxi<;<n |ai;|- Note that > | a?, < ||A||lfg and @ < ||A|op. Optimizing over

A and combining with Proposition 2.5, we get

2 t
P(Q-EQ] >t <2exp{—0min< , )}
(@-EQI>1) AT ATs " 22T Ton T ATIor

Applying the same argument by replacing @ with —@Q, we obtain (2.7) with constant 4,
which can be reduced to 2 by adjusting the value of constant C'. |
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18 X. Chen and Y. Yang
4.2. Proof of main results in Section 3
In this subsection, we prove Theorem 3.3 and Corollary 3.4.

Theorem 3.3. Recall that € = {Z,un : 27 = 2,7 = 0,t2(2) = K, Z1,, = 1,,, Z > 0}
is the SDP constraint set for the generalized K-means in (3.3). For ¢ € G}, let p, = E[X]
and §; = X; — ug. For notation simplicity, we will omit in the proof the subscript H in
the Hilbert space inner product (-, -}y and norm || - ||z.

Step 1: a generic bound. For any Z € ¢, consider (4,7 — Z*) = 371", a;j(Zij —
Z};). Note that if i € G} and j € G}, then

aij = + 0sy i + 05) = (fiks fm) + ik, 05) + (i, pom) + (03, 05)
=y o) + (Pl = fom> 05 — 03) + (s 05) + (05, pom) + (035 95)

Since Z;;l Zij = (Z1,); =1for all Z € € and Z* is feasible for &, we have

n K
DT> llmllP1li € Gy € G (Zi—2Z3) ZZHW zeGmZ(ZwZ;;):o

ij=1k,m=1 i=1 k=1
and

n K n K n

D> (ke 0)1( € i € G ) (Zig—Z5) = D> e, 0010 € GR) D (Zij—Z3;)
i,j=1k,m=1 i=1 k=1 J=1

Then by the symmetry of Z (i.e., ZT = Z), we have
(A, Z - 2" = (T + To+ Ts + Ty, Z — Z*),
where for 7 € G}, and j € Gy,
T = *%Iluk —uml® Tauj = (ke — s 65 — 04,
T35 = (0i,6;) — (0, 9;), Tuij = E(0;,9;).

Observe that

* 1 *
(11,2 -2") =~ oo lm—pnl® D> (Zi— 7)) (4.3)
I<kAM<E i€GT jEGT,
1
T2 >l = P Zazas, (4.4)
1<k£AM<EK

imsart-bj ver. 2014/10/16 file: hw_hilbert_BJ_v.2.1_accepted.tex date: July 11, 2020

1 1
= gl = g 17 S CUaaall = pan 17) + e = s 85 = 8) + (prs 0i) + (05 ) + (8, 85)-

=0.



Hanson- Wright inequality in Hilbert spaces 19

where the last step follows from Z > 0 and Z;; = 0 if i € G}, j € G, for k # m. Here,
|Za:as 1 = ZieG;,jeG* Zij|. By definition, we have (A, Z*) < (A, Z), which implies
that 0 < (A, Z — Z*). Thus we have

0< = > e — mmlPZasas 1t = (10, 2" = 2) < (Ta + T3+ Ty, Z — Z*). (4.5)

1<k#Am<K

N =

Let A = mini<psm<k |k — m]]- By (A.5) and (A.3) in Lemma A.6, we have

. 2n X an 5
\Zfz*\1<?|Z*—Z*Z|1:? Z Zazas, s
n = 1<k#EMSK

where n = miny¢r<x ng. Then we get

N . 8n 5 *
1z —-Z |1<@<T2+T3+T4,Z—Z>~ (4.6)
Step 2: bound (T, 7z — Z*). Since 61, ...,0, are independent with mean zero, we
have

n
(Tw, 2 = 77y = B|6:]1*(Zii — 2Z3).
=1

Since E ||6;]|? = | E[6; ® 8] l|tr = || Skt if i € G}, and || Zg e, k = 1,..., K are all equal,
it follows that . A
(T4, Z — Z*) = |21 tr(Z — Z*) = 0,

where the last step is due to tr(Z) = tr(Z*) = K since both Z,Z* € €.
Step 3: bound (T3, Z — Z*). Consider

(0,2 -2 = > > A — s 85 — )10 € G j € Go)(Zij — Z3y)
1<k#m<K i,5=1

= Z Z (ke — poms 0j — 0:) 2

1<k#m<K i€GY,jEGS,

m

=2 ) Do (k=m0 2

1<k#m<K i€G},jeGs,

m

=2 Y = s 8l Zic,

1<k#m<K i€Gy,

1

where the third equality is due to symmetry. For each k # m, let egk’m) = (g — tm, ;)

and Sg.m = ZieG; |Z,;G¢n 1 < 1, by Lemma A.5,

1- Since | Zinn

Sk,m
Z (o — Nm75i>|ZAiG;§l|l < €Ef)’m)a
i€GE i=1
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20 X. Chen and Y. Yang

(k,m) (k,m)

where €0 > ... > €y are the order statistics of egk’m),...7egf’m). Note that

(egk’m))?zl are ii.d. mean-zero sub-gaussian random variables in R with respect to
T]im = L% (X(puk — ), ik — M) (vecall that ¥ = 3 for all kK = 1,...,K). Thus

s k,m) . . .
for any s = 1,...,n, we have >, eg ™) s a mean-zero sub-gaussian random variable

with respect to 57',3’m. By the union bound, we get for all ¢ > 0,

s 2 , 2
(k,m) n ot (en)é ot
P (Z G 2 t) S <s> P ( 257} ) S s ) &P 257} '
i1 m m

Now it follows that

Sk,m
, . K
P (31 < k # m < K such that Z egf)’ ) 2 C1Tk,mSk,m1 | 10g ( i ))

=1

S
(k,m) nk
< " el
< Z Z IP(( €iy = C1Tems log< S ))

1<k#m <K 1<s<n i=1

" renys C? nk

Z Z(—) exp —7slog —
1<k#m<K s=1 5 s

2 " nkK 03K2 - 03
QK S_Zlexp <02510g <5>) § (nK)2 = ﬁ

Thus we have P(G;) > 1 — C3n~2, where

N

nk

Sk.m

Sk,m
gl = { egf),m) < ClTk:,msk,m IOg (
=1

By the Cauchy-Schwarz inequality,

N K
(T, Z — Z*) <2C Z Th,mSk,m1 | 10g ( i )

s
1<kEm<K kym
nk
2
<204 E T mSkam E Sk,m log (s)
1<kEM<E 1<kAM<EK k,m

on the event Gy. Since sy, = ‘ZGZG;‘"ll and

Thm < DISY2 (i = )| < LIS llop ik = pmll = LISN6p2 1tk = b,

it follows from the first equality in (4.5) that

S Rstan < Y L2 epllin — pml? 2z,
1<k#m<K 1<k#m<K

1 =202 (|2 |op(Ty, Z* — Z).
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By (A.3) in Lemma A.6, S := |Z*(Z — Z*)|, = 23 1 <htm<x Sk,m- Then it follows from
Jensen’s inequality that

nk S o2nkK3
Z Sk,m log K \Elog 5 .

1<k£m<K

N

Thus we get

. - K
(TQ,Z—Z*><201L\/||E\|OP(T1,Z*—Z> Slog(” )

on the event Gj. A
Step 4: bound (T3, Z — Z*). Decompose

(T3, Z—2*) = (I-Z)Ts(I-Z"), Z—Z*\+(Z* T3, Z—Z* )+ (T3 2%, Z—Z*)—(Z* T3 Z* , Z—Z*).
Note that

(I=2ZT5(1=2%),Z = Z°) =) (Ts, (I = Z*)(Z = Z")(I = Z7))
=)(Ts, (I = Z)Z(I - Z*))
<@ Tsllopll(I = Z1)Z(I = Z*) |
2" = Z*Z|x

<@ 1 Tslop 5 ;

where (1) follows from the symmetry of Z*, (2) from the idempotence of Z* (recall that
Z* is a projection matrix such that Z*Z* = Z*), (3) from the duality of the operator and
trace norms, and (4) from (A.4) in Lemma A.6. Let S"~! be the (compact) unit sphere
in R” and A/ be a 1/4-net for S"~1. By Lemma 5.2 and 5.4 in [27], we have |[N| < 9"
and || T3]|op < 2max,en 7 Tz, Thus, by the union bound, we have for any ¢ > 0,

P(T5lop > 1) < 3 PG Tr > 1/2). (48)
zeEN
Fix an € N. Note that ||z2”|}g = [|z]|3 = 1 and [Jzz” o, < 1. Since ¥ = ¥y, for all

k=1,...,K, we have ¢; ~ sub-gaussian(X) such that E[J;] = 0 and ||0;]|y,,» < L. By
Theorem 2.8 with A = z27, we get for all ¢ > 0,

n t2 t
P(z' Tz > t/2) = P( Z zx; T > t/2) < 2exp [—Cmin ( e TS )} )
i,j=1 L HE”HS L ”E”()p

Combining the last inequality with (4.8), we obtain that with probability at least 1 —cn =2,

I Tsllop < C5L* (vl Zllus + nl|Zlop)-
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22 X. Chen and Y. Yang

Then,

, ) 2o .
((I—=2T5(I—2%),Z2 - Z*") < CsL? vl ”Hz+ "l Ellop AR AVAN
n

AZ — * * 77
<) 057( R VAR AV AN

A? —1/2 B
=) C5— 5 (o' + o /)2 Z Zaras,

1<hEm<K
<) 205(cy ' + 061/2)<T17 zZ* —7)

1 N A
<@ 3 (1, Z* - Z),

where (1) follows from the definition of SNR* and the condition that SNR? > ¢y n/n, (2)
from (A.3) in Lemma A.6, (3) from the definition of A% and (4.5), and (4) from choosing
co sufficiently large.

Next, we consider (Z*Ts, Z — Z*) = (Z*Ty, Z*Z — Z*). By (3.4), we have

2Ty, 2°2 =27y = (' Ta)ii(2° 2 = 27);
3,j=1

-3 3 3 (Yama) (Ya %)

k,m=1i€G} je€Gy, \i=1

K
Z Z Z nikZT&fj nik ZZZj—l(k:m)

k:m=14€G} jEGE, Leay, Leasy,
S (r=m >1<k ") o
=2 > > T | (27 = 2 D)y
k,m=15€G, teay,
=:Bkj
=:By;

Note that fi; € [0,1]. By Lemma A.5, we have

K bpm
* * 77 * (k,m)
Z T2 -79< Y. Y B,
k,m=1j=1

where bkm = ZjEG* /Bkj = |(Z* *Z*Z)Gzefnh and Béf)’m) B((g)m) >..-1s the ordered

sequence of (By;)jeq: . Now fix a (k,m). For any E C G}, with 1 < g := |E| < nyy, , we
can write

ZBk] Z d(k m) 6@5 > E<5f75]>)7

jeEE jl=1
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where D*) = (dé?’m))zjzl and dé?’m) = —n'1(j € E)1(¢ € G}). By Theorem 2.8

(one-sided version) and the union bound, we have t > 0,

(k,m)
P ZB(J) >t
Jj=1

N

() oo o (et )|
exp |—C min , .
q LAElfs D% fs ™ L2 lop [ D™ [lop

Since ||[D*™)|lgg = | D*™)||op = \/q/Mm, we deduce that

brm
IP<E|1 < k, m < K such that ZB((;C)m 2
=1
o 22 (11Zlhs b K))
6 HS
F
< P BE™ > Co L <||Z||Hs log " 4 |13 - )
() v
km=11<q<nm Jj=1 ’ F F I
K Mo, q
en N I
<2 2 () e (-t (7))
k,m=1q=1 q 9
9 . nm N KK CgKQ Cg
<K min Zexp (—C7q10g< q >> < (nK)* < 662712’

where the last inequality is due to n?K > c¢in. Thus, we obtain that with probability at
least 1 — Cg/n? that

- 9 ad bi T K b}i/z N KK
75,7 — Z2°) < C L > ™ og L= m_Jog )
(21,2 - 7)< Cy ;( s Iy 2 10g 720

Recall that ka L bkm = |Z* = Z*Z|, = S. Since functions 2~/ log x and z~/2\/log =

are monotonically decreasmg for = > €2, we obtain from Jensen’s inequality that

* ~ * S K K3
(2732 = 2 < Co 17 < (I2lsylog 2+ 12lop VS 1o 2 ).

By the cyclic invariance of trace and the symmetry of T3 and Z — Z*, the same bound
holds for (132*,Z — Z*) = (Z*T3,Z — Z*). In addition, the term (Z*T32*,Z — Z*) =
(Z*T3,Z*(Z — Z*)Z*) can be handled in the same way as (Z*T3, Z — Z*), by noticing
that | Z*(Z — Z*)Z*|, = |Z2*(Z — Z*)|, according to Lemma A.6.

Put all pieces together, we obtain that with probability at least 1 — ¢/n? that

. 1 nk3 nk
Ts, 2 — Z°) < =Ty, 2" — 25— [ ||T 1 o 1 .
(12,2 - 2°) < (10, 2° = 2) 4300 25— (ISl Tow 25 + 12l V5 105 25
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24 X. Chen and Y. Yang

Step 5: conclude. Now we combine the bounds in Step 1 — 4 to obtain that

1 N N 2nK3
2<T1,Z*Z><2C1L\/<T1,Z*Z>\/||E|OpSlog< 5 >
1 nk3 nk?3
+306L25\/ﬁ<||2|m\/10g 5 + 1= ]lop V'S log 5 > (4.9)

holds with probability at least 1 — ¢/n?, where recall that S = |Z* — Z *7 1. According
to equation (4.5) in Step 1 and equation (A.5) in Lemma A.6, we have (T}, Z* — Z) >

A2S/4 > 0. Then solution of the quadratic inequality (4.9) for \/ (T}, Z* — Z) implies

onK3 1 nK3 nk?3
A% < Cy L? ||X||op log (S> + Cy L? ﬁ (|E||HS\/10g 5 + 1= ]lop VS log S >
(4.10)

This inequality combined with S < [Z* — Z|, due to (A.5) and the trivial upper bound
|Z* — Z]1 < 2n imply
2nK3 1 nk3
-1 CoL? — || log =
= tog (25 )+ o1 = Il o 2
As a consequence, we have

S < 2nK? exp <—C10 <\/E 5 A* A 4EA42 )> < 2nK? exp(—Ch1 y/n/n) < n,
n L2 |Z]lop  L*[|Z|Fs

A% < 3Cy L? |2 |op

oE

where we have used in the second last step our condition that SNR? > con/n = co K
for sufficiently large constant c¢y. Now combining the preceding display with inequality
(4.10), we obtain

2nK3 1 nK3
A? <30y L? ||%]|op log <S> +Cy L? ﬁ 1Zllus 1/ log —

Finally, this inequality combined with equation (A.5) in Lemma A.6 implies the desired
bound

. 2
|Z — Z*|1 g %S g 012 ’I’L2 KS/Q exp(—C’lo SNRQ) < 012 exp(—013 SNR2),

where the last step is due to the lower bound condition SNR? > ¢, n/n. |

Proof of Corollary 3.4. For easy presentation, we consider the equal-size clusters case
where ny =...=ng =nand Gy ={(k—1)n,(k—1)n+1,....kn} for k=1,..., K by
reordering the indices. Under this setup, we have

4 [ 1/n iijec;
ig 0  otherwise
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Hanson- Wright inequality in Hilbert spaces 25

Take c; large enough so that the upper bound in Theorem 3.3 satisfies C exp(—C2SN RZ) <
ﬁ. We use induction to prove that G = G}, at each step for each k = 1,..., K, which
also implies K = K. In fact, at k = 1, since max; | Zy; — 25| < |Z — Z*|; < 7, we must
have Zli € [%, %] for i € G} and Zli < % for i ¢ G7 according to the deﬁnﬂ;ion of Z*.
This implies él - G7 according to the choqce of Gy in the algorithm. Similarly, assume
G = Gy for all I < k, then [n]\UfZl G, = {kn+1,kn+2,...,n} and jy41 = kn+1by
definition. Then the fact that max; |Z;,, i — Z5 . .| <|Z — Z*| < = and the definition

Jk+1%
of Z* imply Zj,,,i € [&, 5] for i € G, and Zy; < 5 for i & G}, . Consequently,

k1t

3n’ 3n n
we must have Gy = G 41 according to the choice of Gy in the algorithm. This
completes the proof by induction. |

Appendix A: Auxiliary results

In this section, we collect and prove all auxiliary results in the paper.

A.1. Feature maps in reproducing kernel Hilbert spaces

In this subsection, we provide a concrete construction of the feature map in kernel clus-
tering. To this end, we invoke the theory of reproducing kernel Hilbert space (RKHS).
For a detailed survey of linear operators on Hilbert spaces with statistical applications,
we refer to the text [12] as an excellent monograph.

Let the bivariate function p : X x X — R be a symmetric and positive definite kernel;
namely, Zzlj:l cicip(zs,xj) = 0 forallm > 1,21,...,2p € X, and ¢1,...,¢m € R. By
the Moore-Aronszajn Theorem (cf. Theorem 2.7.4 in [12]), there exists a unique Hilbert
space H := H(p) of real-valued functions on X with p as its reproducing kernel, i.e.,

(i) for every z € X, p(-,z) € Hj
(ii) for every f € H and = € X, f(z) = (f, p(-,x)), where (-,-) is the inner product of
H.

Property (i) defines a feature map ¢ : X — H via z — p(+, ), which is known in literature
as the RKHS map [3]. Property (ii) shows that p satisfies the reproducing kernel property
for all functions in the Hilbert space H. Thus H is the RKHS associated with p. It is
immediate from these two properties that

plx,y) = (p(,y), p(+, 7)) = (B(z), 9(y)) Vo,y € X

Then the similarity matrix A is chosen a;; = p(X;, X;) = (¢(X;), ¢(X;)). Statistical
properties of the SDP solution Z for (3.3) rely on the distribution of the feature vectors
¢(X;) in H, which is a special case of Theorem 3.3.
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26 X. Chen and Y. Yang
A.2. Auxiliary proofs and lemmas
In this subsection, we provide additional proofs of the technical results used in the paper.

Proof of Lemma 2.4. Without loss of generality, we may assume p = 0. Suppose that
Z ~ N(0,T'). Then ||Z||p,,r = 1 is obvious from Definition 2.2 and 2.3. Let M (t) =
E[et*%)],t € R, be the moment generating function of (z, Z). Then Taylor’s expansion
yields that

d>M (t)

=3 =E(z, 2)* =Tz, (2, 2)Z) = B{2,(Z ® Z)2) = (2, B(Z ® Z)2) = (2,%z).

t=0

On the other hand, since Z ~ N(0,T"), we have

d*M (t)
dt?

= (14 £2)(T'z, z)et (T=2)/2,

Thus it follows that
(X =T)z,2) =0 forall z € H,

which implies that ¥ = I'. Suppose that Z ~ sub-gaussian(I'). By Markov’s inequality
and Definition 2.2, we have
w222 2

P((z,Z) > t) < inf eiAtE[eMz’Z)} < inf e MTEET22) = e 20%(Tz,2)
A>0 A>0

where o® = || Z||7, 1. Then,
(Bz,2) =E(z,2)? = / P(|(z,Z)| > Vt)dt < 2/ ¢ T dt = 4a2(T'z, 2).
0 0

Thus it is immediate that ((4a’T — %)z, 2) > 0 for all z € H, i.e., X < 4[| Z]7, ;T. ®

Lemma A.1 (Moment generating function bound for squared norm of a sub-gaussian
random variable in R™). Let I be an n x n positive semidefinite matrix and X be a
random variable in R™ such that E[X] = 0 and E[ezTX] < e*'T2/2 for all 2 € R™. Let
Z ~ N(0,T). Then,

X112 t|Z]|3 1
Ele 2z |<Ele 2z | YOo<t<|T|,-

Proof of Lemma A.1. The case for t = 0 is obvious. Without loss of generality, we
may assume I' is (strictly) positive definite since otherwise we can consider T" + I, for
6 > 0 and then let § — 0. Consider ¢ € (0, [|T'[|;;}). Denote the determinant of T as |T'|.
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Observe that

1 _ =13 Tx
A= [ € Bl
_ 1 ll=—tx 2 tIx113
- E|— T dzen T
(1) | (27)7/2|T|1/2 /Rne 2 ze 2 ]

N E axig 1 _”;H%d
=B [+ g [

[ en1x13 1
0|5 e

27

where (1) follows from Fubini’s theorem, (2) from the translational invariance of the
Gaussian density integral, and (3) from that the integration of the standard Gaussian

distribution N (0, I,,) equals to one. Thus we get
X113 112
Ele 2 | =t T|/%A.

Since E[eZTX] < e T#/2 for all z € R™, we have for t € (0,115,

A< 1 _2Ts ZTrs
\7(27r)"/2|ﬂ1/2 e e 2 dz

1 1T p—1
_ —3z' (t7'I,-T)
_(27r)"/2|1—‘\1/2 /ne 2% “dz
_ 1 1 efézT(t_llnfl—‘)zdz
T2, = T @)l = 1) 72
1

= IT[2[t-11, — |12
Then we have

[ tnxn%} t=1T|L/2 1
€

2

< =
[T[*/2|t=11, —T|\/2 ~ |, — tT|1/2

VO<t< |l

On the other hand, for Z ~ N(0,T'), similar calculations show that

sllZ 113 1 _1,Tp-1, s,T,
E% 2]‘@mwm“ﬂéﬁfz e

1 —1,T Ffl—sln z
:7(27T)n/2|1_“1/2 /n e 2 ( ) dZ
T=1(1,, — sI)| /2 1 N
- 1/2 - 1/2 Vs < ||FH0p17
T T, — ST/

from which Lemma A.1l is immediate.
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28 X. Chen and Y. Yang

Lemma A.2 (Upper bound for squared norm of a sub-gaussian random variable in R™).
In the setting of Lemma A.1, we have

I [esOXIE-0] < o510 w0 <t < (2]Tlop) (A1)

Consequently, we have for any u > 0,

P (||X 3 — tx(T) > u) < exp [_1min( “22 — )] (A.2)
8 ITllfs ™ T Nlop

Proof of Lemma A.2. Let Z ~ N(0,T). By the calculations in Lemma A.1, we have
for all t < [T,

E [eanzu%ftr(r))} _ et et/

L =2 A Ty

where (7;)7, are eigenvalues of T'. Using the inequality

e

< v < 1/4,
1- 2

we have

. T 242 2|03
E [.ga(l\ZH%—tr(P))} <I]= —e T Y] < (2]0lop)
=1

Combining the last inequality with Lemma A.1, we get (A.1). By Markov’s inequality,
we have for any u > 0 and 0 < t < (2||T[|op) 1,

P (|X]3 — tx(T) > u) < e~ ¥+ 7 IMls,

Choosing t = t* := A ﬁ, we get
op

_u_
2T s

ut* 1 u? U
P (|| X[|5 = tr(T) > u) < exp (— ) = exp {—min <>} .
(I ) 1 8 "\ s " T op

Lemma A.3 (Moment generating function bound for centered squared norm of a sub—
gaussian random variable in H). Let I" € B(H) be a positive definite trace class operator
on H. Let X be a centered sub-gaussian random variable in H with respect to I' and
L = || Xy, Then,

1

t 2 g2 204 2
E [ 0X1P-221010)] < o200 vocpe — L1
b S 202 Dlep
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Proof of Lemma A.3. The proof is a standard approximation argument combined
with Lemma A.2. Let (e5)?2 , be a CONS of H. By Parseval’s identity, || X ||* = > r- (X, ex)?,
where convergence of the sum is made in the ¢2 sense. Let K > 0 be a finite integer. Put
Xi = ({X,e1),...,(X,ex))T. Then Xx ~ sub-gaussian(L’T') is a mean-zero random
variable in R™ with I'x ;5 = (Tej,ex) for j,k = 1,..., K. Since |T'xllop < [ITlop, it
follows from Lemma A.2 that

1
L?|[Tlop-

5 5 274 2
E [e%(HXK” LTk lle) | < 7= ITxlis v St<

Letting K — oo, we have [ Xk |3 7 IX]1?, tr(Tx) = [Tk ller / [Fller, and [Tkl A~
|IT||4s. Then Lemma A.3 follows from the monotone convergence theorem. |

Lemma A.4 (Squared norm of a sub-gaussian random variable in H is sub-exponential).
Let T' € B(H) be a positive definite trace class operator on H and X be a centered
sub-gaussian(I') random variable in H. Then there exists a universal constant C' > 0
such that
2 2
X2, < CIXTZIT e

Thus || X||? is a sub-exponential random variable in R.

Proof of Lemma A.4. Let (e;)2, be a CONS of H. By Parseval’s identity, || X||* =
> e (X, ex)?. Since |||y, for real-valued random variables is a norm, we have by triangle
inequality that

I, < S 106 e? ], =S 1% e,
k=1 k=1

where the last step follows from Lemma 2.7.6 in [28]. Since X ~ sub-gaussian(I") with
mean zero, we have for any A > 0,

E [@(X,ew} < T IXI, (Teen)

which implies that there exists a universal constant C' > 0 such that
(X er)llws < ClIX NIy, v/ (Ters ex)-
Then,

o0
X1, < > C2IXIG, (Tex, ex) = C* X113, [Tl
k=1
|

Let r be a non-negative integer and 0 < f < 1. For s = r + f > 0, we define the

(generalized) sum
Zai = Zai + farq1.
i=1

i=1
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Lemma A.5 (Monotone rearrangement). For any aq,...,a, € R and by,...,b, €

[0, 1], we have
Z a;b; < Z agy,
i=1 i=1

where a(y = -+ > a¢,) and s = S b

By definition, we clearly have 3%, a; < max{>._, a;, 77 a;}, and for 0 < s <
1, >0, =sa; < sa(yy. Moreover, Lemma A.5 is tighter than the classical inequality
S aibi < lals|blr because a(;) < |a|so. Using the order statistics structure, we are
able to obtain the exponential decay of error result in the K-means SDP clustering
problem in Section 3.3.

Proof of Lemma A.5. Write s = r + f, where r is a non-negative integer and f €
[0,1). Let X be a random variable taking values in {a,...,a,} with the probability
mass function P(X = a;) = b;/s. Let Y be another random variable taking values in
{aqy,---,am)} = {a1,...,a,} with the probability mass function P(Y = a(;)) = 1/s
for 1 <j<r, P(Y = ap41)) = f/s, and P(Y = a(;)) = 0 for r +2 < j < n. Since
b; € [0,1], we can always shift a non-negative proportion of mass from X to Y. Thus we
have E[X] < E[Y] and the lemma follows. [ |

Lemma A.6. Let Z* be defined in (3.4). Then for any Z € % defined in (3.3), we have

2~ 222"\ = 2" - Z°Z =2 Y |Zaas |, (A.3)

1<k#m<K

) . VAR AV
10— 2921 - 2 < 222 (A1)

n
2n

2"~ 22 <\Z" - 2 <127 = 27 2 (A.5)
Proof of Lemma A.6. Sec Lemma 1 in [10]. |
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