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Abstract

Building a sketch of an n-by-n empirical ker-
nel matrix is a common approach to acceler-
ate the computation of many kernel methods.
In this paper, we propose a unified framework
of constructing sketching methods in ker-
nel ridge regression (KRR), which views the
sketching matrix S as an accumulation of m
rescaled sub-sampling matrices with indepen-
dent columns. Our framework incorporates
two commonly used sketching methods, sub-
sampling sketches (known as the Nyström
method) and sub-Gaussian sketches, as spe-
cial cases with m = 1 and m = ∞ re-
spectively. Under the new framework, we
provide a unified error analysis of sketch-
ing approximation and show that our ac-
cumulation scheme improves the low accu-
racy of sub-sampling sketches when certain
incoherence characteristic is high, and accel-
erates the more accurate but computation-
ally heavier sub-Gaussian sketches. By opti-
mally choosing the number m of accumula-
tions, we show that a best trade-off between
computational efficiency and statistical accu-
racy can be achieved. In practice, the sketch-
ing method can be as efficiently implemented
as the sub-sampling sketches, as only minor
extra matrix additions are needed. Our em-
pirical evaluations also demonstrate that the
proposed method may attain the accuracy
close to sub-Gaussian sketches, while is as ef-
ficient as sub-sampling-based sketches.
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1 Introduction

Kernel methods are widely used in the machine learn-
ing community. As a powerful tool, they map data
to a higher dimensional feature space and hence can
be widely applied to capture nonlinear structures. A
well-known representative of kernel methods is the ker-
nel ridge regression (KRR) (Shawe-Taylor et al., 2004;
Hastie et al., 2005), which leads to a closed-form esti-
mator and a solid theoretical guarantee on the statis-
tical performance (Stone, 1982; Kanagawa et al., 2018;
Tuo et al., 2020). Despite the attractive merits, a
practical drawback of KRR is the expensive computa-
tional cost. As is common in many other kernel-based
machine learning algorithms, solving the KRR with
massive data requires manipulating and inverting large
matrices usually beyond the capacity of the memory
and the time constraint. For example, the evaluation
of the empirical kernel matrix K takes Θ(n2) time,
which already becomes formidable for datasets with
hundreds to thousands of samples.

To overcome the limitation, some random projection
methods are raised to accelerate the KRR by finding
a low-rank approximation to the empirical kernel ma-
trix K. Popular methods include Nyström methods
(Williams and Seeger, 2001; Rudi et al., 2015), ran-
dom features (Rahimi and Recht, 2008), and sketch-
ing methods (Woodruff, 2014; Yang et al., 2017; Ahle
et al., 2020), the theme of our paper. Actually the
sketching method is a general concept that can incor-
porate many other methods as special cases. One of
the most famous examples is the Nyström method,
which approximates K by using a subset of “land-
mark” samples. This procedure to construct an ap-
proximation to the kernel matrix is equivalent to the
usage of a sub-sampling sketching matrix under our
framework. Another example is the sub-Gaussian
sketching method.

Different sketching methods have their own advantages
and disadvantages. A common observation is that
the Nyström method with uniform sampling distribu-
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tion needs more “landmark” data points to achieve
the same accuracy as a sub-Gaussian sketch (Alaoui
and Mahoney, 2015; Yang et al., 2017). To resolve
the issue, many works propose data-dependent sam-
pling schemes (Wang and Zhang, 2013; Gittens and
Mahoney, 2013; Li et al., 2016) to select the landmarks
that improve the approximation of K, Among those
weighted sampling schemes statistical leverage-score-
based approaches (Alaoui and Mahoney, 2015; Musco
and Musco, 2017; Rudi et al., 2018) have attracted
most attention due to their superior empirical perfor-
mances and strong theoretical support. On the other
hand, sub-Gaussian sketching methods, although at-
taining higher statistical accuracy, still suffer from a
practically intractable computational cost of at least
Θ(n2) for evaluating K.

To fully understand the gap in statistical perfor-
mance between different sketching methods and pro-
vide a unified perspective, in this paper we propose a
new framework for approximate KRR via randomized
sketches. Under this framework, a sketching matrix is
taken as an accumulation of m re-scaled sub-sampling
matrices with independent columns. The framework
incorporates the Nyström method and sub-Gaussian
sketches mentioned above as two special cases, by set-
ting m = 1 and m = ∞ (according to the central
limit theorem) respectively. We also analyze the ap-
proximation error between the estimator obtained by
a sketching method and the original KRR estimator.
From the analysis, we find that both the projection di-
mension d and the number of sub-sampling matrices m
contribute to the reduction of the approximation error.
Concretely, d addresses the intrinsic difficulty of the
KRR problem and is required to be at least Õ(dstat)
(complexity modulo poly-log term), where dstat is the
statistical dimension of the problem; while the number
of non-zero elements, or the density of the sketching
matrix, indicated by m · d, helps mitigate the impact
of the high incoherence of the data. More precisely,
the incoherence measures the sparsity of the singular
vectors of K, and low incoherence means that all coor-
dinates of the singular vectors of K have similar mag-
nitudes instead of few coordinates having dominating
values.

Our framework naturally motivates a new method to
construct the sketching matrix. Accumulating m sub-
sampling matrices by optimally selecting m, the re-
sulting sketching method can achieve the best of two
worlds—it achieves high statistical accuracy close to
sub-Gaussian sketches, and still retains the high com-
putational efficiency compared to the Nyström meth-
ods. The following toy example in Figure 1 illustrates
the performance of our method. We run the tests on
several synthetic datasets generated from the same dis-

tribution while with different sample sizes. (The com-
plete setting of this toy example can be found in the
appendix.) We remark here that our method utilizes
the sparsity of the sketching matrix to accelerate the
training of KRR estimators, and with a medium m it
improves the trade-off between accuracy and efficiency.

Figure 1: A Toy Example

A similar idea of utilizing sparsity has also appeared
in some previous works. Localized sketching (Srinivasa
et al., 2020) chooses to use a block-diagonal sketching
matrix. Sparse random projections (Achlioptas, 2003;
Li et al., 2006) instead randomly set some elements
in the projection matrix as zero to increase sparsity.
However, there are several important differences be-
tween our method and theirs. First, localized sketch-
ing assumes the data is partitioned in advance and is
mainly designed for distributed or streaming settings.
Second, sparse random projections require i.i.d. ele-
ments, while our method only requires i.i.d. columns
of the sketching matrix—the coordinates in each col-
umn are correlated and can follow different distribu-
tions. Third, in contrast to sparse random projections,
our method exploits some properties of the matrix
K(K + nλIn)−1 rather than assume K is a general
matrix to be projected. As a result, our method leads
to a much sparser sketching matrix than sparse ran-
dom projections—their matrix density is usually

√
n

times greater than ours.

We also notice that our framework may motivate
a broader class of sketching schemes, for example,
by using m · d landmarks in the Nyström method,
or applies a non-uniform sampling distribution (i.e.
leverage-based Nyström method). Our empirical eval-
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uations also compare and show superior performance,
with another state-of-the-art variant of the Nyström
method—Falkon (Rudi et al., 2017).

1.1 Our contributions

In this work, we propose a framework to unify two
common and state-of-the-art random sketching meth-
ods, and explain the difference in their statistical per-
formances. Specifically, we consider the construc-
tion of sketching matrices as the accumulation of m
rescaled sub-sampling matrices, which provides a uni-
fied perspective to understand how the projection di-
mension (or size), and the density level of the sketching
matrix together influence the approximation error of
randomized sketching for KRR, under situations where
the incoherence of the data is high and the vanilla
Nyström approach fails.

With this framework, we unify existing theoretical re-
sults on random sketches and develop a new sketch-
ing method to accelerate the training of KRR. This
method can be efficiently implemented in practice.
Compared to the Nyström method, only some ex-
tra parallelizable matrix additions are needed, thereby
allowing efficient implementation scalable to massive
data. In short, the framework allows the new method
to achieve “best of both worlds”: it attains the accu-
racy close to sub-Gaussian sketching while retains the
computational efficiency as the sub-sampling sketch-
ing.

1.2 Paper outline

The rest of the paper is arranged as follows. In Sec-
tion 2, we introduce some background on KRR and
sketching methods. In Section 3, we illustrate our
new framework, provide some theoretical analysis on
approximation error, and propose a new sketching
method induced by the framework. Finally, in Sec-
tion 4, we do some numerical experiments to validate
our claims in the paper.

2 Preliminaries and notations

Before we present a new framework for random
sketches and the related theoretical analysis, we briefly
discuss some preliminaries and set up some notations
in this section.

2.1 Kernel ridge regression

Consider n pairs of points {(xi, yi)}ni=1 in X×Y , where
X ⊆ RdX is the input (predictor) space and Y ⊆ R is
the response space. We assume the underlying data
generating process is given by the following standard

non-parametric regression model,

yi = f∗(xi) + εi, i = 1, 2, . . . , n,

where f∗ : X → Y is the unknown true regression
function, and the noises {εi}ni=1 are i.i.d. sub-Gaussian
with mean zero and variance σ2. In this paper, we fol-
low the common regularity assumption that the true
regression function f∗ ∈ H, where H is the reproducing
kernel Hilbert space induced by a positive semi-definite
kernel function K(·, ·) : X × X → R specified before-
hand. The true regression function f∗, can be esti-
mated by the kernel ridge regression (KRR) (Shawe-
Taylor et al., 2004; Hastie et al., 2005), which is cast
as the following minimization problem,

f̂n = arg min
f∈H

{ 1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H

}
. (1)

With the representer theorem, the solution to the op-
timization problem (1) can be obtained by solving
an n-dimensional quadratic program (Kimeldorf and
Wahba, 1971). More precisely, after defining K as the
n-by-n empirical kernel matrix with Kij = K(xi, xj),
X = (x1, x2, · · · , xn)T ∈ Rn×dX as the input matrix,

Y ∈ Rn as the response vector, the solution f̂n has a
closed-form expression as

f̂(x) := K(x,X) (K + nλIn)−1 Y, (2)

where the notation K(x,X) represents a 1-by-n ma-
trix, whose i-th element is K(x, xi).

2.2 Sketching methods

One key issue regarding KRR is that directly solv-
ing the problems requires O(n3) time complexity and
O(n2) space complexity, as we need to store and invert
an n-by-n matrix K + nλIn. Because of the favorable
theoretical properties and the conceptual simplicity of
the KRR, researchers have developed a large volume
of approximation algorithms to speed up its compu-
tation, including sketching methods, the theme of our
paper. Sketching methods borrow the idea that ran-
dom projections can nearly preserve the pairwise dis-
tances among column vectors of the empirical kernel
matrix K (Arriaga and Vempala, 1999). Concretely,
sketching methods utilize the following expression to
approximate the empirical kernel matrix K:

KS := KS(STKS)−1STK,

where S ∈ Rn×d is the so-called sketching matrix and d
is the projection dimension. To obtain the correspond-
ing estimator, we replace K with KS in the expression
(2), and then apply Woodbury matrix identity to cal-
culate an approximate estimator as

f̂S(x) :=K(x,X)S (STK2S

+ nλSTKS)−1STKY.
(3)
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As the dimension of the matrix inverted is reduced
from n to d, the direct time cost for solving the KRR
drops from O(n3) to O(n2d).

A representative of such methods is sub-Gaussian
sketching. The name “sub-Gaussian” comes from the
property that the columns in a sub-Gaussian sketching
matrix are sub-Gaussian random vectors(Pilanci and
Wainwright, 2015). In particular, a column s is said to
be σ-sub-Gaussian if it’s zero-mean, and for any fixed
unit vector u ∈ Sn−1, we have

P {| 〈u, s〉 | ≥ t} ≤ 2 exp(− nt
2

2σ2
), ∀t ≥ 0.

As we implied before, a standard Gaussian sketch-
ing matrix with i.i.d. N(0, 1) entries will satisfy the
condition and is commonly applied in practice. For
sub-Gaussian sketching based on a dense S, such as
the standard Gaussian sketching, the O(n2d) compu-
tational bottleneck to evaluate the matrix product KS
is unavoidable.

To further reduce the O(n2d) time complexity, some
researchers turn to sparse sketching matrices. Very
sparse random projection (Li et al., 2006) utilizes the
random matrices with i.i.d. randomly signed Bernoulli
elements (which is a special case of sub-Gaussian
sketching); Srinivasa et al. (2020) proposed the lo-
calized sketching method that uses a block-diagonal
sketching matrix S determined by a partition of the
dataset; even more extreme, sub-sampling matrices,
in which each column has exactly one non-zero ele-
ment, are also used in sketching method, known as
the Nyström method.

We first give a formal definition of the sub-sampling
matrix throughout this paper, which is the basis of
many algorithms.

Definition 2.1 (Sub-sampling matrix). Let P be a
discrete distribution which draws J = j with probability
pj > 0, ∀j ∈ [n]. Consider a random matrix S ∈ Rn×d.
If S has i.i.d. columns of the form

1√
dpJ

eJ , J ∼ P,

where ej is the j-th column of the n-by-n identity ma-
trix In, then S is a sub-sampling matrix with sampling
distribution P . Specifically, if a random matrix SR is
generated by SR = SRd, where Rd is a d-by-d diagonal
matrix whose entries are i.i.d. Rademacher variables,
we call SR a randomly signed sub-sampling matrix with
sampling distribution P .

Remark. Sub-sampling matrices above are also sub-
Gaussian sketching matrices, due to the fact any
bounded random variable is sub-Gaussian. However,
the sub-Gaussian parameter σ for a random column

vector in a sub-sampling matrix grows with n and can
be as large as O(

√
n) for uniform sampling. Therefore

we conceptually do not view a sub-sampling matrix as
sub-Gaussian (Vershynin, 2010), and prefer to develop
distinct theoretical tools for it.

The classical Nyström method directly uses a sub-
sampling matrix with uniform distribution as the
sketching matrix S, which reduces the time complexity
of computing KS further down to O(nd) since we only
need to store the d chosen columns. Despite the signif-
icant reduction of computation complexity, Nyström
method is known to suffer from low approximation ac-
curacy (Alaoui and Mahoney, 2015; Yang et al., 2017).
We usually need orders of magnitude larger projec-
tion dimension d to make the accuracy of sub-sampling
sketching comparable to that of sub-Gaussian sketch-
ing.

To improve the accuracy of the Nyström method, some
papers (Alaoui and Mahoney, 2015; Musco and Musco,
2017; Rudi et al., 2018) suggest to apply a non-uniform
sampling distribution P to attain the minimax optimal
rate of KRR, via the statistical leverage scores defined
below to capture the importance of each sample xi,

`i =
(
K(K + nλIn)−1

)
ii
, ∀i ∈ [n],

where the sampling probability is set as pi = `i∑n
j=1 `j

.

It is also worthy mentioning a related concept, statis-
tical dimension dstat :=

∑n
i=1 `i, motivated by linear

regression. Note that dstat can be viewed as an effec-
tive rank of the matrix K(K + nλIn)−1, which serves
as the theoretical lower bound for any sketching matrix
S to maintain the statistical accuracy of the KRR. We
will come back shortly in the next section to illustrate
this.

3 A unified framework for random
sketches

After introducing some notations, in this section, we
present our framework, some theoretical results, and
our proposed method.

3.1 Introduction to the new framework

We begin by stating an important observation that
any n-by-d deterministic dense matrix can be for-
mally taken as the summation of multiple rescaled sub-
sampling matrices. Our framework is motivated by the
key observation and naturally considers the number of
rescaled sub-sampling matrices m as a tunable param-
eter. This framework induces a new approach to con-
struct the sketching matrix, providing a better trade-
off between statistical accuracy and computational ef-
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ficiency than existing methods as extreme cases. We
use Algorithm 1 below to present the complete setting
and procedure to construct a sketching matrix under
our framework.

Algorithm 1: Construction of a sketching matrix
under the new framework
Input: the size of empirical kernel matrix n, the

projection dimension d, the number of
sub-sampling matrix m, and the sampling
distribution P

Output: An n-by-d sketching matrix S with
independent columns

Initialize the matrix S = 0 ∈ Rn×d;
for i=1:m do

Sample d numbers n1, · · · , nd from P with
replacement;

Construct an n-by-d rescaled randomly signed
sub-sampling matrix S(i), by setting its j-th
column as

rj√
dmpnj

enj where rj ’s are i.i.d.

Rademacher variables and enj is the nj-th
column of an n-by-n identity matrix;

Update S as S + S(i);

end

Under this framework, we can recover some important
results of prior works introduced in the preliminaries.
To show the classical Nyström method with uniform
sampling distribution is a special case, we simply set
m = 1 and P as the uniform distribution over the in-
dex set [n]. Specifically, the extra random sign due to
rj ’s will cancel out eventually in forming KS, and the
scheme reduces to the Nyström method. As for sub-
Gaussian sketching, it can be obtained as the other
extreme by letting m → ∞. After element-wisely ap-
plying central limit theorem (CLT), S can well approx-
imate a Gaussian sketching matrix, which has sub-
Gaussian columns.

3.2 A unified error analysis of randomized
KRR

In this subsection, we discuss the influence of m and
d on the approximation error for KRR

‖f̂S − f̂n‖2n :=
n∑
i=1

|f̂S(xi)− f̂n(xi)|2,

which is the in-sample squared error between the es-
timators given by our framework and by the orig-
inal KRR. Previous works (Yang et al., 2017; Liu
et al., 2018) proved that the approximation error is
affected by an important property, K-satisfiability,
which shows how well the random sketch preserves top
eigenspaces of the empirical kernel matrix K. To give

the formal definition of K-satisfiability, we need to in-
troduce some heavier notations. Through this paper
we denote the n eigenvalues of 1

nK as σ1 ≥ σ2 ≥ · · · ≥
σn, and define dδ := min{i : σi ≤ δ} − 1, U1 ∈ Rn×dδ
as the first dδ columns of U , and U2 ∈ Rn×(n−δ) as the
rest columns. Similarly, Σ1, and Σ2 are defined as the
diagonal eigenvalue matrices corresponding to U1 and
U2. We remark here that δ might be unequal to the
regularization parameter λ in KRR.

With those notations we define K-satisfiability as fol-
lows:

Definition 3.1 (K-satisfiability). A sketching matrix
S is said to be K-satisfiable (for δ) if there exists a
constant c > 0 such that

‖UT1 SSTU1 − Idδ‖op ≤ 1/2

‖STU2Σ
1
2
2 ‖op ≤ cδ

1
2

The K-satisfiability plays an important role in our
main result. Having a sketching matrix with K-
satisfiability for δ < λ, we can control the squared
error ‖f̂S − f̂n‖2n by the following theorem adapted
from a previous work (Liu et al., 2018, Theorem 3.8).
This theorem assumes some theoretical assumptions
of the kernel function K to control the behavior of
the eigenvalues of the kernel function and the empiri-
cal kernel matrix (see more details in Section 7 in the
appendix). Denoting the spectral expansion of K as
K(x, x′) =

∑∞
i=1 µiφi(x)φi(x

′), ∀x, x′ ∈ X , we state
the two assumptions made by Liu et al. (2018) as fol-
lows.

Assumption 1. Let cK := supi≥1 ‖φi‖sup < ∞, and

supk≥1

∑∞
i=k+1 µi
kµk

<∞.

Assumption 1 requires the kernel function to have a
fast eigenvalue decay rate. Fortunately, many common
kernel functions satisfy the assumption. For example,
the Matérn kernel with smoothness parameter ν has a

decay rate as µi � i
− 2ν+dX

dX (Bach, 2017), and we can
check the rate of this type will satisfy Assumption 1;
the Gaussian kernels have an even faster decay rate
µi � exp(−γ · ic), (where γ, c are some constants) and
also satisfy the assumption (Liu et al., 2018).

The next assumption has further requirements on the
eigenvalue sequence:

Assumption 2. Let sλ := min{i : µi ≤ λ} − 1. sλ
diverges as λ→ 0.

With this assumption, kernels will have a sequence of
positive eigenvalues converging to 0. Most infinitely
dimensional kernels satisfy this assumption, including
the two examples above, Matérn and Gaussian kernels.

Theorem 1 (Approximation error for KRR). Assume
the true regression function f∗ lies within the RKHS
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HK induced by the kernel function K(·, ·) and the noise
vector ε = Y −f∗(X) are i.i.d. sub-Gaussian. K is fur-
ther assumed to satisfy Assumption 1 and 2. Let δ > 0
satisfying δ < λ. Suppose d ≥ cdδ for a sufficiently
large constant c, and the sketching matrix S ∈ Rn×d
is K-satisfiable for δ, then with probability approaching
1 we have

‖f̂S − f̂n‖2n ≤ δ +
dδδ

nλ
≤ λ+

dλ
n
.

When δ � λ and λ→ 0 as n→∞,

‖f̂S − f̂n‖2n = oP (λ+
dλ
n

).

Remark. We briefly discuss how the input dimension
dX affects the error above. Specifically, as the dimen-
sion dX increases, the statistical dimension dλ will
become larger, and therefore the optimal regulariza-
tion parameter λ, the best possible error (O(λ)) (Yang
et al., 2017), and the projection dimension d accord-
ingly increase. Taking the Matérn kernel with smooth-
ness parameter ν as an example, its statistical dimen-

sion is O(n
dX

2ν+2dX ) (Yang et al., 2017), and the ex-
ponent dX

2ν+2dX
increases with dX . We further remark

here that the influence of an increasing dimension p
is universal, not specific to our proposed method, and
all prospective methods have to use a larger projection
dimension d. This is because even the optimal approxi-
mation, the truncated SVD, needs to have rank at least
dλ.

The result guarantees a small estimation error ‖f̂S −
f∗‖2n. The error upper bound λ + dλ

n is comparable

to the estimation error ‖f̂n− f∗‖2n (Yang et al., 2017).
Hence the theorem suggests that the key is to ver-
ify the K-satisfiability of S. The next theorem pro-
vides conditions to guarantee the K-satisfiability to
hold with high probability. The complete statement
and the proof are deferred to the appendix.

Theorem 2 (Conditions on d and m). Let δ be a reg-
ularization parameter which might be different than λ,
and ρ ∈ (0, 1/2). Define the incoherence

M := max

{
max
i

‖ψ̃i‖2

pi
,max

i

‖ψi‖2 − ‖ψ̃i‖2

pi

}
,

where {pi}ni=1 is the sub-sampling probability and ψ̃i
is the sub-vector of the first dδ elements in the i-th

column ψi of Ψδ = [Σ(Σ + nδIn)]
−1/2

UT . Given the
assumptions in Theorem 1, there exist two constants
c1, c2 > 0 such that if a sketching matrix S ∈ Rn×d
constructed by Algorithm 1 with m accumulations sat-
isfies

d ≥ c1dδ log2(
n

ρ
)

md ≥ c2M log3(
n

ρ
),

(4)

then with probability at least 1−ρ, the sketching matrix
S satisfies K-satisfiability with δ as the regularization
parameter.

Theorem 2 reveals that d needs at least to be dδ to
address the intrinsic difficulty of KRR, while it is un-
necessary to have a larger d as m can make up for the
gap between d and M . It also gives the reason why
sub-Gaussian sketches (m = ∞) outperform uniform
sub-sampling sketches with the same size d, in terms
of the statistical performance.

We further point out when the classical Nyström
method with uniform sampling distribution is applied,
the incoherence M can be of the same magnitude as
n. For example, suppose the kernel function K used
is compactly supported, and we intentionally manip-
ulate the input X to have two clusters far away from
each other, one dense cluster of size dδ and the other
sparse cluster of size n − dδ. As the kernel function
is compactly supported, K(xi, xj) = 0 for xi and xj
from two clusters respectively. The empirical kernel
matrix K thus becomes block-diagonal, and the eigen-
decomposition of K = UΣUT shares the same prop-
erty that after rearranging the order of columns, U
becomes block-diagonal as well. Since the small clus-
ter is denser than the other, assuming the large cluster
is extremely sparse, it is possible to assign the great-
est dδ eigenvalues all to the dense cluster, and we can
verify (in this certain case)

M ≥ ‖ψ̃1‖2

1/n
≥ n

2
‖ũ1‖2 =

n

2
,

where ũ1 is the truncated vector of the first dδ elements
in U ’s first column u1. The second inequality holds as
σi
σi+δ

≥ 1
2 ∀i ≤ dδ; the final equation holds as U is

block diagonal and ‖ũ1‖2 = ‖u1‖2 = 1.

This example implies that unbalanced multimodal
data brings high incoherence to the KRR problem,
which explains why the classical Nyström method fails
in certain cases (Yang et al., 2017).

Remark. Theorem 2 recovers the statistical lever-
age scores based Nyström methods. When the sub-
sampling probability pi, as suggested by previous liter-
ature (Alaoui and Mahoney, 2015; Musco and Musco,
2017; Rudi et al., 2018), is proportional to the statis-
tical leverage score `i, we have

M ≤ max
i

‖ψi‖2

pi
= ‖Ψδ‖2F

= dstat :=
n∑
i=1

σi
σi + δ

∼ dδ.

The last equivalence relation means that dδ and dstat
have the same magnitude with high probability (Liu
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et al., 2018, Lemma 3.1). Fixing m = 1, the special
sampling distribution substantially reduces the inco-
herence M , and thus mitigates the lower bound re-
quirement on d. Theorem 2 also explains why sub-
Gaussian sketches can attain the same statistical ac-
curacy as the original KRR without explicit correction.

3.3 A new sketching method

Our unified framework naturally introduces a tun-
able parameter m for Algorithm 1 to construct a best
random sketch in practice. Specifically, after picking
d = Õ(dδ),m = Õ(Mdλ ), we first generate md samples
from the given sampling distribution P , then construct
m rescaled sub-sampling matrix S(i)’s, and finally sum
them up to obtain the sketching matrix S.

At first sight, we may lose the computational advan-
tage of sketching via a sub-sampling matrix, and may
suffer from the high computational cost of using a
sub-Gaussian sketch. Fortunately, similar to the very
sparse random projection (Li et al., 2006), the sketch
of the empirical kernel matrix can be efficiently con-
structed by few extra matrix addition steps. For the
approximate KRR estimator (3), we observe that the
main bottleneck is the computation of KS and STKS.
To address the issue, we can utilize the equations

KS =
m∑
i=1

KS(i), STKS =
m∑
i=1

ST(i)(KS),

to reduce the time cost of computing KS and STKS
from O(n2d) and O(nd2), to O(nmd) and O(md2) re-
spectively. The overall time cost to solve KRR prob-
lems then becomes O(nd2), assuming no other approx-
imation methods are used. Compared to the Nyström
method, we improve the statistical performance at the
cost of some extra matrix additions. The extra cost
can be further reduced under a parallel computation
architecture, since matrix addition is highly paralleliz-
able on a GPU.

According to Theorem 2 our proposed method above
has some advantages over commonly used schemes im-
plied by Theorem 2, namely using Nyström method
while increasing the size of the sketch to Õ(M), or
using the leverage-based Nyström method. To make
the comparison fair, throughout the subsection we con-
sider a vanilla scheme that uses a sub-sampling sketch
with dimension n×md, where m, d are the parameters
used in our method. The first benefit of our method is,
by picking the smallest possible d, the sketching ma-
trix S, as well as the matrix STK2S, maintains a small
size. As the computation of the matrix STK2S is the
bottleneck, the total runtime of the vanilla scheme is
roughly m2 times more than ours. We remark here
that the factor m2 is not always negligible, as our ex-

ample in the last section shows that M can be much
larger than dδ. Besides the higher time cost, m > 1
also implies the vanilla method needs to invert a big-
ger matrix while solving the KRR problem, which may
deteriorate the numerical stability. As for the leverage-
based Nyström method, we point out it will cost O(n3)
time to exactly compute the statistical leverage scores.
Recently some approximation methods have been pro-
posed to estimate statistical leverage scores. However,
the multiplicative error between the leverage scores
and their approximation demands a larger projection
dimension d.

Now we discuss and compare some other methods for
accelerating the training of KRR. Since the develop-
ment of approximation methods to train KRR is ir-
relevant to the theme of our work, we only introduce
one of the most representative models, Falkon (Rudi
et al., 2017). This method combines several different
algorithmic principles. Besides sketching methods, it
also incorporates early stopping and preconditioning
to reduce the KRR training time to O(ndstat log n).
To attain this complexity, we need to additionally as-
sume an access to the q-approximate leverage scores
ˆ̀
i(λ)’s, satisfying q−1`i(λ) ≤ ˆ̀

i(λ) ≤ q`i(λ), ∀i ∈ [n],
as the runtime of Falkon also depends on the quality
of the sketching matrix.

In this case, the total runtime for the vanilla scheme
with Falkon is O(nmd log n), while the time cost for
us is O(nmd + nd log n). Note that there is no m in
the last term as the runtime of Falkon is related to the
dimension of S. In addition to the time complexity
comparison, we add a closing remark that considering
Falkon is an iterative method with multiple matrix in-
versions in each step, our method may benefit Falkon
by reducing the matrix size from md to d. Some nu-
merical experiments in the appendix further demon-
strate our method will have the best comprehensive
performance among all the candidate approaches.

4 Experiments

In this section, we test our results based on a range of
datasets. All the experiments below are implemented
in unoptimized Python code, run with four cores of
a server CPU (Intel Xeon-Gold 6248 @ 2.50GHZ) on
Red Hat 4.8. Due to the limited space of the paper,
the complete experiment settings and more details are
deferred to the appendix.

In Section 4.1, we corroborate our theories by com-
paring the approximation error for different choices
of m on synthetic datasets. The result in Figure 2
demonstrates that for the classical Nyström method
with uniform sampling, a medium m is enough to at-
tain the high statistical accuracy close to sub-Gaussian
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sketches. This is remarkable as the sketching matrix
constructed by our method is much sparser than sub-
Gaussian sketches, and only requires a fraction of the
computational resources. In Section 4.2, we compare
the prediction accuracy of the estimators obtained by
Gaussian sketching (Yang et al., 2017), very sparse
random projections (Li et al., 2006), the Nyström
method with leverage scores approximated by BLESS
(Rudi et al., 2018), and our accumulation method us-
ing uniform sampling distribution on a certain real
dataset. The results are displayed in Figure 3. We also
consider the usage of Falkon (Rudi et al., 2017), and
provide some more experiment results in the appendix
to show our method still attain the optimal trade-off
between statistical accuracy and computational effi-
ciency.

4.1 Approximation error

In this experiment, we compare the approximation er-
ror ‖f̂S − f̂n‖2n among the KRR estimators obtained
by the sketching matrices with different m, includ-
ing the Gaussian sketching as an instance of m =
∞. In particular, we ran the experiment on a bi-
modal distribution over R3. The bimodal distribu-
tion has two components: with probability n

n+nγ gen-

erating a Unif[0, 1]3; and with probability nγ

n+nγ gen-

erating a random variable with pdf
∏3
j=1(5− 2xj) for

xj ∈ [2, 2.5]3, where n is the sample size varying from
n = 1, 000 to 8, 000 and γ = 0.6. In addition, by
cross validation the Gaussian kernel with bandwidth
σ = 1.5n−

1
7 is chosen, and the regularization parame-

ter of the KRR λ is set as 0.5n−
4
7 . The true regression

function f∗ we use is

f∗(x) = 1.6|(x− 0.4)(x− 0.6)| − x(x− 1)(x− 2)− 0.5,

and i.i.d. noises follow N (0, 0.25). We use a uniform
sub-sampling distribution for all the applicable meth-
ods. The results reported in Figure 2 are averaged
over 30 replicates, and the error bars are computed as
the standard error of the corresponding average val-
ues. In Figure 2, we actually take the Nyström method
(m = 1, the blue solid line) and the Gaussian sketch-
ing method (m = ∞, the black dashed line) as two

benchmarks. The estimation error ‖f̂n − f∗‖2n of the
original KRR (the black solid line) is also provided in
the figure as a reference. As expected, with the same
projection dimension d, Gaussian sketches attain the
approximation error orders of magnitude lower than
the Nyström method. However, as implied by The-
orem 2, with a medium m ≤ 32 the approximation
error can be reduced to a similar scale as the Gaussian
sketch. The phenomenon validates the effectiveness of
Theorem 2, and suggests that in practice a medium m

Figure 2: Approximation Errors of Different Methods

is enough to make our sketching method as accurate
as Gaussian sketching.

4.2 Accuracy versus efficiency trade-off

To show the improvement on the comprehen-
sive performance, we evaluate our method on
RadiusQueriesAggregation (Savva et al., 2018;
Anagnostopoulos et al., 2018)(denoted by RQA), a
dataset downloaded from the UCI ML Repository
(Dua and Graff, 2017). This dataset contains 200000
data points and 4 features. Due to the space limit, here
we only present a partial result, and the rest parts will
be provided in the appendix.

To show the evolving trend, we set a sequence of sam-
ple sizes beforehand and in each round run the exper-
iment on a subset of the whole data points with the
given sample size n. The testing errors are estimated
on a random subset (20% of the original dataset) which
is not used in the training. We begin by normaliz-
ing the features to have variance 1 in the randomly
drawn dataset, before obtaining the empirical kernel
matrix using Matérn kernel (the smoothness parame-
ter ν = 1.5). The regularization parameter λ of KRR
is 0.9 · n−7/11. We set the projection dimension as
b1.5 · n4/11c for all sketching methods. The candi-
date methods include the Gaussian sketching method,
very sparse random projection (Li et al., 2006), the
Nyström method with BLESS (Rudi et al., 2018), and
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our accumulation method with m = 4. All the re-
sults reported below in Figure 3 are averaged over 30
replicates, and the error bars are computed as before.

Figure 3: Trade-off between Accuracy and Efficiency

In Figure 3 we compare the comprehensive perfor-
mance of those methods. The comprehensive perfor-
mance is composed of two factors, statistical accuracy,
and computational efficiency. As we can see in the
last subplot of Figure 3, our method attains the best
trade-off between in-sample error and runtime among
all the candidate methods. Taking a closer look, we
can even observe that our method achieves the advan-
tages of the two extremes in our framework: it can at-
tain an accuracy similar to Gaussian sketching, and en-
joy the low runtime of the same order as the Nyström
method. As for very sparse random projection, since
it is designed for a general matrix and does not utilize
the leverage information, its performance falls some-
where in between the above-described methods. We
ascribe the remarkable performance of our method to
the proper sparsity of the sketching matrix and the
high efficiency of the matrix addition.

4.3 Additional empirical results

In the appendix, we verify the effect of our method on
the other two datasets PPGasEmission (KAYA et al.,
2019) and CASP (Dua and Graff, 2017), and also con-
firm the usage of Falkon (Rudi et al., 2017) does not
affect the main claim above. Basically, those exper-
iments demonstrate that in practice, a medium m

substantially improves the accuracy of the classical
Nyström method with uniform sub-sampling distribu-
tion, and the extra cost is much lower compared to
other advanced methods.

5 Conclusion and future work

We have introduced a unified framework for random-
ized sketches in kernel ridge regression. This frame-
work unifies two common methods, sub-Gaussian and
sub-sampling sketching, by introducing an accumula-
tion parameter m. Our theoretical results state that a
medium m improves the prediction performance of the
approximate KRR, while still maintaining a low pro-
jection dimension even when the sub-sampling prob-
ability pi’s are not optimal. The empirical experi-
ments complement our theory by showing that our
proposed method with medium m and simple uniform
sampling scheme can achieve high accuracy close to
sub-Gaussian sketching, and be as efficient as sub-
sampling-based sketching.

One possible extension of our work is applying the pro-
posed sketching method to approximate matrix mul-
tiplication and how the approximation error trans-
lates when the new sketching method is utilized to
approximate some classical machine learning models,
such as k-means and PCA. Another direction of future
research is the extension of our method to broader
classes of positive semidefinite kernels, for example
graph kernels (Vishwanathan et al., 2010) and string
kernels (Vishwanathan and Smola, 2002).
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