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Abstract

Nyström approximation is a fast random-
ized method that rapidly solves kernel ridge
regression (KRR) problems through sub-
sampling the n-by-n empirical kernel matrix
appearing in the objective function. How-
ever, the performance of such a sub-sampling
method heavily relies on correctly estimat-
ing the statistical leverage scores for forming
the sampling distribution, which can be as
costly as solving the original KRR. In this
work, we propose a linear time (modulo poly-
log terms) algorithm to accurately approx-
imate the statistical leverage scores in the
stationary-kernel-based KRR with theoreti-
cal guarantees. Particularly, by analyzing
the first-order condition of the KRR objec-
tive, we derive an analytic formula, which
depends on both the input distribution and
the spectral density of stationary kernels, for
capturing the non-uniformity of the statisti-
cal leverage scores. Numerical experiments
demonstrate that with the same prediction
accuracy our method is orders of magnitude
more efficient than existing methods in se-
lecting the representative sub-samples in the
Nyström approximation.

1 Introduction

The major computational bottleneck of kernel-based
machine learning methods, such as kernel ridge regres-
sion (KRR) (Shawe-Taylor et al., 2004; Hastie et al.,
2005), lies in the calculation of certain matrix inverse
involving an n-by-n symmetric and positive semidefi-
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nite (PSD) empirical kernel matrix Kn ∈ Rn×n over n
inputs in the d-dimensional Euclidean space Rd. For
most common kernels, the empirical kernel matrix Kn

is nearly singular with its effective rank being cap-
tured by the so-called effective statistical dimension
(Alaoui and Mahoney, 2015; Yang et al., 2017b) dstat
that is problem-dependent and can be substantially
smaller than the sample size n. For example, under
the optimal choice of the regularization parameter, if
the kernel function is a Matérn kernel with smoothness
parameter ν > 0, then the statistical dimension in the

KRR is dstat = O(n
d

2ν+2d ) (Kanagawa et al., 2018).

1.1 Related Works

Due to this intrinsic low-rankness of Kn, several ex-
isting papers developed randomized algorithms, such
as the Nyström method (Alaoui and Mahoney, 2015),
randomized sketches (Yang et al., 2017b; Ahle et al.,
2020), random Fourier features (Rahimi and Recht,
2008; Avron et al., 2017), and its improvement quadra-
ture Fourier features (Mutny and Krause, 2018), for

obtaining a rank Õ(dstat) (Õ(·) means O(·) modulo
poly-log terms) approximation of Kn. In particu-
lar, sampling-based algorithms, such as the Nyström
method, avoid explicitly constructing the n-by-n ma-
trix Kn, and only require Õ(ndstat) evaluations of the
kernel function. This property is particularly appeal-
ing since both the time and space complexity can be
reduced to even below the O(n2) benchmark complex-
ity of constructing and storing the empirical kernel
matrix. From an algorithmic perspective, statistical
leverage scores, as a measure of the structural non-
uniformity of the inputs in forming Kn, can be used
for constructing an importance sampling distribution
that leads to high-quality low-rank approximations in
the Nyström method. We refer the readers to some
recent papers (Mahoney et al., 2011; Drineas et al.,
2012) for more details.

However, the exact computation of the statistical
leverage scores bears the same O(n3) time complex-
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ity and O(n2) space complexity (Mahoney et al.,
2011) as inverting the n-by-n empirical kernel ma-
trix. Researchers thus turn to the question of whether
there is an efficient and accurate method of approxi-
mately computing the leverage scores. For example,
some works (Alaoui and Mahoney, 2015; Rudi et al.,
2015) borrowed the random projection idea (Drineas
et al., 2012) in designing an approximation algorithm
for computing the statistical leverage scores in the
Nyström method in the context of KRR. Their al-

gorithm has a worst case time complexity O
(
n3

d2stat

)
that may exceed the O(nd2

stat) complexity in subse-
quent steps for small dstat. As a refinement, Musco
and Musco (2017) developed Recursive-RLS, a recur-
sive version of the prior algorithm (Alaoui and Ma-
honey, 2015) with overall time complexity O(nd2

stat)
by alternating between updating the statistical lever-
age scores and drawing new subsamples based on the
current scores. SQUEAK (Calandriello et al., 2017)
adapts the algorithm to an online setting, attaining
the same accuracy and having the same complex-
ity order with only one pass over the data. BLESS
(Rudi et al., 2018) adopts a path-following algorithm
that further reduces the subsampling time complex-
ity to O(min( 1

λ , n)d2
stat log2 1

λ ) where λ is the regu-
larization parameter in the KRR. With the choice of
λ = O(dstatn ) that leads to the optimal error rate, the

complexity of BLESS would be Õ(ndstat).

1.2 Our Contribution

Most previous algorithms are algebraic methods by ap-
proximating matrix operations and apply to any posi-
tive semidefinite (PSD) kernel. In this work, we focus
on stationary kernels and follow a completely different
route of utilizing large sample properties of KRR to de-
velop a new analytical approach for approximating the
statistical leverage scores. Under a classical nonpara-
metric setting, the new approach requires Õ(n) time
and space complexity, and provably also attains the
optimal statistical accuracy in the KRR. In a nutshell,
rather than approximating the leverage scores by pre-
constructing a low-rank approximation to Kn (Drineas
et al., 2012), our method uses structural information
contained in the kernel function and the underlying
input distribution to infer how other inputs influence
the statistical leverage score at a given location. In
particular, we derive an explicit and computable for-
mula, ∫

Rd

1

p(xi) + λ/m(s)
ds, ∀i ∈ [n],

where m(·) is the spectral density function of the sta-
tionary kernel we use, and p(xi) is the density of the
input xi. This formula is applied to approximate the

rescaled statistical leverage score, which is propor-
tional to the true statistical leverage score, at each
observed point. We also provide the theoretical guar-
antees that the approximation formula has a vanishing
relative error as n→∞.

Our development is based on the existing works (Sil-
verman, 1984; Yang et al., 2017a) on the equivalent
kernel representation of the KRR solution. The con-
sequent theory sheds some light on the behaviour of
leverage scores, and a simple application is the follow-
ing rule of thumb: for the Matérn kernel with smooth-
ness ν, the statistical leverage score at point x in Rd is
proportional to min{1, (λ/p(x))1−d/(2ν+d)}, where the
regularization parameter λ = Θ(dstat/n). This scaling
indeed matches the previous research on the asymp-
totic equivalent of the regularized Christoffel function
(Pauwels et al., 2018), which has intrinsic connections
with statistical leverage scores. We also show through
numerical experiments that our method exhibits en-
couraging performance compared to other methods,
which further improves the overall runtime of KRR.

2 Background and Problem
Formulation

In this section, we set up the notation and briefly intro-
duce the background. We begin with a short review on
reproducing kernel Hilbert space (RKHS) and kernel
ridge regression (KRR). After that, we invoke a use-
ful and important formula that represents the norm of
any RKHS induced by a stationary kernel via Fourier
transforms and Parseval’s identity. Then we describe
the class of Nyström -method-based approaches as our
primary focus for approximately computing the KRR.
Finally, we introduce the notation of equivalent kernel
that plays important roles in both understanding the
theoretical properties of the KRR and motivating our
proposed method.

2.1 Reproducing kernel Hilbert space and
kernel ridge regression

Reproducing kernel Hilbert space. Particularly,
any RKHS is generated by a PSD kernel function
K : X ×X → R, and there exists a correspondence be-
tween any RKHS (or its induced norm ‖·‖H) and its re-
producing kernel (see the books (Berlinet and Thomas-
Agnan, 2011; Wahba, 1990; Gu, 2013) for more de-
tails). Most widely used kernels are stationary, mean-
ing that K(x, y) depends on x and y only through their
difference (x−y). Due to this definition, we may abuse
the notation K(u) to mean K(x, x+u) for any x. We
will make this stationary kernel assumption through-
out the paper. More specifically, we primarily focus
on Matérn kernels, although the development can be
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straightforwardly extended to other stationary ones.

Kernel ridge regression. Consider a dataset Dn =
{(xi, yi)}ni=1 consisting of n pairs of points in X × Y ,
where X ⊆ Rd is the input (predictor) space and
Y ⊆ R the response space. To characterize the de-
pendence of the response on the predictor, we as-
sume the following standard nonparametric regres-
sion model as the underlying data generating model,
yi = f∗(xi) + εi, i = 1, 2, . . . , n, where f∗ : X → Y
is the unknown regression function to be estimated,
and the random noises {εi}ni=1 are i.i.d. N (0, σ2), or
any sub-Gaussian distribution with mean zero and
variance σ2. Under the common regularity assump-
tion that the true regression function f∗ belongs to
an RKHS H, it is natural to estimate f∗ by an esti-
mator f̂ , which minimizes the sum of a least-squares
goodness-of-fit term and a penalty term involving the
squared norm ‖ · ‖H associated with H. This leads
to the following estimating procedure known as ker-
nel ridge regression (KRR) (Shawe-Taylor et al., 2004;
Hastie et al., 2005),

f̂ = arg min
f∈H

{ 1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H

}
. (1)

The optimization problem (1) appears to be infinite-
dimensional over a function space H, while indeed its
solution can be obtained by solving an n-dimensional
quadratic program thanks to the representer theorem
(Kimeldorf and Wahba, 1971). More precisely, for any
two X -valued vectors a = (a1, . . . , ap)

T ∈ X p and
b = (b1, . . . , bq)

T ∈ X q, we use the notation K(a, b)
to denote the p-by-q matrix whose (i, j)-th compo-
nent is K(ai, bj) for i ∈ [p] and j ∈ [q]. Let Xn =
(x1, . . . , xn)T ∈ Xn and Yn = (y1, . . . , yn)T ∈ Yn. Un-

der this notation, the solution f̂ takes the form as

f̂(x) := K(x, Xn) (Kn + nλIn)−1 Yn

=
1

n

n∑
i=1

Gλ(x, xi) yi,
(2)

where Kn := K(Xn, Xn) is the n-by-n empirical ker-
nel matrix. Here, the weight function Gλ : X×X → R
characterizes the impact of each observed pair (xi, yi)

on f̂(x), and plays an important role in determin-
ing the optimal importance sampling weights in the
Nyström method described. One key observation is
that the weight function Gλ depends on the dataset
Dn only through the design points {xi}ni=1 and the
regularization parameter λ (which usually depends on
the sample size n). This fact leads to the development
of equivalent kernel approximation, as we will come
back shortly in Section 2.4.

A final remark of the subsection is that solving for
ω̂ requires time complexity O(n3) of inverting an n-

by-n matrix, which becomes formidable when n gets
large. The practical demand of computationally scal-
able methods for implementing the KRR results in
a large volume of literature on approximation algo-
rithms, including our current work.

2.2 The relation between RKHS norm and
Fourier transform

In this subsection, we describe a useful representation
theorem that characterizes the RKHS of a stationary
kernel function via the Fourier transform. Before for-
mally introducing this theorem, we set up some nota-
tion. We use Lp(Rd) =

{
f : Rd → R,

∫
Rd
∣∣f(x)

∣∣p dx <

∞
}

to denote the space of all Lp integrable functions
over Rd for p ≥ 1. For any function f ∈ L1(Rd),
we use F [f ] to denote its Fourier transform defined

by F [f ](s) =
∫
Rd f(x) e−2π

√
−1xT s dx, for all s ∈ Rd,

and F−1[g] the inverse transform of a func-
tion g in the frequency domain as F−1[g](x) =∫
Rd g(s) e2π

√
−1xT s ds, for all x ∈ Rd. We use z̄ to de-

note the complex conjugate of any z ∈ C, the space
of complex numbers. The classical Bochner’s theorem
shows that the Fourier transform of any PSD and sta-
tionary kernel function is nonnegative.

The following theorem, which is not new but less well-
known in the machine learning literature, provides a
characterization of the RKHS with kernel K through
its spectral density function. Similar statements can
be found in two previous papers (Wendland 2004,
Thm 10.12 and Belkin 2018, Appendix A). For the
sake of completeness, we also include a proof in Sec-
tion 6.2 in the appendix, which is motivated by Fuku-
mizu (2008).

Theorem 1 (Fourier representation of RKHS). Let
function m be the spectral density of a PSD and sta-
tionary kernel K, and H the associated RKHS. For
any f, g ∈ H, we have

‖f‖2H =

∫
Rd

∣∣F [f ](s)
∣∣2

m(s)
ds,

and 〈f, g〉H =

∫
Rd

F [f ](s) ·F [g](s)

m(s)
ds.

(3)

In particular, the RKHS can be represented by H ={
f : ‖f‖2H =

∫
Rd
∣∣F [f ](s)

∣∣2/m(s) ds <∞
}

.

2.3 Nyström methods with importance
subsampling

From expression (2) of the KRR solution f̂ , the O(n3)
computational bottleneck comes from the inversion of
the n-by-n matrix (Kn + nλI). When design points
{xi}ni=1 are distinct and sample size n is large, the
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empirical kernel matrix Kn often has a high condition
number and is nearly low-rank. In particular, sev-
eral recent studies (Alaoui and Mahoney, 2015; Yang
et al., 2017b) show that both the computational and
the statistical hardness of the KRR are captured by a
quantity called the statistical dimension defined as

dstat := Tr
(
Kn(Kn + nλIn)−1

)
=

1

n

n∑
i=1

Gλ(xi, xi),
(4)

where Tr(A) means the trace of a matrix A.

The statistical dimension dstat approximately counts
the number of eigenvalues of the rescaled kernel ma-
trix n−1Kn whose values are above the threshold λ.
Therefore, computing f̂ roughly amounts to solving
an dstat-dim quadratic program, and for most station-
ary kernels dstat would be much smaller than n. For
example, for a Matérn kernel with smoothness param-

eter ν being a positive half integer, dstat = O(n
d

2ν+2d )
(Tuo et al., 2020). Due to the intrinsic low-rankness
of Kn, the so-called Nyström method, which replaces
Kn with its low-rank approximation Ln, has been used
for approximately solving the KRR (Gittens and Ma-
honey, 2016; Kumar et al., 2009; Williams and Seeger,
2001). Specially, the Nyström approximation of Kn

is the matrix Ln = KnS(STKnS)†STKn, where A†

denotes the Moore-Penrose pseudoinverse of a matrix
A, and S ∈ Rn×dsub is a zero-one subsampling matrix
whose columns are a subset of the columns in In, in-
dicating which dsub observations have been selected.
We use f̂Ln to denote the approximate KRR solution
obtained by replacing Kn with Ln in expression (2).

Following the paper (Alaoui and Mahoney, 2015), we
will refer to the diagonal elements of matrix Kn(Kn +
nλIn)−1 as the statistical leverage scores {`i}ni=1 asso-
ciated with the kernel matrix Kn. It is straightforward
to verify from identity (2) that the i-th diagonal ele-
ment of Kn(Kn+nλIn)−1 is precisely 1

nGλ(xi, xi), and
thus we call Gλ(xi, xi) the rescaled statistical leverage
score.

The next result (Alaoui and Mahoney, 2015, Theo-
rem 3) (after adapting to our notation) shows that
if we use a randomized construction of S by sam-
pling dsub = O(dstat log(n)) columns from In with a
proper distribution {qi}ni=1 over [n] approximately pro-
portional to the statistical leverage scores, the result-
ing approximate solution f̂Ln would attain the same
statistical in-sample risk (up to a constant) as the

original KRR solution f̂ . Here, we define the in-
sample prediction risk for any regression function f

as Rn(f) = ‖f −f∗‖2n : = n−1
∑n
i=1

(
f(xi)−f∗(xi)

)2
.

Theorem 2 (Nyström approximation accuracy). Fix
ρ ∈ (0, 1/2). Let Ln be the Nyström approximation of

Kn with S being formed by choosing d columns ran-
domly with replacement from the columns of the iden-
tity matrix In according to a probability distribution
{qi}ni=1. Suppose there exists some β ∈ (0, 1] such that
qi ≥ β Gλ(xi, xi)/

∑n
i=1Gλ(xi, xi), and

dsub ≥ C1
dstat
β

log
(n
ρ

)
and λ ≥ C2

miniGλ(xi, xi)
,

where dstat is defined in (4). Then it holds with prob-

ability at least 1− 2ρ that Rn(f̂Ln) ≤ C3Rn(f̂ ). Here
Ci, i = 1, 2, 3, are absolute constants.

This theorem indicates that the problem of approx-
imately solving the KRR reduces to that of ap-
proximately estimating the statistical leverage scores
{`i}ni=1. Directly computing these leverage scores us-
ing SVD requires inverting an n-by-n matrix and is as
costly as solving the original KRR optimization (2).
Finding purely numerical methods for approximating
these leverage scores can also be quite challenging. For
example, the approximation algorithm used in the pa-

per (Alaoui and Mahoney, 2015) has O
(

n3

d2stat

)
time

complexity, which significantly exceeds the O(nd2
stat)

complexity for forming Ln and solving for f̂Ln in
the Nyström approximation when dstat �

√
n (which

holds for any Mátern kernel).

2.4 Equivalent Kernel

Our method is initially motivated by a notion, equiva-
lent kernel, which was first introduced by Silverman
(1984). The author showed that in the context of
smoothing spline regression, as sample size n goes
to infinity the weight function Gλ(·, ·) after a proper
rescaling approaches a limiting kernel function, called
the equivalent kernel. A recent work (Yang et al.,
2017a, Theorem 2.1) extends the context from smooth-
ing spline regression to general kernel ridge regres-
sion. They proved that for a general kernel K, under
the stochastic assumption that design points {xi}ni=1

are i.i.d. distributed according to a common distri-
bution over X , there exists some equivalent kernel
K̄λ : X × X → R, such that the KRR estimator is
asymptotically the same as a simple kernel type esti-
mator with kernel function K̄λ, that is, under a suit-
able choice of diminishing regularization parameter λ,
the following approximation error bound holds with
probability tending to one as n→∞,

sup
x∈X

∣∣∣f̂(x)− 1

n

n∑
i=1

K̄λ(x, xi) yi

∣∣∣ ≤ γn√λ, (5)

where γn → 0 as n → ∞ and
√
λ matches the mag-

nitude of the estimation error supx∈X |f̂(x) − f∗(x)|.
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Formula (5) predicts a theoretical limit of the statisti-
cal leverage score `i as K̄λ(xi, xi) that is independent
of the design points other than xi. In other words, the
KRR estimator can be expressed as a linear combina-
tion of yi’s, whose coefficients only depend on the cor-
responding design point xi. Besides, under mild con-
ditions (Yang et al., 2017a) on the design distribution,
these coefficients admit a limit in probability (that can
be characterized via an “equivalent kernel” function)
as n → ∞. The theoretical result motivates us to
seek a computationally efficient method for the lever-
age scores through approximating these K̄λ(xi, xi)’s.

3 Leverage Score Approximation via
Spectral Analysis

We now turn to the main results of this work. At a
high level, we propose our method and give a sketch of
the derivation via Fourier transform. We also provide
the analysis of the corresponding time complexity and
consider some stationary kernels to which our method
would be applied. Eventually, we prove that, by tak-
ing Matérn kernels as an example, our method would
attain an optimal prediction risk in the KRR.

3.1 The proposed algorithm and a heuristic
derivation

Under the notation above, we formally propose the
explicit formula of our approximation method as

K̃λ(xi, xi) =

∫
Rd

1

p(xi) + λ/m(s)
ds, (6)

where p(xi) is the density of xi defined in Section 1.2.
With Eqn (6), we would use Algorithm 1 below to
approximate Gλ(xi, xi) for some fixed point xi ∈ Rd.

Algorithm 1: Estimation of the leverage scores

Input: the input samples Xn and the spectral
density m(·) of the stationary kernel used

Output: A descrete sampling distribution
{qi}ni=1

Initialize the sampling distribution
qi = 0, ∀i = 1, . . . , n;

Estimate the density pi of the samples
xi, ∀i = 1, . . . , n;

for i=1:m do
Compute the integration (6) with pi, and
assign the value to qi

end
Denote Q =

∑n
i=1 qi;

Update qi as qi/Q, ∀i = 1, . . . , n;

To derive the formula (6), by setting yi = n, yj = 0

(for any j 6= i), we transform the objective value in
the KRR optimization problem (1) to the following
functional:

An,xi(f) =
1

2n

n∑
j=1

f(xj)
2 +

1

2
λ ‖f‖2H − f(xi)

=
1

2

∫
Rd
f(x)2 dFn(x) +

1

2
λ ‖f‖2H − f(xi),

for any function f ∈ H, where Fn denotes the em-
pirical distribution of {xi}ni=1 and the integral is
the Riemann–Stieltjes integral. The minimizer of
An,xi(f) would simply be f̂(·) = 1

n

∑n
j=1Gλ(·, xj)yj =

Gλ(·, xi), due to the independence of Gλ from {yi}ni=1.
Therefore, it suffices to analyze and understand this
functional An,xi for any xi ∈ X . Now we assume that
there exists a nice cdf F over X that admits a Lipschitz
continuous density function denoted by p, so that the
sup-norm τ(n) = ‖Fn−F‖∞ : = supx∈X |Fn(x)−F (x)|
is small. We further remark here that in the most
common case, {xi}ni=1 are i.i.d. from pdf p, and then
τ(n) ≤ C

√
log n/n holds with high probability due

to the Glivenko-Cantelli theorem (Van Der Vaart and
Wellner, 1996). Since An,xi is convex, finding its
optimum amounts to finding the unique root of its
functional derivative (such as the Gateaux derivative),
which is a linear operator DAn,xi(f) : H→ H defined
at each f ∈ H as

DAn,xi(f)(u) =

∫
Rd
f(x)u(x) dFn(x)

+ λ 〈f, u〉H − u(xi), for anyu ∈ H.

Since Fn can be well-approximated by F under the
assumption τ(n)→ 0 and the solution Gλ(·, xi) is ex-
pected to approach to a Dirac delta function centered
at xi as n→∞ (which will be formalized in Section 8
in the appendix), the above derivative can thus be ap-
proximated by a simpler population-level functional

DAxi(f)(u) = p(xi)

∫
Rd
f(x)u(x) dx

+ λ 〈f, u〉H − u(xi), for anyu ∈ H,

where we replace the differential dFn(x) with its lo-
cal approximate p(xi)dx. This new operator admits a
simpler form in the frequency domain thanks to Par-
seval’s theorem (cf. Theorem 5 and Lemma 6 in the
appendix),

DAxi(f)(u) =

∫ ∞
−∞

(
p(xi) F [f ](s) +

λ

m(s)
F [f ](s)

− exp
{
− 2π

√
−1xis

})
F [u](s) ds.

Therefore, the unique root of DAxi(·), denoted by

K̃λ(·, xi), can be obtained by equating the function
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inside the big parenthesis in the preceding display to
zero, which is the inverse Fourier transform of

exp
{
− 2π

√
−1 〈xi, s〉

}
p(xi) + λ/m(s)

, s ∈ Rd, (7)

or K̃λ(·, xi) = F−1
[(
p(xi) + λ/m(s)

)−1]
( · − xi) due

to the translation property of the Fourier transform.
Replacing xi with the i-th design point xi leads to the
following quantity

K̃λ(xi, xi) =

∫
Rd

1

p(xi) + λ/m(s)
ds,

due to the inverse Fourier transform formula. We show
its applications to Matérn kernels as follows.

Example (Matérn kernels): Matérn family
(Matérn, 2013) is a class of isotropic kernels widely
used in spatial statistics. The kernel function is

expressed as Cν(x, y) = Cν(x − y) = 21−ν

Γ(ν) (a‖x −
y‖)νBν(a‖x−y‖), where Bν is a modified Bessel func-
tion of the second kind, ν is a smoothness parameter
(usually half integers), and a > 0 a scale parameter.
Here we slightly abused the notation since Cν is sta-
tionary. An important fact about the Matérn kernel
Cν is that its associated RKHS is the (ν + d/2)-th or-
der Sobolev space (we can verify it by plugging the
following Fourier transform mα(·) into Theorem 1).
The notation α = ν + d/2 is hence used to denote
the underlying smoothness level associated with ker-
nel Kα := Cα−d/2, and the rescaled leverage approx-

imation K̃λ associated with Kα satisfies K̃λ(· , xi) =

F−1
[(
p(xi) + λD−1

α

(
a2 + ‖s‖2

)α)−1]
(· − xi), where

a =
√

2ν,Dα = Γ(α)a2α−1π−d/2/Γ(2α − 1). For gen-
eral density function p, the integral formula (6) with
m = mα provides a rule of thumb on how the statis-
tical leverage score depends on the local input density
as `i ∝ min{1, (λ/p(xi))

1−d/(2α)}, which implies a rel-
atively large value over those under-sampled regions
with small p(xi).

3.2 Computational complexity

To give the complexity analysis, we first stress that
in our theoretical development the dimension d is ei-
ther fixed or at most slowly (e.g. logarithmically) in-
creases with the sample size n. Beyond this setting, at
least theoretically, the smallest subsampling size (via

statistical dimension dstat, which is O((log n)
d
2 ) even

under a Gaussian kernel) becomes comparable to n,
making subsampling meaningless due to the curse of
dimensionality. In addition, classical nonparametric
literature (Silverman, 1984; Yang et al., 2017a; van der
Vaart et al., 2009) suggests that a dimension d of order
o(log n) is necessary to make any estimator consistent.

With the requirement on d above, we claim K̃λ(xi, xi)

can be efficiently computed in Õ(n) time. Specifically,
the overall complexity includes two parts, numerical
integration, and density estimation. A key observa-
tion here is that for both parts the error rates are only
required to be sub-optimal, and o(1) relative error suf-
fices to guarantee the optimality of the error rate in
the KRR. With such a high tolerance of error, the two
parts above could both be implemented in Õ(n) time
as claimed (see Section 9, 10 in the appendix for more
details).

In particular, the overall complexity can be made at
most polynomial in the dimension d. For the integra-
tion part, we can avoid the exponential dependence
on d by applying a polar coordinate transformation
to reduce the multivariate integral (6) to a univariate
integral (c.f. Section 9 in the appendix). For den-
sity estimation, some advanced methods are able to
generate n density estimates at sample design points
in O(nd log n) time with relative approxiamtion er-
ror (difference between accurate KDE and approxima-
tion methods) of magnitude O((log n)−1/2) (such as
ASKIT (March et al., 2015, Eqn (3.3)), HBE (Charikar
and Siminelakis, 2017, Theorem 12), and modified
HBE (Backurs et al., 2019, Theorem 1)). (Those
methods only aim to approximate the original KDE,
and hence have no requirements on the density but
the kernel used in KDE. The exact set of assump-
tions for modified HBE are provided in Section 10.1
in the appendix.) In practice, when the KRR prob-
lem of interest is not high dimensional(d = ω(1)), we
are even able to efficiently estimate the density with
the optimal error rate in O(n(log n)d) time, by some
classical approaches (such as KD-tree methods (Ivezic
et al., 2014), fast multipole methods (Greengard and
Rokhlin, 1997), and fast Gauss transforms (Greengard
and Strain, 1991)), which are empirically be even faster
than the advanced KDE methods above.

As a closing of this subsection, we leave a comment
regarding Gaussian kernels. It seems Gaussian kernels
have a low statistical dimension dstat = O((log n)d/2),
which may allow previous leverage approximation
methods, such as BLESS, to have a time complex-
ity comparable to our method. We point out here
the complete expression for the scale of dstat should
be O(σ−d(log(nσ2d))d/2) (Yang et al., 2017b), where
σ is the bandwidth of the Gaussian kernel used. It
implies the statistical dimension of Gaussian Kernels
would actually be heavily impacted by the bandwidth
σ. However, as we hope to attain the optimal error
rate in KRR, we need to decrease the bandwidth σ
of Gaussian kernels to O(n−c) (c ∈ (0, 1

2d )) to sig-
nificantly enrich the associated RKHS (van der Vaart
et al., 2009). As a trade-off, the magnitude of dstat
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would simultaneously be increased to a polynomial of
n, which is comparable to the scale of dstat using a
proper Matérn kernel. Therefore, generally Gaussian
kernels cannot enable the previous leverage approxi-
mation methods to enjoy the Õ(n) complexity.

3.3 Theoretical results

We focus on the Matérn kernel Kα (proof for other
stationary kernels can be developed similarly) and de-
fine the effective bandwidth parameter, an important
auxiliary parameter analogous to the bandwidth of
a Gaussian kernel, as h := λ1/(2α), which indicates
the smoothness of the functions in the corresponding
RKHS. When λ is set to obtain the minimax-optimal
KRR estimator f̂ , the scale of h would therefore be
Θ(n−1/(2α+d)). Our first result provides an explicit er-

ror bound on |Gλ(·, xi)−K̃λ(·, xi)| in a neighborhood
of xi. Particularly, Lemma 10 in the appendix shows
that the equivalent kernel K̃λ(·, xi) resembles a Dirac
delta function centered at xi with radius O(h), so it
suffices to characterize its difference with Gλ(·, xi) in
the local neighborhood. The regularity assumptions of
our results are listed as follows:

Assumption 1. There exists a distribution F whose
density function p is Lipschitz continuous, so that
τ(n) = ‖Fn−F‖∞ ≤ C0 h

2 for some constant C0 > 0.

Assumption 2. The density function p is strictly pos-
itive at the points xi, i = 1, . . . , n. Besides, for each

i, there exists some δ(xi), such that p(x) ≥ p(xi)
2 for

all x ∈ B (xi, δ(xi)) := {x; ‖x − xi‖ < δ(xi)}, and
δ(xi) ≥ Ch log( 1

h ), ∀i ∈ [n] for some sufficiently large
constant C independent of (xi, h, n).

Assumption 1 needs the empirical distribution Fn to
be well-approximated by a smooth cdf F (c.f. Sec-
tion 3.1). Assumption 2 requires xi to be a proper in-
terior point of the support of p, or at least Θ(h log( 1

h ))
far away from the zero density region. These two as-
sumptions are mild. Assumption 1 is indeed a general-
ized version of a common assumption “xi’s are drawn
iid from a distribution F with Lipschitz density p”,
while also compatible with fixed design setting. As-
sumption 1 would automatically be satisfied when the
quoted assumption holds, with τ(n) = O((d/n)1/2)
guaranteed by multivariate Glivenko-Cantellli theorem
(p. 828 Shorack and Wellner, 2009, Theorem 1). An-
other remark about Assumption 1 is that the Lipschitz
continuity of the density p is enough for KDE to pro-
duce consistent estimation with mean squared error

O(n−
2
d+2 ) (Walter et al., 1979), which is even domi-

nated by the approximation error of the KDE approx-
imation methods mentioned above. (Thus now we can
conclude the KDE methods above with O(nd(log n))

time complexity could provide sufficient accuracy.)
For Assumption 2, as long as p(xi) > 0 and p is con-
tinuous, it always holds in the large scale setting as
n → ∞ since h log( 1

h ) → 0 as h → 0. Moreover, we
only need to verify it for the observed design points
{xi}ni=1 in conjunction with Theorem 2, and by defi-
nition p(·) is automatically positive at these observed
points.

Theorem 3 (Leverage score approximation). If As-
sumptions 1 and 2 hold, then for any i ∈ [n]

sup
x∈B(xi,δ(xi))

∣∣Gλ(x, xi)− K̃λ(x, xi)
∣∣

≤ Cxi h−d
(
τ(n)h−d + h

)
.

In particular, the relative error of approximating
Gλ(xi, xi) by the integral (6) satisfies∣∣Gλ(xi, xi)− K̃λ(xi, xi)

∣∣∣∣Gλ(xi, xi)
∣∣ ≤ C ′xi

(
τ(n)h−d + h

)
.

Here we may choose Cxi = C max{1, p−1/2(xi)} and
C ′xi = C max{1, p1/2−d/(2α)(xi)}

√
p(xi) for some con-

stant C independent of (xi, h, n).

The proof of this theorem relies on a novel Sobolev in-
terpolation inequality that bounds the localized sup-
norm via the RKHS norm ‖ · ‖H plus a localized L2

norm. We remark that the rescaled leverage score
Gλ(xi, xi) and our approximation K̃λ(xi, xi) would
both increase to infinity as n → ∞, and the upper
bound for the difference between them would also di-
verge as shown in the first inequality above; however,
the relative error, the quantity of our interest, would
shrink. Combining the above with Theorem 2, we can
show our approximation leads to an optimal prediction
risk in the approximated KRR.

Theorem 4 (Nyström approximation). Suppose As-
sumptions 1, 2 hold for each xi, i = 1, . . . , n. Un-
der the same setting and conditions Theorem 2,
if the importance sampling weights are chosen as
qi = K̃λ(xi, xi)/

∑n
i=1 K̃λ(xi, xi), we have Rn(f̂Ln) ≤

C3Rn(f̂) with probability at least 1− 2ρ.

4 Experiments

In this section, we evaluate our leverage score approx-
imation method on both synthetic and real datasets.
The algorithms below are implemented in unoptimized
Python code, run with one core of a server CPU (Intel
Xeon-Gold 6248 @ 2.50GHZ) on Red Hat 4.8. Specif-
ically, we perform the numerical integration and den-
sity estimation as described in Section 9 and 10 in the
appendix. Due to the limited space, the complete set-
tings of the experiments below and more supplemen-
tary results can be found in Section 7 in the appendix.
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Figure 1: Run time vs. error tradeoff.

4.1 Performance in kernel ridge regression

We compare the in-sample prediction error of Nyström
methods in KRR, as well as the corresponding lever-
age approximation time among all the competing al-
gorithms: uniform sampling (hereinafter referred to as
“Vanilla”), Recursive-RLS (RC), (Musco and Musco,
2017), Bottom-up Leverage Scores Sampling (BLESS)
(Rudi et al., 2018) and our proposed spectral-analysis-
based method (SA). (The Monte Carlo approximation
for the regularized Christoffel function (Pauwels et al.,
2018) in practice reduces to directly computing lever-
age scores and is thus omitted.) In the experiment, we
generate design points {xi}ni=1 with n ∈ [2000, 500000]
from a 3-D bimodal distribution (see Section 7 in the
appendix for the definition). We use squared in-sample

estimation error ‖f̂ − f∗‖2n as the evaluation metric.
All the results reported in Figure 1 are averaged over
30 replicates. We remark that in the left or the right
subplot there is no curve for “Vanilla” method, as this
method assumes the leverage scores are uniform and
thus takes no time to approximate.

In Figure 1, we can observe “Vanilla” fails to capture
the information of the entire design distribution as ex-
pected, as with high probability, only few data points
from the small mode would be sampled. For RC,
BLESS, and our method, although they are all able to
capture the non-uniformity, our method has the best
runtime versus error trade-off, especially when n is
large. Particularly, when n = 5×105 our method takes
35.8s to approximate the leverage scores, while RC and
BLESS respectively take a higher cost—around 94.3s
and 167s—due to their higher complexities.

4.2 Statistical leverage scores accuracy

We empirically validate that the approximation
K̃λ(xi, xi) approaches the rescaled statistical leverage

score Gλ(xi, xi) as guaranteed by our theory. In par-
ticular, we compare the true rescaled leverage and our
approximation for samples from one-dimensional (for
the ease of visualization) Unif[0, 1], Beta(15, 2), and a
bimodal distribution.

Figure 2: Statistical Leverage Score Approximation

In Figure 2, dotted curves correspond to the rescaled
leverage scores, while solid curves correspond to the
equivalent kernel approximations. We can observe our
method provides good approximations to the rescaled
leverage scores across all settings. In particular,
Unif[0, 1] is the easiest case (red curves) due to its flat
density, which meets Assumption 1 and 2 for almost all
design points; while for points with low density, such as
those in the smaller cluster of the bimodal distribution
and close to the boundary of Beta(15, 2), the absolute
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Table 1: Statistical Leverage Score Approximation Accuracy

RQC HTRU2 CCPP

Method Time r̄ 5th/95th Time r̄ 5th/95th Time r̄ 5th/95th

SA 0.40 1.01 0.87/1.13 2.23 1.04 0.77/1.26 0.48 1.00 0.79/1.21
Vanilla - 1.06 0.64/1.40 - 1.13 0.53/1.63 - 1.04 0.72/1.33
RC 6.97 1.03 0.75/1.33 2.15 1.05 0.75/1.27 9.21 1.02 0.82/1.24
Bless 3.83 1.03 0.74/1.33 1.63 1.07 0.67/1.32 5.25 1.02 0.81/1.24

error tends to be large, due to the leading constant
Cxi in the error bound in Theorem 3. Moreover, the
relative approximation error has a clear tendency to
decrease as the sample size increases, which is consis-
tent with our theory.

We also quantitatively study the accuracy of the
leverage scores obtained by different methods in
the last section. Each algorithm is tested on
RadiusQueriesCount (Savva et al., 2018; Anagnos-
topoulos et al., 2018)(denoted by RQC), HTRU2 (Lyon
et al., 2016), and CCPP (Tüfekci, 2014; Kaya and
Tüfekci, 2012), the datasets downloaded from the UCI
ML Repository (Dua and Graff, 2017). Those datasets
contain 10000, 17898, and 9568 data points respec-
tively, which are at the limit of our computational fea-
sibility (it requires O(n3) time and O(n2) space to
exactly compute leverage scores). We begin by nor-
malizing the datasets before constructing the kernel
matrix using Matérn kernel (ν = 0.5). Each method
is then used to approximate the leverage scores {˜̀i}n1 .
The sampling probability q̃i is obtained as ˜̀

i/(
∑n

1
˜̀
i)

(also denoting qi = `i/(
∑n

1 `i)). The accuracy of
each method is measured by the average of the ratios
{ri := q̃i/qi}n1 (R-ACC). The complete setting for this
experiment can be found in Section 7 in the appendix.

In Table 1 we report the runtime, mean R-ACC r̄, and
the 5th / 95th quantile of R-ACC, averaged over 10
replicates. We notice that, regarding the leverage ap-
proximation, our method provides the most accurate
leverage approximation (in terms of mean R-ACC),
and is more efficient than other methods on the bench-
mark datasets, which matches the complexity analysis.

4.3 Additional empirical results

In Section 10.1 in the appendix, we further provide
some empirical results to compare different approxi-
mation methods for increasing input dimension d. In
short, under the certain setting the prediction accu-
racy of all the methods will greatly deteriorate due to
the curse of dimensionality, and the classical Nyström
method with uniform sampling will be preferred as
leverage-based sampling cannot bring many benefits
to the statistical performance.

5 Conclusion and future work

We propose a new method to estimate the leverage
scores in kernel ridge regression for fast Nyström ap-
proximation when a stationary kernel is used. Theo-
retical results are also provided to guarantee the high
accuracy of our estimation. In particular, we show that
under the mild conditions the leverage scores induced
by a Matérn empirical kernel matrix can be estimated
in Õ(n) time, where n is the size of input samples.

A direct further development of our current work is
the extension of our theory to other stationary ker-
nels, such as Gaussian kernels and exponential ker-
nels. Other related questions include the performance
guarantees when the new leverage estimation method
is applied to kernel methods for other machine learn-
ing problems, for example, kernel k-means and kernel
PCA. It will also be interesting to follow the heuristic
procedure in our method to analyze other kernel mod-
els involving linear smoothers, and seek the possibility
to accelerate those models. The results in this work
also shed new light on the relevance of the “equiva-
lent kernel” (Yang et al., 2017a) and the regularized
Christoffel function (Pauwels et al., 2018) mentioned
in Section 1.2.
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