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Nonparametric Testing under Randomized
Sketching

Meimei Liu, Zuofeng Shang, Yun Yang, and Guang Cheng

Abstract—A common challenge in nonparametric inference is its high computational complexity when data volume is large. In this
paper, we develop computationally efficient nonparametric testing by employing a random projection strategy. In the specific kernel
ridge regression setup, a simple distance-based test statistic is proposed. Notably, we derive the minimum number of random
projections that is sufficient for achieving testing optimality in terms of the minimax rate. An adaptive testing procedure is further
established without prior knowledge of regularity. One technical contribution is to establish upper bounds for a range of tail sums of
empirical kernel eigenvalues. Simulations and real data analysis are conducted to support our theory.

Index Terms—Computational limit, kernel ridge regression, minimax optimality, nonparametric testing, random sketch.

1 INTRODUCTION

Number of computationally efficient statistical meth-
Aods have been proposed for analyzing massive data
sets. Examples include divide-and-conquer approaches [1]-
[4]; low-rank approximations: random projection methods
[5]-[8], subsampling methods [9]-[11], Nystrom approxima-
tions [12], [13]; and online learning methods [14]-[16].

An interesting question arising from these new methods
is the minimum computational cost required for obtaining
statistically satisfactory solutions. This might be viewed as a
type of “computational limit” from a statistical perspective.
Such an issue has been addressed in certain situations. For
divide-and-conquer approaches, [4] derived a sharp upper
bound for the number of distributed computing units in the
smoothing spline setup, while [17] estimated the quantile
regression process under an additional sharp lower bound
on the number of quantile levels. For random projection
methods, the literature nonetheless only focused on para-
metric cases such as compressed sensing. For example, [18]
showed that the minimum number of random projections
is slogn for signal recovery, where n is the number of
measurements and s is the number of nonzero components
in the true signal. Recently, [7] proposed the randomly
sketched kernel ridge regression (KRR) estimator and stud-
ied the minimax optimal nonparametric estimation under
random projection. To our knowledge, the computational
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limit for random projection methods remains unknown in
nonparametric models.

There are two purposes in this paper: (i) develop an
optimal nonparametric testing procedure based on random
projection; (ii) explore its computational limit in the ker-
nel ridge regression setup. We remark that classical non-
parametric testing methods, e.g., the locally most powerful
test, the generalized /penalized likelihood ratio test and the
distance-based test [19]-[23], may not be directly applied to
big data due to their high computational costs.

Specifically, we consider the following nonparametric
model

yi:f(mi)—i_eia izla"'anv (1)

where z; € X C R? for a fixed a > 1 are i.i.d. random
design points, and ¢; are random noise following Normal
distribution with mean zero, variance o2. The regression
function f belongs to a reproducing kernel Hilbert space
(RKHS) H. The hypothesis of interest is

Hoif:fo V.S.HlleH\{f0}7 (2)

where fj is a hypothesized function. Testing optimality has
been well studied in literature. [24] [25] established the
minimax testing rate for Gaussian sequence model on the
Sobolev class or the Besov class. Recently, [26] established
the minimax nonparametric testing rate under a general
eigen-decaying framework including the polynomial decay
and exponential decay kernels. In practice, testing in (2) has
wide applications. One motivating example is in the signal
detection in cognitive radio and other wireless applications,
it is assumed under the null hypothesis that the signal is
completely specified, e.g., that no signal is present. Another
example is testing the adequacy of a parametric linear model
in nonparametric regression, where the null hypothesis as-
sumes fj has a linear structure; see [27], [28].

Focusing on the testing in (2), we construct a distance-
based test statistic T, » = ||fr — fol|2, where fr is a
randomly sketched KRR estimator, and ||-|,, is the empirical
norm. The sketched KRR estimator fr ([7]) enjoys both
theoretical support and computational efficiency, especially
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compared with the classic KRR estimator fn ([29]) defined
as

~

fn := argmin {i > (i — flxi)? + Allflli} , 0
=1

feHr

where | f||3, = (f, f)nu with (-,-)% the inner product of
H, A > 0 is a smoothing parameter. Solving (3) is an n-
dimensional quadratic program, which involves the com-
putational cost and storage occupation of orders O(n?)
and O(n?), respectively. Instead, fr is achieved by ran-
domly projecting the row and column subspaces of the n-
dimensional kernel matrix to an s-dimensional subspace,
reducing (3) to an s-dimensional quadratic program, with
time and storage costs as O(s3) and O(s?) under s(< n)
random projections; see Section 2 for detailed algorithm.
The pre-processing step in computing the kernel approxi-
mation normally takes O(sn?), and can be easily reduced to
O(n?(log s)) for suitably chosen random matrices (see [30]),
which can be further reduced to O(n*(log s)/t) by using t
clusters in a parallel fashion. After fr is obtained, 7}, » can
be computed in a parallel fashion. Hence, s can be viewed
as a simple proxy for computing and storage costs.

In this paper, we reveal a phase transition phenomenon
in terms of s to guarantee the testing optimality. Specifically,
a sharp lower bound for s is established: when s is above
this bound, 7}, » is minimax optimal; otherwise, minimax
optimality becomes impossible even when the best possible
A is chosen. We next illustrate more subtle details using
the following Figure 1, where the strength of the weakest
detectable signals (SWDS) is characterized given any s and
A. In general, we require s > sy for any A, where s,
is determined by kernel eigenvalues and A. An important
observation is that the smallest SWDS can be achieved at
A= A"and s > sy := s* (note that when s <« s*, our
testing procedure under a proper A is still powerful as long
as SWDS becomes sufficiently large). Both A* and s* have
precise orders in specific situations. For example, in an m-
order polynomial decay kernel, the smallest SWDS achieves
the minimax optignal rate n~ FmET esgtablished in [24], [25]
when \* = n~ 4T and s* = nTF1. As a by-product,
we also derive a sharp lower bound for s for obtaining the
minimax optimal estimation. Our results hold for a general
class of random projection matrix, such as the sub-Gaussian
matrix or certain data-dependent matrix.

It is worth mentioning that the construction of 7}, ) cru-
cially relies on the regularity of #, which is often unavail-
able in practice. Hence, we propose an adaptive test statistic
based on the maximum of a sequence of (standardized) non-
adaptive test statistics corresponding to various regularities.
Based on a recent Gaussian approximation result in [31], we
prove that the null limit distribution is an extreme value
distribution.

The proofs of main results rely on the behavior of the
tail sum of empirical kernel eigenvalues. One technical
contribution of this work is to derive upper bounds for a
range of tail sums such that nonparametric estimation and
testing can now be analyzed in a unified framework. This
is obtained by flexibly adjusting the size of the function
class associated with the Rademacher average in the local
Rademacher complexity theory ([32]).
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Fig. 1. Phase transition in (), s) for signal detection. The horizontal axis
is the smoothing parameter A, and the vertical axis is the projection
dimension s. The shade indicates the values of SWDS: dark red cor-
responds to greater values of SWDS than light blue. The vertical line
labeled by “optimal” indicates the choices of X that achieve the smallest
SWDS.

In simulation studies, we find that the size and power
of the proposed non-adaptive and adaptive test statistics
are both satisfactory. In particular, the power cannot be
further improved as the number of random projections
grows beyond some threshold, as predicted by our theory.
For an illustration purpose, we also demogstrate that when
n = 22, conducting testing based on fg only takes 3.2
seconds in comparison with 42 seconds based on f,,. In prac-
tice, the smoothing parameter A can be directly selected via
generalized cross validation. We would like to point out that
this is an advantage of the random projection method over
the divide-and-conquer method [1] in estimation, where the
selection of the smoothing parameter is nontrivial; see [33].

The rest of this paper is organized as follows. Section 2
introduces kernel ridge regression together with its approx-
imation based on random projection. Our main results are
presented in Section 3: Section 3.1 introduces one primary
assumption on random projection; Sections 3.2 and 3.3 study
testing consistency and power behaviors in terms of the
projection dimension s and the smoothing parameter ),
with specific situations considered in Section 3.5; Section 3.6
proves the lower bound on s given in Section 3.5 to be sharp.
An adaptive testing procedure is developed in Section 4.
Section 5 includes numerical studies based on simulated
and real data sets. All technical details are deferred to the
Appendix.

Notation: Denote ¢, the Kronecker delta: 0, = 1if j = &
and 0, = 01if j # k. For positive sequences a,, and b,,, put
an < by, if there exists a constant ¢ > 0 such that a,, < c¢b,

~

foralln € N; a, 2 b, if there exists a constant ¢ > 0

such that a, < cby. Put an = by if an < by and an > bn.
Frequently, we use a,, < b, and a,, = O(b,,) interchange-
ably. Pf* = Ef(X)?, ||l = Puf? = 5 X0, f(X0)2

For a matrix A € R™*", its operator norm is defined as

A
4], = max,epn o) 1512

to be sub-Gaussian if there exists a constant 62 > 0 such
that for any ¢t > 0, P[|X| > t] < 2exp(—t?/(20?)). The
sub-Gaussian norm of X is defined as || X ||y, = inf{t >
0 : Eexp(X?/t?) < 2}. We will use ¢, ¢y, c2,C to denote

. A random variable X is said

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3063223, IEEE

Transactions on Pattern Analysis and Machine Intelligence

generic absolute constants, whose values may vary from line
to line.

2 KERNEL RIDGE REGRESSION VIA RANDOM
PROJECTION

In this section, we review kernel ridge regression and its
variant based on random projection. Suppose that we have
n iid. observations {(x;,y;)}"; from (1), where the co-
variances x; are samples of X from a distribution Px with
domain X. Let X be a closed subset of R?, a is fixed,Px
a strictly positive Borel measure on X. We recall that a
Borel measure Px on X is said to be strictly positive if the
measure of every nonempty open subset in X is positive, an
example being the Lebesgue measure in R®.

Throughout assume that f € H, where H C L*(Px) is
a reproducing kernel Hilbert space (RKHS) associated with
an inner product (-, )3 and a reproducing kernel function
K(,-) : X x X - R. K is a symmetric positive definite
kernel on X satisfying: for any finite set of points {z;}/-; in
X and real numbers {a; }_; that >77',_; a;a; K (i, ;) > 0.
Assume further that K is a continuous function on & x X
and [, [, K(z,t)dPx(x)dPx(t) < oc. Then by Mercer’s
theorem, K has the following spectral expansion:

K(CC,.I,) = ZM1¢Z(I)¢Z(I/)a xv‘rl € Xa (4)
=1

where py > po > > 0 is a sequence of ordered

eigenvalues and the eigenfunctions {¢;}$2; form a basis in

L?(Px). We refer the reader to the standard sources [34],

[35] for more details on RKHSs and their properties.
Moreover, for any ¢, j € N,

(Bi, 0j) 12(Px) = 0ij (Gis i) = Oij/ 1hi-

Throughout this paper, assume that ¢;’s are uniformly
bounded, a common condition in literature, e.g., [36], and
i’s satisfy certain tail sum property.
Assumption Al. cx = sup;>q ||@illsup

Zfi;prl i
SUPE>1 = Fpp

Assumption Al is satisfied in two types of commonly
used kernels, categorized by the eigenvalue decay rates.
The first is p; < i~

and

< oo and

< 00.

i72™ for a constant m > 0, called as
polynomial decay kernel (PDK) of order m. Examples of
kernels in this class include the m!" order Sobolev spaces
for some fixed integer m > 1 with Lebesgue measure on a
bounded domain; see [35].

The second is p; < exp(—~i?) for constants v,p > 0,
called as exponential decay kernel (EDK) of order p. Ex-
amples of EDK include the Gaussian kernel, which for
the Lebesgue measure satisfies such a bound with p = 1
(compact domain) or p = 2 (real line); see [37]. Verification
of Assumption Al with concrete examples is deferred to
Section 5.5.3 in Supplementary.

Recall the KRR estimator f, from (3). By representer
theorem, it has an expression f,(-) = Y.i' &K (-, 2;),
where & = (&1,...,@,) " is a real vector determined by

@ = argmin {wTKQuJ — szKy + )\wTKw}
wER™ n

= %(K+>\1)‘1y7 (5)

3

y = (yla' o ayn)T/ K = [nilK(xivxj)]lgi,jgn/ and I €
R™ ™ is identity. This standard procedure requires storing
(K?,K,Ky) and inverting K + A\, which requires O(n?)
memory usage and O(n?) floating operations.

The above computational and storage constraints be-
come severe for a large sample size, and thus motivate the
random projection approach proposed by [7]. Specifically, w
in (5) is substituted with ST /3, where 3 € R® and S is an
s x n real-valued random matrix; see Section 3.1. Then, 3 is
solved as:

B =argmin {ﬁT(SK)(KST)ﬁ - z5T5Ky + ABTSKSTﬁ}
BERS n

1
:E(SK2ST + ASKS) 1SKy. (6)

Hence, the resulting estimator of f becomes

n

fr(:) = Z(STE)iK(‘7$i)a @)
i=1
which requires computing and storing

(SK2ST,SKST,SKy), along with inverting an s x s
matrix. The cost in the pre-processing step to compute
the kernel approximation normally takes O(sn?), and
can be easily reduced to O(n?(logs)) for suitably chosen
random matrices (see [30]), which can be further reduced
to O(n?(log s)/t) by using t clusters in a parallel fashion.
Furthermore, the memory usage and floating operations are
reduced to O(s?) and O(s?), respectively, when s = o(n).
On the other hand, s cannot be too small in order to
maintain sufficient data information for achieving statistical
optimality. Critical lower bounds for s will be derived in
Section 3.6.

3 MAIN RESULTS

Consider the nonparametric testing problem (2). For conve-
nience, assume fo = 0, i.e., we will test

Ho:f=0 vs. Hy:feH\{0}. 8)
In general, testing f = fy (for an arbitrary known fj) is
equivalent to testing I* = f — fo = 0. So, (8) has no loss of

generality. Based on fr, we propose the following distance-
based test statistic:

T = || frl2- )

In the subsequent sections, we will derive the null limit
distribution of T;, 5 (Theorems 3.3), and further provide a
sufficient and necessary condition in terms of s such that
T, is minimax optimal (Section 3.6). As a byproduct, we
derive a critical bound in terms of s such that fz is minimax
optimal. Proof of such results rely on an exact analysis on
the kernel and projection matrices which requires an accu-
rate estimate of the tail sum of the empirical eigenvalues
by Lemma 3.1. Our results hold for a general choice of
projection matrix which will be discussed in Section 3.1.
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3.1 Choice of Projection Matrix

Consider the singular value decomposition K = UDU T
where U = (Uy,Usz) with U; consisting of the first Sy
columns of U and Uy consisting of the rest n — S columns,
D = diag(Di,Ds) with Dy = diag(fi1,...,us,) and
Dy, = diag(fis,+1,---,Hn). Here {f;}7_, are empirical
eigenvalues in decreasing order. For any A > 0, §) (or sy) is
defined to be the number of j1;’s (or j;’s) greater than A, i.e.,

Sy =argmin{i: f1; <A} —1, sy =argmin{i: p; <A} —1.

(10)

We have the following assumption on the population
eigenvalues through s.

Assumption A2. sy diverges as A — 0.

Assumption A2 is satisfied in various classes of kernels,
including PDK and EDK introduced in Section 3.5. In the
Supplementary S.5.3, we verify Assumption A2 with two
concrete examples:

An accurate upper bound for the tail sum of empirical
eigenvalues Z;L:ng i; is needed for studying nonpara-
metric testing and estimation. However, this bound was
often assumed to hold in the kernel learning literature, e.g.,
[38], [39]. The application of concentration inequalities of
individual eigenvalues ([40], [41]) only provides a very
loose bound due to accumulative errors. Recently, the local
Rademacher complexity theory ([32]) was employed by [7]
to derive a more accurate upper bound that is useful in
studying nonparametric estimation. However, this upper
bound no longer works for testing problems, due to the
improper size of the function class defining Rademacher
average. We establish the upper bounds, i.e., Lemma 3.1,
for a range of tail sums of empirical eigenvalues in terms of
population quantities sy and ps,, with known orders. This
result can be applied to both nonparametric estimation and
testing, and may be of independent interest.

Lemma 3.1. If 1/n < A — 0, then with probability at least
1-— 4€_S>\/ Z?:§A+1 ﬁi 5 SAlsy -

Clearly, Lemma 3.1 is a sample analog to the tail sum
assumption for y; in Assumption Al. The proof of Lemma
3.1 is based on the development of a generalized function
class and its associated local Rademacher complexity theory
as explained in Appendix 7.1.

The following definition of “K-satisfiability” describes a
class of matrices that preserve the principal components of
the kernel matrix.

Definition 1. (K-satisfiability) A matrix S € R**" is said to
be K-satisfiable if there exists a constant ¢ > 0 such that

[(SUN)TSUL — I, |y < 1/2, |SU2D, |, < XV,

op —=

By Definition 1, a K-satisfiable S will make (SU;)' SU;
“nearly” identity as well as down-weight the tail eigen-
values. Such a matrix will be able to extract the principle
information from the kernel matrix. A special case of the
above “K-satisfiability” condition was studied in [7] by fix-
ing A as the optimal estimation rate. However, by choosing
a range of \ as threshold to select the leading eigenvalues,
our general form of “K-satisfiability” condition allows us to
study estimation and testing in a unified framework.

4

Besides, we need the following definition which will
make the statement of our assumptions more precise and
concise.

Definition 2. An event £ is said to be of (a, b)-type for a,b €
(0,0c], if P(P(E|zs, - ) > 1-
exp(—b).

Definition 2 describes events whose probabilities have ex-

ponential type lower bounds. It is easy to see that, if £ is

of (a,b)-type, then P(€) > (1 — exp(—a))(1 — exp(—b)). In
particular, £ is of (0o, 00)-type if and only if £ occurs almost
surely.

Throughout the rest of this paper, assume the following
condition on S.

Assumption A3.

(a) s > gsy for a sufficiently large constant ¢ > 0.

(b) There exist c1,ca € (0, 00] such that the event “S is K-
satisfiable” is of (c1$, casy)-type.

,xn) > 1 — exp(—a)

Assumption A3 (a) requires a sufficient amount of ran-
dom projections to preserve data information. Assumption
A3 (b) requires S to be K-satisfiable with high probability
which holds in a broad range of situations such as matrix of
sub-Gaussian entries (Example 3) and certain data depen-
dent matrix (Example 4).

Example 3. Let S be an s x n random matrix of en-
tries S;;/v/s, i = 1,...,s, j = 1,...,n, where S
are independent (not necessarily identically distributed)
sub-Gaussian variables. Examples of such sub-Gaussian
variables include Gaussian variables, bounded variables
such as Bernoulli, multinomial, uniform, variables with
strongly log-concave density (see [42]), or mixtures of
sub-Gaussian variables. The following lemma shows
that Assumption A3 (b) holds in all these situations.

Lemma 3.2. Let S;; 1 <i <5 1 < 35 < n be
independent sub-Gaussian of mean zero and variance
one, and A € (1/n,1). If s > g¢sy for a sufficiently
large constant ¢, then Assumption A3 (b) holds for
S = [Si/Vsh<ics1<i<n-

Example 4.Let S = U, where U, is an n x s matrix consist-
ing of the first s columns of U. Then it trivially holds that,
almost surely, (SU,)TSU, = I, and ||SU2D;/2 =0,
i.e., Assumption A3 (b) holds.

The proof of Lemma 3.2 relies on the bound of the tail
sums of empirical eigenvalues in Lemma 3.1. We point out
that obtaining the eigen-decomposition in Example 4 is as
burdensome as computing the matrix inverse, which is not
preferred in practice. Rather, the purpose of this example is
to directly illustrate one situation that Assumption A3 can
be satisfied.

oo

3.2 Testing Consistency

In this section, we derive the null limit distribution of

(standardized) T;, » as standard Gaussian, and then extend

our result to the case of composite hypothesis testing.

Theorem 3.3. Suppose that A — 0 and s — oo as n — oo.
Suppose Assumption A2 is satisfied. Then under Hy, we
have

T \ —
M%N(O,l), asn — oo.
On,\
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Here, pny = Eu,{Tnalx,S} = tr(A?)/n, 03)\ =
Varp, {To\|x, S} = 2tr(A%)/n? with x = (z1,- -+ ,z,)
and A = KST(SK?ST + ASKST)"'1SK.

Theorem 3.3 holds once s diverges (no matter how slowly).
Theorem 3.3 implies the following testing rule at signifi-
cance level a:

G = I(|Tax — tnal > 21—a/20n0,2) (11)

where 21 _, /5 is the 100 x (1 — c/2)th percentile of N (0, 1).

As an important consequence of Theorem 3.3, we com-
ment that the optimal estimation rate in [7] can also be
obtained as a by-product, that is

Ifr = folls = Op(r7 ),

where 12, = X + 1, 5. The proof of (12) is sketched as
follows. SuEpose that fo € H is the “true” function in (1).
Note that || fz — fo||2 has a trivial upper bound

IR — foll2 < 2|fr — Ecfrl? + 2| Efr — fol 2,

where FE. is the expectation w.r.t. € = (€1, - - - , €,) with ¢; the
random noise in the regression function defined in (1). By
direct examinations, it can be shown that Ifr — E.frl2 =
€' A%¢/n, hence, E|fr — Ecfrll2 = tr(A%)/n = pnx.
This leads to ||z — E.fr|2 = Op(pin,n).- Meanwhile, it
follows from Lemma S.1 below that ||EEfR —foll2 = 0p(N).
This completes the proof of (12). The above discussions are
summarized in the following corollary.

(12)

(13)

Corollary 3.4. Suppose that 1/n < A < 1 and Assumption
A1-A3 holds. Then with probability approaching one, it
holds that

7 2 2
IR = folln < Cryxs
where 7 \ = A + jin » and C' is an absolute constant.

From Corollary 3.4, the best upper bound can be ob-
tained through balancing A and p, ». Denote Af the op-
timizer. This in turn provides a lower bound s! for s
according to (10), i.e., st=gs At~ In Section 3.5, we will show
that the upper bound under A’ is minimax optimal, and
further provide explicit orders for s' in concrete settings.

3.3 Power Analysis

In this section, we investigate the power of T}, » under a
sequence of local alternatives by assuming f € B = {f €
H || fllx < C} for some existing constant C.

For any generic 0-1 valued testing rule ¢ where ¢ = 0
if Hy is preferred and 1 otherwise, define the total error
Err(¢, d,) of ¢ under a separation rate d,, > 0 as

Err(¢,d,) = E(¢ | Hpis true)+ sup E(1—¢ | H; is true).

1£1ln>dn

(14)
Notice E(¢ | Hy is true) is the probability of making a type
Ierror and E(1—¢ | Hy is true) is the probability of making
a type II error, and the total error represents the maximum
possible type I error and type II error. The separation rate
d,, is used to measure the distance between the null and
the alternative hypotheses. Intuitively, the smaller d,, is, the
harder it is to distinguish the alternative hypothesis from

5

the null. For any ¢ € (0, 1), define the minimax separation
rate dJ, () as

d; () = inf{d, >0: igf Err(¢,d,) < e}, (15)
where the infimum in (15) is taken over all 0-1 valued
testing rules based on samples ((x1,91), .., (Tn, Yn))- 5 (€)
characterizes the smallest separation between the null and
local alternatives such that there exists a testing approach
with a total error of at most . [24] [25] established the
minimax separation rate and revealed its difference with
optimal estimation rate. Their work are derived based on
Gaussian sequence model with focus on the Sobolev class or
the Besov class with polynomial decaying eigenvalues. Re-
cently, [26] established the minimax nonparametric testing
rate under a general eigen-decaying framework including
the polynomial decay and exponential decay kernels. Next,
we show that our proposed Wald-type test can achieve the
minimax separation rate under appropriate A and s.

For any f € H, define the squared separation rate de, N
as

a2\ = A + o 16
n,\ n,\ ( )
Bias of fr Standard deviation of T}, x

In the following Theorem 3.5, we show that 73, » can achieve
high power provided that s diverges fast enough and the
local alternative is separated from the null by at least an
amount of d, . It is sufficient to minimize the separation
rate d, » to achieve optimal testing. We show that our
test can achieve the minimax rate of testing by selecting
A to balance the trade-off between the bias of fr and the
standard derivation of T}, » shown in (16).

Theorem 3.5. Suppose that 1/n < A — 0 as n — oo,
Assumption Al-A2 are satisfied, and Assumption A3
holds for ¢, c2 € (0, 00]. Then for any ¢ > 0, there exist
positive constants C, and N, such that, with probability
greater than 1 — e~ 1% — 2%,

inf inf P —1lx,8)>1—
,nf  inf F(Pnx = 1]x,8) > 1 —¢,
[|flln>Cedn,a

where d, \ == \/A+o,yand B = {f € H:|fllx <
C'} for some existing constant C' and Pj(-|x, S) is the
conditional probability measure under f given x, 5.

In view of Theorem 3.5, to maximize the power of T}, 5, one
needs to minimize d,, » = /A + 0,,) through balancing A
and o0y, . Denote \* the optimizer. The lower bound s* for
5 is obtained via (10), i.e., s* = s)~. The explicit forms of \*
and s* varies for different reproducing kernels, and lead to
specific optimal testing rate, depending on their eigendecay
rate.

3.4 Parametric versus nonparametric fits

In practice, it is often of interest to test certain structure of
f, e.g., linearity,

H(l)inear L fe E(X) Vs. Hiinear  f ¢ E(X)7 17)

where L£(X) is the class of linear functions over X C R%.
Testing Hi"®¥* can be easily converted into simple hypoth-
esis testing problem. Intuitively, if the parametric structure
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is right, then its residuals should be patternless and inde-
pendent of input features. So we can apply non-parametric
smoothing to the parametric residuals and see if their pat-
tern is approximately zero everywhere; see Section 4.2 in
[25]. R R

Denote f;: as the least square estimator of f, fr as the
randomly projected KRR estimator, and fy is a hypothesized
“true” parameter with unknown value. Write

wx=Ifo = frllz = fn— fo+ fo— fRHi
=z = foll2 + .fo — Frl2 + = Z — fo)(fo— fr)
=1
=1\ + 1% + 1% (18)

It can be shown that T(l*) = Op(n71) by conventional
parametric theory ([43]), and accordingly T( = o(T, (2;))
by Cauchy-Schwarz inequality. The dommate term in (18)
is Tr(f: )1t turns out that Ty(L’ 3 ) is exactly the test for testing
H{irear Therefore, we have that T}, \ has the same limiting
distribution with T( )\) under H hnear . Applying Theorem 3.3,

we have the followmg Corollary for the null asymptotic
distribution of T}, |

Corollary 3.6. Suppose that A — 0 and s — oo as n — oc.
Suppose Assumption A2 is satisfied. Then under Hine,

we have
T* _ *
A * iy d, N(0,1), asn — oco.
O—n,A
Here, /J’n)\ = EHO{ /\|x S} ( )/ﬂ GnA =
Var {7, /\|o: St = 2tr(A4)/n

To characterize the power of the composite hypothesis
testing problem in (17), we define the test error under a
separation rate d,, > 0,

Err(¢*,d,) =FE(¢* | HY™" is true)

+ sup E(1-
Hf_PE(X)anZdn

¢* | Hy is true).

where ¢* is any desion rule for hypothesis testing problem
in (17) and P,(X)f is the projection of f on L£(X). No-
tice that f — Pz(X)f = 0 under the null hypothesis; the
magnitude of ||f — P (X)f||2 characterize how far the f is
deviated from a linear function. Since the plugin estimate
f + approaches P (x)f with 1/n rate, the separation rate for
the decision rule for G = 1T\ = ol = 21-a/20m,0)
is the same as ¢, » given in Theorem 3.5.

3.5 Examples

Next, we derive the lower bounds for s to achieve optimal
estimation and testing in two featured examples: PDK and
EDK, based on the main results obtained in Corollary 3.4
and Theorem 3.5. It is easy to check that Assumption Al
and A2 hold for these two examples; see Section S.5.3 in
Supplementary.

Theorem 3.7. For the two kinds of eigenvalue decaying rates,
suppose Assumption A3 holds. Suppose that 1/n < A —
0 as n — oo, then with probability approaches 1, it holds
that pin, \ < sx/n and Ui,A = 55 /n?.

6

Furthermore, we have the following optimal estimation
and testing rates by properly choosing the tuning pa-
rameters and the lower bound of projection dimension:

« Polynomially decaying kernel (with z; < i~2™)

— When \ = n~Zni and s 2 nTAFT with m >
2m
3/2, | fr — foll2 = Op(n=241).
- When A < n™ T and s 2 nintl with m >
3/2, Thx achreves the minimax optimal rate of
teshngn 4m+1

e Exponentionally decaying kernel (with p; =
exp(—i?))
- When A\ < (logn)*/Pn=" and s > (logn)'/?,
Ifr = follz = Op(n~" (logn)'/7).
—  When )\ < (logn)Y/P)n=1 and s > (logn)'/?
1, T, achieves the minimax optimal rate of
testing 72 (log n)ﬁ

The derivation of optimal estimation and testing rates
is attributed to the accurate characterization of 1, and
on,x by employing Lemma 3.1 to bound the tail sums of
empirical eigenvalues.

Plugging in fi,, » =< s»/ n to Corollary 3.4, we have fR
with the convergence rate 72 A = X+ s)/n. As shown in
(13), A is the squared bias of fR , and s)/n quantifies the
variance of fz. Hence, the optimal estimation rate TIL?A is
achieved via the bias-variance tradeoff as follows

r:?_)\ = argmin{)\ TA> sk/n}.

We denote the choice of A and lower bound of s to achieve
the optimal estimation rate as AT and s' respectively.

To find the lower bound for s in achieving optimal
testing, by Theorem 3.5, di, x < A+4/51/n, then the optimal
separation rate d;, can be achieved by another type of trade-
off, i.e., the squared bias of fr v.s. the standard derivation
of T, », as follows

45 = argmin{)\ PA> \/a/n}

We use \* and s* to represent the optimal A and s, to
achieve d>.

Take PDK as an example, plugging in p; < i~>™ to the
definition of s in (10), we have sy < A\~ Zm Then Theorem
3.7 can be directly achieved based on the above two types
of tradeoffs in estimation and testing. The results for EDK
can be achieved similarly. We conclude our findings of this
section in the following Table 1.

It is worth emphasizing that ', s' are different from
A, s* due to different types of trade-off discussed above,
indicating a fundamental difference between estimation and
testing ([24], [25]). Figure 2 summarizes the two different
types of trade-off to achieve the minimax rate in estimation
and testing.

In the following Theorem 3.8, we show that the upper
bound between f r and fn can fall below the statistical error
| fn = folln by further increasing the projection dimension.

1. In fact, for EDK, s* < (logn — % log log n)l/P. For simplicity, we

keep the main term s* < (logn)/?.
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Estimation
)
N s: rn;\
PDK n” AT n2m+1 n” Tl
EDK  (logn)/Pn~—1  (logn)'/P (logn)t/Pnp—1
Testing
A s* d*?
n
PDK T T =TT
EDK (logn)/?2Pn=1  (logn)/P  (logn)/(2P)p—1
TABLE 1

Lower bound of s and choice of A for optimal estimation or testing in
DNW AnA ENW

I1Fr = fol2

TA
12
Tn,)\

) I v,
_+
>
>boo
*
>~

Fig. 2. Trade-offs for achieving (a) optimal estimation rate; (b) optimal
testing rate.

This result improves upon existing approximation error

bound in [7] that is of the same order as the statistic error.

When s > st, the difference between fRAand fn is ignorable

compared with the difference between f,, and fj.

Theorem 3.8. Let §* > 0 satisfying 6* < \. Define s* =
argmin{j : fi; < 6*}. Suppose s > cs¥, then with
probability approaching 1,

stot

~ ~ S
IFr—Falli <8F+ = <A+ (19)

Furthermore, when 6 < Aand A — 0 as n — oo,

~ ~ S
|Fr = Fallh = 0p(A+ ).

3.6 Sharpness of s and s*

In this section, we will show that s* and s’ derived in
PDK and EDK are actually sharp. For technical convenience,
define

5 — n- 2m-1, K is PDK
"\ (logn)~?/P, K is EDK

Our first result is about the sharpness of s'. Theorem
3.9 shows that when s < st, there exists a true function f
such that || fr — f||? is substantially slower than the optimal
estimation rate. Our proof is constructive in the sense we
construct the above true function as > ; K (;,-)w; with
w; being selected from the orthogonal complement of a
subsapce properly generated by S and K; see Appendix
7.2 for details.

Theorem 3.9. Suppose s = o(s'). Then for any s x n random
matrix S satisfying Assumption A3, with probability
greater than 1 — e~ it holds that

sup || fr — fII2 > 12,
fen

where c is a constant independent of n.

Our second result is about the sharpness of s*. Theorem
3.10 shows that when s < s*, there exists a local alternative
f that is not detectable by 7}, x even when it is separated
from zero by d};. In this case, the asymptotic testing power is
actually smaller than «. The proof of Theorem 3.10 is similar
as that of Theorem 3.9, except that a different true function
is constructed; see Appendix 7.3 for details.

Theorem 3.10. Suppose s = o(s*). Then for any s X n projec-
tion matrix S satisfying Assumption A3 and a positive
nonrandom sequence 3, » satisfying lim,_,. 85, = 00
such that, with probability at least 1 — e =",

lim sup inf

[1flln=>Bn,xdy,

Pf(gbn,)\ = 1|X7 S) <aq,

where c is a constant independent of n. Recall 1 — « is
the significance level.

In view of Theorems 3.5 and 3.10, we observe a subtle
phase transition phenomenon for testing signals as shown
in Figure 1.

4 ADAPTIVE TESTING

In this section, we focus on the case of PDK as a leading
example, and construct an adaptive testing procedure that
does not require any exact prior knowledge on m except
for m > 2. The adaptive procedure is proven to achieve
the minimax rate of testing established by [44] (up to an
iterative-logarithmic term).

Consider an RKHS generated by a PDK of order m, >
2, ie., H = Hm,,. To reflect the role of m, we modify all
previous notation by adding a subscript m. For example, let
K (-, -) be the reproducing kernel function associated with
H,,, and K,,, = %[Km(mi, z;)|1<i,j<n be the corresponding
empirical kernel matrix. Let S,, be an s, X n projection
matrix. We will construct the corresponding fr ,,(-) based
on (7) under S,, and \,,. Here

—4m/(4m+1)( 2m/(4m+1)

Am = cn loglogn)

and the corresponding projection dimension s, is an integer
satisfying

2/(m+1)( —1/(4m+1)

Sm > qn loglogn) (20)

where ¢ > 0 is a sufficiently large constant. R

Given each m, the sketched KRR estimator fr , = Ay,
where A,, = K,,, S, (S, K2,57 + X\ S K ST ) 1S K.
The test statistic is defined as

~ 1

Denote m,, < (logn)% for a constant dy € (0,1/2). Based
on T}, ,, our adaptive testing procedure is constructed as

follows.
Step 1. For any 2 < m < m,, — 00, standardize T;, ,, as
nTym — tr(A2)

2tr(AL) ’

Tm =

Step 2. Calculate 7;; = maxi<m<m,, Tm.
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Step 3. Find 7y, 1, = Bn (7 — B,,), where B,,* satisfies

21 B2 exp(B2) = m?

n:

(22)

By allowing m,, — oo, the unknown m, will be eventually
covered over a sequence of test statistics. Under the null
hypothesis (8), T}, = %ETA?RE, and thus 7, is of a
standardized quadratic form. Then, 7,; is the maxima of
a sequence of dependent 7,,’s. Based on a recent Gaussian
approximation result in [31], ie, Lemma S.4 (stated in
Supplementary), we prove in the following Theorem 4.1 that
the null limit distribution of 7, ,,, is some extreme value
distribution.

Theorem 4.1. Suppose that m,, < (logn)% for a constant
do € (0,1/2), and, for 2 < m < m,, S, satisfies
Assumption A3 (b) with projection dimension s,,. Then,
under Hj in (8), for any « € (0, 1), it holds that

P(Thm, <c¢a) = 1—a, asn— oo,

where ¢, = —log(—log(1 — «)).

Our next result states that the above adaptive testing
procedure is asymptotically minimax optimal. Specifically,
Theorem 4.2 shows that 7, ,,, achieves high power if the
local alternative is separated from zero by an order §(n, m..)
defined as

my /(4m,+1)

—Qm*/(4m*+1)( (23)

o(n,my) =n loglogn)

And, [44] showed that d(n, m.,) is minimax optimal rate for
adaptive testing.

Theorem 4.2. Suppose that m,, < (logn)¥ for a constant
dy € (0,1/2), and S,, satisfies Assumption A3 (b) with
projection dimension s,,. Then, for any € > 0, there
exist positive constants C, N for any n > N, with
probability approaching 1,

inf Pi(Tnm, = Calx,5)>1—¢,

fEBn m.
[[flln>Ccd(n,m.)

where By, = {f € Hm, : (f)TK, f <1}and f =
(f(xl)a ey f(xn))—r

In the end, we point out that the lower bound for
Sm given in (20) is slightly smaller than the sharp lower
bound for s derived in the non-adaptive case; see Table 1.
This is not surprising since the corresponding minimax rate

d(n,my), ie., (23), is larger than the non-adaptive rate, i.e.,
n72m* /(4m,+1) )

5 NUMERICAL STUDY

In this section, we examine the performance of the proposed
testing procedure through simulation studies in Sections 5.1
and 5.2.

2. According to [45], By, satisfying (22) has an approximation

1
By, = v 2logmy, — 5(10g log my, + log4m)/+/2logmy
+ O(1/logmy) < v/2logmn.

5.1 Simulation Study I: PDK

Data were generated from the regression model (1) with
f(x) = c¢(3B30,17(x) + 28511(x)), where B, is the density
function for Beta(a,b), x; “d Unif[0, 1], ¢; ud N(0,1) and
c is a constant. To fit the model, we consider the periodic
Sobolev kernel with eigenvalues pio; = pio;—1 = (2mi) 2™
for i > 1; see [46] for details. Set n = 22,210, 211 212 and
Hy : f = 0. The significance level was chosen as 0.05 and
the Gaussian random projection matrix was applied in this
setting.

We examined the empirical performance of the distance-
based test (DT) 7),,», and adaptive test (AT) 7, ., . For DT,
the projection dimension s was chosen as 2n” for 7 =
1/(dm+1),2/(4m~+1),3/(4m+1), with m = 2 correspond-
ing to cubic splines. For AT, the projection dimensions s,,
was chosen as 2n7 (log log n)_ﬁJr1 form=2,---,/logn.

We propose a data-adaptive smoothing parameter slec-
tion rule to guarantee testing optimality. Specifically, we
choose the optimal smoothing parameter \* satisfying

A =min{\ | A > o, 2},

where o0, is defined in Theorem 3.3 as o, =
2trace(A*)/n? with A = KST(SK2ST + ASKST)"1SK
as a projection version of the classical smoothing matrix.

Empirical size was evaluated at ¢ = 0, and power was
evaluated at ¢ = 0.01,0.02, 0.03. Both size and power were
calculated based on 500 independent replications. Figure 3
shows that the size of both DT and AT approach the nominal
level 0.05 under various choices of (s, n), demonstrating the
validity of the proposed testing procedure. Figure 4 displays
the power of DT and AT. Under various choices of ¢ and 7,
it is not surprising to see from Figure 4 (a), (¢), and (e)
that the power of DT approaches one as n or c¢ increases.
Rather, a key observation is that the power cannot be further
improved as v grows beyond the critical point 2/(4m + 1)
when ¢ > 0.02. This is consistent with our theoretical result;
see Theorem 3.10. Similar patterns have been observed for
the power of AT in Figure 4 (b), (d), and (f). Of course, the
power of AT is usually lower than that of DT under the same
setup, especially when the signal strength is weak. This is
the price paid for adaptivity.

size

o it W i
loga(n) logz(n)

(a)DT (b)AT

Fig. 3. Size for (a) DT and (b) AT with projection dimension varies.
Signal strength ¢ = 0.

5.2 Simulation Study II: EDK

In this section, we consider a multivariate case and test Hy :
f = 0. Data were generated from

2 .
Y = c(af + 2xinx0 + denciozs) 6, i =1,---,n,
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L+
4

Power

1 i Rl
loga(n) logz(n)

(d)AT

Power

i i io it
logz(n) logz(n)

(e)DT (f)AT

Fig. 4. Power for DT and AT with varying projection dimension. Signal
strength ¢ = 0.01 for (a) and (b); ¢ = 0.02 for (¢) and (d); ¢ = 0.03 for
(e) and (f).

where (2,1, %2, 2;3) follows from N(p,I3) with p =
(0,0,0), ¢ ~ N(0,1), and ¢ € {0,0.05,0.1,0.15}. Specifi-
cally, we chose the Gaussian kernel

K(x,x') = ez Tim(@i=w)®

We considered sample sizes n = 2% to n = 212 and sketch
dimensions s = 1.2log(n), 1.2(logn)3/2, 1.2(logn)?. For
each pair (n, s), experiments were independently repeated
500 times for calculating the size and power.

Interpretations for Figure 5 about the size and power are
similar to those for Figures 3 and 4. Interestingly, we observe
that the power increases dramatically as 7 increases from
1 to 1.5, while becomes stable near one as v > 1.5. This
is consistent with Theorem 3.7. Figure 6 demonstrates the
significant computational advantage of DT (corresponding
toy < 1) over the testing procedure based on standard KRR
(corresponding to v = 1).

In the supplementary, we conduct additional synthetic
experiments under the same simulation setup as Sections
5.1 and 5.2 except for using the Bernoulli random matrix.
As shown in Figures S.1-5.3, the interpretations remain the
same.

6 DISCUSSION

The main contribution of this paper is to apply random
projection to nonparametric testing, and propose the first
“sharp” result regarding projection dimension to guarantee
minimax optimal testing respectively for a general class
of random projections. In practice, many other random
projections also satisfy K-satisfiability, for example, the
randomized orthogonal system (ROS) sketches introduced

0.100- 1.0
0.075-

8 0.050
Sooso-

0.025-

Y

0.000- 02

1 10
logz(n) logy(n)
(©) (d)

Fig. 5. Size and power for DT with varying projection dimensions. Signal
strength ¢ = 0 for (a); ¢ = 0.05 for (b); ¢ = 0.1 for (¢); ¢ = 0.15 for (d).

Time (secondes)

Time (secondes)

Fig. 6. Computing time for DT with varying projection dimensions: (a) is
polynomially decay kernels; (b) is exponentially decay kernels.

in [47], [7], by randomly sampling and rescaling the rows of
a fixed orthonormal matrix. For the ROS examples, Assump-
tion A3 also holds with extra logarithm factor in projection
dimension, see Lemma S.8 in supplementary.

Stochastic approximation is another computationally ef-
ficient method for nonparametric learning. A representative
approach is the stochastic gradient descent (SGD) algorithm.
In SGD, the total step size within n steps iteration plays the
role of the regularization to avoid overfitting, and the SGD
estimator ([16]) can achieve the optimality provided that the
total step size has the same order of the effective dimension
which is represented by s, in our work. [48] established
an early stopping rule for gradient descent algorithm to
achieve optimal nonparametric testing. The result shows
that the total step size in gradient descent plays the same
role as 1/\ in classic KRR, and the optimal testing rate can
be achieved by the same “bias-standard deviation” tradeoff
while the bias and the standard deviation are represented
as functions of the total step sizes. In sketched KRR, we
showed that the projection dimension is required to be
greater than the effective dimension s, to guarantee high
power performance. Therefore, although the sketched KRR
and SGD are two different computationally efficient ap-
proaches, they are connected through the statistical effective
dimension.

7 PROOF OF MAIN RESULTS

In this section, we present the main proofs of Lemma 3.1,
sharpness properties including Theorem 3.9, Theorem 3.10.
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Proofs for the rest of Lemmas and Theorems can be found
in the Supplementary.

7.1 Proof of Lemma 3.1

Before the proof of Lemma 3.1, we first state some defini-
tions and preliminary lemmas. Define k) = 73, for any
A > 0. In fact, k) is the variance-to-bias ratio, where A
and sy /n correspond to (squared-)bias and variance of fr,
respectively; see Corollary 3.4 and Lemma S.3 for details.
Consider a bundle of function classes indexed by ~y:

Fr={f€H: fmapsX to [—1,1],||f||§_[ < kab,A>0.

Define a generalized version of local Rademacher complex-
ity function

Uy(r) = { sup 7201 (24)

fe}—* nz 1
Pfi<r

Z}r>0

where o1,...,0, are independent Rademacher random
variables, i.e, P(o; = 1) = P(o; = —1) = 1/2. W,(-) is
used to characterize the complexity of Fy. Let ¥5(-) be an
empirical version of ¥ (-) defined as

\f/,\(T): { fseu]% n;az x;)|wy, - -,xn},rzo.
P, fi<r
(25)

When k5 =< 1, ¥,(-) and ¥,(-) become the original local
Rademacher complexity functions introduced in [32]. Note
that x) < 1 actually corresponds to the optimal bias vs.
variance trade-off required for estimation. Rather, a different
type of trade-off is needed for optimal testing as revealed by
[22], [24], which corresponds to a different choice of x) in
F» as demonstrated in Section 3.

In the following Lemma 5 we represent the generalized
local Rademacher complexity function and its empirical
version by a function of eigenvalues and « . In Lemma 6, we
further show that both ¥ and ¥, possess unique (positive)
fixed points. This fixed point property is crucial in proving
Lemma 3.1. We defer the proof of Lemma 5 and Lemma 6 to
Section 5.5.2 in the Supplementary.

Lemma 5.
(a) Suppose p1 > 1/n. For any A > 1/n, it holds that

Uy(r) < Z Fx mm{ ~ i} (26)
(b) For any A > 0, it holds that
Wa(r) < |~ Z mamin{ i} (@)

Lemma 6. There exist uniquely posmve rx and 7y such that
Ua(ra) = ry and \I/,\(’r‘)\) = 7. Furthermore, if A > 1/n,
then r) < s)/n, and there exists an absolute constant
¢ > 0 such that, with probability at least 1 — e™%%*, 7 =<
sx/n.

We are ready to prove Lemma 3.1.

10

Proof Plugging these fixed points into (26) and (27) in
Lemma 5, we have

X

—Zf@\mm{

(28)

DY auz}

7y < fo@\mln{

N /M} (29)

By Lemma 6, we have r\ < s/n, leading to ry/k) =<
A; for the empirical version, with probability at least 1 —
e, )\ < sa/n leading to 75 /kx < A. Recall that 5 =

argmin{s : fi; < A} — 1. Then by (29), with probability at
least 1 — e,
1 " 7‘)\ —~
%Z Zmln{)\ fi} =< — Zmln{—,uz
=5 +1 i=1

,<Vr>\//$>\ = Asa/n,

where the last step is by k) = and 7y < sy /n. Therefore,

n)\’
n
Z Hi S Asx < Safhsys
i=8\+1

based on the definition (10) that A < ps, . |

7.2 Proof of Theorem 3.9

Proof We construct the true fo(-) =
w = (wy, -+ ,w,) . Then

1 foll3, = nw " Kw = 5T DB,

i K(zg, -)w; with

where 3* = /nUTw. Therefore, the constrain | fo|y <
C is equivalent to §* ranges over all vectors satisfying
| D'/25%||2 < C. Then we have

|fo— Frllz =|UDS" —UDUS a3
=|DY2(D'2p%) — DV2(SUDY?) Tall3,
where @ = (SK2ST + ASKST)"1SKy. Since the vector
(SUD'/?)Ta belongs to the column space of D'/2UST ¢
R"*%, and dim(DY?UST) = s. Then
Ifo = Frlls =IID*/*(DY?5%) |15 + | DV*(SUDY*)"all3
+ <D1/2(D1/2ﬁ*)7D1/2(SUD1/2)T&\>2
I:Al + A2 + Ag.
By choosing 8* orthogonal to the span of UST, so that
D'/23* is orthogonal to D'/2UST, and then we have
As = 0. Applying the minimax characterization of eigen-

values of the n x n matrix D'/2, we have with probability
greater than 1 — e~ when s < s,

22 . 1/2, 112
sup ||fo— frll; > min max D4y
ll foll=<1 | I Vidim(V)=s veVL:|v[2<1 | I
:ﬁ5+1 > C/Nerl > C/ATv
where ¢’ is a constant. [ ]
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7.3 Proof of Theorem 3.10

Proof Without loss of generality, here we consider Hy :
f = fowith fy = 0. We need to prove that when projection
dimension s is too small, for any random matrix S, there
exists true function f, such that || f|l% < C, || f||» > d*, our
testing rule still cannot detect it.

We show the existence of such true function f as fol-
lows. We construct the true f(-) = Y.;"; K(z;, - )w; with
w = (wg, -+ ,wy)". Then || f||3, = nw Kw = p*TD*,
where 3* = /nU "w. Therefore, the constrain ||f|lz <

C is equivalent to §* ranges over all vectors satisfying
IDY/26%||2 < C. -
Notice that nT, » = n||fr||2 = T1 + T + 273, where

Ty =n||Ecfrl% = |KST(SK*ST + ASKST) "' SK£|3,

Ty =n||KST (SK?ST + ASKST)"1SKe|?,

T3 =(KST(SK2ST + A\SKST)"'SKf)"
"KST(SK2ST + ASKST) 1 SKe.

For Tj, plugging in the expression f = nKw =

V/nUDY2D'Y?3*, we have
T, =n||DST(SD*ST + ASDST)~'SD*2 D28+,

where §~ = SU. Denote A = (DS(SD2ST +
ASDS)~1SD3/2)T, then Ty = n||ATD'/?3*|]3. Notice that
the span{A} C span{D3/2ST}, and dim(D3/2ST) = s.
There always exists 3* € R"*! such that D'/?3* is orthogo-
nal to the column space of D3/2S T, so that AT DY/23* =0
leading to 77 = 0. Furthermore, based on the above argu-
ment, we have T3 = 0. Then we have

T: - HMn
_ B/t vy,

On,\

T — tna
On,\

On the other hand, the signal of such f satisfies

sw IfI2= swp  [IDV2DV253
[fll# <1 B*er™ ¥t
ID2B%|2<1
> max [DV20ll3 = figsn.

> min
Vidim(V)=sveVL:|v][2<1

Let B = Hst1 /d:2, with probability greater than 1 —
e~™n, B, x — 0o when s < s* and n — oc.

Therefore, there exists f € B satisfying || f||2 > fis+1
Bnad*? > d*?, but

Pf(¢n7,\ = 1‘X,S) < Pf(¢n,/\ = 1|X,S> — Q.
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