REVIEW

scitation.org/journal/are

Data-driven materials research enabled by natural language processing and information extraction o

- 5 Submitted: 7 July 2020 · Accepted: 19 November 2020 ·
- 6 Published Online: 0 Month 0000

AQ1 9

10

Elsa A. Olivetti, ^{1,a)} Dacqueline M. Cole, ^{2,3,4} Edward Kim, Dolga Kononova, Gerbrand Ceder, Gerbrand Ceder, Correct Correct

11 AFFILIATIONS

- ¹Department of Materials Science and Engineering, MIT, Cambridge, Massachusetts 02139, USA
- 13 ²Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue,
- 14 Cambridge CB3 OHE, United Kingdom
- 15 SISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus,
- 16 Didcot OX11 OQX, United Kingdom
- 17 Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site,
- 18 Philippa Fawcett Drive, Cambridge CB3 OAS, United Kingdom
- 19 ⁵Science, Evaluation, and Measurement, Xero, Toronto, Ontario M5H 4G1, Canada
- Operation of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, USA
- ²¹ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- ²² ⁸Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- ²³ Author to whom correspondence should be addressed: elsao@mit.edu

ABSTRACT

Given the emergence of data science and machine learning throughout all aspects of society, but particularly in the scientific domain, there is increased importance placed on obtaining data. Data in materials science are particularly heterogeneous, based on the significant range in materials classes that are explored and the variety of materials properties that are of interest. This leads to data that range many orders of magnitude, and these data may manifest as numerical text or image-based information, which requires quantitative interpretation. The ability to automatically consume and codify the scientific literature across domains—enabled by techniques adapted from the field of natural language processing—therefore has immense potential to unlock and generate the rich datasets necessary for data science and machine learning. This review focuses on the progress and practices of natural language processing and text mining of materials science literature and highlights opportunities for extracting additional information beyond text contained in figures and tables in articles. We discuss and provide examples for several reasons for the pursuit of natural language processing for materials, including data compilation, hypothesis development, and understanding the trends within and across fields. Current and emerging natural language processing methods along with their applications to materials science are detailed. We, then, discuss natural language processing and data challenges within the materials science domain where future directions may prove valuable.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021106

36	TABLE OF CONTENTS		C. Document segmentation and paragraph		51
38	I. INTRODUCTION	2	classification	5	52
	A. The scope of this review		D. Named entity recognition (NER)	6	58
41	II. THE WAYS THAT NLP CAN BENEFIT DATA-		E. Entity relation extraction and linking	7	56
43	DRIVEN MATERIALS SCIENCE	3	F. Conceptual network	8	58
44	III. PERFORMING NATURAL LANGUAGE		IV. RESOURCES AND TOOLS FOR NLP	8	60
46	PROCESSING	4	V. EXAMPLES OF NLP BEING USED IN MATERIALS		62
48	A. Content acquisition	5	SCIENCE	9	68
49	B. Text preprocessing and tokenization	5	VI. BEYOND BODY TEXT	12	68

Appl. Phys. Rev. **7**, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

PROOF COPY [APR20-RV-00497]

Applied Physics Reviews

REVIEW

scitation.org/journal/are

93

94

95

96

97

98

99

112

58	VII. CHALLENGES AND OPPORTUNITIES	15
39	VIII. CONCLUDING REMARKS	16

I. INTRODUCTION 71

72

73

75

76 77

78 79

80

81

82

83

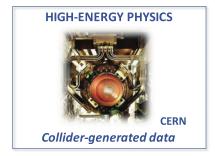
84 85

86 87

88

89

90


Data have always been a fundamental ingredient for realizing, accelerating, and optimizing any scientific pursuit. The increasing ubiquity of data science methods, based on improved computing power and algorithm development, has driven significant opportunity and interest in immense, structured datasets. When such data are assembled in a form readily consumed and mined using data science tools, coupled with domain expertise, there is tremendous potential to accelerate discovery,1 build upon previous findings, rapidly enter a new field, connect individual research efforts, and link across

The physics community has long understood the value of curating data in a way that can be comprehended by computer logic. This is particularly true in the domains of high-energy physics, astronomy, and astrophysics, where data emanate from very rare and specialized research machines. For example, the Large Hadron Collider at CERN, in Switzerland, generates a wide range of data from particle collisions, certain types of which can be measured using unique detectors, and enables collaborations among 3000 scientists and engineers for each collaboration. Other examples include the gravitational-wave observatories (LIGO² and Virgo³ collaborations are currently > 1000

and >500 members, respectively) and widely shared astronomical mappings from satellites and telescopes. These sources of data tend to be managed by large international research facilities since multinational efforts are needed to fund and build them. Scientists work within large, coordinated, research consortia to produce, process, and analyze the data.^{4,5} Raw data are contained within each facility but are accessible, albeit sometimes in normalized form, and their particular data characteristics tend to limit the variety of data types.

However, one aspect of the physical sciences still wanting for more 100 and better organized data to leverage emerging data science tools is in 101 the domain of materials science. Successful examples of application of 102 materials informatics to the discovery of new materials can be found in 103 alloy development, polymer design, organic light emitting diodes, and 104 solar cells.^{9,10} However, these cases are still quite limited and suffer most 105 from lack of data. While there are a growing number of open databases 106 that contain materials property information, 11-15 most of these databases 107 are created from computationally calculated properties. As an example, 108 the materials project includes computational information for over 109 130 000 inorganic compounds, and the analogous experimental databases only contain 9000 materials.¹⁵ Experimentally based, large, and ¹¹¹ structured materials property databases are still lacking.

Unlike other fields, materials science lacks sufficient incentive to 113 make it practical to centralize its data, not only because the data are so 114 diverse but also because data arise from so many independent scientists and laboratory sources. 16 Figure 1 illustrates this contrast. Data in 116

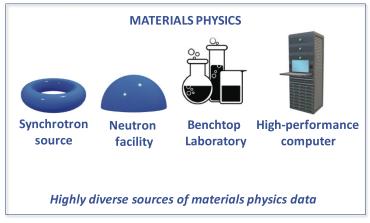


FIG. 1. Comparison of large centralized datasets in high-energy physics, astronomy, and astrophysics compared to heterogeneous, decentralized data in materials physics. Unlike other fields, materials science lacks sufficient incentive to make it practical to centralize the data, not only because the data are so diverse but also because the data arise from a variety of independent scientists and laboratory sources. Data in the field of materials science are particularly heterogeneous due to the wide variety of material classes studied by scientists. The data appear as numerical text or image-based information, which requires quantitative interpretation.

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

7,000000-2

118

119

120

121

123

127 128

129

130

131

132

133

134

135

136

137

143

144

145

146

147

148

149

150

151

152

159

160

161

162

163

164

165

166

167 168

171

Applied Physics Reviews

REVIEW

scitation.org/journal/are

materials science are particularly heterogeneous, based on the significant range in materials classes that are explored and the variety of materials properties that are of interest. This leads to data that range many orders of magnitude, and these data may manifest as numerical text or image-based information, which requires quantitative interpretation. The many length scales of materials science add to this diversity, with data being measured from the atomic structure to massive components that are integrated at a system level, such as airplane wings or turbine blades. In addition, only a small sub-set of specialized materials-physics research needs to be carried out at centralized facilities, such as government-run synchrotrons, neutron and muon sources, nanocenters, high-magnetic field laboratories, laser laboratories, or high-performance supercomputing facilities. 17-21 Some of these facilities archive the raw or normalized ("reduced") data, and some offer their scientific users the option to tag their experimental data with a document object identifier (DOI) to make them traceable.²² If even once such data become openly available, the metadata generated by the experiment may be missing.²³ Metadata are vital for processing the data to the point where one can interpret their scientific meaning.

Fortunately, there is a prospective approach to address at least some aspects of this data-access quandary in materials science. Scientists will cede control of their processed data if they publish their results, and publications continue to be the primary means of communicating within the materials domain. These data will be spread across various journal articles, patents, or company reports, owing to the variety of ways that scientists can publish their findings. The data will also present in an unstructured form, given the highly diverse way in which scientists write an article and select the most salient results for showcasing their scientific points (i.e., as text or in figures, tables, and schematics). For example, scientists may report the composition of a metal alloy in one table, the processing conditions for that alloy in the body text of the methods, and then the final properties in figures within the results. Despite the distributed nature of these processed data, harvesting them from documents presents a way to retrieve materials-physics data en masse. The manual task of mining information from documents by editors is not practical, given the amount of data that are needed to succeed in the field of materials informatics. A means to automatically extract materials-physics data from scientific documents is, therefore, required. This challenge presents a prime opportunity for information extraction and natural language processing (NLP), whereby "materials-aware" text-mining models can be used to collate processed data that lie within the literature to afford auto-generated materials databases that can be used in materials informatics.

Capturing unstructured information from the vast and evergrowing number of scientific publications has substantial promise to meet this need and enable creation of experimental-based databases currently lacking. This reliance on publications in scientific communication is exemplified by the proliferation of new journals and increased frequency of publication. 24-26 Developing methods to mine the literature for data may also prevent information loss. Without structuring information, scientists cannot make the necessary connections among findings; they may instead be drawn by what the authors of a scientific document have chosen to be highlighted in a journal or individual publicity efforts. Scientific progress relies on hypothesis development, which requires leveraging increased knowledge toward greater understanding, typically based on synthesizing existing information. Scientists are not trained to formalize their findings in a structured way. The rapid growth of scientific knowledge has the potential to provide opportunities to transfer solutions from one domain to address 175 problems in another. However, the underlying relationships largely 176 remain embedded, and groups from disparate domains remain within 177 their own specialties.²⁴ Limits what one individual can draw relationships between varied concepts, topics, and domains. There is a distinct 179 value to be drawn beyond what is known and what is known as individuals from the collective to broad multidisciplinary knowledge 181 within and across a given domain. This sharing and integration of information across communities is a tall order to accomplish comprehensively, but the ability to automatically extract information from the 184 literature can provide a tool to facilitate this engagement.

A. The scope of this review

In this review, we look at the fully and semi-automated means of 187 assembling and structuring scientific data through NLP and text 188 mining. In the realm of scientific text, methods, tools, and databases of 189 relevance for NLP have been most well developed for the biomedical 190 where information is sought on genes, proteins, drugs, 191 medical symptoms, and disease. These efforts exist also in the chemistry discipline, which arguably began earlier, but tools for chemistry are 193 less advanced than those in the biomedical domain. Efforts in chemistry have focused on developing comprehensive chemical dictionarsubstance and small molecule composition, and structure and 196 property descriptions. 31-34 This review will focus on what has been 197 achieved to date in NLP for the discipline of materials science.

The structure of this article is as follows. We first describe reasons 199 for pursuit of NLP of scientific text given the motivation provided 200 above. Next, we focus on the tasks and methods involved, describing 201 the challenges for the materials science domain including a summary of commonly used tools. Then, we show in detail about particular 203 examples of NLP applications in materials science. Next, we discuss 204 data mining beyond NLP and how this nonetheless tracks back to the 205 cognate need for NLP. Finally, we provide some commentary on the 206 future needs and directions for the use of NLP as a tool for the materials community.

II. THE WAYS THAT NLP CAN BENEFIT DATA-DRIVEN **MATERIALS SCIENCE**

Leveraging NLP tools in materials science remains in its infancy. 211 The methods used, and the level of accuracy required, vary depending 212 on the inquiring goal. Before diving into the details of how NLP is per- 213 formed, we briefly mention some of the key benefits that NLP afford 214 for data science. These include generating datasets for mining and 215 visualization across multiple research efforts, as well as contributing to 216 machine learning (ML) predictions and identifying research trends. 217 Examples of the application of NLP in materials science will be provided in Sec. IV.

The use of NLP on scientific text can generate libraries of infor- 220 mation to explore, which enables data visualization, mining, and ana- 221 lytics. The primary goals of text extraction can be used to populate 222 databases with quantitative information or make text information 223 summative and interactive in a way that can reveal patterns, gaps, or 224 trends. Advances in data analytics and visualization tools, described in 225 greater detail in Sec. V, have also accelerated the process of information consumption to decision-making. A well-structured database 227 with an interactive and intuitive graphical user interface allows 228

185

186

198

208

209

231

235

236

237

238

239

240

241

242

245

246

247

248

249

250

251

255

256

257 258

259

260

262

265

Applied Physics Reviews

REVIEW

scitation.org/journal/are

270

researchers to perform significant background research, test hypotheses, survey the field, and form a sound basis for designing and performing experimental work, saving hours if not months of laborintensive literature surveying and wasted experiments. Text extraction can provide data that drive search-engine development in the scientific domain and a beginning of active learning systems tied to automated materials discovery and synthesis platforms.

Beyond data extraction and visualization, researchers may also leverage NLP to derive fundamental insight across these data; for example, NLP may be used to find relationships between compounds by mapping materials mentioned in the text to corresponding chemical structures. This identification of relationships and trends is frequently done by using various ML techniques on the extracted data. Scientists can search for similar chemical structures or substructures, meaning that text information can be combined with knowledge from established computational-property databases. For example, this combination of extracted and existing data might allow for exploring and screening the relevance of compounds to a new application as a function of published properties.³⁸ The ML models used vary in complexity, but the key opportunities for the scientific-language assembly include literature-based knowledge discovery, suggesting novel scientific hypotheses, or predicting the outcomes of reactions.

NLP activities across scientific text can also identify future research trends by predicting emerging associations (co-occurrences) between selected keywords found in the scientific literature. This type of analysis has been done previously for biochemistry, 39,40 neuroscience, 41,42 and human innovations. 43,44 Significant work in this area can also be found in the domain of "the Science of Science." The NLP community presents a nuanced differentiation between "information extraction" and "knowledge-based creation" (traditional and emergent approaches, respectively). Information extraction structures extracted text according to entity recognition and entity relationships, which, then, feed into downstream search and query-based activities. Knowledge-based creation can provide an end unto itself in the form of ontology development where facts and relationships with a discipline are extracted in a form that could be used to annotate area-specific databases or to transfer knowledge between fields. Early efforts in materials science have focused primarily on information extraction. Given the need for expanded datasets in materials science 267 (beyond what is currently available), this is a logical emphasis. As the 268 community refines key tools toward NLP for materials, a broader set 269 of pursuits can be realized.

Total Pages: 21

III. PERFORMING NATURAL LANGUAGE PROCESSING

Before delving into the specific details of methodology, we pro- 272 vide a few key themes related to NLP, which convey the perspective 273 taken in the materials science community. First, there are manual and 274 semi-automated methods of literature-data extraction, which yield 275 insights into "small" datasets (i.e., tens to hundreds of relevant 276 articles), but the focus moving forward (and within this review) must 277 be on the ability to apply methods to create large datasets (i.e., tens of 278 thousands of relevant articles). Generic NLP tools (such as CoreNLP) 279 exist that do not perform well in the materials science domain without 280 modification, as the vernacular, sentence construction, terminology, 281 and chemical semantics are specialized. Therefore, we need to develop 282 and apply materials-specific text mining tools to meet the needs of this 283 community. To reach any sort of economy of scale across such an 284 interdisciplinary field, approaches that transfer effectively within the 285 materials science domain are needed, which requires a balance 286 between accuracy and generalizability. Each application space will 287 have local norms from which rules can be crafted for highly accurate 288 information retrieval in that one domain; however, these rules often 289 breakdown when applied to a different area of inquiry. Challenges 290 with developing generalizable tools are also influenced by the type of 291 document and section within the document. Finally, there is a tension 292 in balancing model development toward the semantic or linguistic 293 structure of the document, while still incorporating critical domain 294 knowledge in how individuals within the field communicate. Natural 295 language carries a high degree of ambiguity, and implicit knowledge 296 plays a significant role in how a field communicates. However, if too 297 much of this implicit knowledge is integrated within models, leveraging the linguistic structure of the text becomes more difficult.

Most natural language extraction pipelines follow a similar overall approach, shown in Fig. 2, which consists of (1) acquiring a relevant 301 corpus of text, (2) processing that text into individual terms, which is 302 called tokenization, (3) segmenting documents and classifying 303

FIG. 2. Schematic of NLP including examples of tools and models at each step. It is visible that most natural language extraction follows similar approaches: (1) acquiring relevant text resources, (2) processing the text into individual terms (also known as tokenization), (3) document segmentation and paragraph classification, (4) recognizing tokens as classes of information, (5) entity relation extraction, and (6) named entity linking.

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

350

351

352

Applied Physics Reviews

REVIEW

scitation.org/journal/are

paragraphs, (4) recognizing tokens as specific classes of information, generally referred to as named entity recognition (NER), (5) entity relation extraction, and (6) named entity linking. Depending on the question being pursued by researchers, pipelines may vary in their methods and approach, including the order in which the abovedescribed steps are performed, the types of information models are provided, and deviations in the models themselves. Using broad strokes, we can describe the continuum of approaches as direct word mapping, defining heuristics, and then to ML-based methods. ML approaches, in and of themselves, can vary within the continuum of unsupervised to supervised, the latter requiring labeled data often in significant volumes. This section describes details on each of these steps with materials-relevant method development presented with each step.

A. Content acquisition

The first step is to develop and acquire a relevant corpus of subject articles of interest from which information will be retrieved. The content varies by the degree of accessibility, the corpus of subject articles of interest, and the kinds of documents (patents vs journal articles, for example). This content can only be digested within the subsequent models if rendered in plain text-accessible format, although there is variety in that format. 45 The older digitized content is available primarily in portable document format (PDF) (introduced in 1993); however, even the older content may be preserved as images, presenting an insurmountable challenge in extracting information at scale. Converting PDF to plain text relies on spatial identification of blocks of text in a layout-aware manner, which is still an area of research. 46 Errors may arise in terms of misplaced blocks of text and font-conversion challenges. Most journals and publishers after the mid-1990s also provide content as hypertext markup language (HTML) or extensible markup language (XML). HTML or XML often has more consistency in their conversion to plain text format, but this format is not ubiquitous across publishers. Given the challenges associated with PDF conversion, nearly all reports of text mining of materials science texts have been on articles available in markup language.47,48

Acquiring information from patents provides another way to obtain content, given patent accessibility and centralized hosting by country-specific patent offices. However, patent authors often seek to protect their knowledge from being fully disclosed, and so, these texts may have even more implicit information than journal articles. Patents relevant to materials science have a closely defined structure and style of presentation; 49 in particular, the example section mirrors the synthesis section, so they can be interpreted with a high degree of accuracy. Patents will not be a focus of the methodology discussion going forward in this text, but they have been used in biology and chemistry applications with some frequency.

The downloaded content consists of article text and metadata (journal name, title, abstract, and author names). The metadata provide value in databasing the content, as well as being high-level information that can inform entity recognition as described below; it is typically more structured than the document content.

The necessary number of articles gathered within a corpus is also often thought about and whether the database.

B. Text preprocessing and tokenization

Once the content has been obtained, three main activities are used 360 to manipulate the information contained within the text: entity extrac- 361 tion, entity relation, and entity linking. This overall flow begins with a 362 series of steps that preprocess the text of the article to enable identification of the desired information. Preprocessing will vary according to the 364 order of events and the tools used for each stage. A low-level, but critical, 365 step is character encoding, establishing the way that the characters are 366 represented. Tokenization (a form of preprocessing) segments text into 367 the relevant sentences, phrases, words, or word pieces, to be processed 368 individually or as a sequence. Punctuation marks are the obvious 369 approach to identify sentences, but the language of the scientific domain 370 is often complicated by terms that are composed of multiple words, symbols, and other types of structural entities, which, therefore, requires 372 specialized tokenization pipelines. Some examples of this challenge with 373 chemical and material notation include the uses of commas: 374 $(Y,In)BaCo_3ZnO_7$; periods: $(La_{0.8}Sr_{0.2})_{0.97}MnO_3$ or $CuSO_4 \cdot 5H_2O$; 375 hyphens: $(1-x)Pb(Zr_{0.52}Ti_{0.48})O_{3-x}BaTiO_3$ or Ti-64 (common term for 376 Ti₉₀Al₆V₄ alloy); and colons: LiSr_{1-x}PO₄:Eu_x. Using materials domainspecific tokenization has been shown to be important for successful NLP 378 of materials texts as it can have a significant impact on downstream 379 Common tokenizers for the scientific literature include 380 those available within the software: OSCAR4,³⁴ ChemDataExtractor,³³ ChemSpot,³² and BANNER's simple tokenizer.²⁷ More general tokenizers 382 that may also be used or adapted for the scientific literature include those 383 by SpaCy and the Penn Treebank tokenizer.

Dependency-based parsing of sentences and part-of-speech (POS) 385 tagging identify the syntactic structure of a sentence. Current state-ofthe-art approaches use neural algorithms, including sequential and 387 bidirectional modeling; however, these algorithms rely on larger 388 volumes of training data and corpora than is typical for specific cases 389 within materials science. 52 Nonetheless, some models such as bidirec- 390 tional encoder representations from transformers (BERT)⁵³ have 391 shown the ability to adapt readily to certain tasks using datasets on the 392 order of thousands of documents, simply by "swapping out" the final 393 layers of the model to a task-specific architecture (e.g., part-of-speech 394 tagging during parsing). Further-distilled models, such as 395 DistilBERT, 54 may improve this ability to adapt to thousands of 396 document-sized datasets, as there are fewer parameters to fine tune 397 during domain adaptation. Note that we will discuss the role of BERT and other word embedding models below.

When compared to general-purpose text, a scientific 400 dependency-parse should learn specific sentence structures and pat- 401 terns, such as an extensive use of passive and past tense, limited use of 402 pronouns, and depersonalization of a sentence.⁵⁵ The accurate con-403 struction of dependency-based parse trees is highly sensitive to the 404 punctuation and correct usage of the word forms, especially verb 405 tenses. These aspects of the grammar are often neglected in scientific 406 publications, making it difficult to use standard well-developed algorithms and tools for text mining. To date, there have not been develop- 408 ments to address these caveats for scientific text.

C. Document segmentation and paragraph classification

NLP can afford better accuracy when one operates only within 412 specific parts of the article, such as the abstract, main text body, tables, 413

AQ3 357

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

7. 000000-5

410

411

416

417 418

419

420

421 422

423

424

425

426

430

431

432

433

434

435

436

438

442

443

444

445

446

448

449

450

451

452

453

454

459

460

461

462

463

464

468

Applied Physics Reviews

REVIEW

scitation.org/journal/are

or figures, depending on the area of inquiry. This approach not only helps computationally but can also increase the uniformity of the desired extracted text. Matching regular expressions to identify section headers provides an easy guide, and this can be done simply using string matching within a set of text or regular expression (regex) coding, although the variation in the application of headers by publishers can present a challenge even in this straightforward activity. Huo and colleagues have recently applied probabilistic methods, such as latent Dirichlet allocation (LDA), across several million articles to use unsupervised approaches to identify experimental steps implied in sentences.⁵⁶ LDA provided a probabilistic topic distribution for each sentence. These authors, then, applied random decision forests, using the topic n-gram as the feature, to classify different types of synthesis procedures; this required annotation of only a few hundred paragraphs. Another feature of this work is that the authors were able to construct a Markov chain representation of the material synthesis flow

As an alternative to the unsupervised approaches discussed, Hiszpanski et al. used a supervised ML approach to evaluate every sentence within an article and extract solution-based synthesis protocols.⁵⁷ Specifically, by iterative rounds of training with humanannotated sentences, they trained a logistic regression classifier that yields the likelihood of a given sentence describing solution-based synthesis protocols based on the words present within the sentence. As may be expected from scientific writing conventions, past tense verbs, unit terms (e.g., ml and min), and chemicals are weighed heavily as being indicative of a synthesis description. Surprisingly, function words such as "the," "of," "then," and "and," which are normally filtered out from text as "stop words" in nonscientific applications, occur more commonly in synthesis protocols and are important in distinguishing sentences that concern synthesis or otherwise. This observation points out again how traditional NLP approaches may need to be modified when these tools are translated in their application from general texts to the scientific literature.

D. Named entity recognition (NER)

Each of the preprocessing steps described above enable the heart of the text-extraction activity, NER, which identifies the objects of semantic value by recognizing and classifying concepts mentioned in the text. Entities are useful in and of themselves for researchers to map to properties, to find similar compounds, or to incorporate in annotation labeling. Historically, immense effort has gone into NER for the medical domain, extracting symptoms, diagnoses, and medications from text.²⁷ The chemistry domain has expended significant effort in NER, but even state-of-the-art NER systems do not typically perform well when applied to different domains, and effort is required to create quality data for trainable statistical NER systems.⁵⁸

NER is an area where the materials community is clearly in its infancy. There is a need for training data to develop entity-recognition models. Where knowledge bases exist already for a field, training may be done using distant supervision models that map known entities and relations onto unstructured text. In the computer-science community, this activity is supported by "all community" developed learning tasks that are orchestrated through conferences in the field; these tend to tackle significant challenges along a roadmap, thereby making concerted progress as a domain. ⁵⁹ There is no equivalent yet in the materials space.

The general methods for NER range from dictionary look-ups, 470 rule-based, and machine-learned approaches. Typical pipelines used 471 in the materials science domain include hybrids of all three of these 472 approaches. Hybrid systems provide a balance of precision with computational efficiency, where only those cases that cannot be handled 474 by dictionaries or rules pass to ML approaches to make efficient use of 475 annotated data. Dictionary look-ups include material composition, 476 chemical element names, properties, as well as processes and experimental parameters.

Hand-crafted rule/knowledge-based methods are a collection of 479 rules or specifications defining how to handle relative ordering and 480 matching among those rules. Rules may be developed through corpus- 481 based systems that require examining several cases to obtain the 482 patterns or via domain knowledge understanding of nomenclature convention. To overcome the time intensive nature of rule development, 484 strategies have been developed to learn rules through small collections 485 of seed examples that begin from very high precision rules and learn to 486 generalize or vice versa. Examples of these approaches include 487 LeadMine,⁶⁰ which uses naming convention rules, ChemicalTagger,⁶¹ which parses experimental synthesis sections of chemistry texts, and 489 portions of ChemDataExtractor, which uses nested rules. For example, 490 when researchers extended ChemDataExtractor for use in magnetic 491 materials, additions were made for domain-specific parsing rules 492 including off-stoichiometry and relevant terms associated with the 493 domain of interest (in this case magnetic materials such as ferroelectrics 494 and ferrites).

Finally, at the other end of the continuum of NER, approaches 496 are ML-based statistical models, which use a feature-based representation of observed data to recognize specific entity names. These models 498 typically depend on sets of annotated documents, which rely on annotated corpora and the development of metrics for inter-annotator 500 agreement where multiple annotators are involved. Given that a sen- 501 tence is represented as a sequence of words, it is insufficient to consider only the current word class; therefore, sequential (and typically 503 bidirectional) models are necessary to consider the proceeding, cur- 504 rent, and following word. While rule-based approaches are tedious to 505 develop and not easily generalized, supervised ML models, in contrast, 506 require substantial expert-annotated data for training along with 507 detailed annotation guidelines. ML models invite careful consideration 508 of the types of classes that are identified and the order in which labels 509 are classified. Initial NER work specific to the materials domain was 510 performed by Kim et al. 47 Kononova et al. further built upon this 511 work through a two-step materials entity recognition⁴⁸ using the bidirectional long short-term memory network with the conditional random field neural network.

As alluded to above, the degree of supervision within NLP is often modulated by word vector representations that capture the syntactic and semantic word relationships, the so-called "word embeddings." Word embeddings are a learned continuous vector representation, which encode the local word context; these can, then, be analyzed to capture distributional similarities of words. These models may be intrinsic, wherein they identify semantic relations, or extrinsic. Character-based word representation models help with "what does the word look like"; these use the individual character of a token to generate the token vector representation and include morphemes (suffixes and prefixes) and morphological inflections (number and tense). The effectiveness of word vectors depends not only on the training 526

Appl. Phys. Rev. **7**, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

528

529

530

531

533

535

537

538

539

540

541

542

543

544

545

546

547

548

549

553

554

555

556

557

558

559

560

561

562

563

564

565

567

569

570

572

573

574

575

576

581

582

Applied Physics Reviews

REVIEW

scitation.org/journal/are

595

596

algorithm and hyperparameters but obviously also on the source data. Recent work explored the impact of similarity between pre-training data and target task, particularly in the area of word embeddings.⁶ This work proposed to select pre-trained data using the target vocabulary covered rate (percentage of the target vocabulary that is also present in the source data) and language-model perplexity (if the model finds a sentence very unlikely, in other words dissimilar from the data where this language model is trained on, it will assign a low probability and therefore high perplexity). The authors found that the effectiveness of pre-trained word vectors depends on whether the source data have a high vocabulary intersection with target data, while pre-trained language models can gain more benefits from a similar source. We note, therefore, that the choice of corpus used for the training process is critical, pointing to the quality of text and domain-specificity requirements.³⁸ A range of word-embedding models have been used in the materials community to date and vary with aspects of the corpus that they are trained on; for example, Word2Vec⁶³ is trained just on the solid-state synthesis paragraphs vs the contextual model, which is trained on full text.⁶⁴ Other word embedding models that have been used in the materials science domain include FastText, 65 Embeddings from Language Models (ELMo),66 and BERT.53,

Materials-specific challenges to NER will vary by the subdomain. These include subtleties associated with the property, context, and reporting of the underlying measurement. For example, within the work from Audus et al. on the NLP of polymers, 68,69 the authors have undertaken specific NER efforts related to that domain, termed polyNER. A synthetic polymer is rarely a single entity and is described instead by distributions of molecular weight, often in conjunction with nonstandard naming conventions or trade names. Thus, polyNER focuses on a necessary pretreatment for polymer entity recognition, highlighting the challenges of generalizing NER tools across disparate domains within materials science. As another example, in work pursued by Kononova et al. on solid-state synthesis of inorganic materials, material entries were processed with a material parser that converted strings for a material into a chemical formula, which in turn was split into elements and stoichiometric balances. Then, the authors obtained balanced reactions from precursors and target materials by solving a system of linear equations; this included a set of open compounds that can be released or absorbed, which were inferred based on the composition of precursor and target materials.

Often, these approaches require hybrid system development, where the computer automates one aspect of the activity and human intervention enables precise execution. For the polymer extraction work, the NLP-based extraction process identified candidates within the article and subsequent automated and crowd-sourcing curation steps processed these candidates. There are several ways to formalize the role that a human might play in these activities. 70,71 Approaches can leverage word-embedding models to establish entity-rich corpora, the so-called candidate generation, for expert labeling, which feeds into a context-based word-vector classifier. 69 Researchers have also pursued active learning with maximum-entropy uncertainty sampling to achieve valuable annotations from experts to improve performance, but this proved time intensive to pursue. Roles for hybrid systems also include establishing dictionaries for stop words and rules to detect systematic names.

An additional challenge in the materials community is multiword tokens. Huang and Ling recently proposed multi-word identifying and representing methods. This involves recognizing the 584 multi-word phrases in the chemical literature through unsupervised methods and then representing the phrases in the vocabulary. Typically, word embedding is performed after tokenization with 587 phrase representation obtained based on a post-vector addition. In 588 this method, a new step is incorporated to identify multi-word phrases 589 and add the detected terms to the vocabulary. In this case, word 590 embedding is performed afterwards at the phrase level. Huang and 591 Ling's computationally intense approach starts from tokenized and 592 trimmed single words and sentence context. Then, they use scoring 593 functions to identify bigrams, repeating this process up to n-grams, 594 and then move to phrase-level word embedding.

E. Entity relation extraction and linking

Entity relation extraction is the activity that identifies relations 597 between entities mentioned in a given document. It is primarily done 598 in post-processing steps after NER. Entities extracted can also be 599 linked to their properties or co-occurrence with other entities, which 600 allows new knowledge between them to be identified. Efforts have primarily focused on the co-occurrence of entities within a few sentences 602 of each other, although there is a need to extend this to a full 603 document.

Within materials science, most entity-relation extraction occurs 605 through dependency parsing. More direct supervised ML-based 606 approaches would require the development of larger annotated corpora and quantifying similarity by computing representation similar- 608 ity. One approached used in materials examples are Snowball 609 methods, which include seed examples of known positive relation- 610 ships. Based on locating sentences with these seed examples, typical 611 patterns are learned using clustering of textual similarity. 61 By compar- 612 ing unseen sentences to learned patterns, new relationships can be 613 identified based on a threshold minimum level of similarity. These 614 methods have been extended recently within ChemDataExtractor tools 615 using a modified Snowball algorithm.⁵¹ The original Snowball algorithm uses several thousand seed examples.⁷⁶ For the modified 617 Snowball algorithm, the quaternary relationships included the property specifier, chemical entity mention, property value, and then 619 unit.51 Named entity linking, then, connects information extracted 620 from text with data stored in curated databases where the challenges 621 are to delineate entities that are different from those that are synonyms 622 and should be linked to one unique identifier.

There are several issues to consider after initially applying NLP 624 techniques to scientific text. First whether or not the data are extracted 625 accurately. Second are the data reported correctly. Third are data being reported with sufficient details to warrant these efforts. As the process 627 of text mining proceeds down the pipeline shown in Fig. 2, the accuracy of the extracted data decays rapidly, and noise accumulates. 629 Hence, the choice between having higher precision within a set of 630 extracted data vs having a larger dataset size becomes pivotal because 631 this choice will significantly affect the results of the data mining. Kim 632 et al. showed that even when using millions of raw papers as a starting 633 position, numbers may drop to just hundreds of thousands of papers 634 depending on the specific topic.⁴⁷ Data loss arises not only due to 635 imperfections of the extraction methods but also, oftentimes, due to 636 the misrepresentation of the original information. A prominent example is referencing a previously published procedure or data analysis 638 instead of providing its description in the current paper. The use of 639

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

642

643

644

645

646

647

648

649

650

654

659

662

663

664

665

668

669

670

Applied Physics Reviews

REVIEW

scitation.org/journal/are

nonstandard abbreviations, acronyms, and terms also significantly affects the amount of false negative outcomes, as these abbreviations complicate the linking of the information from different parts of the text.

All these places for data loss point to the significant role of outliers and how frequently a data point is occurring, as well as how they are treated afterwards. The pursuit of ground truth for supervised ML within NLP is costly and time-consuming since it is based on the limited annotated documents thus far as discussed above. Whether or not accuracy that is sufficient for the spread of goals of NLP and text mining in materials science can be achieved is still an open question.

652 F. Conceptual network

Separate from the NLP pipeline described above, the use of textbased approaches to generally learn a field has been an area of interest linked to the concept of ontologies, as described above. A high-level workflow for ontology generation is as follows: first, generate concept lists through expert input and comparisons between a curated reference list and a random set of scientific documents. Then, use methods, such as bag-of-words, to populate the ontology. Recent work used a hierarchical LDA, which learned an overall structure from the data and generated a tree of classes that could be used for searching terms, annotation, and standardization of metadata.⁷⁷ There are a few interesting ways to generate these concept lists. The work by Krenn and Zelinger analyzed trends in quantum physics by generating a concept list through human-expert input that is expanded by Rapid Automatic Keyword Extraction to a term list; this is, then, fed into a comprehensive corpus to establish links between each of the terms. To project future directions of research, they performed a link-prediction task to ask which new link will be formed between unconnected vertices given the current network. This was done using an artificial neural network with four fully connected layers, which ranked unconnected pairs of concepts and further extended this approach to identify pairs with exceptional network properties.

IV. RESOURCES AND TOOLS FOR NLP

Given the methods described above, a section is provided here, 675 which summarizes some helpful resources and tools, including a coverage of the tools most commonly used in NLP for materials. Table I 677 lists the most common NER toolkits publicly and freely available and 678 the information that they are capable of extracting. Most have been 679 focused on capabilities to extract entities from body text, but many 680 have expanded efforts to extract tables as well. Several also have a focus 681 on extracting biology-relevant information, which stems from the earlier leading NLP efforts in life sciences. The groups that developed 683 these tools have taken varied approaches, tailored to their specific 684 sub-field of literature. The tools typically vary with the tokenizers and 685 techniques that they use to identify chemicals, which often involve a 686 combination of dictionaries, hand-crafted rules/patterns, and 687 POS-tagging methods, as previously discussed.

Researchers are likely to be interested in extracting categories of 689 information, which are specific to their research topic and beyond, for 690 which there are readily available tools shown in Table I. If the category 691 of information that is desired has a formulaic representation, or it has 692 a limited number of possible ways of being expressed, then rather simple pattern- or dictionary-based approaches can be created to extract 694 this new category of information. When these more straightforward 695 methods fail, then ML-based models can be developed, such as the 696 CRF models for chemical-entity recognition, as previously discussed. 697 Common packages for developing such NLP models include Natural 698 Language Toolkit (NLTK), 83 AllenNLP, 86 and openNLP. 87 SpaCy,⁸⁴ Stanford CoreNLP,⁸⁵

In addition to the plethora of software packages for NLP, recent 701 developments in word representation research have led to generalized 702 models that may be rapidly fine-tuned to domains of interest. A notable example is BERT,⁵³ which has been fine-tuned to scientific text to 704 produce SciBERT;⁶⁷ such models may ultimately advance the accuracy 705 of entity recognition for chemicals and materials.

Moreover, other advances in NLP research beyond word repre- 707 sentation and subsequent supervised tasks (i.e., classification) may 708

TABLE I. Tools available for natural language processing in the materials discipline.

Entity recognition toolkits	Information capable of extracting	Approach for named entity recognition (chemistry focused)
ChemDataExtractor ³³	Chemicals Tables	CRF (hand-crafted features + unsupervised features) + filtered Jochem dictionary
ChemicalTagger ⁶¹	Chemicals Quantities Synthesis actions and conditions	OSCAR (see below) + pattern-based rules + dictionaries
Chem Spot 2.0 ^{14,79}	Chemicals	CRF (hand-crafted features+ unsupervised features) + ChemIDPlus dictionary
BANNER-CHEMDNER ²⁷	Chemicals Bio-relevant entities	CRF (hand-crafted features + unsupervised features)
ChemXSeer ⁸⁰ and TableSeer ⁸¹	Chemicals Tables	CRF (hand-crafted features + unsupervised features) + Jochem and custom dictionaries
OSCAR4	Chemicals Reaction names Bio-relevant entities	Maximum entropy Markov model + ChEBI and custom dictionaries
LeadMine ⁸²	Chemicals Named reactions Bio-relevant entities	Dictionaries + pattern-based rules
tmChem ³¹	Chemicals	CRF (hand-crafted features + unsupervised features)

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

7,000000-8

688

710

711

712

713 714

715

716

718

719

720

721

722

723

724

725

726

727

728

729

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

749

750

751

752

753

754 755

756

757

758 759

Applied Physics Reviews

REVIEW

scitation.org/journal/are

have the potential for rapid domain adaptation to materials science and chemical science. For example, deep-learning approaches to entity resolution^{88,89} are largely driven by unsupervised methods and may serve to resolve mentions of materials into canonical, physically meaningful entities.

However, developing ML models requires many examples of human-annotated text for training and testing a model, which can dictate a heavy investment of time. For those embarking on this route, easy-to-use tools for text annotation are needed. Many free and commercial tools exist and continue to be developed for text annotation; as such, a comprehensive review unrealistic but some commonly used tools include brat, 90 Prodigy, 91 WebAnno, 92 and Callisto. 93 A common question that often arises is how many annotated data are enough data to train a good model? The unsatisfying answer is that one cannot concretely say until one tries. ML-model development is often an iterative process involving model training and testing. If the performance of a model does not meet expectations, then a common means of trying to improve the model is to retrain it with additional data, i.e., more annotated text.

The lack of publicly available materials-relevant corpora with human annotations is hindering progress in NLP research within materials science. Having such publicly available datasets would reduce the need for newcomers in the field to engage in the costly annotation exercise previously described. Additionally, such datasets are essential for enabling comparisons of the performance of new entity-recognition models. This comparison is necessary to help the entire field of NLP for materials science better understand our progress and shortcomings. The largest and most materials-relevant publicly available corpus of annotations is the BioCreative IV CHEMDNER corpus, which was created from a community-wide effort in the 2000s to make a "gold standard" for training and testing NLP tools for the life-science literature.5 The corpus consists of 10 000 abstracts, taken from PubMed in 2013 with 84 355 human-annotated chemical entity mentions, corresponding to 19806 unique chemical names.

Currently, no large-scale equivalent corpus derived from the materials science literature exists, but smaller and more materialsfocused annotated corpora are beginning to be reported, which have annotations beyond only chemicals, as well. For example, Mysore et al. released 230 materials-synthesis procedures with annotations of materials, operations, conditions, apparatuses, and units, amongst others. 4 Likewise, Hiszpanski et al. recently released "gold standard" annotations of chemicals and wet-synthesis protocols from 99 articles pertaining to materials synthesis that they then used to compare the performance of various chemical entity recognition tools that are identified in Table I.⁵⁷ Other recent examples include data related to solidstate electrolytes and fuel cells. 95,96 Though somewhat further afield from materials, Kulkarni et al. created an annotated corpus of 622 wet-lab protocols from experimental biology that has labeled actions, conditions, reagents, amounts, and concentrations, amongst others.⁹ There have also been attempts to make the annotation process more efficient through improved interfaces that could potentially enable crowd-sourced annotations, ⁹⁸ although domain expertise has proven critical. There is a paucity of relevant annotated datasets for the field of materials science. Each of these examples required significant domain expertise and time to craft. Continued efforts by the materials community to share annotated corpora will only help further accelerate progress in this field.

To add details around datasets/corpora size, within NLP research, 766 the number of documents is oftentimes provided as an implied proxy 767 for data size, as we have done throughout. The number of documents 768 provides a relevant metric for tasks associated with word embedding 769 models, for example (where the corpora associated with materials science is small relative to the large number of texts in the scientific 771 domain more broadly). However, of relevance beyond the number of 772 documents is the number of tokens of a particular class present in 773 those documents. Ideally, for machine learning, training data are independent and identically distributed, but we know that this is not the 775 case when dealing with tokens within documents for NLP. Rare is it to 776 find a training corpus that has specific entities in nearly equal amounts 777 across the documents. Some documents are of greater relevance to a 778 topic and are more likely to have more tokens, and within the scientific 779 literature, it is expected that published works will influence others' works. Thus, training data for NLP applications are far from being independent and identically distributed. While providing a precise number will vary by tasks, one can surmise an approximation of what 783 a "large enough" dataset constitutes by surveying the material NLP lit-784 erature. In these works, after filtering documents for relevancy, most 785 have document corpuses on the order of tens-of-thousands where 786 each document has dozens to low hundreds of entities and entity relations for a specific token class.

Finally, a critical but often overlooked category of tools necessary 789 for reaping the full benefits of NLP efforts is data visualization tools. 790 The NLP of the materials literature creates structured datasets from 791 unstructured text, but databases by themselves are of little use if one 792 cannot see and explore the data interactively. While hard-coded plots 793 and graphs can be presented, such fixed visualizations do not allow 794 further exploration of the dataset beyond the presented perspective. 795 The interactive aspect of data visualization is critical to broaden the 796 utility of such databases and enable users to form hypotheses and test 797 them, thereby building their own understanding of trends. Interactive 798 visualization dashboards, which typically have multiple frames of different data representations, are effective tools for this purpose. Custom 800 interactive dashboards can be created using freely available open-801 source software packages such as Candela, 99 Bokeh, 100 and D3. 101 The 802 increased ubiquity and interest in data science have also spurred many 803 commercial software packages for creating custom interactive visualization of data, which are commonly marketed as business intelligence 805 and analytics tools.

V. EXAMPLES OF NLP BEING USED IN MATERIALS **SCIENCE**

Based on the motivation for pursuit of NLP within materials, and 809 the detailed methodology provided, we now describe a series of examples of automated text extraction, which are specific to materials sci- 811 ence. The reasons for this pursuit include generating data for mining, 812 visualization, contributing to ML predictions, and the identification of 813 research trends. The ultimate goal of NLP in materials science would 814 be to evolve toward a new way of thinking about materials discovery, 815 but this will only become possible as databases that suit a given appli-816 cation are developed. 16 The examples that this section will cover are 817 captured in Fig. 3.

Examples of datasets gathered and curated by NLP-based 819 methods can be found across materials science, although progress is 820 still early in the physical domain. NLP-based curation efforts with 821

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

7.000000-9

788

807

823

827

828

829

830

831

832 833

834

836

837

838

839

840

841

842

843

846

847

Applied Physics Reviews

REVIEW

scitation.org/journal/are

Total Pages: 21

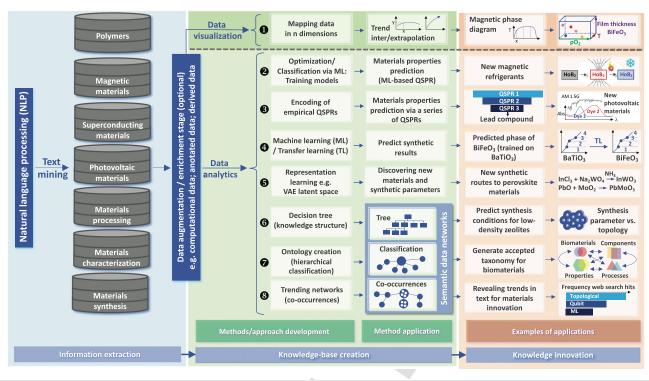


FIG. 3. Overview of the ways that NLP has leveraged data-driven materials science, from information extraction to knowledge base creation and knowledge innovation. The ultimate goal of NLP in materials science would be to evolve toward a new way of thinking about materials discovery, but this will only become possible as databases that suit a given application are developed. Examples that are listed on the right hand side are described within the text.

more of a physical focus include polymers, $^{68,69,102}_{51}$ Curie and Néel magnetic phase-transition temperatures, $^{51}_{51}$ and pulsed-laser deposition processing conditions of complex oxides. 103 Efforts that can be linked to physical properties, but are currently focused on materials, chemistry, include solid-state reactions for all inorganic materials, synthesis of inorganic oxides, $^{47,48,104}_{42}$ zeolites, $^{105}_{42}$ and nanomaterials. $^{57}_{42}$ Repositories of materials metrology data are also being curated using NLP tools. For example, a database of UV/vis absorption spectral characteristics was auto-generated by mining the experimental values of the wavelength of maximum absorption, $\lambda_{\rm max}$, and molar extinction coefficients, ϵ , of chemicals from the literature. $^{106}_{42}$ Metrology data offer a more general data platform to serve an entire physics community; the example given will aid a wide range of optical and optoelectronic applications. We offer some specificity around each of these examples.

Within the domain of polymers, leading text extraction efforts are driven by the Polymer Properties Predictor and Database¹⁰⁷ and the NIST Synthetic Polymer MALDI Recipes Database.¹⁰⁸ The former includes semi-automated literature extracted data on Flory-Huggins interaction parameters and glass transition temperatures, T_g , for close to 300 systems. The latter comprises data records for 1250 polymer/matrix combinations. While these datasets are small, they rival those available in relevant, analogous polymer handbooks. Court and Cole have assembled close to 40 000 chemical compounds and associated Curie and Néel magnetic phase-transition temperatures (approximately one-fourth of the data points are Néel temperature records) across almost 70 000 chemistry and physics articles⁵¹ using

ChemDataExtractor. These data describe the temperatures for ferromagnetic and antiferromagnetic phase transitions. The work was motivated by the use of ML techniques in magnetism and superconductivity, which has the potential to lead to innovations in data storage devices, quantum information processing, and medicine. Previously, only manually curated databases existed for magnetic materials, designed for single entry lookup. Data have been extracted for pulsed-laser deposition processing conditions of complex oxides (substrate, thickness, growth temperature, repetition rate, and partial pressure of oxygen) and their physical characteristics (critical temperatures, T_c) and functional properties (fluence and remnant polarization); this work leveraged crowd sourcing for error checking.

For the case of solid-state synthesis, just under 20 000 recipes were extracted from over 50 000 paragraphs, and these data include information on the material made, starting compounds, operations, and their conditions. The distinguishing feature about these data, in addition to their breadth (13 000 unique targets and 16 000 unique reactions), was that the authors provide balanced chemical reactions that enable significant informatics work, at a scale not previously obtainable. Earlier work extracted synthesis parameters from the body text of 640 000 journal articles across 30 different oxide systems. For zeolites, an industrially relevant catalysis material, 70 000 relevant articles were fed through an automated pipeline to extract gelsynthesis conditions. This work also included a highly curated set of 1200 synthesis routes that are specific to germanium-based zeolites.

Appl. Phys. Rev. **7**, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

876

877

878

880

882

884 885

886

887

888

889

890

891

899

900 901

902

903 904

905

906

907

908

909

912

913 914

915 916

917

918

919

920

921

922

924

929

Applied Physics Reviews

REVIEW

scitation.org/journal/are

order to describe inter-zeolite transitions, affording an important opportunity for accessing new zeolitic structures.¹⁰ The work by Hiszpanski and authors extracted synthesis and morphology information from 35 000 articles related to metallic nanomaterials, which enabled them to easily identify the types of nanomaterials that are of higher interest in the field. Furthermore, NLP-based extraction of this information from the broader literature enabled them to identify what specific chemical additions during synthesis result in the morphological differentiation of nanomaterials (i.e., resulting in nanosphere vs nanowire)—information that is otherwise typically gleaned through targeted, time-consuming, and iterative synthesis efforts by individual researchers.25

The materials-metrology database of optical absorption spectral characteristics consists of 18309 records of chemical names, their experimentally determined λ_{max} values, and molar extinction coefficients, ε , where present. These were sourced from just over 400 000k academic papers using ChemDataExtractor.³³ The information density of data extraction (number of data records obtained: number of papers sampled) is quite low in this case, relative to the above examples of text extraction from documents. This is because the data sought on UV/vis absorption spectra nearly always take the form of core materials-characterization data, which support rather than leading to a paper. Accordingly, the information is semi-hidden in a paper or is entirely latent, often being relegated to the supplementary material of a paper. The data that do appear in the main article are highly fragmented and are somewhat elusive to keyword search terms. Moreover, materials-metrology data are reported over a particularly wide range of journals, compared with synthesis or materials-centered data. For example, there are journals that are dedicated to chemical synthesis, materials chemistry, or materials physics, such that it is facile to choose the journals to mine, which are rich in the content required to populate a database that suits a given application. In contrast, UV/vis absorption spectral characteristics will be noted in a paper of any journal that reports a new chemical product, which is optically absorbing, as well as being present in papers that focus on optical properties. The information density of data extraction is thus low, such that NLP tools must track many more papers for the desired outcome. This issue tracks a general trend that despite the highly pervasive nature of core materials-characterization data, such as UV/vis absorption spectra, they can be quite inaccessible to NLP tools.

Beyond, the datasets themselves are the capabilities to visualize them and comment on trends within them. For example, Hiszpanski et al. packaged the data that they extracted from 35 000 metallic nanomaterial synthesis articles into a distributable visualization tool that allows users to explore how the chemicals used in protocols vary depending on the targeted nanomaterial morphology and composition. For the case of the pulsed-laser deposition data, the extraction enabled visualization of growth windows, trends, and outliers (Fig. 3, 1); these serve as an initial pathway for analyzing the distribution of growth conditions to act as feedback for first-principles calculations to link with thermodynamic stability windows. The authors extended their analysis to determine the likelihood of achieving a low, medium, or high T_c through a decision-tree classifier (a predictive modeling approach used in statistics).²¹ Kim et al. observed that high calcination temperatures are found more frequently in the synthesis of bulk materials with greater elemental complexity.²⁷ Kononova et al. leveraged the reaction dataset for insights related to the nature of solid-state synthesis. For example, alkali and transition-metal cations are typically 931 used in a reaction based on several types of precursors, including 932 binary oxides, nitrides, sulfides, or simple salts such as carbonates, phosphates, and nitrates. They also observed that the counterion in 934 solid-state synthesis controls the temperature of precursor melting or 935 decomposition. This could indicate when the precursor becomes active 936 during synthesis or direct the synthesis method.

The next level of depth within the materials examples that have 938 leveraged NLP are those that perform some degree of ML on the data 939 toward the pursuit of fundamental insights. Within the work by Court 940 and Cole, case studies of perovskite-type oxides and pnictide super- 941 conductors demonstrated that magnetic and superconducting phase 942 diagrams could be reconstructed with good accuracy (Fig. 3, **1**), and 943 associated phase-transition temperature predictions could be made, 944 which were relatable to the underlying physical theory of magnetism 945 and superconductivity. Specifically, the authors were able to predict 946 Néel temperatures in rare-earth manganites and orthochromites and 947 document the unconventional superconductivity of ferropnictide 948 superconductors, as well as predict T_c across the lanthanides. The 949 models used elemental and structural features as a basis. While this 950 contribution was for known compounds, the overall approach points 951 to the ability to extend this capability to discovery.²⁹ Indeed, others 952 have already used this NLP-generated magnetic-materials database, in 953 concert with ML methods, to realize data-driven materials discov- 954 ery. 110 Thereby, a new magnetic refrigerant, HoB₂, was successfully 955 predicted (Fig. 3, 2). This is an important discovery since there is currently a world-wide search for a material that exhibits an MCE around 957 the hydrogen liquefaction temperature ($T = 20.3 \, \text{K}$), given the need 958 for hydrogen storage to serve an energy-sustainable fuel industry.¹¹

Methods based on quantitative structure-property relationships 960 (QSPRs) are also being adapted. Such approaches are long-standing 961 on the small scale, but multiple structure-property relationships are 962 now being drawn together to analyze volumes of data. For example, a 963 hierarchical sequence of questions with the generic form "Which data 964 obey this QSPR?" can be set within an inverse pyramid construct of 965 decision making to successively whittle down a large dataset to a few 966 lead candidates that hold all of the requested QSPR requirements that 967 suit a given material application (Fig. 3, 3). The lead candidates that 968 result from this materials screening process are, then, experimentally validated. For example, the database containing UV/vis absorption 970 spectral characteristics was subjected to this hierarchical QSPR-based 971 decision-making process, to successfully discover five light-harvesting 972 materials for photovoltaic applications.⁵ This work also illustrates how 973 the NLP-based provision of materials databases can be embedded 974 within a "design-to-device" pipeline for data-driven materials 975 discovery.112

Owing to the nature of extracted data, the structuring of knowledge from an NLP-generated database offers interpretable ways of 978 developing materials insight. For example, decision trees leveraging 979 only extracted data can point to experimental handles that drive particular synthesis outcomes (Fig. 3, 3). Decision trees have been used 981 to examine the critical parameters that are needed to synthesize titania 982 nanotubes via hydrothermal methods and verify the driving conditions of NaOH and temperature against known mechanisms. For the 984 case of zeolites, data were used to generate a decision tree to predict 985 zeolite synthesis conditions with low framework densities. ¹⁰⁵ In addition, this work has demonstrated the capacity for learning across 987

989 990

991 992

995

997

998 999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1026

1029

1030

1031

1032

1033

1034

1035

1036

1037 1038

1043

Applied Physics Reviews

REVIEW

scitation.org/journal/are

materials classes using NLP-extracted information. This was done via, so-called, transfer-learning ML approaches, to predict synthesis outcomes on materials systems that were not included in the training set (Fig. 3, 4); the results outperformed heuristic strategies. For example, in predicting the phase for BiFeO₃ (trained on BaTiO₃), an SVM, with the synthesis vector for this material as input, performed over 40% better than a heuristic logistic regression whose input was annealing temperature.

More complex ML methods may also be applied to these data. For example, a subset of the authors have generated synthesis parameters based on observations from the literature, conditioned on specific synthesis-relevant parameters using generative ML models. 113 One class of generative models uses an autoencoder, which is a class of neural-network algorithms that learn to reproduce the identity function, while compressing data through a lower-dimensional layer. What makes this particular form of model generative, and therefore useful in making new material predictions, is an additional constraint (variational autoencoder) where the compressed space must also approximate a previous distribution. This model architecture enables a literature-based synthesis-screening technique to generate, for example, suggested synthesis parameters, accelerate positing of driving factors in forming rare phases, and identify correlations among intercalated ions and resulting synthesized polymorphs. These approaches have been applied to SrTiO₃, TiO₂, and MnO₂, due to their technological relevance in applications, ranging from energy storage to catalysis. 113 Most recently, the work has been extended to generate syntheses for perovskite materials (Fig. 3, 6). Using only training data published over a decade prior to their first reported syntheses, the model generated precursors for InWO₃ and PbMoO₃, which were published in the literature a few years ago (2016 and 2017, respectively).⁶⁴ This work demonstrated that the NLP-based model learns representations of materials that correspond to synthesis-related properties, such as aqueous solubility, and that the behavior of the model complements existing thermodynamic knowledge. Data-augmentation strategies using the literature were also applied in this case, demonstrating the value of automated, comprehensive text extraction. Structured data from the literature may also initialize where experimental inquiry should start or seed the design of predictive tools for optimizing reaction procedures. Data that have been assembled in a structured way may lend themselves more effectively to develop reporting standards to inform reproducibility, or they may be made interoperable with other data within materials science or from broader disciplines.55

Finally, one might pursue NLP toward knowledge innovation. Linking knowledge discovery and NLP is a relatively new pursuit for the materials community. A recent example was to uncover semantic relations between concepts in a network for quantum physics.⁷⁸ This work used the content of 750 000 publications to generate a network of physical concepts where the links between two nodes were drawn when concurrently studied in research articles (Fig. 3, 3). The authors examined the evolution of the network to identify emerging trends and the rate of those trends. The fastest growing concept found was the qubit, emerging first in 1995, which is the basic unit of quantum information. Another growing topic was found to be research in topological materials and, more recently, the application of machine learning. As far as suggestions of future topics, strong potential links were identified between orbital angular momentum and magnetic skyrmions and spin-orbital coupling. Another example is found in the 1045 materials-discovery domain. Taking a largely unsupervised approach, 1046 Tshitoyan and coauthors were able to extract implicit knowledge, held 1047 within the materials science community around the periodic table, and 1048 structure property relationships in materials, perhaps pointing to a 1049 way to examine new discoveries. This is a finding that is echoed in the 1050 original embedding work that was undertaken on general (nonscien- 1051 tific) text. 114 They have leveraged this capability to point to promising 1052 thermoelectric materials.3

This use of NLP to develop knowledge bases, from which to 1054 derive insight, is not too dissimilar to ontology creation (Fig. 3, 1055); 1055 whereby, there has been limited pursuit in the materials community. 1056 Ontologies are a formal presentation of a domain, and they provide an 1057 account of term meaning and insight into the hierarchical structure of 1058 the terms. Ontologies provide and formalize semantics of each entity 1059 and their specific domain. Ontologies are organized in formal 1060 machine-readable formats. This enables their integration in relation 1061 extraction models, and they may provide opportunities to learn ontol- 1062 ogies for how materials information should be presented and what 1063 needs to be included. A recent effort in biomaterials generated an 1064 ontology to attempt to develop an accepted taxonomy for manufac- 1065 tured biomaterials; this captured the complexity of how scaffolds and 1066 devices are described and named. Examples of some of the super- 1067 classes generated were manufactured objects, biomaterials, material 1068 processing, effects on the biological system, and medical applications. 1069 The goals of this work were to provide an annotation resource to facili- 1070 tate "term" (or "entity" in the NLP domain) recognition, outline 1071 "accepted" or used language in the field, and offer a common basis for 1072 understanding the range of distinct scaffolds with their associated fea- 1073 tures, beyond just the materials and document discovery.

Table II summarizes some of the open data resources referenced 1075 in this section and highlights potential research directions enabled by 1076 these data. Despite the early nature of the application of NLP to mate- 1077 rials science, these examples illustrate the breadth of what has been 1078 accomplished to date and the potential for knowledge creation and 1079 innovation as tools and methods mature. 1080

VI. BEYOND BODY TEXT

In addition to extracting information from the main text of docu- 1082 ments, valuable data that are embedded in figures and tables should 1083 also captured. 116,117 In a given manuscript, figures can include com- 1084 plex images, graphs, and schematics. While these figures, tables, and 1085 graphs provide a succinct representation of useful data that are rela-1086 tively easy for humans to understand, the identification and collection 1087 of information from figures and tables to convert them into a struc- 1088 tured format are significant challenges. 118,119 Similar to the way that 1089 NLP processes identify sections and relevant paragraphs, as mentioned 1090 above, the locations of figures and tables have also to be identified and 1091 extracted. Once the figures and tables have been extracted, segmenta- 1092 tion, classification, and image analysis must be performed to extract 1093 relevant information that may need to be reconstructed. Successful 1094 extraction of data from the figures can reinforce and validate the infor- 1095 mation extracted from the main texts, provide additional data points, 1096 and aid in building relationships between multiple entities and numer- 1097 ical values. The information from figures and tables will allow the 1098 researchers to re-plot, compile, and quickly compare data across mul- 1099 tiple sources and add newly obtained data, which can be visualized in 1100

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

7. 000000-12

1102

1103

1104

1105 1106

1107

1108 1109

1110

1111

1112

1113

Applied Physics Reviews

REVIEW

scitation.org/journal/are

TABLE II. Examples of open data resources for NLP in materials science.

Data resource(s)	Data summary	Example usage
Materials word embeddings ^{38,64,115}	Word2Vec, ⁶³ FastText, ⁶⁵ and ELMo ⁶⁶ word embeddings trained on materials text	Input features for entity recognition models
Annotated materials text ^{48,94}	(Human and machine) annotated plain-text synthesis paragraphs for materials	Training data for entity rela- tion models or data mining for materials science insights
Text-mined Curie and Néel temperatures ⁵¹	Text-mined database of magnetic compounds and their phase transition temperatures.	Training data for entity linking models that map material mentions and properties

a bigger context. One particularly challenging area of information extraction is from image-based data.

Microscopy images, which characterize the microscopic- to atomic-scale structure of materials, contain a wealth of information that would be useful in the design and understanding of functional materials. Figures in the scientific literature, which arise from image-based metrology, are predominantly sourced from scanning and transmission electron microscopy (SEM or TEM, respectively), as well as atomic force microscopy (AFM). The majority of such images are only discussed qualitatively in their surrounding text, despite the fact that the images contain a wide range of quantitative data on the structure of materials, such as particle size and shape, grain boundaries, crystal habits and crystal facets, material heterogeneity, and morphological

diversity. These data could shed light on particularly important 1114 research problems that rely on nanotechnology or crystallography. 1115 Figure 4 shows the path for extraction of this information from text. 1116

Image-recognition methods based on ML, Bayesian inference, 1117 and computer vision have been employed to analyze small datasets 1118 that address a bespoke problem in materials science. Efforts in the field 1119 of metallurgy are especially noteworthy in this regard. For example, 1120 convolutional neural networks (CNNs) have been applied to SEM 1121 images of ultrahigh carbon-based steel to analyze grain boundaries 1122 therein. 120 Microstructural features of steel, as displayed in SEM and 1123 optical microscopy images, have also been classified using CNNs 121 and SVMs. 122 More sophisticated data analytical tools have been 1125 applied to individual datasets of STEM and STM images, as befits their 1126

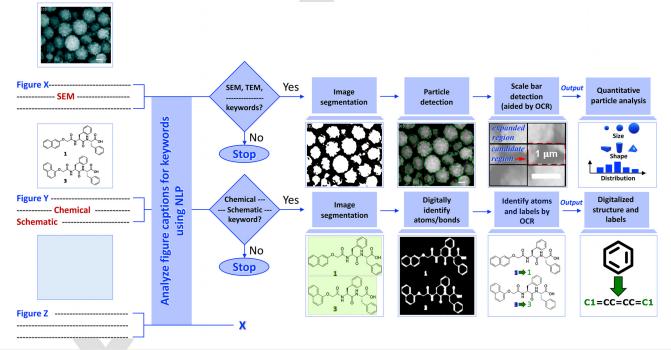


FIG. 4. Image extraction schematic including examples derived from microscopy images or molecular structures. Figures in the scientific literature, which arise from image-based metrology, are predominantly sourced from (scanning) transmission electron microscopy and atomic force microscopy. Most of these images are discussed qualitatively in their surrounding text despite the fact that the images contain a wide range of quantitative data on the structure of materials. These data could shed light on particularly important research problems that rely on, e.g., nanotechnology or crystallography. This figure suggests a path for extraction of this information from text.

Appl. Phys. Rev. **7**, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing **7**, 000000-13

1128

1129

1130 1131

1132

1133

1134

1135

1136

1137 1138

1139

1140

1141

1142 1143

1144

1145

1146 1147

1153 1154

1155

1156

1157

1158

1159

1160

1161 1162

1163

1164

1165

1166

1167 1168

1169

1170

1171

1172 1173

1174

1175

1176

1177

Applied Physics Reviews

REVIEW

scitation.org/journal/are

greater value in terms of the much greater effort that is expended to produce these types of more specialized data. For example, STEM images that display defects in steels¹²³ or defects that cause structural transformations in tungsten sulfide¹²⁴ have been analyzed quantitatively using deep-learning methods. Interatomic interaction potentials have also been extracted from STM images using Bayesian inference. 125 However, none of these efforts are generalizable or scalable to the high-throughput data extraction and quantitative analysis of microscopy images, which is needed for data-driven approaches to materials physics.

The software tool, ImageDataExtractor, 126 begins to address this issue, shifting from assisting manual analysis of images to a generic tool that auto-extracts and quantifies microscopy images from documents. This tool executes an autonomous pipeline of imagerecognition methods to detect particles in a series of microscopy images and quantify them in terms of shape, size, and radial distribution. Particles are detected by a sequential process of image binarization and thresholding, followed by a series of contour-detection algorithms. These algorithms use edge detection to identify all closed contours (particles), excluding any that are occluded by image annotation (e.g., particles that lie beneath the scale bar) or are truncated because they lie at the edge of an image, split apart particles that lie particularly close to each other, and refine contour detection using ellipse fitting where required. Particle sizes are determined via optical character recognition (OCR), which helps to detect and read the text in the scale bar of each image; this scale bar information is normalized with respect to the number of pixels in each image, in order to calculate the particle size. Super-resolution convolutional neural networks (SR-CNNs) are employed to assist the OCR of text in images where the image resolution is too low to identify text solely using the OCR engine, Tesseract 3.0. 127 The standard SR-CNN architecture 128,129 was modified specifically to suit ImageDataExtractor. 126 A radial distribution function that describes the particle-size variation is calculated, pending a sufficient number of particles that are detected on a given image. The shape of each particle is determined by comparing its aspect ratio and contour profile to that of reference data that depict common geometric shapes, using a similarity index.

ImageDataExtractor can function in one of the two operational modes: it can either receive a series of images directly for immediate processing or work in concert with a specially integrated form of ChemDataExtractor³³ that uses its native "chemistry-aware" NLP capabilities to read figure captions of documents to identify microscopy images and then use ImageDataExtractor 126 to process them. If this second operational mode is used, ImageDataExtractor 126 employs a bespoke algorithm that splits apart figures within documents where they constitute panels of multiple images, such that individual microscopy images can be processed in the fashion described above.

More recently, Kim et al. have reported an image-recognition tool that identifies the size of nanomaterials and classifies the morphology of each nanomaterial into one of the four categories: nanocubes, nanoparticles, core-shell nanoparticles, and nanorods. ^{57,131} The particles are located by applying a distance transform-based segmentation process on a binarized form of the image, while their size estimation tracks a similar process to that of ImageDataExtractor. 126 Kim et al. identifies and extracted SEM and TEM images from the document via a different route to ImageDataExtractor, 126 employing a convolutional neural network (CNN) with transfer learning. Thereby, a small sample (<100) of SEM and TEM images was fed into the 1184 Inception-V3 CNN, 132 which has been pre-trained on pictures from 1185 several sources, including ImageNet.^{133,134} The image features for 1186 SEM and TEM were extracted from the penultimate layer of the CNN, 1187 yielding a transfer-learning process with an 89% accuracy in SEM and 1188 TEM image classification.

Tatum et al. have also recently reported an image-recognition 1190 method that provides quantitative analysis of particles appearing spe- 1191 cifically in images created by scanning probe microscopy (SPM) tech- 1192 niques, such as STM and AFM.¹³⁵ Particles are first detected using 1193 feature selection that is enabled by principal-component analysis 1194 (PCA); this clusters all data channels into the key representative struc- 1195 ture of the image-based information. These clustered data are, then, 1196 classified using a Gaussian mixture model (GMM), which segments 1197 each pixel into distinct material phases; in the case study, the phases 1198 are structural domains of a polymer blend. This semantic segmenta- 1199 tion method is, then, complemented by instance segmentation. This 1200 involves pixel-by-pixel clustering to characterize the size and distribu- 1201 tion of each morphological domain in an image. Tatum et al. provided 1202 two possible image segmentation options to perform this task: con- 1203 nected component labeling or persistence watershed segmentation 1204 (PWS). 135 The former method assigns a domain label to each set of 1205 connected pixels, establishes the number of distinct domains that are 1206 present, and then places the domains in order of size. The latter 1207 method identifies the morphology of each domain using the height 1208 channels of the image to help distinguish the particle signal from that 1209 of the background. The PWS option tends to better identify isotropic 1210 domains, while the connected component method performs best in 1211 the characterization of highly anisotropic structural domains.

Another type of material information that is trapped inside fig- 1213 ures of documents concerns chemical schematic diagrams (shown in 1214 the lower path of Fig. 4). This form of image is often the only means 1215 by which one or more organic chemical that is described in a docu- 1216 ment can be identified. A range of optical chemical structure recogni- 1217 tion (OCSR) methods have been developed to interpret such images 1218 and convert them into computer-readable output, such as text. 1219 Kekulé, 136 CliDE (and its more recent version, CliDE Pro137), 1220 ChemReader, ¹³⁸ OSRA, ¹³⁹ and ChemSchematicResolver ¹⁴⁰ all per- ¹²²¹ form such a task. All use a common generic operational pipeline 1222 whereby an image figure is segmented into its structures and any sur- 1223 rounding text (e.g., chemical labels). The structure of each chemical 1224 schematic is, then, broken down into its bonds and atoms. There are 1225 various ways of achieving this goal, the most popular being thinning 1226 down the lines of the schematic to one-pixel in width and converting 1227 the result into a connected graph of nodes (atoms) and vertices 1228 (bonds). Optical character recognition (OCR) is used to interpret any 1229 atom names and chemical labels of a given structure. An algorithm 1230 may, then, be employed to match up any chemical labels to their asso- 1231 ciated structures. The resulting digitalized form of the chemical sche- 1232 matic is often converted into a simplified molecular input line entry 1233 system (SMILES)¹⁴¹ text-string to provide the output. Such text output 1234 is readily interpretable using NLP tools.

The Kekulé software 136 is quite old, while the newer products, 1236 CliDE Pro¹³⁷ and ChemReader, ¹³⁸ are not open-source tools. 1237 OSRA¹³⁹ is an open-source, but it is not suited to high-throughput 1238 data-mining, nor can it resolve generic substituents or atom labels 1239 (e.g., R-groups) in a chemical diagram or match chemical labels to the 1240

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

1242

1243

1244

1245

1246

1247

1248

1249

12521253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1274

1276

1278

1279

1280

1281

1282

1283

1284

1285

1286 1287

1288

1289 1290

1291

1292 1293

1294

1295

1296

Applied Physics Reviews

REVIEW

scitation.org/journal/are

diagrams. The ChemSchematicResolver¹⁴⁰ was built to incorporate OSRA while overcoming these limitations, as well as provide a framework that intrinsically links up to the NLP-capabilities (ChemDataExtractor).³³ This NLP link-up is important because it enables the ChemSchematicResolver to identify chemical schematic diagrams in the figure captions of documents in an autonomous manner so that they can be processed in a high-throughput fashion.

While the ability to automate domain-aware semantic linkages between figures and text remains an ongoing challenge, attention-based models^{142,143} have shown promise for analyzing nonscientific images and describing their contents via captions. Applied to a materials context, such methods may be adapted to identify and annotate phases or locate defects within a micrograph.

VII. CHALLENGES AND OPPORTUNITIES

Many challenges still exist for information extraction and NLP in the materials domain, which stem largely from the complexity and heterogeneity of the text. For NLP specific to materials, there are challenges with transferability across materials domains given the high level of heterogeneity in the discipline, ranging across materials classes, application space, and even fundamental links between chemistry and physics. Since the volume of data within each of these individual domains may be relatively small, the accuracy of the models becomes critical so that data points are not lost as an extraction pipeline progresses. Of course, text extracted from the materials science literature is not and cannot be the only source of data leveraged by the informatics community. High-throughput experimental and computational data ported directly into informatics models still provide the most significant, high quality source of inputs to ML models. Text extracted information provides a supplement to these sources. In general, the challenges in use of NLP to "generate" and compile data are the age variety of quality of texts and the bias within the published literature based on the absence of negative examples.

Despite these challenges, there is potential (and need) to leverage the vast archive of information in published scientific text, toward the generation of new knowledge. For this to be successful, we must continue to push the boundary of what information can be extracted accurately and at scale, but we must also ensure that the extraction is done toward increased synergy with downstream ML algorithm development. One example of this synergy would be improvements in extraction, which are focused on transfer learning, whereby the language representations are pre-trained, in an unsupervised manner, on corpora and fine-tuned on a variety of specific materials questions for which there are fewer data. This will allow each specific area of research within materials science communities to work toward improving accuracy, while sharing the collected data for others to build-off of and to continue to grow the database and the collective information. Advances in entity linking, where entities within a text are automatically linked to databases of information, would also provide distinct synergistic opportunities to leverage fundamental physical knowledge to downstream ML activities.

One critical challenge in NLP is to draw linked information across a document, or the so-called non-local dependencies. To date, information extraction has focused on the use of sequential models that rely primarily on local dependencies. However, as experiments are described throughout a document, this is a significant limitation to reaching at scale accurate, automated extraction from the scientific

text, particularly since we aim to extract information across body text, 1297 figures, images, and even the supplementary material. To date, this has 1298 mostly been done through post-processing activities by constraining 1299 the output space during inference, but automatically learning interac- 1300 tions between local and non-local dependencies would provide a sig- 1301 nificant opportunity to improve learning. One recent effort used a 1302 graph-based framework to represent a broad, cross-document set of 1303 word or sentence-level dependencies and define a data structure with- 1304 out access to any major processing or external resources. 144 This 1305 becomes NER at the discourse level (DiscNER), in contrast to 1306 sentence-level NER, where sentences are processed independently. 1307 This means that long-range dependencies have a crucial role in the 1308 tagging process and that they can be added as a soft constraint to 1309 improve information extraction. Given the challenge of labeling long- 1310 distance linkages within documents, unsupervised learning may prove 1311 useful toward advancing this branch of research. In language transla- 1312 tion¹⁴⁵ and entity resolution,⁸⁸ the approach of aligning embeddings 1313 has proved effective in rapidly computing many unsupervised align- 1314 ments (e.g., translations between English and Spanish) using a small 1315 amount—or sometimes zero—of labeled data.

As the scope and complexity of NLP models used in materials 1317 science increase, so too must the evaluation methods adapt. Recent 1318 results 146 in invariance testing for commercial NLP models have 1319 shown that invariances to typos, names, gender, and so on are not 1320 respected by many widely used NLP models. For example, changing 1321 the name of the employee in a customer review may affect a model's 1322 predicted sentiment, even though the true sentiment should be invari- 1323 ant to this. Such methods could be adapted to materials science: an 1324 NER model that correctly labels TiO₂ and SrCO₃ as precursors for 1325 SrTiO₃ should perform equally as well when the metals are exchanged 1326 (e.g., Ti with Fe).

Databases that unfold from NLP tasks may also be comple- 1328 mented by high-throughput calculations about materials; these pre- 1329 dominantly take the form of electronic-structure calculations. At 1330 present, the computationally generated datasets that are afforded by 1331 these efforts are separated from experimental data, save for a few 1332 exceptions. 11,106,147 One of these exceptions 106 involved concerting 1333 NLP-based database auto-generation with high-throughput electronic- 1334 structure calculations on the materials that populated this database. 1335 This produced pairwise experimental and computational data on 1336 chemicals in the database. This synergy stands to be very powerful for 1337 a number of reasons. First, the comparison between pairwise experi- 1338 mental and computational data of a given material provides implicit 1339 quality control of a database; achieving the quality control of NLP- 1340 based auto-generated databases is a matter of concern that has been 1341 raised by various agencies. 148,149 Second, a good match between exper- 1342 imental and computational values will assure that wave functions of 1343 the electronic-structure calculations are correct; pending that to be the 1344 case, computation can, then, be used to calculate many additional 1345 properties about a given compound, with an assured reliability, to aug- 1346 ment the contents of the materials database. In this sense, computa- 1347 tional data have a distinct advantage over experimental data since the 1348 latter are naturally limited to the contents of the documents from 1349 which they were extracted by NLP. Third, such pairwise data can miti- 1350 gate the common problem that important experimental data are often 1351 not available to suit a particular need in material physics in which 1352 case, computation provides a means to combat issues of missing data, 1353

Appl. Phys. Rev. **7**, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing **7**, 000000-15

PROOF COPY [APR20-RV-00497]

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

REVIEW

scitation.org/journal/are

as long as the materials computed are similar to those of calculations that have been benchmarked against their pairwise experimental data. The collation of synergic experimental and computational data and their cohesive deposition into a data repository are nonetheless contingent on the availability of a suitably designed operational pipeline.

In broader terms, data management systems in materials science are starting to be developed for the automated processing and storing of data. 150,151 Some of these efforts involve robotics to aid the automation of materials characterization. 36,152,153 It is also being advocated and regulated that the data management of materials databases needs to attest to findable, accessible, interoperable, and reusable (FAIR) principles.¹⁵⁴ The increasing government regulations toward openaccess data will also help journals capture data. These sorts of initiatives will help make data sources themselves more easily processed and analyzed, perhaps in raw data form. This aim is all but a pipe dream on a wide scale, at present, and even if such automation in data processing becomes normal in materials physics, NLP will still be in business for the long term. This is not only because of the huge amount of legacy data that already exist worldwide but also because it will likely never be practical to process raw data from highly specialist experiments automatically since the data analysis will be similarly specialized. NLP, therefore, has a bright future to continue to support automatic extraction from the literature.

VIII. CONCLUDING REMARKS

NLP and information extraction are early in their application to materials science. It will continue to require sustained effort to build domain-relevant extraction algorithms, scientific dependency parsers, annotation sets, and structures for disseminating extracted information. There are domain-specific needs regarding accuracy and ambiguity and tradeoffs to be weighed between the accuracy and degree of generalizability. However, we have shown that there is tremendous potential if we can unlock the troves of information within the primary way that we chose to communicate in the scientific community, through published, unstructured documents.

Throughout discussions of the rise of data in materials science, there is a dialog regarding encouraging researchers to deposit their own data. We must make sure that data continue to be disseminated in a way that provides direct compute operability; 155 infrastructure development within materials science needs to be in lockstep to allow that to happen. Given the potential for data science tools in accelerating the materials development process, data in general, and particularly freely available open data, need to undergo an inversion of priorities. Thus far, materials scientists have only considered humans familiar with their subject material as the audience for their published works. However, with application of NLP to materials science increasing, an entirely new audience should also be considered by authors: software tools. Unfortunately, the writing styles and data presentation formats that are often most interesting to the former can prove quite challenging to the latter. If we shift the pendulum toward data structures that enable compute capabilities, we will not only be able to better leverage the data revolution as materials scientists, and we will increase the reproducibility and comprehension of our output.

ACKNOWLEDGMENTS

E.A.O., O.K., and G.C. would like to acknowledge funding from the National Science Foundation under Award Nos. 1922311, 1922372, and 1922090 and DMREF and support from the Office of 1410 Naval Research (ONR) under Contract Nos. N00014-20-1-2280 1411 and N00014-19-1-2114. E.A.O. also acknowledges support from 1412 the MIT Energy Initiative. Early work was collaborative under the 1413 Department of Energy's Basic Energy Science Program through the 1414 Materials Project under Grant No. EDCBEE. J.M.C. is grateful for 1415 the BASF/Royal Academy of Engineering Research Chair in Data- 1416 Driven Molecular Engineering of Functional Materials, which is 1417 partly supported by the STFC via the ISIS Neutron and Muon 1418 Source. O.K. and G.C. thank Energy and Biosciences Institute 1419 through the EBI-Shell Program and Assistant Secretary of Energy 1420 Efficiency and Renewable Energy, Vehicle Technologies Office, U.S. 1421 Department of Energy under Contract No. DE-AC02-05CH11231. 1422 T.Y.-J.H. and A.M.H. acknowledge the support of Lawrence 1423 Livermore National Laboratory, which is operated by Lawrence 1424 Livermore National Security, LLC, for the U.S. Department of 1425 Energy, National Nuclear Security Administration under Contract 1426 No. DE-AC52-07NA27344 and acknowledge the support of the 1427 LLNL-LDRD Program under Project No. 19-SI-001. 1428

DATA AVAILABILITY 1429

Data sharing is not applicable to this article as no new data were 1430 created or analyzed in this study.

REFERENCES 1432

¹National Science and Technology Council, Materials Genome Initiative for 1433 Global Competitiveness (121.1). 1434 ²B. P. Abbott et al., "I The laser interferometer gravitational-wave 1435 observatory," Rep. Prog. Phys. 72, 76901 (2009). 1436 ³T. Accadia et al., "Virgo: A laser interferometer to detect gravitational waves," 1437 J. Instrum. 7, P03012 (2012).

⁴G. Longo, E. Merényi, and P. Tiňo, "Foreword to the focus issue on machine 1439 intelligence in astronomy and astrophysics," Publ. Astron. Soc. Pac. 131, 1440 100101 (2019). ⁵K. Albertsson *et al.*, "Machine learning in high energy physics community 1442

white paper," J. Phys. Conf. Ser. 1085, 022008 (2018). ⁶A. O. Oliynyk *et al.*, "High-throughput machine-learning-driven synthesis of 1444 full-Heusler compounds," Chem. Mater. 28, 7324-7331 (2016). 1445

⁷A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, and R. 1446 Ramprasad, "Machine learning strategy for accelerated design of polymer 1447 dielectrics," Sci. Rep. 6, 20952 (2016).

⁸R. Gómez-Bombarelli et al., "Design of efficient molecular organic light- 1449 emitting diodes by a high-throughput virtual screening and experimental 1450 approach," Nat. Mater. 15, 1120-1127 (2016). ⁹C. B. Cooper *et al.*, "Design-to-device approach affords panchromatic co-sen- 1452

1453 sitized solar cells," Adv. Energy Mater. 9, 1802820 (2019). ¹⁰J. M. Cole et al., "Data mining with molecular design rules identifies new class 1454 of dyes for dye-sensitised solar cells," Phys. Chem. Chem. Phys. 16, 1455

26684-26690 (2014). 1456 ¹¹B. Blaiszik et al., "The materials data facility: Data services to advance materi- 1457 als science research," J. Miner., Met. Mater. Soc. 68, 2045-2052 (2016). 1458

¹²S. Curtarolo et al., "AFLOWLIB.ORG: A distributed materials properties ¹⁴⁵⁹ repository from high-throughput ab initio calculations," Comput. Mater. Sci. 1460 1461 58, 227-235 (2012).

¹³A. Dima et al., "Informatics infrastructure for the materials genome initiative," 1462 J. Miner., Met. Mater. Soc. 68, 2053-2064 (2016). 1463

¹⁴J. O'Mara, B. Meredig, and K. Michel, "Materials data infrastructure: A case ¹⁴⁶⁴ study of the citrination platform to examine data import, storage, and access," . Miner., Met. Mater. Soc. 68, 2031-2034 (2016). 1466

¹⁵A. Jain et al., "Commentary: The materials project: A materials genome 1467 approach to accelerating materials innovation," APL Mater. 1, 11002 1468 (2013).

REVIEW

scitation.org/journal/are

1470	160 THE DEMONSTRATE LEGIS INDICAL LEGIS	45n w n 4 1 4 2 1 6 2 4 1 147 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1527	
1471	¹⁶ S. Tinkle, D. L. McDowell, A. Barnard, F. Gygi, and P. B. Littlewood, "Sharing	45P. Murray-Rust, J. A. Townsend, S. E. Adams, W. Phadungsukanan, and J.		
1472	data in materials science," Nature 503, 463 (2013). 17 National Research Council, High Magnetic Field Science and Its Applications	Thomas, "The semantics of chemical markup language (CML): Dictionaries	1539	
1473	in the United States: Current Status and Future Direction (National Academies	and conventions," J. Cheminf. 3, 43 (2011). 46C. Ramakrishnan, A. Patnia, E. Hovy, and G. A. P. C. Burns, "Layout-aware		
1474	Press, 2013).	text extraction from full-text PDF of scientific articles," Source Code Biol.		
1475	18 National Science and Technology Council Committee on Technology,		1542	
1476	National Nanotechnology Initiative Strategic Plan [15] 16).	Med. 7, 7 (2012).		
1477	¹⁹ Basic Energy Sciences Advisory Committee, port of the BESAC	E. Kim et al., "Materials synthesis insights from scientific literature via text	1544	AQ8
1478	Subcommittee on Future X-Ray Light Sources (U.S. Department of Energy,	extraction and machine learning," Chem. Mater. 29, 9436–9444 (2017). 48O. Kononova <i>et al.</i> , "Text-mined dataset of inorganic materials synthesis rec-		AQo
AQ61479	2013).	7	1546	
1480	20 Let t-Generation Photon Sources for Grand Challenges in Science and	ipes," Sci. Data 6, 203 (2019).		
1481	Energy Report of the Workshop on Solving Science and Energy Grand	⁴⁹ D. M. Jessop, S. E. Adams, and P. Murray-Rust, "Mining chemical informa-		
1482	Challenges with Next-Generation Photon Sources (U.S. Department of Energy,	tion from open patents," J. Cheminf. 3, 41 (2011).	1548	
AQ7 1483	2009).	⁵⁰ S. A. Akhondi <i>et al.</i> , "Automatic identification of relevant chemical com-	1549	
1484	²¹ National Academies of Sciences, Engineering and Medicine, Frontiers of	pounds from patents," Database 2019, baz001.		
1485	Materials Research: A Decadal Survey (1 , 2019).	⁵¹ C. J. Court and J. M. Cole, "Auto-generated materials database of Curie and		
1486	22 See https://search.datacite.org/ for DataCite: 1 access, and reuse data;	Neél temperatures via semisupervised relationship extraction," Sci. Data 5,		
1487	accessed 7 June 2020.	180111 (2018).	1553	
1488	²³ X. Jia <i>et al.</i> , "Anthropogenic biases in chemical reaction data hinder explor-	52D. Jurafsky and J. H. Martin, Speech and Language Processing: An		
1489	atory inorganic synthesis," Nature 573, 251–255 (2019).	Introduction to Natural Language Processing, Computational Linguistics, and		
1490	24S. Fortunato <i>et al.</i> , "Science of science," Science 359, eaao0185 (2018).	Speech Recognition (Pearson Prentice Hall, 2009).	1556	
1491	²⁵ L. Bornmann and R. Mutz, "Growth rates of modern science: A bibliometric	⁵³ J. Devlin, MW. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of	1557	
1492	analysis based on the number of publications and cited references," J. Am.	deep bidirectional transformers for language understanding,"		
1493	Soc. Inf. Sci. Technol. 66 , 2215–2222 (2015).	arXiv:1810.04805 (2018).	1559	
1494	²⁶ A. Zeng <i>et al.</i> , "The science of science: From the perspective of complex sys-	54V. Sanh, L. Debut, J. Chaumond, and T. Wolf, "DistilBERT, a distilled ver-		
1495	tems," Phys. Rep. 714-715, 1-73 (2017).	sion of BERT: Smaller, faster, cheaper and lighter," arXiv:1910.01108		
1496	²⁷ R. Leaman and G. Gonzalez, "BANNER: An executable survey of advances in	(2019).	1562	
1497	biomedical named entity recognition," Pacific Symposium on Biocomputing	55 E. Kim, K. Huang, O. Kononova, G. Ceder, and E. Olivetti, "Distilling a mate-	1563	
1498	2008, PSB 2008 (2008), pp. 652–663.	rials synthesis ontology," Matter 1, 8–12 (2019).	1564	
1499	²⁸ A. M. Cohen and W. R. Hersh, "A survey of current work in biomedical text	⁵⁶ H. Huo et al., "Semi-supervised machine-learning classification of materials		4.00
1500	mining," Briefings Bioinf. 6, 57–71 (2005).	synthesis procedures," NPJ Comput. Mater. 5, 1–7 (2019).	1566	AQ9
1501	29 See https://pubmed.ncbi.nlm.nih.gov/ for PubMed.	⁵⁷ A. M. Hiszpanski et al., "Nanomaterials synthesis insignorm machine		
1502	30 See https://www.elsevier.com/solutions/reaxys for Reaxys.	learning of scientific articles by extracting, structuring, and visualizing knowl-		
1503	R. Leaman, C. H. Wei, and Z. Lu, "TmChem: A high performance approach	edge," J. Chem. Inf. Model. 60, 2876 (2020).	1569	
1504	for chemical named entity recognition and normalization," J. Cheminf, 7,	⁵⁸ M. Krallinger <i>et al.</i> , "CHEMDNER: The drugs and chemical names extraction		
1505	1–10 (2015).	challenge," J. Cheminf. 7, 1–11 (2015).	1571	
1506	32T. Rocktäschel, M. Weidlich, and U. Leser, "ChemSpot: A hybrid system for	59 E. F. T. K. Sang and F. De Meulder, "Introduction to the CoNLL-2003 shared		
1507	chemical named entity recognition," Bioinformatics 28, 1633–1640 (2012).	task: Language-independent named entity recognition," arXiv:cs/0306050		
1508	33M. C. Swain and J. M. Cole, "ChemDataExtractor: A toolkit for automated	(2003).	1574	
1509	extraction of chemical information from the scientific literature," J. Chem.	60 D. M. Lowe and R. A. Sayle, "LeadMine: A grammar and dictionary driven		
1510	Inf. Model. 56, 1894–1904 (2016).	approach to entity recognition," J. Cheminf. 7, 1–9 (2015).	1576	
1511	³⁴ D. M. Jessop, S. E. Adams, E. L. Willighagen, L. Hawizy, and P. Murray-Rust,	⁶¹ L. Hawizy, D. M. Jessop, N. Adams, and P. Murray-Rust, "ChemicalTagger: A		
1512	"OSCAR4: A flexible architecture for chemical textmining," J. Cheminf. 3, 41		1578	
1513	(2011).	62X. Dai, S. Karimi, B. Hachey, and C. Paris, "Using similarity measures to		
1514	³⁵ R. W. Epps <i>et al.</i> , "Artificial chemist: An autonomous quantum dot synthesis	select pretraining data for NER," in Proceedings of the 2019 Conference of		
1515	bot," Adv. Mater. 32, 2001626 (2020).	the North American Chapter of the Association for Computational		
1516	³⁶ B. P. MacLeod <i>et al.</i> , "Self-driving laboratory for accelerated discovery of	Linguistics: Human Language Technologies, Volume 1 (Long and Short		
1517	thin-film materials," Sci. Adv. 6, eaaz8867 (2020).		1583	
1518	³⁷ L. Weston <i>et al.</i> , "Named entity recognition and normalization applied to	63T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed		
1519	large-scale information extraction from the materials science literature,"	representations of words and phrases and their compositionality," in <i>Advance</i>	1585 1586	
1520	J. Chem. Inf. Model. 59 , 3692 (2019).	Neural Information Processing Systems (4, 2013), pp. 3111–3119.		
1521	³⁸ V. Tshitoyan <i>et al.</i> , "Unsupervised word embeddings capture latent knowl-	⁶⁴ E. Kim <i>et al.</i> , "Inorganic materials synthesis planning with literature-trained	1587	
1522	edge from materials science literature," Nature 571, 95–98 (2019).	neural networks," J. Chem. Inf. Model. 60 , 1194 (2020).		
1523	³⁹ J. G. Foster, A. Rzhetsky, and J. A. Evans, "Tradition and innovation in scien-	65P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching word vectors		
1524	tists' research strategies," Am. Sociol. Rev. 80, 875–908 (2015).	with subword information," Trans. Assoc. Comput. Linguist. 5, 135-146		
1525	⁴⁰ A. Rzhetsky, J. G. Foster, I. T. Foster, and J. A. Evans, "Choosing experiments	(2017).	1591	
1526	to accelerate collective discovery," Proc. Natl. Acad. Sci. U. S. A. 112,	66M. Peters et al., "Deep contextualized word representations," in Proceedings		
1527	14569–14574 (2015).	of the 2018 Conference of the North American Chapter of the Association for		
1528	⁴¹ J. D. Dworkin, R. T. Shinohara, and D. S. Bassett, "The landscape of	Computational Linguistics: Human Language Technologies, Volume 1 (Long		
1529	neuroimage-ing research," NeuroImage 183, 872–883 (2018).	Papers) (2018), pp. 2227–2237.	1595	
1530	E. Beam, L. G. Appelbaum, J. Jack, J. Moody, and S. A. Huettel, "Mapping the	67I. Beltagy, A. Cohan, and K. Lo, "SciBERT: Pretrained contextualized embed-	1596 1597	
1531	semantic structure of cognitive neuroscience," J. Cognit. Neurosci. 26,	dings for scientific text," arXiv:1903.10676 (2019).		
1532	1949–1965 (2014).	68D. J. Audus and J. J. De Pablo, "Polymer informatics: Opportunities and	1598 1599	
1533 1534	43S. Milojević, "Quantifying the cognitive extent of science," J. Informetrics 9,	challenges," ACS Macro Lett. 6 , 1078–1082 (2017). 69 R. B. Tchoua <i>et al.</i> , "Creating training data for scientific named entity recog-		
1535	962–973 (2015).	nition with minimal human effort." Lect. Notes Comput. Sci. 11536, 398–411.		

Appl. Phys. Rev. **7**, 000000 (2020); doi: 10.1063/5.0021106 Published under license by AIP Publishing

processes," Phys. Rev. Lett. 120, 48301 (2018).

⁴⁴I. Iacopini, S. Milojević, and V. Latora, "Network dynamics of innovation

1535

1536

7, 000000-17

nition with minimal human effort," Lect. Notes Comput. Sci. 11536, 398-411 1601

REVIEW

scitation.org/journal/are

1603	70 C. Seifert et al., "Crowdsourcing fact extraction from scientific literature," in	97C. Kulkarni, W. Xu, A. Ritter, and R. Machiraju, "An annotated corpus for 1669
1604	International Workshop on Human-Computer Interaction and Knowledge	machine reading of instructions in wet lab protocols," in Proceedings of the 1670
1605	Discovery in Complex, Unstructured, Big Data (Springer, 2013), pp. 160-172.	2018 Conference of the North American Chapter of the Association for 1671
1606	⁷¹ J. Takis, A. Q. M. S. Islam, C. Lange, and S. Auer, "Crowdsourced semantic	Computational Linguistics: Human Language Technologies, Volume 2 (Short 1672
1607	annotation of scientific publications and tabular data in PDF," in Proceedings	Papers) (2018), pp. 97–106.
1608	of the 11th International Conference on Semantic Systems (2015), pp. 1–8.	98C. A. Aguirre, S. Coen, M. F. De La Torre, W. H. Hsu, and M. Rys, "Towards 1674
1609	⁷² R. Tchoua <i>et al.</i> , "Active learning yields better training data for scientific	faster annotation interfaces for learning to filter in information extraction 1675
1610	named entity recognition," in Proceedings of the IEEE 15th International	and search," in CEUR Workshop Proceedings (2018), Vol. 2068.
1611	Conference on eScience, eScience 2019 (2019), pp. 126–135.	⁹⁹ See https://docs.bokeh.org/en/latest/index.html for Candela.
1612	⁷³ L. Huang and C. Ling, "Representing multiword chemical terms through	¹⁰⁰ See https://docs.bokeh.org/en/latest/index.html for Bokeh.
1613	phrase-level preprocessing and word embedding," ACS Omega 4,	¹⁰¹ See https://c3js.org/examples.html for D3.
1614	18510–18519 (2019).	102C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, and R. Ramprasad, 1680
1615	⁷⁴ X. Gao, R. Tan, and G. Li, "Research on text mining of material science based	"Polymer genome: A data-powered polymer informatics platform for property 1681
1616	on natural language processing," IOP Conf. Ser. Mater. Sci. Eng. 768, 72094	predictions," J. Phys. Chem. C 122, 17575–17585 (2018).
1617	(2020).	¹⁰³ S. R. Young et al., "Data mining for better material synthesis: The case of 1683
1618	75D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, "Relation classification via con-	pulsed laser deposition of complex oxides," J. Appl. Phys. 123, 1–11 (2018)
1619	volutional deep neural network," in Proceedings of COLING 2014, the 25th	104E. Kim et al., "Machine-learned and codified synthesis parameters of o 685
1620	International Conference on Computational Linguistics: Technical Papers	materials," Sci. Data 4, 170127 (2017).
1621	(2014), pp. 2335–2344.	¹⁰⁵ Z. Jensen <i>et al.</i> , "A machine learning approach to zeolite synthesis enabled by ¹⁶⁸⁷
1622	⁷⁶ E. Agichtein and L. Gravano, "Snowball: Extracting relations from large	automatic literature data extraction," ACS Cent. Sci. 5, 892 (2019).
1623	plain-text collections," in Proceedings of the Fifth ACM Conference on	106 E. J. Beard, G. Sivaraman, Á. Vázquez-Mayagoitia, V. Vishwanath, and J. M. 1689
1624	Digital Libraries (2000), pp. 85–94.	Cole, "Comparative dataset of experimental and computational attributes of 1690
1625	⁷⁷ O. Hakimi <i>et al.</i> , "The devices, experimental scaffolds, and biomaterials ontol-	UV/vis absorption spectra," Sci. Data 6, 1–11 (2019).
1626	ogy (DEB): A tool for mapping, annotation, and analysis of biomaterials	107 R. B. Tchoua et al., "Towards a hybrid human-compuentific information 1692
1627	data," Adv. Funct. Mater. 30, 1909910–1909913 (2020).	extraction pipeline," in Proceedings of the IEEE 13th International 1693
1628	⁷⁸ M. Krenn and A. Zeilinger, "Predicting research trends with semantic and	Conference on eScience, eScience 2017 (2017), pp. 109–118.
1629	neural networks with an application in quantum physics," Proc. Natl. Acad.	108 See https://maldi.nist.gov/ for MALDI.
1630	Sci. U. S. A. 117, 1910 (2019).	¹⁰⁹ D. Schwalbe-Koda, Z. Jensen, E. Olivetti, and R. Gómez-Bombarelli, "Graph ¹⁶⁹⁶
1631	⁷⁹ M. Khabsa and C. L. Giles, "Chemical entity extraction using CRF and an	similarity drives zeolite diffusionless transformations and intergrowth," Nat. 1697
1632	ensemble of extractors," J. Cheminf. 7, S12 (2015).	Mater. 18, 1177–1181 (2019).
1633	80 P. Mitra, C. L. Giles, B. Sun, and Y. Liu, "Chemxseer: A digital library and	¹¹⁰ P. B. de Castro et al., "Machine-learning-guided discovery of the gigantic mag-
1634	data repository for chemical kinetics," in Proceedings of the ACM First	netocaloric effect in HoB ₂ near the hydrogen liquefaction temperature," NPG 1700
1635	Workshop on CyberInfrastructure: information Management in eScience	Asia Mater. 12, 1–7 (2020).
1636	(2007), pp. 7–10.	¹¹¹ L. W. Jones, "Liquid hydrogen as a fuel for the future," Science 174, 367–370 1702
1637	81 Y. Liu, K. Bai, P. Mitra, and C. L. Giles, "Tableseer: Automatic table metadata	(1971).
1638	extraction and searching in digital libraries," in Proceedings of the 7th ACM/	¹¹² J. M. Cole, "A design-to-device pipeline for data-driven materials discovery," 1704
1639	IEEE-CS Joint Conference on Digital Libraries (2007), pp. 91–100.	Acc. Chem. Res. 53, 599–610 (2020).
1640	82D. M. Lowe, N. M. O'Boyle, and R. A. Sayle, "Efficient chemical-disease iden-	113 E. Kim, K. Huang, S. Jegelka, and E. Olivetti, "Virtual screening of inorganic 1706
1641	tification and relationship extraction using Wikipedia to improve recall,"	materials synthesis parameters with deep learning," NPJ Comput. Mater. 3, 53 1707
1642	Database 2016, baw039.	(2017). 1708
1643	83S. Bird, E. Loper, and E. Klein, see http://www.nltk.org for Natural language	¹¹⁴ J. B. Voytek and B. Voytek, "Automated cognome construction and semi- 1709
1644	toolkit, 2009.	automated hypothesis generation," J. Neurosci. Methods 208, 92–100 (2012).
1645	84See https://spacy.io/ for SpaCy.	E. Kim et al., "Materials synthesis insights from scientific literature via text 1711
1646	850	

Olivetti, "Virtual screening of inorganic 1706 ep learning," NPJ Comput. Mater. 3, 53 1707 nated cognome construction and semi- 1709 Neurosci. Methods 208, 92-100 (2012). 1710 E. Kim et al., "Materials synthesis insights from scientific literature via text 1711 extraction and machine learning," Chem. Mater. 29, 9436–9444 (2017). 116D. Jung et al., "ChartSense: Interactive data extraction from chart images," in 1713 Proceedings of the 2017 CHI Conference on Human Factors in Computing 1714 Systems (2017), pp. 6706-6717. 117 X. Liu, D. Klabjan, and P. NBless, "Data extraction from charts via single deep 1716

neural network," arXiv:1906.11906 (2019). 118 L. Gao, X. Yi, Z. Jiang, L. Hao, and Z. Tang, "ICDAR2017 competition on page 1718 object detection," in 2017 14th IAPR International Conference on Document 1719

Analysis and Recognition (ICDAR) (IEEE, 2017), Vol. 1, pp. 1417-1422. L. Gao et al., "ICDAR 2019 competition on table detection and recognition 1721 (CTDAR)," in 2019 International Conference on Document Analysis and 1722 Recognition (ICDAR) (IEEE, 2019), pp. 1510-1515.

B. L. DeCost, B. Lei, T. Francis, and E. A. Holm, "High throughput quantita- 1724 tive metallography for complex microstructures using deep learning: A case 1725 study in ultrahigh carbon steel," arXiv:1805.08693 (2018).

¹²¹S. M. Azimi, D. Britz, M. Engstler, M. Fritz, and F. Mücklich, "Advanced steel 1727 microstructural classification by deep learning methods," Sci. Rep. 8, 1-14 1728 (2018).

¹²²J. Gola et al., "Objective microstructure classification by support vector ¹⁷³⁰ machine (SVM) using a combination of morphological parameters and tex- 1731 tural features for low carbon steels," Comput. Mater. Sci. 160, 186-196 (2019). 1732

¹²³G. Roberts et al., "Deep learning for semantic segmentation of defects in 1733 advanced stem images of steels," Sci. Rep. 9, 12744 (2019).

Appl. Phys. Rev. 7, 000000 (2020); doi: 10.1063/5.0021106

85 See https://stanfordnlp.github.io/CoreNLP/ for CoreNLP.

92 See https://webanno.github.io/webanno/ for Webanno.

"DeepER—Deep entity resolution," arXiv:1710.00597 (2017).

⁸⁸M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang,

89 S. Mudgal et al., "Deep learning for entity matching: A design space

⁹⁴S. Mysore et al., "The materials science procedural text corpus: Annotating

95 F. Kuniyoshi, K. Makino, J. Ozawa, and M. Miwa, "Annotating and extracting

synthesis process of all-solid-state batteries from scientific literature," in

Proceedings of the 12th Conference on Language Resources and Evaluation

⁹⁶A. Friedrich *et al.*, "The SOFC-Exp corpus and neural approaches to informa-

tion extraction in the materials science domain," in Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics (2020), pp.

Proceedings of the 13th Linguistic Annotation Workshop (2019).

materials synthesis procedures with shallow semantic structures," in

exploration," in Proceedings of the 2018 International Conference on

86 See https://allennlp.org/ for AllenNLP.

Management of Data (2018), pp. 19-34.

93 See http://mitre.github.io/callisto/ for Callisto.

90 See https://brat.nlplab.org/ for BRAT.

⁹¹See https://prodi.gy/ for Prodigy.

(LREC 2020) (2020).

Published under license by AIP Publishing

87 See https://opennlp.apache.org/ for OpenNLP.

1646

1647 1648

1649

1650

1651

1652

1653

1654

1655 1656

1657

1658 1659

1660

1661 1662

1663

1664

1665

1666

1667

PROOF COPY [APR20-RV-00497]

Applied Physics Reviews

REVIEW

scitation.org/journal/are

- 1735 ¹²⁴A. Maksov et al., "Deep learning analysis of defect and phase evolution during 1736 electron beam-induced transformations in WS 2," NPJ Comput. Mater. 5, 12 1737
- 1738 125 L. Vlcek, A. Maksov, M. Pan, R. K. Vasudevan, and S. V. Kalinin, "Knowledge 1739 extraction from atomically resolved images," ACS Nano 11, 10313-10320 1740
- ¹²⁶K. T. 1741 Mukaddem, E. J. Beard, B. Yildirim, and J. M. Cole, 1742 "ImageDataExtractor: A tool to extract and quantify data from microscopy 1743 images," J. Chem. Inf. Model. 60, 2492 (2020).
- 1744 127 R. Smith, "An overview of the Tesseract OCR engine,"in Ninth International 1745 Conference on Document Analysis and Recognition (ICDAR 2007) (IEEE, 1746 2007), Vol. 2, pp. 629-633.
- 128 C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep 1747 1748 convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell. 38, 295-307 1749
- 1750 129 C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional net-1751 work for image super-resolution," in European Conference on Computer 1752 Vision (Springer, 2014), pp. 184-199.
- 1753 ¹³⁰M.-K. Hu, "Visual pattern recognition by moment invariants," IRE Trans. Inf. 1754 Theory 8, 179-187 (1962).
- 131 H. Kim, J. Han, and T. Y.-J. Han, "Machine vision-driven automatic recogni-1755 1756 tion of particle size and morphology in SEM images," Nanoscale 12, 1757 19461-19469 (2020).
- 132 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the 1758 1759 inception architecture for computer vision," in Proceedings of the IEEE 1760 Conference on Computer Vision and Pattern Recognition (2016), pp. 1761
- 1762 133X. Xia, C. Xu, and B. Nan, "Inception-v3 for flower classification," in 2017 2nd 1763 International Conference on Image, Vision and Computing (ICIVC) (IEEE, 1764 2017), pp. 783-787.
- 1765 134 E. Tran, M. B. Mayhew, H. Kim, P. Karande, and A. D. Kaplan, "Facial expres-1766 sion recognition using a large out-of-context dataset," in 2018 IEEE Winter 1767 Applications of Computer Vision Workshops (WACVW) (IEEE, 2018), pp. 1768
- 1769 135W. Tatum et al., "A generalizable framework for algorithmic interpretation of 1770 thin film morphologies in scanning probe images," J. Chem. Inf. Model. 60, 1771 3387 (2020).
- 136 J. R. McDaniel and J. R. Balmuth, "Kekule: OCR-optical chemical (structure) 1772 1773 recognition," J. Chem. Inf. Comput. Sci. 32, 373-378 (1992).
- 1774 137A. T. Valko and A. P. Johnson, "CLiDE Pro: The latest generation of CLiDE, a 1775 tool for optical chemical structure recognition," J. Chem. Inf. Model. 49, 1776 780-787 (2009).

- 138 J. Park et al., "Automated extraction of chemical structure information from 1777 digital raster images," Chem. Cent. J. 3, 4 (2009).
- 139 I. V. Filippov and M. C. Nicklaus, "Optical structure recognition software to 1779 recover chemical information: OSRA, an open source solution," J. Chem. Inf. 1780 Model. 49, 740–743 (2009).
- ¹⁴⁰E. J. Beard and J. M. Cole, "ChemSchematicResolver: A toolkit to decode 2D 1782 chemical diagrams with labels and R-groups into annotated chemical named 1783 entities," J. Chem. Inf. Model. 60, 2059 (2020).
- ¹⁴¹D. Weininger, "SMILES, a chemical language and information system. 1. ¹⁷⁸⁵ Introduction to methodology and encoding rules," J. Chem. Inf. Comput. Sci. 1786 28, 31-36 (1988).
- ¹⁴²P. Anderson et al., "Bottom-up and top-down attention for image captioning ¹⁷⁸⁸ and visual question answering," in Proceedings of the IEEE Conference on 1789 Computer Vision and Pattern Recognition (2018), pp. 6077-6086.
- 143 K. Xu et al., "Show, attend and tell: Neural image caption generation with visual 1791 attention," in International Conference on Machine Learning (2015), pp. 2048–2057. 1792
- 144Y. Qian, E. Santus, Z. Jin, J. Guo, and R. Barzilay, "GraphIE: A graph-based 1793 framework for information extraction." arXiv:1810.13083 (2018).
- 145 A. Conneau, G. Lample, M. Ranzato, L. Denoyer, and H. Jégou, "Word trans-1795 lation without parallel data," arXiv:1710.04087 (2017).
- ¹⁴⁶M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, "Beyond accuracy: Behavioral 1797 testing of NLP models with checklist," arXiv:2005.04118 (2020).
- 147 See mits.nims.go.jp for NIMS Materials Data Base (MatNavi). ¹⁴⁸A. Halevy, P. Norvig, and F. Pereira, "The unreasonable effectiveness of data," ¹⁸⁰⁰
- 1801 IEEE Intell. Syst. 24, 8-12 (2009). 149J. S. Grosman et al., "Eras: Improving the quality control in the annotation 1802
- process for natural language processing tasks," Inf. Syst. 93, 101553 (2020). A. Zakutayev et al., "An open experimental database for exploring inorganic 1804
- materials," Sci. Data 5, 180053 (2018). ¹⁵¹P. Nikolaev, D. Hooper, N. Perea-Lopez, M. Terrones, and B. Maruyama, ¹⁸⁰⁶
- "Discovery of wall-selective carbon nanotube growth conditions via automated 1807 experimentation," ACS Nano 8, 10214-10222 (2014). 152Z. Li et al., "Robot-accelerated perovskite investigation and discovery 1809
- (RAPID): 1. Inverse temperature crystallization," chemRxiv. 1810 153 R. J. Kearsey, B. M. Alston, M. E. Briggs, R. L. Greenaway, and A. I. Cooper, 1811
- "Accelerated robotic discovery of type II porous liquids," Chem. Sci. 10, 1812 9454-9465 (2019).
- 154M. D. Wilkinson et al., "The FAIR guiding principles for scientific data man-1814 agement and stewardship," Sci. Data 3, 160018 (2016).
- ¹⁵⁵A. M. Clark, A. J. Williams, and S. Ekins, "Machines first, humans second: On ¹⁸¹⁶ the importance of algorithmic interpretation of open chemistry data," 1817 J. Cheminf. 7, 9 (2015).