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ABSTRACT
24 Given the emergence of data science and machine learning throughout all aspects of society, but particularly in the scientific domain, there is
25 increased importance placed on obtaining data. Data in materials science are particularly heterogeneous, based on the significant range in
26 materials classes that are explored and the variety of materials properties that are of interest. This leads to data that range many orders of
27 magnitude, and these data may manifest as numerical text or image-based information, which requires quantitative interpretation. The
28 ability to automatically consume and codify the scientific literature across domains—enabled by techniques adapted from the field of natural
29 language processing—therefore has immense potential to unlock and generate the rich datasets necessary for data science and machine
30 learning. This review focuses on the progress and practices of natural language processing and text mining of materials science literature and
31 highlights opportunities for extracting additional information beyond text contained in figures and tables in articles. We discuss and provide
32 examples for several reasons for the pursuit of natural language processing for materials, including data compilation, hypothesis develop-
33 ment, and understanding the trends within and across fields. Current and emerging natural language processing methods along with their
34 applications to materials science are detailed. We, then, discuss natural language processing and data challenges within the materials science
35 domain where future directions may prove valuable.
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71 I. INTRODUCTION
72 Data have always been a fundamental ingredient for realizing,
73 accelerating, and optimizing any scientific pursuit. The increasing
74 ubiquity of data science methods, based on improved computing
75 power and algorithm development, has driven significant opportunity
76 and interest in immense, structured datasets. When such data are
77 assembled in a form readily consumed and mined using data science
78 tools, coupled with domain expertise, there is tremendous potential to
79 accelerate discovery,1 build upon previous findings, rapidly enter a
80 new field, connect individual research efforts, and link across
81 disciplines.
82 The physics community has long understood the value of
83 curating data in a way that can be comprehended by computer logic.
84 This is particularly true in the domains of high-energy physics, astron-
85 omy, and astrophysics, where data emanate from very rare and spe-
86 cialized research machines. For example, the Large Hadron Collider at
87 CERN, in Switzerland, generates a wide range of data from particle
88 collisions, certain types of which can be measured using unique detec-
89 tors, and enables collaborations among 3000 scientists and engineers
90 for each collaboration. Other examples include the gravitational-wave
91 observatories (LIGO2 and Virgo3 collaborations are currently>1000

92and>500 members, respectively) and widely shared astronomical
93mappings from satellites and telescopes. These sources of data tend to
94be managed by large international research facilities since multi-
95national efforts are needed to fund and build them. Scientists work
96within large, coordinated, research consortia to produce, process, and
97analyze the data.4,5 Raw data are contained within each facility but are
98accessible, albeit sometimes in normalized form, and their particular
99data characteristics tend to limit the variety of data types.
100However, one aspect of the physical sciences still wanting for more
101and better organized data to leverage emerging data science tools is in
102the domain of materials science. Successful examples of application of
103materials informatics to the discovery of new materials can be found in
104alloy development,6 polymer design,7 organic light emitting diodes,8 and
105solar cells.9,10 However, these cases are still quite limited and suffer most
106from lack of data. While there are a growing number of open databases
107that contain materials property information,11–15 most of these databases
108are created from computationally calculated properties. As an example,
109the materials project includes computational information for over
110130000 inorganic compounds, and the analogous experimental data-
111bases only contain 9000 materials.15 Experimentally based, large, and
112structured materials property databases are still lacking.
113Unlike other fields, materials science lacks sufficient incentive to
114make it practical to centralize its data, not only because the data are so
115diverse but also because data arise from so many independent scien-
116tists and laboratory sources.16 Figure 1 illustrates this contrast. Data in

FIG. 1. Comparison of large centralized datasets in high-energy physics, astronomy, and astrophysics compared to heterogeneous, decentralized data in materials physics.
Unlike other fields, materials science lacks sufficient incentive to make it practical to centralize the data, not only because the data are so diverse but also because the data
arise from a variety of independent scientists and laboratory sources. Data in the field of materials science are particularly heterogeneous due to the wide variety of material
classes studied by scientists. The data appear as numerical text or image-based information, which requires quantitative interpretation.
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117 materials science are particularly heterogeneous, based on the signifi-
118 cant range in materials classes that are explored and the variety of
119 materials properties that are of interest. This leads to data that range
120 many orders of magnitude, and these data may manifest as numerical
121 text or image-based information, which requires quantitative interpre-
122 tation. The many length scales of materials science add to this diver-
123 sity, with data being measured from the atomic structure to massive
124 components that are integrated at a system level, such as airplane
125 wings or turbine blades. In addition, only a small sub-set of specialized
126 materials-physics research needs to be carried out at centralized facili-
127 ties, such as government-run synchrotrons, neutron and muon sour-
128 ces, nanocenters, high-magnetic field laboratories, laser laboratories,
129 or high-performance supercomputing facilities.17–21 Some of these
130 facilities archive the raw or normalized (“reduced”) data, and some
131 offer their scientific users the option to tag their experimental data
132 with a document object identifier (DOI) to make them traceable.22 If
133 even once such data become openly available, the metadata generated
134 by the experiment may be missing.23 Metadata are vital for processing
135 the data to the point where one can interpret their scientific meaning.
136 Fortunately, there is a prospective approach to address at least
137 some aspects of this data-access quandary in materials science.
138 Scientists will cede control of their processed data if they publish their
139 results, and publications continue to be the primary means of commu-
140 nicating within the materials domain. These data will be spread across
141 various journal articles, patents, or company reports, owing to the vari-
142 ety of ways that scientists can publish their findings. The data will also
143 present in an unstructured form, given the highly diverse way in which
144 scientists write an article and select the most salient results for show-
145 casing their scientific points (i.e., as text or in figures, tables, and sche-
146 matics). For example, scientists may report the composition of a metal
147 alloy in one table, the processing conditions for that alloy in the body
148 text of the methods, and then the final properties in figures within the
149 results. Despite the distributed nature of these processed data, harvest-
150 ing them from documents presents a way to retrieve materials-physics
151 data en masse. The manual task of mining information from docu-
152 ments by editors is not practical, given the amount of data that are
153 needed to succeed in the field of materials informatics. A means to
154 automatically extract materials-physics data from scientific documents
155 is, therefore, required. This challenge presents a prime opportunity for
156 information extraction and natural language processing (NLP),
157 whereby “materials-aware” text-mining models can be used to collate
158 processed data that lie within the literature to afford auto-generated
159 materials databases that can be used in materials informatics.
160 Capturing unstructured information from the vast and ever-
161 growing number of scientific publications has substantial promise to
162 meet this need and enable creation of experimental-based databases
163 currently lacking. This reliance on publications in scientific communi-
164 cation is exemplified by the proliferation of new journals and increased
165 frequency of publication.24–26 Developing methods to mine the litera-
166 ture for data may also prevent information loss. Without structuring
167 information, scientists cannot make the necessary connections among
168 findings; they may instead be drawn by what the authors of a scientific
169 document have chosen to be highlighted in a journal or individual
170 publicity efforts. Scientific progress relies on hypothesis development,
171 which requires leveraging increased knowledge toward greater under-
172 standing, typically based on synthesizing existing information.
173 Scientists are not trained to formalize their findings in a structured

174way. The rapid growth of scientific knowledge has the potential to pro-
175vide opportunities to transfer solutions from one domain to address
176problems in another. However, the underlying relationships largely
177remain embedded, and groups from disparate domains remain within
178their own specialties.24 AQ2Limits what one individual can draw relation-
179ships between varied concepts, topics, and domains. There is a distinct
180value to be drawn beyond what is known and what is known as indi-
181viduals from the collective to broad multidisciplinary knowledge
182within and across a given domain. This sharing and integration of
183information across communities is a tall order to accomplish compre-
184hensively, but the ability to automatically extract information from the
185literature can provide a tool to facilitate this engagement.

186A. The scope of this review
187In this review, we look at the fully and semi-automated means of
188assembling and structuring scientific data through NLP and text
189mining. In the realm of scientific text, methods, tools, and databases of
190relevance for NLP have been most well developed for the biomedical
191domain27,28 where information is sought on genes, proteins, drugs,
192medical symptoms, and disease. These efforts exist also in the chemis-
193try discipline, which arguably began earlier, but tools for chemistry are
194less advanced than those in the biomedical domain. Efforts in chemis-
195try have focused on developing comprehensive chemical dictionar-
196ies,29,30 substance and small molecule composition, and structure and
197property descriptions.31–34 This review will focus on what has been
198achieved to date in NLP for the discipline of materials science.
199The structure of this article is as follows. We first describe reasons
200for pursuit of NLP of scientific text given the motivation provided
201above. Next, we focus on the tasks and methods involved, describing
202the challenges for the materials science domain including a summary
203of commonly used tools. Then, we show in detail about particular
204examples of NLP applications in materials science. Next, we discuss
205data mining beyond NLP and how this nonetheless tracks back to the
206cognate need for NLP. Finally, we provide some commentary on the
207future needs and directions for the use of NLP as a tool for the materi-
208als community.

209II. THE WAYS THAT NLP CAN BENEFIT DATA-DRIVEN
210MATERIALS SCIENCE
211Leveraging NLP tools in materials science remains in its infancy.
212The methods used, and the level of accuracy required, vary depending
213on the inquiring goal. Before diving into the details of how NLP is per-
214formed, we briefly mention some of the key benefits that NLP afford
215for data science. These include generating datasets for mining and
216visualization across multiple research efforts, as well as contributing to
217machine learning (ML) predictions and identifying research trends.
218Examples of the application of NLP in materials science will be pro-
219vided in Sec. IV.
220The use of NLP on scientific text can generate libraries of infor-
221mation to explore, which enables data visualization, mining, and ana-
222lytics. The primary goals of text extraction can be used to populate
223databases with quantitative information or make text information
224summative and interactive in a way that can reveal patterns, gaps, or
225trends. Advances in data analytics and visualization tools, described in
226greater detail in Sec. V, have also accelerated the process of informa-
227tion consumption to decision-making. A well-structured database
228with an interactive and intuitive graphical user interface allows
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229 researchers to perform significant background research, test hypothe-
230 ses, survey the field, and form a sound basis for designing and
231 performing experimental work, saving hours if not months of labor-
232 intensive literature surveying and wasted experiments. Text extraction
233 can provide data that drive search-engine development in the scientific
234 domain and a beginning of active learning systems tied to automated
235 materials discovery and synthesis platforms.35–37

236 Beyond data extraction and visualization, researchers may also
237 leverage NLP to derive fundamental insight across these data; for
238 example, NLP may be used to find relationships between compounds
239 by mapping materials mentioned in the text to corresponding chemi-
240 cal structures. This identification of relationships and trends is fre-
241 quently done by using various ML techniques on the extracted data.
242 Scientists can search for similar chemical structures or substructures,
243 meaning that text information can be combined with knowledge from
244 established computational-property databases. For example, this com-
245 bination of extracted and existing data might allow for exploring and
246 screening the relevance of compounds to a new application as a func-
247 tion of published properties.38 The ML models used vary in complex-
248 ity, but the key opportunities for the scientific-language assembly
249 include literature-based knowledge discovery, suggesting novel scien-
250 tific hypotheses, or predicting the outcomes of reactions.
251 NLP activities across scientific text can also identify future
252 research trends by predicting emerging associations (co-occurrences)
253 between selected keywords found in the scientific literature. This type
254 of analysis has been done previously for biochemistry,39,40 neurosci-
255 ence,41,42 and human innovations.43,44 Significant work in this area
256 can also be found in the domain of “the Science of Science.”24 The
257 NLP community presents a nuanced differentiation between
258 “information extraction” and “knowledge-based creation” (traditional
259 and emergent approaches, respectively). Information extraction struc-
260 tures extracted text according to entity recognition and entity relation-
261 ships, which, then, feed into downstream search and query-based
262 activities. Knowledge-based creation can provide an end unto itself in
263 the form of ontology development where facts and relationships with
264 a discipline are extracted in a form that could be used to annotate
265 area-specific databases or to transfer knowledge between fields. Early
266 efforts in materials science have focused primarily on information

267extraction. Given the need for expanded datasets in materials science
268(beyond what is currently available), this is a logical emphasis. As the
269community refines key tools toward NLP for materials, a broader set
270of pursuits can be realized.

271III. PERFORMING NATURAL LANGUAGE PROCESSING
272Before delving into the specific details of methodology, we pro-
273vide a few key themes related to NLP, which convey the perspective
274taken in the materials science community. First, there are manual and
275semi-automated methods of literature-data extraction, which yield
276insights into “small” datasets (i.e., tens to hundreds of relevant
277articles), but the focus moving forward (and within this review) must
278be on the ability to apply methods to create large datasets (i.e., tens of
279thousands of relevant articles). Generic NLP tools (such as CoreNLP)
280exist that do not perform well in the materials science domain without
281modification, as the vernacular, sentence construction, terminology,
282and chemical semantics are specialized. Therefore, we need to develop
283and apply materials-specific text mining tools to meet the needs of this
284community. To reach any sort of economy of scale across such an
285interdisciplinary field, approaches that transfer effectively within the
286materials science domain are needed, which requires a balance
287between accuracy and generalizability. Each application space will
288have local norms from which rules can be crafted for highly accurate
289information retrieval in that one domain; however, these rules often
290breakdown when applied to a different area of inquiry. Challenges
291with developing generalizable tools are also influenced by the type of
292document and section within the document. Finally, there is a tension
293in balancing model development toward the semantic or linguistic
294structure of the document, while still incorporating critical domain
295knowledge in how individuals within the field communicate. Natural
296language carries a high degree of ambiguity, and implicit knowledge
297plays a significant role in how a field communicates. However, if too
298much of this implicit knowledge is integrated within models, leverag-
299ing the linguistic structure of the text becomes more difficult.
300Most natural language extraction pipelines follow a similar over-
301all approach, shown in Fig. 2, which consists of (1) acquiring a relevant
302corpus of text, (2) processing that text into individual terms, which is
303called tokenization, (3) segmenting documents and classifying

FIG. 2. Schematic of NLP including examples of tools and models at each step. It is visible that most natural language extraction follows similar approaches: (1) acquiring rele-
vant text resources, (2) processing the text into individual terms (also known as tokenization), (3) document segmentation and paragraph classification, (4) recognizing tokens
as classes of information, (5) entity relation extraction, and (6) named entity linking.
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304 paragraphs, (4) recognizing tokens as specific classes of information,
305 generally referred to as named entity recognition (NER), (5) entity
306 relation extraction, and (6) named entity linking. Depending on the
307 question being pursued by researchers, pipelines may vary in their
308 methods and approach, including the order in which the above-
309 described steps are performed, the types of information models are
310 provided, and deviations in the models themselves. Using broad
311 strokes, we can describe the continuum of approaches as direct word
312 mapping, defining heuristics, and then to ML-based methods. ML
313 approaches, in and of themselves, can vary within the continuum of
314 unsupervised to supervised, the latter requiring labeled data often in
315 significant volumes. This section describes details on each of these
316 steps with materials-relevant method development presented with
317 each step.

318 A. Content acquisition
319 The first step is to develop and acquire a relevant corpus of sub-
320 ject articles of interest from which information will be retrieved. The
321 content varies by the degree of accessibility, the corpus of subject
322 articles of interest, and the kinds of documents (patents vs journal
323 articles, for example). This content can only be digested within the
324 subsequent models if rendered in plain text-accessible format,
325 although there is variety in that format.45 The older digitized content
326 is available primarily in portable document format (PDF) (introduced
327 in 1993); however, even the older content may be preserved as images,
328 presenting an insurmountable challenge in extracting information at
329 scale. Converting PDF to plain text relies on spatial identification of
330 blocks of text in a layout-aware manner, which is still an area of
331 research.46 Errors may arise in terms of misplaced blocks of text and
332 font-conversion challenges. Most journals and publishers after the
333 mid-1990s also provide content as hypertext markup language
334 (HTML) or extensible markup language (XML). HTML or XML often
335 has more consistency in their conversion to plain text format, but this
336 format is not ubiquitous across publishers. Given the challenges asso-
337 ciated with PDF conversion, nearly all reports of text mining of mate-
338 rials science texts have been on articles available in markup
339 language.47,48

340 Acquiring information from patents provides another way to
341 obtain content, given patent accessibility and centralized hosting
342 by country-specific patent offices. However, patent authors often
343 seek to protect their knowledge from being fully disclosed, and so,
344 these texts may have even more implicit information than journal
345 articles. Patents relevant to materials science have a closely defined
346 structure and style of presentation;49 in particular, the example
347 section mirrors the synthesis section, so they can be interpreted
348 with a high degree of accuracy. Patents will not be a focus of the
349 methodology discussion going forward in this text, but they have
350 been used in biology and chemistry applications with some
351 frequency.50

352 The downloaded content consists of article text and metadata
353 (journal name, title, abstract, and author names). The metadata pro-
354 vide value in databasing the content, as well as being high-level infor-
355 mation that can inform entity recognition as described below; it is
356 typically more structured than the document content.
357AQ3 The necessary number of articles gathered within a corpus is also
358 often thought about and whether the database.

359B. Text preprocessing and tokenization
360Once the content has been obtained, three main activities are used
361to manipulate the information contained within the text: entity extrac-
362tion, entity relation, and entity linking. This overall flow begins with a
363series of steps that preprocess the text of the article to enable identifica-
364tion of the desired information. Preprocessing will vary according to the
365order of events and the tools used for each stage. A low-level, but critical,
366step is character encoding, establishing the way that the characters are
367represented. Tokenization (a form of preprocessing) segments text into
368the relevant sentences, phrases, words, or word pieces, to be processed
369individually or as a sequence. Punctuation marks are the obvious
370approach to identify sentences, but the language of the scientific domain
371is often complicated by terms that are composed of multiple words, sym-
372bols, and other types of structural entities, which, therefore, requires
373specialized tokenization pipelines. Some examples of this challenge with
374chemical and material notation include the uses of commas:
375(Y,In)BaCo3ZnO7; periods: (La0.8Sr0.2)0.97MnO3 or CuSO4!5H2O;
376hyphens: (1"x)Pb(Zr0.52Ti0.48)O3"xBaTiO3 or Ti-64 (common term for
377Ti90Al6V4 alloy); and colons: LiSr1"xPO4:Eux. Using materials domain-
378specific tokenization has been shown to be important for successful NLP
379of materials texts as it can have a significant impact on downstream
380activities.47,48,51 Common tokenizers for the scientific literature include
381those available within the software: OSCAR4,34 ChemDataExtractor,33

382ChemSpot,32 and BANNER’s simple tokenizer.27 More general tokenizers
383that may also be used or adapted for the scientific literature include those
384by SpaCy and the Penn Treebank tokenizer.
385Dependency-based parsing of sentences and part-of-speech (POS)
386tagging identify the syntactic structure of a sentence. Current state-of-
387the-art approaches use neural algorithms, including sequential and
388bidirectional modeling; however, these algorithms rely on larger
389volumes of training data and corpora than is typical for specific cases
390within materials science.52 Nonetheless, some models such as bidirec-
391tional encoder representations from transformers (BERT)53 have
392shown the ability to adapt readily to certain tasks using datasets on the
393order of thousands of documents, simply by “swapping out” the final
394layers of the model to a task-specific architecture (e.g., part-of-speech
395tagging during parsing). Further-distilled models, such as
396DistilBERT,54 may improve this ability to adapt to thousands of
397document-sized datasets, as there are fewer parameters to fine tune
398during domain adaptation. Note that we will discuss the role of BERT
399and other word embedding models below.
400When compared to general-purpose text, a scientific
401dependency-parse should learn specific sentence structures and pat-
402terns, such as an extensive use of passive and past tense, limited use of
403pronouns, and depersonalization of a sentence.55 The accurate con-
404struction of dependency-based parse trees is highly sensitive to the
405punctuation and correct usage of the word forms, especially verb
406tenses. These aspects of the grammar are often neglected in scientific
407publications, making it difficult to use standard well-developed algo-
408rithms and tools for text mining. To date, there have not been develop-
409ments to address these caveats for scientific text.

410C. Document segmentation and paragraph
411classification
412NLP can afford better accuracy when one operates only within
413specific parts of the article, such as the abstract, main text body, tables,
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414 or figures, depending on the area of inquiry. This approach not only
415 helps computationally but can also increase the uniformity of the
416 desired extracted text. Matching regular expressions to identify section
417 headers provides an easy guide, and this can be done simply using
418 string matching within a set of text or regular expression (regex)
419 coding, although the variation in the application of headers by pub-
420 lishers can present a challenge even in this straightforward activity.
421 Huo and colleagues have recently applied probabilistic methods, such
422 as latent Dirichlet allocation (LDA), across several million articles to
423 use unsupervised approaches to identify experimental steps implied in
424 sentences.56 LDA provided a probabilistic topic distribution for each
425 sentence. These authors, then, applied random decision forests, using
426 the topic n-gram as the feature, to classify different types of synthesis
427 procedures; this required annotation of only a few hundred para-
428 graphs. Another feature of this work is that the authors were able to
429 construct a Markov chain representation of the material synthesis flow
430 chart.
431 As an alternative to the unsupervised approaches discussed,
432 Hiszpanski et al. used a supervised ML approach to evaluate every
433 sentence within an article and extract solution-based synthesis proto-
434 cols.57 Specifically, by iterative rounds of training with human-
435 annotated sentences, they trained a logistic regression classifier that
436 yields the likelihood of a given sentence describing solution-based syn-
437 thesis protocols based on the words present within the sentence. As
438 may be expected from scientific writing conventions, past tense verbs,
439 unit terms (e.g., ml and min), and chemicals are weighed heavily as
440 being indicative of a synthesis description. Surprisingly, function
441 words such as “the,” “of,” “then,” and “and,” which are normally fil-
442 tered out from text as “stop words” in nonscientific applications, occur
443 more commonly in synthesis protocols and are important in distin-
444 guishing sentences that concern synthesis or otherwise. This observa-
445 tion points out again how traditional NLP approaches may need to be
446 modified when these tools are translated in their application from gen-
447 eral texts to the scientific literature.

448 D. Named entity recognition (NER)
449 Each of the preprocessing steps described above enable the heart
450 of the text-extraction activity, NER, which identifies the objects of
451 semantic value by recognizing and classifying concepts mentioned in
452 the text. Entities are useful in and of themselves for researchers to map
453 to properties, to find similar compounds, or to incorporate in annota-
454 tion labeling. Historically, immense effort has gone into NER for the
455 medical domain, extracting symptoms, diagnoses, and medications
456 from text.27 The chemistry domain has expended significant effort in
457 NER, but even state-of-the-art NER systems do not typically perform
458 well when applied to different domains, and effort is required to create
459 quality data for trainable statistical NER systems.58

460 NER is an area where the materials community is clearly in its
461 infancy. There is a need for training data to develop entity-recognition
462 models. Where knowledge bases exist already for a field, training may
463 be done using distant supervision models that map known entities and
464 relations onto unstructured text. In the computer-science community,
465 this activity is supported by “all community” developed learning tasks
466 that are orchestrated through conferences in the field; these tend to
467 tackle significant challenges along a roadmap, thereby making con-
468 certed progress as a domain.59 There is no equivalent yet in the materi-
469 als space.

470The general methods for NER range from dictionary look-ups,
471rule-based, and machine-learned approaches. Typical pipelines used
472in the materials science domain include hybrids of all three of these
473approaches. Hybrid systems provide a balance of precision with com-
474putational efficiency, where only those cases that cannot be handled
475by dictionaries or rules pass to ML approaches to make efficient use of
476annotated data. Dictionary look-ups include material composition,
477chemical element names, properties, as well as processes and experi-
478mental parameters.
479Hand-crafted rule/knowledge-based methods are a collection of
480rules or specifications defining how to handle relative ordering and
481matching among those rules. Rules may be developed through corpus-
482based systems that require examining several cases to obtain the
483patterns or via domain knowledge understanding of nomenclature con-
484vention. To overcome the time intensive nature of rule development,
485strategies have been developed to learn rules through small collections
486of seed examples that begin from very high precision rules and learn to
487generalize or vice versa. Examples of these approaches include
488LeadMine,60 which uses naming convention rules, ChemicalTagger,61

489which parses experimental synthesis sections of chemistry texts, and
490portions of ChemDataExtractor, which uses nested rules. For example,
491when researchers extended ChemDataExtractor for use in magnetic
492materials, additions were made for domain-specific parsing rules
493including off-stoichiometry and relevant terms associated with the
494domain of interest (in this case magnetic materials such as ferroelectrics
495and ferrites).51

496Finally, at the other end of the continuum of NER, approaches
497are ML-based statistical models, which use a feature-based representa-
498tion of observed data to recognize specific entity names. These models
499typically depend on sets of annotated documents, which rely on anno-
500tated corpora and the development of metrics for inter-annotator
501agreement where multiple annotators are involved. Given that a sen-
502tence is represented as a sequence of words, it is insufficient to con-
503sider only the current word class; therefore, sequential (and typically
504bidirectional) models are necessary to consider the proceeding, cur-
505rent, and following word. While rule-based approaches are tedious to
506develop and not easily generalized, supervised ML models, in contrast,
507require substantial expert-annotated data for training along with
508detailed annotation guidelines. ML models invite careful consideration
509of the types of classes that are identified and the order in which labels
510are classified. Initial NER work specific to the materials domain was
511performed by Kim et al.47 Kononova et al. further built upon this
512work through a two-step materials entity recognition48 using the bidi-
513rectional long short-term memory network with the conditional ran-
514dom field neural network.
515As alluded to above, the degree of supervision within NLP is
516often modulated by word vector representations that capture the syn-
517tactic and semantic word relationships, the so-called “word
518embeddings.” Word embeddings are a learned continuous vector rep-
519resentation, which encode the local word context; these can, then, be
520analyzed to capture distributional similarities of words. These models
521may be intrinsic, wherein they identify semantic relations, or extrinsic.
522Character-based word representation models help with “what does the
523word look like”; these use the individual character of a token to gener-
524ate the token vector representation and include morphemes (suffixes
525and prefixes) and morphological inflections (number and tense). The
526effectiveness of word vectors depends not only on the training
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527 algorithm and hyperparameters but obviously also on the source data.
528 Recent work explored the impact of similarity between pre-training
529 data and target task, particularly in the area of word embeddings.62

530 This work proposed to select pre-trained data using the target vocabu-
531 lary covered rate (percentage of the target vocabulary that is also pre-
532 sent in the source data) and language-model perplexity (if the model
533 finds a sentence very unlikely, in other words dissimilar from the data
534 where this language model is trained on, it will assign a low probability
535 and therefore high perplexity). The authors found that the effective-
536 ness of pre-trained word vectors depends on whether the source data
537 have a high vocabulary intersection with target data, while pre-trained
538 language models can gain more benefits from a similar source. We
539 note, therefore, that the choice of corpus used for the training process
540 is critical, pointing to the quality of text and domain-specificity
541 requirements.38 A range of word-embedding models have been used
542 in the materials community to date and vary with aspects of the corpus
543 that they are trained on; for example, Word2Vec63 is trained just on
544 the solid-state synthesis paragraphs vs the contextual model, which is
545 trained on full text.64 Other word embedding models that have been
546 used in the materials science domain include FastText,65 Embeddings
547 from Language Models (ELMo),66 and BERT.53,67

548 Materials-specific challenges to NER will vary by the subdomain.
549 These include subtleties associated with the property, context, and
550 reporting of the underlying measurement. For example, within the
551 work from Audus et al. on the NLP of polymers,68,69 the authors have
552 undertaken specific NER efforts related to that domain, termed
553 polyNER. A synthetic polymer is rarely a single entity and is described
554 instead by distributions of molecular weight, often in conjunction with
555 nonstandard naming conventions or trade names.68 Thus, polyNER
556 focuses on a necessary pretreatment for polymer entity recognition,
557 highlighting the challenges of generalizing NER tools across disparate
558 domains within materials science. As another example, in work pur-
559 sued by Kononova et al. on solid-state synthesis of inorganic materials,
560 material entries were processed with a material parser that converted
561 strings for a material into a chemical formula, which in turn was split
562 into elements and stoichiometric balances. Then, the authors obtained
563 balanced reactions from precursors and target materials by solving a
564 system of linear equations; this included a set of open compounds that
565 can be released or absorbed, which were inferred based on the compo-
566 sition of precursor and target materials.48

567 Often, these approaches require hybrid system development,
568 where the computer automates one aspect of the activity and human
569 intervention enables precise execution. For the polymer extraction
570 work, the NLP-based extraction process identified candidates within
571 the article and subsequent automated and crowd-sourcing curation
572 steps processed these candidates. There are several ways to formalize
573 the role that a human might play in these activities.70,71 Approaches
574 can leverage word-embedding models to establish entity-rich corpora,
575 the so-called candidate generation, for expert labeling, which feeds
576 into a context-based word-vector classifier.69 Researchers have also
577 pursued active learning with maximum-entropy uncertainty sampling
578 to achieve valuable annotations from experts to improve performance,
579 but this proved time intensive to pursue.72 Roles for hybrid systems
580 also include establishing dictionaries for stop words and rules to detect
581 systematic names.
582 An additional challenge in the materials community is multi-
583 word tokens. Huang and Ling recently proposed multi-word

584identifying and representing methods. This involves recognizing the
585multi-word phrases in the chemical literature through unsupervised
586methods and then representing the phrases in the vocabulary.73

587Typically, word embedding is performed after tokenization with
588phrase representation obtained based on a post-vector addition. In
589this method, a new step is incorporated to identify multi-word phrases
590and add the detected terms to the vocabulary. In this case, word
591embedding is performed afterwards at the phrase level. Huang and
592Ling’s computationally intense approach starts from tokenized and
593trimmed single words and sentence context. Then, they use scoring
594functions to identify bigrams, repeating this process up to n-grams,
595and then move to phrase-level word embedding.74,75

596E. Entity relation extraction and linking
597Entity relation extraction is the activity that identifies relations
598between entities mentioned in a given document. It is primarily done
599in post-processing steps after NER. Entities extracted can also be
600linked to their properties or co-occurrence with other entities, which
601allows new knowledge between them to be identified. Efforts have pri-
602marily focused on the co-occurrence of entities within a few sentences
603of each other, although there is a need to extend this to a full
604document.
605Within materials science, most entity-relation extraction occurs
606through dependency parsing. More direct supervised ML-based
607approaches would require the development of larger annotated cor-
608pora and quantifying similarity by computing representation similar-
609ity. One approached used in materials examples are Snowball
610methods, which include seed examples of known positive relation-
611ships. Based on locating sentences with these seed examples, typical
612patterns are learned using clustering of textual similarity.61 By compar-
613ing unseen sentences to learned patterns, new relationships can be
614identified based on a threshold minimum level of similarity. These
615methods have been extended recently within ChemDataExtractor tools
616using a modified Snowball algorithm.51 The original Snowball algo-
617rithm uses several thousand seed examples.76 For the modified
618Snowball algorithm, the quaternary relationships included the prop-
619erty specifier, chemical entity mention, property value, and then
620unit.51 Named entity linking, then, connects information extracted
621from text with data stored in curated databases where the challenges
622are to delineate entities that are different from those that are synonyms
623and should be linked to one unique identifier.
624There are several issues to consider after initially applying NLP
625techniques to scientific text. First whether or not the data are extracted
626accurately. Second are the data reported correctly. Third are data being
627reported with sufficient details to warrant these efforts. As the process
628of text mining proceeds down the pipeline shown in Fig. 2, the accu-
629racy of the extracted data decays rapidly, and noise accumulates.
630Hence, the choice between having higher precision within a set of
631extracted data vs having a larger dataset size becomes pivotal because
632this choice will significantly affect the results of the data mining. Kim
633et al. showed that even when using millions of raw papers as a starting
634position, numbers may drop to just hundreds of thousands of papers
635depending on the specific topic.47 Data loss arises not only due to
636imperfections of the extraction methods but also, oftentimes, due to
637the misrepresentation of the original information. A prominent exam-
638ple is referencing a previously published procedure or data analysis
639instead of providing its description in the current paper. The use of
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640 nonstandard abbreviations, acronyms, and terms also significantly
641 affects the amount of false negative outcomes, as these abbreviations
642 complicate the linking of the information from different parts of the
643 text.
644 All these places for data loss point to the significant role of
645 outliers and how frequently a data point is occurring, as well as
646 how they are treated afterwards. The pursuit of ground truth for
647 supervised ML within NLP is costly and time-consuming since it is
648 based on the limited annotated documents thus far as discussed
649 above. Whether or not accuracy that is sufficient for the spread of
650 goals of NLP and text mining in materials science can be achieved
651 is still an open question.

652 F. Conceptual network
653 Separate from the NLP pipeline described above, the use of text-
654 based approaches to generally learn a field has been an area of interest
655 linked to the concept of ontologies, as described above. A high-level
656 workflow for ontology generation is as follows: first, generate concept
657 lists through expert input and comparisons between a curated refer-
658 ence list and a random set of scientific documents. Then, use methods,
659 such as bag-of-words, to populate the ontology. Recent work used a
660 hierarchical LDA, which learned an overall structure from the data
661 and generated a tree of classes that could be used for searching terms,
662 annotation, and standardization of metadata.77 There are a few inter-
663 esting ways to generate these concept lists. The work by Krenn and
664 Zelinger analyzed trends in quantum physics by generating a concept
665 list through human-expert input that is expanded by Rapid Automatic
666 Keyword Extraction to a term list; this is, then, fed into a comprehen-
667 sive corpus to establish links between each of the terms. To project
668 future directions of research, they performed a link-prediction task to
669 ask which new link will be formed between unconnected vertices given
670 the current network. This was done using an artificial neural network
671 with four fully connected layers, which ranked unconnected pairs of
672 concepts and further extended this approach to identify pairs with
673 exceptional network properties.78

674IV. RESOURCES AND TOOLS FOR NLP
675Given the methods described above, a section is provided here,
676which summarizes some helpful resources and tools, including a cov-
677erage of the tools most commonly used in NLP for materials. Table I
678lists the most common NER toolkits publicly and freely available and
679the information that they are capable of extracting. Most have been
680focused on capabilities to extract entities from body text, but many
681have expanded efforts to extract tables as well. Several also have a focus
682on extracting biology-relevant information, which stems from the ear-
683lier leading NLP efforts in life sciences. The groups that developed
684these tools have taken varied approaches, tailored to their specific
685sub-field of literature. The tools typically vary with the tokenizers and
686techniques that they use to identify chemicals, which often involve a
687combination of dictionaries, hand-crafted rules/patterns, and
688POS-tagging methods, as previously discussed.
689Researchers are likely to be interested in extracting categories of
690information, which are specific to their research topic and beyond, for
691which there are readily available tools shown in Table I. If the category
692of information that is desired has a formulaic representation, or it has
693a limited number of possible ways of being expressed, then rather sim-
694ple pattern- or dictionary-based approaches can be created to extract
695this new category of information. When these more straightforward
696methods fail, then ML-based models can be developed, such as the
697CRF models for chemical-entity recognition, as previously discussed.
698Common packages for developing such NLP models include Natural
699Language Toolkit (NLTK),83 SpaCy,84 Stanford CoreNLP,85

700AllenNLP,86 and openNLP.87

701In addition to the plethora of software packages for NLP, recent
702developments in word representation research have led to generalized
703models that may be rapidly fine-tuned to domains of interest. A nota-
704ble example is BERT,53 which has been fine-tuned to scientific text to
705produce SciBERT;67 such models may ultimately advance the accuracy
706of entity recognition for chemicals and materials.
707Moreover, other advances in NLP research beyond word repre-
708sentation and subsequent supervised tasks (i.e., classification) may

TABLE I. Tools available for natural language processing in the materials discipline.

Entity recognition toolkits Information capable of extracting
Approach for named entity recognition (chemistry

focused)

ChemDataExtractor33 Chemicals Tables CRF (hand-crafted features þ unsupervised features)
þ filtered Jochem dictionary

ChemicalTagger61 Chemicals Quantities Synthesis actions
and conditions

OSCAR (see below) þ pattern-based rules
þ dictionaries

Chem Spot 2.014,79 Chemicals CRF (hand-crafted featuresþ unsupervised features)
þ ChemIDPlus dictionary

BANNER-CHEMDNER27 Chemicals Bio-relevant entities CRF (hand-crafted features þ unsupervised features)
ChemXSeer80 and
TableSeer81

Chemicals Tables CRF (hand-crafted features þ unsupervised features)
þ Jochem and custom dictionaries

OSCAR4 Chemicals Reaction names Bio-relevant entities Maximum entropy Markov model þ ChEBI and
custom dictionaries

LeadMine82 Chemicals Named reactions Bio-relevant entities Dictionaries þ pattern-based rules
tmChem31 Chemicals CRF (hand-crafted features þ unsupervised features)
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709 have the potential for rapid domain adaptation to materials science
710 and chemical science. For example, deep-learning approaches to entity
711 resolution88,89 are largely driven by unsupervised methods and may
712 serve to resolve mentions of materials into canonical, physically mean-
713 ingful entities.
714 However, developing ML models requires many examples of
715 human-annotated text for training and testing a model, which can dic-
716 tate a heavy investment of time. For those embarking on this route,
717 easy-to-use tools for text annotation are needed. Many free and com-
718 mercial tools exist and continue to be developed for text annotation; as
719 such, a comprehensive review unrealistic but some commonly used
720 tools include brat,90 Prodigy,91 WebAnno,92 and Callisto.93 A com-
721 mon question that often arises is how many annotated data are
722 enough data to train a good model? The unsatisfying answer is that
723 one cannot concretely say until one tries. ML-model development is
724 often an iterative process involving model training and testing. If the
725 performance of a model does not meet expectations, then a common
726 means of trying to improve the model is to retrain it with additional
727 data, i.e., more annotated text.
728 The lack of publicly available materials-relevant corpora with
729 human annotations is hindering progress in NLP research within mate-
730 rials science. Having such publicly available datasets would reduce the
731 need for newcomers in the field to engage in the costly annotation exer-
732 cise previously described. Additionally, such datasets are essential for
733 enabling comparisons of the performance of new entity-recognition
734 models. This comparison is necessary to help the entire field of NLP
735 for materials science better understand our progress and shortcomings.
736 The largest and most materials-relevant publicly available corpus of
737 annotations is the BioCreative IV CHEMDNER corpus, which was cre-
738 ated from a community-wide effort in the 2000s to make a “gold stand-
739 ard” for training and testing NLP tools for the life-science literature.58

740 The corpus consists of 10000 abstracts, taken from PubMed in 2013
741 with 84 355 human-annotated chemical entity mentions, corresponding
742 to 19806 unique chemical names.
743 Currently, no large-scale equivalent corpus derived from the
744 materials science literature exists, but smaller and more materials-
745 focused annotated corpora are beginning to be reported, which have
746 annotations beyond only chemicals, as well. For example, Mysore
747 et al. released 230 materials-synthesis procedures with annotations of
748 materials, operations, conditions, apparatuses, and units, amongst
749 others.94 Likewise, Hiszpanski et al. recently released “gold standard”
750 annotations of chemicals and wet-synthesis protocols from 99 articles
751 pertaining to materials synthesis that they then used to compare the
752 performance of various chemical entity recognition tools that are iden-
753 tified in Table I.57 Other recent examples include data related to solid-
754 state electrolytes and fuel cells.95,96 Though somewhat further afield
755 from materials, Kulkarni et al. created an annotated corpus of 622
756 wet-lab protocols from experimental biology that has labeled actions,
757 conditions, reagents, amounts, and concentrations, amongst others.97

758 There have also been attempts to make the annotation process more
759 efficient through improved interfaces that could potentially enable
760 crowd-sourced annotations,98 although domain expertise has proven
761 critical. There is a paucity of relevant annotated datasets for the field of
762 materials science. Each of these examples required significant domain
763 expertise and time to craft. Continued efforts by the materials commu-
764 nity to share annotated corpora will only help further accelerate pro-
765 gress in this field.

766To add details around datasets/corpora size, within NLP research,
767the number of documents is oftentimes provided as an implied proxy
768for data size, as we have done throughout. The number of documents
769provides a relevant metric for tasks associated with word embedding
770models, for example (where the corpora associated with materials sci-
771ence is small relative to the large number of texts in the scientific
772domain more broadly). However, of relevance beyond the number of
773documents is the number of tokens of a particular class present in
774those documents. Ideally, for machine learning, training data are inde-
775pendent and identically distributed, but we know that this is not the
776case when dealing with tokens within documents for NLP. Rare is it to
777find a training corpus that has specific entities in nearly equal amounts
778across the documents. Some documents are of greater relevance to a
779topic and are more likely to have more tokens, and within the scientific
780literature, it is expected that published works will influence others’
781works. Thus, training data for NLP applications are far from being
782independent and identically distributed. While providing a precise
783number will vary by tasks, one can surmise an approximation of what
784a “large enough” dataset constitutes by surveying the material NLP lit-
785erature. In these works, after filtering documents for relevancy, most
786have document corpuses on the order of tens-of-thousands where
787each document has dozens to low hundreds of entities and entity rela-
788tions for a specific token class.
789Finally, a critical but often overlooked category of tools necessary
790for reaping the full benefits of NLP efforts is data visualization tools.
791The NLP of the materials literature creates structured datasets from
792unstructured text, but databases by themselves are of little use if one
793cannot see and explore the data interactively. While hard-coded plots
794and graphs can be presented, such fixed visualizations do not allow
795further exploration of the dataset beyond the presented perspective.
796The interactive aspect of data visualization is critical to broaden the
797utility of such databases and enable users to form hypotheses and test
798them, thereby building their own understanding of trends. Interactive
799visualization dashboards, which typically have multiple frames of dif-
800ferent data representations, are effective tools for this purpose. Custom
801interactive dashboards can be created using freely available open-
802source software packages such as Candela,99 Bokeh,100 and D3.101 The
803increased ubiquity and interest in data science have also spurred many
804commercial software packages for creating custom interactive visuali-
805zation of data, which are commonly marketed as business intelligence
806and analytics tools.

807V. EXAMPLES OF NLP BEING USED IN MATERIALS
808SCIENCE
809Based on the motivation for pursuit of NLP within materials, and
810the detailed methodology provided, we now describe a series of exam-
811ples of automated text extraction, which are specific to materials sci-
812ence. The reasons for this pursuit include generating data for mining,
813visualization, contributing to ML predictions, and the identification of
814research trends. The ultimate goal of NLP in materials science would
815be to evolve toward a new way of thinking about materials discovery,
816but this will only become possible as databases that suit a given appli-
817cation are developed.16 The examples that this section will cover are
818captured in Fig. 3.
819Examples of datasets gathered and curated by NLP-based
820methods can be found across materials science, although progress is
821still early in the physical domain. NLP-based curation efforts with
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822 more of a physical focus include polymers,68,69,102 Curie and N!eel
823 magnetic phase-transition temperatures,51 and pulsed-laser deposition
824 processing conditions of complex oxides.103 Efforts that can be linked
825 to physical properties, but are currently focused on materials chemis-
826 try, include solid-state reactions for all inorganic materials, synthesis
827 of inorganic oxides,47,48,104 zeolites,105 and nanomaterials.57

828 Repositories of materials metrology data are also being curated using
829 NLP tools. For example, a database of UV/vis absorption spectral
830 characteristics was auto-generated by mining the experimental values
831 of the wavelength of maximum absorption, kmax, and molar extinction
832 coefficients, e, of chemicals from the literature.106 Metrology data offer
833 a more general data platform to serve an entire physics community;
834 the example given will aid a wide range of optical and optoelectronic
835 applications. We offer some specificity around each of these examples.
836 Within the domain of polymers, leading text extraction efforts
837 are driven by the Polymer Properties Predictor and Database107 and
838 the NIST Synthetic Polymer MALDI Recipes Database.108 The former
839 includes semi-automated literature extracted data on Flory-Huggins
840 interaction parameters and glass transition temperatures, Tg, for close
841 to 300 systems. The latter comprises data records for 1250 polymer/
842 matrix combinations. While these datasets are small, they rival those
843 available in relevant, analogous polymer handbooks. Court and Cole
844 have assembled close to 40 000 chemical compounds and associated
845 Curie and N!eel magnetic phase-transition temperatures (approxi-
846 mately one-fourth of the data points are N!eel temperature records)
847 across almost 70 000 chemistry and physics articles51 using

848ChemDataExtractor.33 These data describe the temperatures for ferro-
849magnetic and antiferromagnetic phase transitions. The work was
850motivated by the use of ML techniques in magnetism and supercon-
851ductivity, which has the potential to lead to innovations in data storage
852devices, quantum information processing, and medicine. Previously,
853only manually curated databases existed for magnetic materials,
854designed for single entry lookup. Data have been extracted for pulsed-
855laser deposition processing conditions of complex oxides21 (substrate,
856thickness, growth temperature, repetition rate, and partial pressure of
857oxygen) and their physical characteristics (critical temperatures, Tc)
858and functional properties (fluence and remnant polarization); this
859work leveraged crowd sourcing for error checking.
860For the case of solid-state synthesis, just under 20 000 recipes
861were extracted from over 50 000 paragraphs, and these data include
862information on the material made, starting compounds, operations,
863and their conditions.48 The distinguishing feature about these data, in
864addition to their breadth (13 000 unique targets and 16 000 unique
865reactions), was that the authors provide balanced chemical reactions
866that enable significant informatics work, at a scale not previously
867obtainable. Earlier work extracted synthesis parameters from the body
868text of 640 000 journal articles across 30 different oxide systems.47 For
869zeolites, an industrially relevant catalysis material, 70 000 relevant
870articles were fed through an automated pipeline to extract gel-
871synthesis conditions. This work also included a highly curated set of
8721200 synthesis routes that are specific to germanium-based zeolites.105

873These data were used to support comprehensive literature curation in

FIG. 3. Overview of the ways that NLP has leveraged data-driven materials science, from information extraction to knowledge base creation and knowledge innovation. The
ultimate goal of NLP in materials science would be to evolve toward a new way of thinking about materials discovery, but this will only become possible as databases that suit
a given application are developed. Examples that are listed on the right hand side are described within the text.
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874 order to describe inter-zeolite transitions, affording an important
875 opportunity for accessing new zeolitic structures.109 The work by
876 Hiszpanski and authors extracted synthesis and morphology informa-
877 tion from 35 000 articles related to metallic nanomaterials, which
878 enabled them to easily identify the types of nanomaterials that are of
879 higher interest in the field. Furthermore, NLP-based extraction of this
880 information from the broader literature enabled them to identify what
881 specific chemical additions during synthesis result in the morphologi-
882 cal differentiation of nanomaterials (i.e., resulting in nanosphere vs
883 nanowire)—information that is otherwise typically gleaned through
884 targeted, time-consuming, and iterative synthesis efforts by individual
885 researchers.25

886 The materials-metrology database of optical absorption spectral
887 characteristics consists of 18 309 records of chemical names, their
888 experimentally determined kmax values, and molar extinction coeffi-
889 cients, e, where present. These were sourced from just over 400 000k
890 academic papers using ChemDataExtractor.33 The information density
891 of data extraction (number of data records obtained: number of papers
892 sampled) is quite low in this case, relative to the above examples of
893 text extraction from documents. This is because the data sought on
894 UV/vis absorption spectra nearly always take the form of core
895 materials-characterization data, which support rather than leading to a
896 paper. Accordingly, the information is semi-hidden in a paper or is
897 entirely latent, often being relegated to the supplementary material of
898 a paper. The data that do appear in the main article are highly frag-
899 mented and are somewhat elusive to keyword search terms. Moreover,
900 materials-metrology data are reported over a particularly wide range
901 of journals, compared with synthesis or materials-centered data. For
902 example, there are journals that are dedicated to chemical synthesis,
903 materials chemistry, or materials physics, such that it is facile to choose
904 the journals to mine, which are rich in the content required to popu-
905 late a database that suits a given application. In contrast, UV/vis
906 absorption spectral characteristics will be noted in a paper of any jour-
907 nal that reports a new chemical product, which is optically absorbing,
908 as well as being present in papers that focus on optical properties. The
909 information density of data extraction is thus low, such that NLP tools
910 must track many more papers for the desired outcome. This issue
911 tracks a general trend that despite the highly pervasive nature of core
912 materials-characterization data, such as UV/vis absorption spectra,
913 they can be quite inaccessible to NLP tools.
914 Beyond, the datasets themselves are the capabilities to visualize
915 them and comment on trends within them. For example, Hiszpanski
916 et al. packaged the data that they extracted from 35 000 metallic nano-
917 material synthesis articles into a distributable visualization tool that
918 allows users to explore how the chemicals used in protocols vary
919 depending on the targeted nanomaterial morphology and composi-
920 tion. For the case of the pulsed-laser deposition data, the extraction
921 enabled visualization of growth windows, trends, and outliers (Fig. 3,
922 ¶); these serve as an initial pathway for analyzing the distribution of
923 growth conditions to act as feedback for first-principles calculations to
924 link with thermodynamic stability windows. The authors extended
925 their analysis to determine the likelihood of achieving a low, medium,
926 or high Tc through a decision-tree classifier (a predictive modeling
927 approach used in statistics).21 Kim et al. observed that high calcination
928 temperatures are found more frequently in the synthesis of bulk mate-
929 rials with greater elemental complexity.27 Kononova et al. leveraged
930 the reaction dataset for insights related to the nature of solid-state

931synthesis. For example, alkali and transition-metal cations are typically
932used in a reaction based on several types of precursors, including
933binary oxides, nitrides, sulfides, or simple salts such as carbonates,
934phosphates, and nitrates. They also observed that the counterion in
935solid-state synthesis controls the temperature of precursor melting or
936decomposition. This could indicate when the precursor becomes active
937during synthesis or direct the synthesis method.
938The next level of depth within the materials examples that have
939leveraged NLP are those that perform some degree of ML on the data
940toward the pursuit of fundamental insights. Within the work by Court
941and Cole, case studies of perovskite-type oxides and pnictide super-
942conductors demonstrated that magnetic and superconducting phase
943diagrams could be reconstructed with good accuracy (Fig. 3, ¶), and
944associated phase-transition temperature predictions could be made,
945which were relatable to the underlying physical theory of magnetism
946and superconductivity. Specifically, the authors were able to predict
947N!eel temperatures in rare-earth manganites and orthochromites and
948document the unconventional superconductivity of ferropnictide
949superconductors, as well as predict Tc across the lanthanides. The
950models used elemental and structural features as a basis. While this
951contribution was for known compounds, the overall approach points
952to the ability to extend this capability to discovery.29 Indeed, others
953have already used this NLP-generated magnetic-materials database, in
954concert with ML methods, to realize data-driven materials discov-
955ery.110 Thereby, a new magnetic refrigerant, HoB2, was successfully
956predicted (Fig. 3, •). This is an important discovery since there is cur-
957rently a world-wide search for a material that exhibits an MCE AQ4around
958the hydrogen liquefaction temperature (T¼ 20.3K), given the need
959for hydrogen storage to serve an energy-sustainable fuel industry.111

960Methods based on quantitative structure-property relationships
961(QSPRs) are also being adapted. Such approaches are long-standing
962on the small scale, but multiple structure-property relationships are
963now being drawn together to analyze volumes of data. For example, a
964hierarchical sequence of questions with the generic form “Which data
965obey this QSPR?” can be set within an inverse pyramid construct of
966decision making to successively whittle down a large dataset to a few
967lead candidates that hold all of the requested QSPR requirements that
968suit a given material application (Fig. 3, ‚). The lead candidates that
969result from this materials screening process are, then, experimentally
970validated. For example, the database containing UV/vis absorption
971spectral characteristics was subjected to this hierarchical QSPR-based
972decision-making process, to successfully discover five light-harvesting
973materials for photovoltaic applications.5 This work also illustrates how
974the NLP-based provision of materials databases can be embedded
975within a “design-to-device” pipeline for data-driven materials
976discovery.112

977Owing to the nature of extracted data, the structuring of knowl-
978edge from an NLP-generated database offers interpretable ways of
979developing materials insight. For example, decision trees leveraging
980only extracted data can point to experimental handles that drive par-
981ticular synthesis outcomes (Fig. 3, »). Decision trees have been used
982to examine the critical parameters that are needed to synthesize titania
983nanotubes via hydrothermal methods and verify the driving condi-
984tions of NaOH and temperature against known mechanisms. For the
985case of zeolites, data were used to generate a decision tree to predict
986zeolite synthesis conditions with low framework densities.105 In addi-
987tion, this work has demonstrated the capacity for learning across
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988 materials classes using NLP-extracted information. This was done via,
989 so-called, transfer-learning ML approaches, to predict synthesis out-
990 comes on materials systems that were not included in the training set
991 (Fig. 3, „); the results outperformed heuristic strategies. For example,
992 in predicting the phase for BiFeO3 (trained on BaTiO3), an SVM, with
993 the synthesis vector for this material as input, performed over 40% bet-
994 ter than a heuristic logistic regression whose input was annealing
995 temperature.47

996 More complex ML methods may also be applied to these data.
997 For example, a subset of the authors have generated synthesis parame-
998 ters based on observations from the literature, conditioned on specific
999 synthesis-relevant parameters using generative ML models.113 One
1000 class of generative models uses an autoencoder, which is a class of
1001 neural-network algorithms that learn to reproduce the identity func-
1002 tion, while compressing data through a lower-dimensional layer. What
1003 makes this particular form of model generative, and therefore useful in
1004 making new material predictions, is an additional constraint (varia-
1005 tional autoencoder) where the compressed space must also approxi-
1006 mate a previous distribution. This model architecture enables a
1007 literature-based synthesis-screening technique to generate, for exam-
1008 ple, suggested synthesis parameters, accelerate positing of driving fac-
1009 tors in forming rare phases, and identify correlations among
1010 intercalated ions and resulting synthesized polymorphs. These
1011 approaches have been applied to SrTiO3, TiO2, andMnO2, due to their
1012 technological relevance in applications, ranging from energy storage to
1013 catalysis.113 Most recently, the work has been extended to generate
1014 syntheses for perovskite materials (Fig. 3, ”). Using only training data
1015 published over a decade prior to their first reported syntheses, the
1016 model generated precursors for InWO3 and PbMoO3, which were
1017 published in the literature a few years ago (2016 and 2017, respec-
1018 tively).64 This work demonstrated that the NLP-based model learns
1019 representations of materials that correspond to synthesis-related prop-
1020 erties, such as aqueous solubility, and that the behavior of the model
1021 complements existing thermodynamic knowledge. Data-augmentation
1022 strategies using the literature were also applied in this case, demon-
1023 strating the value of automated, comprehensive text extraction.
1024 Structured data from the literature may also initialize where experi-
1025 mental inquiry should start or seed the design of predictive tools for
1026 optimizing reaction procedures. Data that have been assembled in a
1027 structured way may lend themselves more effectively to develop
1028 reporting standards to inform reproducibility, or they may be made
1029 interoperable with other data within materials science or from broader
1030 disciplines.55

1031 Finally, one might pursue NLP toward knowledge innovation.
1032 Linking knowledge discovery and NLP is a relatively new pursuit for
1033 the materials community. A recent example was to uncover semantic
1034 relations between concepts in a network for quantum physics.78 This
1035 work used the content of 750 000 publications to generate a network
1036 of physical concepts where the links between two nodes were drawn
1037 when concurrently studied in research articles (Fig. 3, ‰). The authors
1038 examined the evolution of the network to identify emerging trends
1039 and the rate of those trends. The fastest growing concept found was
1040 the qubit, emerging first in 1995, which is the basic unit of quantum
1041 information. Another growing topic was found to be research in topo-
1042 logical materials and, more recently, the application of machine learn-
1043 ing. As far as suggestions of future topics, strong potential links were
1044 identified between orbital angular momentum and magnetic

1045skyrmions and spin-orbital coupling. Another example is found in the
1046materials-discovery domain. Taking a largely unsupervised approach,
1047Tshitoyan and coauthors were able to extract implicit knowledge, held
1048within the materials science community around the periodic table, and
1049structure property relationships in materials, perhaps pointing to a
1050way to examine new discoveries. This is a finding that is echoed in the
1051original embedding work that was undertaken on general (nonscien-
1052tific) text.114 They have leveraged this capability to point to promising
1053thermoelectric materials.38

1054This use of NLP to develop knowledge bases, from which to
1055derive insight, is not too dissimilar to ontology creation (Fig. 3, …);
1056whereby, there has been limited pursuit in the materials community.
1057Ontologies are a formal presentation of a domain, and they provide an
1058account of term meaning and insight into the hierarchical structure of
1059the terms. Ontologies provide and formalize semantics of each entity
1060and their specific domain. Ontologies are organized in formal
1061machine-readable formats. This enables their integration in relation
1062extraction models, and they may provide opportunities to learn ontol-
1063ogies for how materials information should be presented and what
1064needs to be included. A recent effort in biomaterials generated an
1065ontology to attempt to develop an accepted taxonomy for manufac-
1066tured biomaterials; this captured the complexity of how scaffolds and
1067devices are described and named. Examples of some of the super-
1068classes generated were manufactured objects, biomaterials, material
1069processing, effects on the biological system, and medical applications.
1070The goals of this work were to provide an annotation resource to facili-
1071tate “term” (or “entity” in the NLP domain) recognition, outline
1072“accepted” or used language in the field, and offer a common basis for
1073understanding the range of distinct scaffolds with their associated fea-
1074tures, beyond just the materials and document discovery.77

1075Table II summarizes some of the open data resources referenced
1076in this section and highlights potential research directions enabled by
1077these data. Despite the early nature of the application of NLP to mate-
1078rials science, these examples illustrate the breadth of what has been
1079accomplished to date and the potential for knowledge creation and
1080innovation as tools and methods mature.

1081VI. BEYOND BODY TEXT
1082In addition to extracting information from the main text of docu-
1083ments, valuable data that are embedded in figures and tables should
1084also captured.116,117 In a given manuscript, figures can include com-
1085plex images, graphs, and schematics. While these figures, tables, and
1086graphs provide a succinct representation of useful data that are rela-
1087tively easy for humans to understand, the identification and collection
1088of information from figures and tables to convert them into a struc-
1089tured format are significant challenges.118,119 Similar to the way that
1090NLP processes identify sections and relevant paragraphs, as mentioned
1091above, the locations of figures and tables have also to be identified and
1092extracted. Once the figures and tables have been extracted, segmenta-
1093tion, classification, and image analysis must be performed to extract
1094relevant information that may need to be reconstructed. Successful
1095extraction of data from the figures can reinforce and validate the infor-
1096mation extracted from the main texts, provide additional data points,
1097and aid in building relationships between multiple entities and numer-
1098ical values. The information from figures and tables will allow the
1099researchers to re-plot, compile, and quickly compare data across mul-
1100tiple sources and add newly obtained data, which can be visualized in
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1101 a bigger context. One particularly challenging area of information
1102 extraction is from image-based data.
1103 Microscopy images, which characterize the microscopic- to
1104 atomic-scale structure of materials, contain a wealth of information
1105 that would be useful in the design and understanding of functional
1106 materials. Figures in the scientific literature, which arise from image-
1107 based metrology, are predominantly sourced from scanning and trans-
1108 mission electron microscopy (SEM or TEM, respectively), as well as
1109 atomic force microscopy (AFM). The majority of such images are only
1110 discussed qualitatively in their surrounding text, despite the fact that
1111 the images contain a wide range of quantitative data on the structure
1112 of materials, such as particle size and shape, grain boundaries, crystal
1113 habits and crystal facets, material heterogeneity, and morphological

1114diversity. These data could shed light on particularly important
1115research problems that rely on nanotechnology or crystallography.
1116Figure 4 shows the path for extraction of this information from text.
1117Image-recognition methods based on ML, Bayesian inference,
1118and computer vision have been employed to analyze small datasets
1119that address a bespoke problem in materials science. Efforts in the field
1120of metallurgy are especially noteworthy in this regard. For example,
1121convolutional neural networks (CNNs) have been applied to SEM
1122images of ultrahigh carbon-based steel to analyze grain boundaries
1123therein.120 Microstructural features of steel, as displayed in SEM and
1124optical microscopy images, have also been classified using CNNs121

1125and SVMs.122 More sophisticated data analytical tools have been
1126applied to individual datasets of STEM and STM images, as befits their

FIG. 4. Image extraction schematic including examples derived from microscopy images or molecular structures. Figures in the scientific literature, which arise from image-
based metrology, are predominantly sourced from (scanning) transmission electron microscopy and atomic force microscopy. Most of these images are discussed qualitatively
in their surrounding text despite the fact that the images contain a wide range of quantitative data on the structure of materials. These data could shed light on particularly
important research problems that rely on, e.g., nanotechnology or crystallography. This figure suggests a path for extraction of this information from text.

TABLE II. Examples of open data resources for NLP in materials science.

Data resource(s) Data summary Example usage

Materials word embeddings38,64,115 Word2Vec,63 FastText,65 and ELMo66 word embed-
dings trained on materials text

Input features for entity recog-
nition models

Annotated materials text48,94 (Human and machine) annotated plain-text synthesis
paragraphs for materials

Training data for entity rela-
tion models or data mining for
materials science insights

Text-mined Curie and N!eel temperatures51 Text-mined database of magnetic compounds and
their phase transition temperatures.

Training data for entity linking
models that map material men-
tions and properties
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1127 greater value in terms of the much greater effort that is expended to
1128 produce these types of more specialized data. For example, STEM
1129 images that display defects in steels123 or defects that cause structural
1130 transformations in tungsten sulfide124 have been analyzed quantita-
1131 tively using deep-learning methods. Interatomic interaction potentials
1132 have also been extracted from STM images using Bayesian infer-
1133 ence.125 However, none of these efforts are generalizable or scalable to
1134 the high-throughput data extraction and quantitative analysis of
1135 microscopy images, which is needed for data-driven approaches to
1136 materials physics.
1137 The software tool, ImageDataExtractor,126 begins to address this
1138 issue, shifting from assisting manual analysis of images to a generic
1139 tool that auto-extracts and quantifies microscopy images from docu-
1140 ments. This tool executes an autonomous pipeline of image-
1141 recognition methods to detect particles in a series of microscopy
1142 images and quantify them in terms of shape, size, and radial distribu-
1143 tion. Particles are detected by a sequential process of image binariza-
1144 tion and thresholding, followed by a series of contour-detection
1145 algorithms. These algorithms use edge detection to identify all closed
1146 contours (particles), excluding any that are occluded by image annota-
1147 tion (e.g., particles that lie beneath the scale bar) or are truncated
1148 because they lie at the edge of an image, split apart particles that lie
1149 particularly close to each other, and refine contour detection using
1150 ellipse fitting where required. Particle sizes are determined via optical
1151 character recognition (OCR), which helps to detect and read the text
1152 in the scale bar of each image; this scale bar information is normalized
1153 with respect to the number of pixels in each image, in order to calcu-
1154 late the particle size. Super-resolution convolutional neural networks
1155 (SR-CNNs) are employed to assist the OCR of text in images where
1156 the image resolution is too low to identify text solely using the OCR
1157 engine, Tesseract 3.0.127 The standard SR-CNN architecture128,129 was
1158 modified specifically to suit ImageDataExtractor.126 A radial distribu-
1159 tion function that describes the particle-size variation is calculated,
1160 pending a sufficient number of particles that are detected on a given
1161 image. The shape of each particle is determined by comparing its
1162 aspect ratio and contour profile to that of reference data that depict
1163 common geometric shapes, using a similarity index.130

1164 ImageDataExtractor can function in one of the two operational
1165 modes: it can either receive a series of images directly for immediate
1166 processing or work in concert with a specially integrated form of
1167 ChemDataExtractor33 that uses its native “chemistry-aware” NLP
1168 capabilities to read figure captions of documents to identify micros-
1169 copy images and then use ImageDataExtractor126 to process them. If
1170 this second operational mode is used, ImageDataExtractor126 employs
1171 a bespoke algorithm that splits apart figures within documents where
1172 they constitute panels of multiple images, such that individual micros-
1173 copy images can be processed in the fashion described above.
1174 More recently, Kim et al. have reported an image-recognition
1175 tool that identifies the size of nanomaterials and classifies the mor-
1176 phology of each nanomaterial into one of the four categories: nano-
1177 cubes, nanoparticles, core-shell nanoparticles, and nanorods.57,131 The
1178 particles are located by applying a distance transform-based segmenta-
1179 tion process on a binarized form of the image, while their size estima-
1180 tion tracks a similar process to that of ImageDataExtractor.126 Kim
1181 et al. identifies and extracted SEM and TEM images from the docu-
1182 ment via a different route to ImageDataExtractor,126 employing a con-
1183 volutional neural network (CNN) with transfer learning. Thereby, a

1184small sample (<100) of SEM and TEM images was fed into the
1185Inception-V3 CNN,132 which has been pre-trained on pictures from
1186several sources, including ImageNet.133,134 The image features for
1187SEM and TEM were extracted from the penultimate layer of the CNN,
1188yielding a transfer-learning process with an 89% accuracy in SEM and
1189TEM image classification.
1190Tatum et al. have also recently reported an image-recognition
1191method that provides quantitative analysis of particles appearing spe-
1192cifically in images created by scanning probe microscopy (SPM) tech-
1193niques, such as STM and AFM.135 Particles are first detected using
1194feature selection that is enabled by principal-component analysis
1195(PCA); this clusters all data channels into the key representative struc-
1196ture of the image-based information. These clustered data are, then,
1197classified using a Gaussian mixture model (GMM), which segments
1198each pixel into distinct material phases; in the case study, the phases
1199are structural domains of a polymer blend. This semantic segmenta-
1200tion method is, then, complemented by instance segmentation. This
1201involves pixel-by-pixel clustering to characterize the size and distribu-
1202tion of each morphological domain in an image. Tatum et al. provided
1203two possible image segmentation options to perform this task: con-
1204nected component labeling or persistence watershed segmentation
1205(PWS).135 The former method assigns a domain label to each set of
1206connected pixels, establishes the number of distinct domains that are
1207present, and then places the domains in order of size. The latter
1208method identifies the morphology of each domain using the height
1209channels of the image to help distinguish the particle signal from that
1210of the background. The PWS option tends to better identify isotropic
1211domains, while the connected component method performs best in
1212the characterization of highly anisotropic structural domains.
1213Another type of material information that is trapped inside fig-
1214ures of documents concerns chemical schematic diagrams (shown in
1215the lower path of Fig. 4). This form of image is often the only means
1216by which one or more organic chemical that is described in a docu-
1217ment can be identified. A range of optical chemical structure recogni-
1218tion (OCSR) methods have been developed to interpret such images
1219and convert them into computer-readable output, such as text.
1220Kekul!e,136 CliDE (and its more recent version, CliDE Pro137),
1221ChemReader,138 OSRA,139 and ChemSchematicResolver140 all per-
1222form such a task. All use a common generic operational pipeline
1223whereby an image figure is segmented into its structures and any sur-
1224rounding text (e.g., chemical labels). The structure of each chemical
1225schematic is, then, broken down into its bonds and atoms. There are
1226various ways of achieving this goal, the most popular being thinning
1227down the lines of the schematic to one-pixel in width and converting
1228the result into a connected graph of nodes (atoms) and vertices
1229(bonds). Optical character recognition (OCR) is used to interpret any
1230atom names and chemical labels of a given structure. An algorithm
1231may, then, be employed to match up any chemical labels to their asso-
1232ciated structures. The resulting digitalized form of the chemical sche-
1233matic is often converted into a simplified molecular input line entry
1234system (SMILES)141 text-string to provide the output. Such text output
1235is readily interpretable using NLP tools.
1236The Kekul!e software136 is quite old, while the newer products,
1237CliDE Pro137 and ChemReader,138 are not open-source tools.
1238OSRA139 is an open-source, but it is not suited to high-throughput
1239data-mining, nor can it resolve generic substituents or atom labels
1240(e.g., R-groups) in a chemical diagram or match chemical labels to the
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1241 diagrams. The ChemSchematicResolver140 was built to incorporate
1242 OSRA while overcoming these limitations, as well as provide a frame-
1243 work that intrinsically links up to the NLP-capabilities
1244 (ChemDataExtractor).33 This NLP link-up is important because it ena-
1245 bles the ChemSchematicResolver to identify chemical schematic dia-
1246 grams in the figure captions of documents in an autonomous manner
1247 so that they can be processed in a high-throughput fashion.
1248 While the ability to automate domain-aware semantic linkages
1249 between figures and text remains an ongoing challenge, attention-
1250 based models142,143 have shown promise for analyzing nonscientific
1251 images and describing their contents via captions. Applied to a materi-
1252 als context, such methods may be adapted to identify and annotate
1253 phases or locate defects within a micrograph.

1254 VII. CHALLENGES AND OPPORTUNITIES
1255 Many challenges still exist for information extraction and NLP in
1256 the materials domain, which stem largely from the complexity and
1257 heterogeneity of the text. For NLP specific to materials, there are chal-
1258 lenges with transferability across materials domains given the high
1259 level of heterogeneity in the discipline, ranging across materials classes,
1260 application space, and even fundamental links between chemistry and
1261 physics. Since the volume of data within each of these individual
1262 domains may be relatively small, the accuracy of the models becomes
1263 critical so that data points are not lost as an extraction pipeline pro-
1264 gresses. Of course, text extracted from the materials science literature
1265 is not and cannot be the only source of data leveraged by the informat-
1266 ics community. High-throughput experimental and computational
1267 data ported directly into informatics models still provide the most sig-
1268 nificant, high quality source of inputs to ML models. Text extracted
1269 information provides a supplement to these sources. In general, the
1270 challenges in use of NLP to “generate” and compile data are the age
1271 variety of quality of texts and the bias within the published literature
1272 based on the absence of negative examples.
1273 Despite these challenges, there is potential (and need) to leverage
1274 the vast archive of information in published scientific text, toward the
1275 generation of new knowledge. For this to be successful, we must con-
1276 tinue to push the boundary of what information can be extracted accu-
1277 rately and at scale, but we must also ensure that the extraction is done
1278 toward increased synergy with downstream ML algorithm develop-
1279 ment. One example of this synergy would be improvements in extrac-
1280 tion, which are focused on transfer learning, whereby the language
1281 representations are pre-trained, in an unsupervised manner, on cor-
1282 pora and fine-tuned on a variety of specific materials questions for
1283 which there are fewer data. This will allow each specific area of
1284 research within materials science communities to work toward
1285 improving accuracy, while sharing the collected data for others to
1286 build-off of and to continue to grow the database and the collective
1287 information. Advances in entity linking, where entities within a text
1288 are automatically linked to databases of information, would also pro-
1289 vide distinct synergistic opportunities to leverage fundamental physical
1290 knowledge to downstreamML activities.
1291 One critical challenge in NLP is to draw linked information
1292 across a document, or the so-called non-local dependencies. To date,
1293 information extraction has focused on the use of sequential models
1294 that rely primarily on local dependencies. However, as experiments
1295 are described throughout a document, this is a significant limitation to
1296 reaching at scale accurate, automated extraction from the scientific

1297text, particularly since we aim to extract information across body text,
1298figures, images, and even the supplementary material. To date, this has
1299mostly been done through post-processing activities by constraining
1300the output space during inference, but automatically learning interac-
1301tions between local and non-local dependencies would provide a sig-
1302nificant opportunity to improve learning. One recent effort used a
1303graph-based framework to represent a broad, cross-document set of
1304word or sentence-level dependencies and define a data structure with-
1305out access to any major processing or external resources.144 This
1306becomes NER at the discourse level (DiscNER), in contrast to
1307sentence-level NER, where sentences are processed independently.
1308This means that long-range dependencies have a crucial role in the
1309tagging process and that they can be added as a soft constraint to
1310improve information extraction. Given the challenge of labeling long-
1311distance linkages within documents, unsupervised learning may prove
1312useful toward advancing this branch of research. In language transla-
1313tion145 and entity resolution,88 the approach of aligning embeddings
1314has proved effective in rapidly computing many unsupervised align-
1315ments (e.g., translations between English and Spanish) using a small
1316amount—or sometimes zero—of labeled data.
1317As the scope and complexity of NLP models used in materials
1318science increase, so too must the evaluation methods adapt. Recent
1319results146 in invariance testing for commercial NLP models have
1320shown that invariances to typos, names, gender, and so on are not
1321respected by many widely used NLP models. For example, changing
1322the name of the employee in a customer review may affect a model’s
1323predicted sentiment, even though the true sentiment should be invari-
1324ant to this. Such methods could be adapted to materials science: an
1325NER model that correctly labels TiO2 and SrCO3 as precursors for
1326SrTiO3 should perform equally as well when the metals are exchanged
1327(e.g., Ti with Fe).
1328Databases that unfold from NLP tasks may also be comple-
1329mented by high-throughput calculations about materials; these pre-
1330dominantly take the form of electronic-structure calculations. At
1331present, the computationally generated datasets that are afforded by
1332these efforts are separated from experimental data, save for a few
1333exceptions.11,106,147 One of these exceptions106 involved concerting
1334NLP-based database auto-generation with high-throughput electronic-
1335structure calculations on the materials that populated this database.
1336This produced pairwise experimental and computational data on
1337chemicals in the database. This synergy stands to be very powerful for
1338a number of reasons. First, the comparison between pairwise experi-
1339mental and computational data of a given material provides implicit
1340quality control of a database; achieving the quality control of NLP-
1341based auto-generated databases is a matter of concern that has been
1342raised by various agencies.148,149 Second, a good match between exper-
1343imental and computational values will assure that wave functions of
1344the electronic-structure calculations are correct; pending that to be the
1345case, computation can, then, be used to calculate many additional
1346properties about a given compound, with an assured reliability, to aug-
1347ment the contents of the materials database. In this sense, computa-
1348tional data have a distinct advantage over experimental data since the
1349latter are naturally limited to the contents of the documents from
1350which they were extracted by NLP. Third, such pairwise data can miti-
1351gate the common problem that important experimental data are often
1352not available to suit a particular need in material physics in which
1353case, computation provides a means to combat issues of missing data,
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1354 as long as the materials computed are similar to those of calculations
1355 that have been benchmarked against their pairwise experimental data.
1356 The collation of synergic experimental and computational data and
1357 their cohesive deposition into a data repository are nonetheless contin-
1358 gent on the availability of a suitably designed operational pipeline.
1359 In broader terms, data management systems in materials science
1360 are starting to be developed for the automated processing and storing
1361 of data.150,151 Some of these efforts involve robotics to aid the automa-
1362 tion of materials characterization.36,152,153 It is also being advocated
1363 and regulated that the data management of materials databases needs
1364 to attest to findable, accessible, interoperable, and reusable (FAIR)
1365 principles.154 The increasing government regulations toward open-
1366 access data will also help journals capture data. These sorts of initia-
1367 tives will help make data sources themselves more easily processed
1368 and analyzed, perhaps in raw data form. This aim is all but a pipe
1369 dream on a wide scale, at present, and even if such automation in data
1370 processing becomes normal in materials physics, NLP will still be in
1371 business for the long term. This is not only because of the huge
1372 amount of legacy data that already exist worldwide but also because it
1373 will likely never be practical to process raw data from highly specialist
1374 experiments automatically since the data analysis will be similarly spe-
1375 cialized. NLP, therefore, has a bright future to continue to support
1376 automatic extraction from the literature.

1377 VIII. CONCLUDING REMARKS
1378 NLP and information extraction are early in their application to
1379 materials science. It will continue to require sustained effort to build
1380 domain-relevant extraction algorithms, scientific dependency parsers,
1381 annotation sets, and structures for disseminating extracted informa-
1382 tion. There are domain-specific needs regarding accuracy and ambigu-
1383 ity and tradeoffs to be weighed between the accuracy and degree of
1384 generalizability. However, we have shown that there is tremendous
1385 potential if we can unlock the troves of information within the primary
1386 way that we chose to communicate in the scientific community,
1387 through published, unstructured documents.
1388 Throughout discussions of the rise of data in materials science,
1389 there is a dialog regarding encouraging researchers to deposit their
1390 own data. We must make sure that data continue to be disseminated
1391 in a way that provides direct compute operability;155 infrastructure
1392 development within materials science needs to be in lockstep to allow
1393 that to happen. Given the potential for data science tools in accelerat-
1394 ing the materials development process, data in general, and particu-
1395 larly freely available open data, need to undergo an inversion of
1396 priorities. Thus far, materials scientists have only considered humans
1397 familiar with their subject material as the audience for their published
1398 works. However, with application of NLP to materials science increas-
1399 ing, an entirely new audience should also be considered by authors:
1400 software tools. Unfortunately, the writing styles and data presentation
1401 formats that are often most interesting to the former can prove quite
1402 challenging to the latter. If we shift the pendulum toward data struc-
1403 tures that enable compute capabilities, we will not only be able to bet-
1404 ter leverage the data revolution as materials scientists, and we will
1405 increase the reproducibility and comprehension of our output.
1406
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