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Abstract
Intel Software Guard eXtensions (SGX), a hardware-based
Trusted Execution Environment (TEE), has become a promis-
ing solution to stopping critical threats such as insider attacks
and remote exploits. SGX has recently drawn extensive re-
search in two directions—using it to protect the confidentiality
and integrity of sensitive data, and protecting itself from at-
tacks. Both the applications and defense mechanisms of SGX
have a fundamental need—flexible memory protection that
updates memory-page permissions dynamically and enforces
the least-privilege principle. Unfortunately, SGX does not pro-
vide such a memory-protection mechanism due to the lack of
hardware support and the untrustedness of operating systems.

This paper proposes MPTEE, a memory-protection mech-
anism that provides flexible and efficient enforcement of
memory-page permissions in SGX. The enforcement relies
on our elastic cross-region bound check technique which
uses only three bound registers but provides six memory per-
missions. To defend MPTEE against potential attacks, we
further develop an efficient mechanism that exploits the in-
place bound-check technique to ensure the integrity of the
memory protection. With MPTEE, developers can enhance
the protection for data and code in SGX enclaves and enforce
the least-privilege principle such as Execute-no-Read mem-
ory readily. We have implemented MPTEE and extensively
evaluated its effectiveness, utility, and performance. The re-
sults show that MPTEE incurs a performance overhead of
only 2%–8%, and is effective in ensuring memory protection
and in defending against potential attacks.

1 Introduction
Hardware-based trusted execution environments (TEEs), as
a way to protect the confidentiality and integrity of data and
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code, emerge in today’s market. In particular, Intel has pro-
vided SGX in its commodity processors, which supports a se-
cure region, namely enclave, to protect the internally loaded
code and data. Given its important and practical protection,
SGX has been extensively studied and used in practice. For
example, SCONE [1] uses it to effectively enhance the secu-
rity of containers with low overhead. JITGuard [17] leverages
it to protect the security-critical just-in-time compiler oper-
ations. SGXCrypter[49] utilizes it to securely unpack and
execute Windows binaries. There are many other useful appli-
cations [35], [34], [31],[6], which confirm the practical and
promising applications of SGX.

Another line of research is to protect SGX itself from at-
tacks. While being useful and practical, SGX still suffers
from a variety of attacks [5, 7–11, 24, 25, 36, 52, 54]. It
is not only vulnerable to various side-channel attacks [8–
11, 25, 36, 52, 54], but also traditional memory-corruption
attacks [5, 24] because the code inside SGX may still be vul-
nerable. To defend against these attacks, researchers have
attempted to harden SGX [22, 37, 45, 46]. For example,
SGX-Shield [37] designs a memory-randomization scheme
for SGX environments, and SGXBOUNDS [22] provides an
efficient memory-safety approach for the security of objects
in SGX.

Both the SGX applications and the defense mechanisms
have a fundamental need—flexibly and securely enforcing
memory-page permissions, such as write (W), read (R), and
execute (X), in a least-privilege manner. For example, SGX-
ELIDE [3] and SGXCrypter [49] ensure enclave-code confi-
dentiality with code packing or encryption. Code generation
at runtime thus requires to remove the W permission for code
pages—code pages must be non-writable to be compatible
with the NX enforcement. On the other hand, defense mecha-
nisms for SGX also require changes to memory permissions.
For example, SGX-Shield requires to remove the W permission
of code pages after randomization. This way, it can ensure
that it would not introduce the traditional code-injection at-
tacks [29]. Overall, a flexible and secure memory-permission
control is required to enforce the least-privilege principle and
to prevent attacks.

While flexible memory-permission enforcement is impor-
tant, SGX, unfortunately, does not provide such a mechanism
due to two main reasons. First, Intel provides very limited
hardware support due to security considerations. The current
SGX does not provide instructions for modifying the permis-
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sions of the Enclave Page Cache (EPC) after the enclave has
been initialized [14] [32]. This is to prevent the untrusted OS
from changing the access permissions of EPC to facilitate
attacks at runtime. Second, permissions for memory pages
of an SGX program are statically decided by the GCC com-
piler which however does not support flexible permissions
such as execute-only memory. One cannot modify the per-
mission configuration of the generated SGX program due to
the signature-verification mechanism. The signature [33] is
computed for the content and the layout of enclave memory,
and its page security properties at build time. The SGX loader
will check the signature at load-time and reject the program
if the signature cannot be verified.

As SGX does not support the change of memory permis-
sions, existing applications have attempted multiple solu-
tions which are however insecure or inefficient. Specifically,
SGX-Shield [37] uses software-based DEP to create an NRW
boundary (i.e., non-readable and -writable boundary) to re-
move the R and W permissions for code pages. While wasting
the R15 register, it also incurs an extra overhead for comput-
ing the range to check. Meanwhile, the NRW boundary using
a general register can be shifted [5]. SGXELIDE [3] modi-
fies the p_flags field in the program header entry to make
the section writable throughout the enclave’s lifetime. This
is insecure because code pages are subject to code-injection
attacks after adding writable permission. SGXCrypter [49]
relies on the OS page table to remove the W permission, which
is incompatible with the SGX security model, namely the
fact that the page table is managed by the untrusted OS. In
summary, all of these works are only for a single permission
change, and their designs waste registers, incur a significant
performance overhead, or introduce security issues.

Supporting a flexible, efficient, and secure memory pro-
tection mechanism for SGX is in fact challenging for two
reasons. R1. Limited hardware support. SGX currently does
not have hardware support for flexible memory-permission
enforcement. Although it is possible to implement the en-
forcement with a software-based solution, the runtime and
memory overheads tend to be significant, needless to mention,
the size of the code running in SGX will also be significantly
increased. R2. Strong adversary. The security model of SGX
assumes that the privileged software (e.g., OS, hypervisor) is
untrusted. We thus cannot simply ask the OS or hypervisor to
change the memory permissions. In addition, SGX programs
themselves might be vulnerable and thus subject to a variety
of attacks that may abuse the permission changes.

In this paper, we present MPTEE, a memory-protection
system that provides flexible, efficient, and isolated memory-
permission enforcement for SGX. MPTEE realizes memory-
permission enforcement by bound-checking memory accesses
of different permissions, using Memory Protection Extensions
(MPX). For example, by bound-checking all memory reads
against a specific range, we can ensure that only the memory
region specified by the range is readable. Unfortunately, MPX

provides only four registers, but a flexible memory protection
requires at least six permission combinations. Spilling bounds
from registers to memory will significantly incur performance
overhead and require the integrity protection for the bounds
in memory. To address these problems, we propose a novel
cross-over memory-layout design that uses only three bound
registers to offer the six common memory permissions (e.g.,
execute-only or read-only memory) efficiently. We name the
design elastic cross-region bound check (CRBC). CRBC is
generic; it is also applicable to embedded systems that lack
the Memory Management Unit (MMU) but require flexible
memory protection.

Since the memory-protection mechanism runs in the same
address space as the potentially vulnerable SGX code, a re-
maining problem with MPTEE is that adversaries may abuse
the mechanism to maliciously change memory permissions,
invalidating the permission enforcement. We thus further
provide the enforcement integrity technique which employs
memory isolation and control-data integrity (CDI) to protect
the memory permission enforcement mechanism from attacks.
Note that, while memory isolation and CDI are well studied,
MPTEE exploits the in-place CRBC technique to further
improve their performance and security. With MPTEE, de-
velopers can readily enforce memory permissions flexibly,
efficiently, and securely.

We have implemented a prototype of MPTEE and eval-
uated its security, effectiveness, utility, and performance us-
ing representative SGX programs. The evaluation results
show that the MPTEE can provide efficient permission
settings to prevent existing known attacks, and can resist
against potential attacks that try to bypass or abuse MPTEE.
MPTEE’s protection has a small runtime performance aver-
age overhead—6.6% for SQLite and 2.18% for Memcached.
Moreover, the enforcement-integrity mechanism, which in-
cludes memory isolation and control-data integrity, incurs
less than 1% runtime performance overhead, benefiting from
the in-place CRBC technique. We believe that MPTEE is a
practical and secure memory-protection mechanism that is
ready for protecting SGX applications and SGX itself.

We have the following research contributions in this paper.

• The novel cross-region bound check technique. We pro-
pose a new technique to flexibly and dynamically enforce
six common memory permissions of SGX using only three
MPX bound registers. The cross-over layout design of the
technique does not require OS support or specific hardware
features. It can also be ported to bare-metal systems in em-
bedded devices that do not provide memory protection [12].

• An efficient and secure design. We design and imple-
ment MPTEE to efficiently realize the cross-region bound
check technique for SGX. MPTEE also employs CDI and
memory isolation to ensure the integrity of permission en-
forcement. More importantly, relying on the in-place cross-
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region bound-check technique, MPTEE further improves
the performance and security of CDI and memory isolation.

• Case studies and extensive evaluation. We provide mul-
tiple use cases that can benefit from MPTEE. By applying
MPTEE to representative SGX programs, we thoroughly
evaluate its effectiveness, utility, and performance.

2 Overview
In this section, we first present the background and threat
model of MPTEE, and then introduce the MPTEE approach.

2.1 Background

Intel MPX. Intel MPX is a new instruction set architecture
(ISA) extension, a hardware-assisted full-stack solution to pro-
tect against memory safety violations [28]. It provides new
instructions and registers for software-based bounds checking,
making it much more efficient. Specifically, MPX provides
four dedicated bound registers (BND0∼BND3) and instructions
for setting (bndmk), moving (bndmov), and checking (bndcu,
bndcl) against bound registers for addresses. MPX also pro-
vides a bound table, similar to a two-level page table structure,
to extend the number of bounds. Due to the scarcity of bound
registers, a typical use of MPX is to use a bound table to store
a large number of bounds for objects.
Memory-permission enforcement. The memory-page per-
mission of traditional applications is enforced by the permis-
sion bits of the OS page table. In linux syscalls, mmap() and
mprotect() are used to set or update the memory page per-
mission by updating the bits of page-table entries. In the x86
architecture, each page-table entry contains 2 permission bits;
one is the NX bit which presents whether the page is executable,
and the other is the W/R bit which presents whether the page is
writable. Under the existing x86 architecture, memory pages
are readable by default.

The SGX hardware provides three new permission bits for
SGX pages, W, R, and X bits which are contained in the SGX
enclave control structure (SECS)—the metadata structure of an
EPC. These three bits should be initialized only once during
the load-time. They are checked at each address translation,
enforced by hardware, so even an untrusted OS cannot break
it. In comparison, the permission bits in page tables cannot
limit whether the memory page is readable, but SGX permis-
sion bits can. Further, page tables are managed by the OS,
which is untrusted in the SGX threat model.

2.2 Threat Model
In MPTEE, we assume that the adversary can control all
the software (e.g., OS kernels and hypervisors) and hardware
except the SGX component. That is, we assume that only Intel
SGX itself is trusted, and all other software and hardware
components are untrusted. The adversary can freely read and
write the content in memory. We also assume that the code
running inside SGX may have any kind of vulnerabilities

such as buffer overflows that can be exploited by adversaries.
The adversary can perform any static or dynamic analysis
to find any patterns in the SGX code. Denial of service [20]
and side-channel [10, 11, 25, 54] attacks, such as power and
timing analysis, are out of the scope.

2.3 The MPTEE Approach
In general, memory protection can be realized with either
hardware-based or software-based approaches. Hardware-
based approaches use hardware features to control access
rights such as the special permission bits [26] [50, 53]. By con-
trast, software-based approaches use software-fault isolation
(SFI) mechanisms [51] to restrict memory accesses [30, 38]
or use exception mechanisms to check the access permis-
sions [2]. The hardware-based approaches tend to have lower
overhead but lack flexibility, while the software-based are the
opposite.

In MPTEE, we aim to propose a solution benefiting from
both the software-based and hardware-based approaches. Our
solution focuses primarily on software-based approaches and
requires minimum hardware support (e.g., only some regis-
ters), so that it is flexible, efficient, and potentially generic.
Since permission enforcement itself may be attacked when
the enclave code has vulnerabilities, we also need to pro-
tect the enforcement. Figure 1 depicts MPTEE’s overview.
MPTEE is mainly comprised of two components: permission
enforcement and enforcement integrity.

2.3.1 Permission Enforcement
The permission-enforcement component of MPTEE aims to
flexibly enforce memory permissions, which includes two
parts: dynamic permission enforcement and adaptive permis-
sion enforcement. Dynamic permission enforcement provides
the ability of runtime permission changes for SGX appli-
cations while adaptive permission enforcement effectively
optimizes the performance of permission enforcement.
Dynamic permission enforcement. Our key technique for
achieving dynamic permission enforcement is elastic cross-
region bound check (CRBC). Its intuition is that, by bound-
checking memory accesses, including read, write, and execute,
we ensure that they are restricted in the correct permission
regions. For example, the bound-checking for reads ensures
that all memory reads can only target a specific memory range.
That is, any memory that is out of the range is non-readable.
Moreover, the bound is stored in a register. By adjusting the
bound of the readable memory, we can realize a readable
memory region with a flexible range. This way, we enforce
the memory-read permission.

For performance reasons, we use Intel MPX for efficient
bound checks. However, there are some limitations to us-
ing MPX for efficient permission enforcement. The mem-
ory layout of traditional Linux programs includes many non-
contiguous memory regions (i.e., sections) with different per-
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Figure 1. An overview of MPTEE. MPTEE includes two main components, namely permission enforcement and enforcement integrity. The
enclave code can enable permission enforcement statically by setting config.xml or dynamically by calling interfaces. The implementation of
permission enforcement and enforcement integrity relies on code instrumentation based on LLVM.

missions. Such a many-region layout makes the MPX bound
checks less efficient—MPX has only four bound registers; ad-
ditional bounds will have to be stored to bound tables in mem-
ory, which will, however, cause two problems. First, it incurs
performance issues [22, 28]. The bounds must be frequently
loaded from memory, incurring significant performance over-
head. Second, it also introduces security issues—the integrity
of bounds (saved in memory) must be guaranteed.

Therefore, how to use only a limited number of registers to
efficiently and securely complete the enforcement of multi-
ple permissions in the enclave is a challenging problem. To
address this problem, CRBC relies on a novel cross-over de-
sign. The design is based on our key observation that the same
permission memory range is continuous in an enclave (details
are presented in §3.1). CRBC requires only three bound reg-
isters but offers six memory regions with different permission
combinations—RWX, RW, RX, R, X, non-permission. Note
that the WX combination is disallowed to be aligned with the NX
enforcement, and the write-only permission is also disallowed
because it does not have a practical use scenario.
Adaptive permission enforcement. We further reduce the
performance overhead of the memory enforcement by propos-
ing adaptive permission enforcement which is based on an
observation that memory regions that do not require permis-
sion changes can be protected with the SGX permission bits.
For example, when we know that the size of executable mem-
ory is 2MB and that the size will not change at runtime, we
can use the X permission bit to enforce the executable mem-
ory, so that CRBC only needs to bound-check memory reads
and writes but not executes, which saves one bound register
and avoids bound-checking for executes. When all memory
regions of different permissions have a fixed size, we can
completely avoid bound-checking and thus remove all the
performance overhead of CRBC (see details in §3.2). SGX
permission bits are checked through the hardware circuit,
without any additional instructions, so it is much faster than
MPX bound-checking.

As we will show in §3.2, the current compilation tool-chain
does not allow the flexible configuration of the permission
bits statically, we thus have to redesign the SGX parser and
loader, which is also shown in §3.2.

2.3.2 Enforcement Integrity
Since the permission-enforcement component is in the same
address space as all other code in SGX that is potentially
vulnerable, it can be abused by attackers through the vulner-
abilities. Therefore, we also develop enforcement integrity
to protect the component, which includes two techniques,
efficient memory isolation and control-data integrity (CDI).

The memory isolation mechanism is to prevent data-flow
attacks that aim to manipulate variables (e.g., a variable con-
trolling the size of a memory region) that influence the per-
mission enforcement. All such variables will be collected and
saved in the isolated memory region, thus will be protected
from being manipulated. On the other hand, CDI prevents
control-flow attacks that may bypass bound-checks. By en-
suring the integrity of control data, attackers cannot hijack
control flows.

Although CDI and memory isolation are well studied, our
enforcement integrity has some unique advantages. First, it
leverages the in-place CRBC to achieve memory isolation for
free. Second, since control data like the trampoline table [15]
can be readily protected using the non-permission memory
offered by the in-place CRBC, we manage to further improve
both the efficiency and security of traditional control-data
protection. As will be shown in §6, our enforcement integrity
technique incurs a runtime performance overhead of less than
1%, and is more secure than CFI techniques like CFCC [47]
and Readactor [15].

3 Flexible and Efficient Memory-Permission
Enforcement

We first elaborate on the flexible enforcement of memory
permissions. The main contribution is the dynamic permission
enforcement, which (1) uses only three bound registers to
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efficiently offer six permission combinations; (2) allows the
flexible changes of the ranges of memory regions at runtime.
Its key technique is elastic cross-region bound check which
employs a cross-over design. In addition, we propose adaptive
permission enforcement which uses SGX permission bits to
boost the performance of CRBC.

3.1 Elastic Cross-Region Bound Check

Unique memory layout of enclave. Before we elaborate on
the design of the elastic cross-region bound check technique,
we first introduce the unique memory layout of enclaves. We
found that enclave programs do not support linking dynamic
libraries [33]; all required libraries must be statically linked in
the target enclave program. Therefore, enclave programs tend
to have a very simple memory layout. That is, the memory
sections that have the same permissions are adjacent. The
official SGX manual [32] presents a typical enclave memory
layout, as shown in Figure 2 (a). We also analyzed the source
code of the SGX SDK and found that the layout table has ex-
actly followed this memory layout. To make sure that existing
SGX applications also follow this memory layout, we ana-
lyzed 15 representative open-sourced SGX programs, includ-
ing sgx-migration [39], SGXCryptofile [42], TresorSGX [48],
SGX-Shield [41], etc. Except for SGX-Shield, all these SGX
programs follow this memory layout as well. SGX-Shield
adds a new section .sgxcode to store the randomized code,
and thus the two executable sections are not adjacent. How-
ever, this new section .sgxcode can be placed right after the
original code section. In their implementation, although there
are some guard pages between sections, these pages do not
have any permission. Based on these analyses, we conclude
that, in general, SGX programs follow a simple memory lay-
out where memory regions with the same permission are
adjacent.

The observation motivates us to design an efficient bound-
checking mechanism, elastic cross-region bound check
(CRBC), that completely avoids using bound tables but uses
only three bound registers to maintain a new memory layout
shown in Figure 2 (b).
Cross-region bounds. The key idea is to implement a cross-
over design with three basic permission regions (i.e., R/W/X).
The new layout provides five regions with specific permission
combinations and one reserved region without any permis-
sion, namely, X (execute-only), R (read-only), RX (read and
execute), RW (read and write), RWX (all permissions), and
non-permission. We do not support permission W because
“writing to non-readable memory” does not have practical
uses. Since bound registers are changeable, the flexibility can
be intuitively realized by adjusting the bounds.

CRBC leverages MPX to efficiently bound-check multiple
regions with different boundary registers. Specifically, we
use only bnd0, bnd1, and bnd2 to delimit the ranges of ex-
ecutable memory, writable memory, and readable memory,

respectively. We carefully design the overlapping between the
ranges represented by bnd0, bnd1, bnd2 to achieve six differ-
ent permission combinations. The representation of each area
is shown in Table 1. To bound-check memory accesses, we
identify all memory read/write operations and indirect con-
trol transfers (i.e., indirect calls). We then instrument them
to bound-check their addresses. Through such bound checks,
we can effectively prevent invalid accesses such as writing to
a non-writable range, reading from a non-readable range, or
transferring the control flow to a non-executable range. This
way, we eventually realize adjustable memory regions with
different permission combinations.

The most important part of the flexible permission enforce-
ment is to properly control the three bound registers.
Initializing the bounds. According to the new layout, to
initialize the bound registers, we only need to know the size
of reserved areas. MPTEE provides two ways of setting the
size. First, MPTEE has an automated setting that determines
the bounds based on the section information of an ELF file.
This automated setting is based on our observation that the
dynamic changing of region ranges typically happens in the
heap, so it is reasonable to set the size the same as the one
of the heap. Second, we also allow developers to specify the
size of each reserved area in the configuration file. Manually
configuring memory usage is in fact a common practice in
SGX. For example, the max size of heap and stack should
be configured in the SGX configuration file before running
the enclave code. After knowing the size, we can compute
the range of each permission region and initialize the bound
registers.
Updating the bounds. Through adjusting the bounds, we
can implement two types of permission changes: permission
reduction and permission extension. The reserved areas (see
Figure 2 (b)) located at the boundary of regions are used by the
memory objects which require to change their permission. Let
us take the just-in-time (JIT) code generator as an example.
First, the JIT program uses some RWX memory to store
generated code, whose start address is bnd1.ub. JIT writes
the generated code A at bnd1.ub. When it needs to remove the
W permission of code A for security, we just assign bnd1.ub
with bnd1.ub − size_o f _A. As bnd1.ub has decreased, the
write to code A will throw an exception. When JIT continues
to generate more code, bnd1 can continue to shrink the upper
bound. This way, we implement permission change from
RWX to RX by adjusting the bound.

Permission reduction includes RWX to RX, RWX to RW,
RW to R, RX to X while permission extension is the oppo-
site. However, adjusting the bounds by itself cannot fully
realize permission changes. For example, in the case where
B is set to RX, an SGX program may want to revert the per-
missions of A that have changed from RWX to RX. In this
case, increasing the boundary to revert A’s permissions will
affect B’s permissions. We emphasize that this is a limitation
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Phr_Type = LOAD
Phr_Flags = RE
.text,.rodata,...

Phr_Type = LOAD
Phr_Flags = RW
.got,.bss,.data,...

...
Heap

Stack
TCS
SSA
TLS

Thread Context

R
W

X

.text,.rodata,      (RX)

.got,.bss,.data,   (RW)

Thread Context     (RW)

R(BND2)

X(BND0)

Reserved for X

Reserved for RX

Reserved for R

Reserved for RW

W(BND1) Heap

Image end

Image base non-permission

a) Original memory layout b) New memory layout with CRBC

Thread Context

Reserved for RWX

Section[1] end

Context start

Figure 2. The original memory layout and the MPTEE’s new memory layout of enclave
program. The original layout is contiguous, and all parts are readable. The new layout
constructs multiple different permission regions that employ a crossover design of bound
ranges.

Permission Bound range

non-perm. (ImageBase, bnd0.lb)

X (bnd0.lb, bnd2.lb)

RX (bnd2.lb, bnd1.lb)

RWX (bnd1.lb, bnd0.ub)

RW (bnd0.ub, bnd1.ub)

R (bnd1.ub, bnd2.ub)

Table 1. CRBC uses only three bound registers
to realize 6 permissions. lb denotes the lower
bound. ub denotes the upper bound. ImageBase
is the start address of enclave. non-perm. means
that the region does not have any permission.

with MPTEE—the memory that has contained data cannot
be used for bound extension of other permissions. However,
we believe such a conflict is not common in practice. For
example, both SGX-Shield and SGXELIDE require to only
remove the W permission once. In fact, we can also overcome
this limitation with memory movement. By moving the data
in the conflicting memory to other memory regions, we can
use the memory for the extension. However, all references
(e.g., data pointers) to the data must be carefully updated.
Currently, the user needs to be aware of the changes in the
memory layout during the memory movement. In the future,
we will enable automatic pointer update during the memory
copy, similar to runtime memory rerandomization [4].
Permission enforcement using CRBC. CRBC provides
four APIs for developers to use, as shown in Table 2. CRBC
provides two ways to implement permission enforcement
through these APIs. First, providing the memory with requir-
ing permission. Reserved areas with different permissions
allow us to place the appropriate data based on the require-
ments of the application. The reserved area can be viewed as
a mini-heap and managed by a uniform memory-allocation al-
gorithm. Developers call the mpt_mmap to apply for the buffer
in the reserved area with the target permissions. mpt_write
is used to write the data to the buffer. When the data is no
longer needed, mpt_munmap frees the buffer. Second, provid-
ing permission changing. mpt_mremap relies on adjusting the
register boundary or memory copy to support dynamic permis-
sion changes. Algorithm 1 shows how to make the decision
in mpt_mremap. In the algorithm, cur_region denotes the re-
gion where addr is located. flags_region denotes the region
which has the target permission. neighbor_region denotes
the region which is adjacent to cur_region.
Improving EPC usage. CRBC pre-allocates EPC pages for
the reserved area at initialization. If the reserved area is never
used, e.g., when the enclave program does not change mem-

ory permissions, the EPC pages will never be used, which
degrades the EPC usage. To improve EPC usage, we use the
SGX seal mechanism [33] to free up unused reserved area.
CRBC immediately seals the reserved area out of the enclave
upon the completion of initialization. However, whenever the
reserved area is used, CRBC loads back the memory to con-
tinue the EPC memory accesses. This way, we ensure a good
EPC usage. SGX seal uses AES-GCM (Advanced Encryption
Standard) to encrypt the data; it utilizes Intel Advanced En-
cryption Standard New Instructions (Intel AES-NI) which is
immune to software-based side-channel attacks. In addition,
the seal policy can be used to defend against replay attacks.
As the implementation uses hardware instructions, the per-
formance overhead is low, especially when the operation is
performed only once.

The design of CRBC has the following advantages. First, it
supports all the necessary permission combinations. Second,
it supports to modify the region boundary dynamically, which
enables the change of memory permissions flexibly. Third,
it only uses three bound registers and never stores or loads
bound registers to or from bound tables in memory, thus
minimizing the performance overhead.

3.2 Optimizing CRBC: Adaptive Permission
Enforcement

When one permission region has no change requirement at
runtime, we employ the SGX permission bits, instead of
bound-checking, to validate memory accesses, which relies
on a hardware check to reduce the performance overhead of
CRBC.

3.2.1 Configuring the SGX Permission Bits
To enable the adaptive permission enforcement, developers
specify the region size and the corresponding permissions.
MPTEE will then properly set the permission bits according
to the configuration.
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Algorithm 1: How to change pages permission to flags
with using mpt_mremap.

Input :addr, size, flags
Output :new_addr
Data: Metadata of 5 Reserved region, 3 bnd register

1 Get cur_region, flags_region, neighbor_region from addr and registers
2 if cur_region == flags_region then
3 new_addr = realloc(addr, size)
4 if realloc failed then
5 if neighbor_region is not reserved || neighbor_region has

allocated then
6 new_add = NULL
7 else
8 Get bndX according to flags_region
9 bndX.lb = bndX.lb + size

10 update metadata of cur_region
11 new_addr = realloc(addr, size)
12 else if cur_region is neighbor with flags_region then
13 Get bndX according to flags_region
14 bndX.lb = bndX.lb - size
15 new_addr = addr
16 else
17 Get the dest_heap according to flags
18 new_addr = malloc in dest_heap
19 mpt_write(new_addr, size, addr)
20 mpt_munmap(addr)
21 return new_addr

API Description

void *mpt_mmap( Acquires a memory buffer, which is at least size
size, flags) bytes. It is restricted as specified in flags.

Changes old_pages to flags. If the pages are
void *mpt_mremap( located at a region boundary, it changes the
pages, size, flags) permissions; otherwise, it allocates new

memory buffer and copy content over.
void *mpt_munmap( Frees an acquired memory buffer, the freed
pages) memory will be sealed and swapped out.
void *mpt_write( Writes content to the mapped region.
pages, size, content) The function will not be bound-checked.

Table 2. The API functions offered by the CRBC component. Devel-
opers can call these functions to dynamically change the permissions
and sizes of memory regions.

The inflexibility with the permission bits. Unfortunately,
the current compilation tool-chain does not allow the flexible
configuration of the permission bits statically. For example,
compilers do not support permissions such as execute-only
memory. Moreover, the permission bits contained in the pro-
gram header do not help CRBC to decide which bound regis-
ter should be removed. CRBC needs to know the permission
region which does not require changes before instrumentation.
As such, we have to re-design the SGX parser and loader to
support adaptive permission enforcement.
Re-design the SGX parser and loader. Figure 3 shows the
new workflow of building an SGX program. Specifically,
developers can specify the permissions and size which will
not be changed at runtime by setting the Static node in the

config.xml. The Static node value is represented with the
following simple format.

perm := R | W | X
num := 1,2,...

R,W,X represent three permissions while num represents the
region size of corresponding permission.

In the process of generating an enclave program, the parser
extracts the permissions from the configuration file. As the
configuration file will be discarded at runtime, we record
this information in SGX metadata. The loader will construct
the SECS structure according to the setting permissions, then
pass it to the SGX driver which will finally use it to initial-
ize the enclave properly. This way, developers can flexibly
configure permissions. After that, we need a script to pass
the information to the process of applying CRBC, so that the
corresponding bound register will be removed when building
the SGX program.

Figure 3. The new workflow of building SGX program after apply-
ing the adaptive permission enforcement.

4 Enforcement Integrity Against Attacks
MPTEE enforces memory permissions through cross-region
bound check which is subject to two kinds of attacks: control-
flow attacks that bypass the bound checks and abuse the
permission control, and data-flow attacks that manipulate
bounds maliciously. To prevent both attacks, we propose
enforcement integrity which incorporates two mechanisms,
memory isolation and control-data integrity. The memory
isolation protects all the code and data related to the per-
mission enforcement by saving them in an isolated memory
region (i.e., the non-permission region offered by CRBC).
The control-data integrity (CDI) further prevents attackers
from exploiting unintended instructions to bypass the bound
checks. Its idea is to ensure the integrity of return addresses
and function pointers.

Figure 4 shows the memory components of enforcement
integrity: safe region, safe stack, and trampoline table. Safe
region is used to protect the code and data for permission
enforcement. Safe stack and trampoline table are to ensure
the integrity of return addresses and function pointers, respec-
tively. Note that our enforcement integrity shares a similar
high-level idea as traditional CFI and isolation techniques
such as CPI [23] and Readactor [15]. Our protection em-
ploys a conservative analysis, as CPI does, to recursively
find all data that requires integrity protection. Therefore, in
this section, we focus on two parts of enforcement integrity
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that differentiate from previous works: memory isolation and
trampoline table which are more efficient and secure.

Safe Region
call *ptr ptrA

ptrB
jump *ptr

assert(*ptr != IAddr)

IAddr: 
    interface(*ptrA, *ptrB)

assert(*ptr != IAddr)

ret addr
 

Code

Heap

Stack

Safe Stack
ret addr

*ptrA = *ptrC + V

ptrC

Function A
Function A_Addr
Trampoline table

 

 

Figure 4. The design of the enforcement integrity.

Efficient memory isolation using non-permission region.
We first provide data-flow integrity for the parameters used
in CRBC to defeat data-flow attacks. As CPI [23] does, we
recursively and conservatively collect the set of sensitive data
using type-based static analysis—we say the data is sensitive
as long as it may have a data flow to the bound register values.
Instructions that load or store this sensitive data are replaced
with new instructions that load or store from the safe region.
In MPTEE, we reuse the non-permission region offered by
CRBC as the safe region for free. This region can only be
accessed by our replaced instructions. All other instructions
are prevented from accessing this region, which is enforced
through bound checks. Therefore, any malicious modification
(e.g. overflow/underflow) against the sensitive data will not
change its value stored in the safe region.
A more efficient and secure design for the trampoline ta-
ble. A trampoline table [15, 47] is a common approach for
protecting control data such as function pointers—control
transfers must go through entries in the trampoline table
whose integrity is ensured. In MPTEE, we also employ a
trampoline table to protect pointers for indirect calls and
jumps. However, our design for the trampoline table is much
more efficient and secure.

We first collect, through static analysis, all functions whose
addresses are ever taken. At load time, our SGX loader will
prepare a trampoline table that contains the actual addresses
of these functions. Also, the table is in the safe region. Upon
an indirect call or jump, we ensure that the target is one of the
entries in the trampoline table. Figure 6 shows the principle
of our design. The code pointer has been replaced with an
index into the trampolines table. The code is instrumented as
shown in Figure 5 to use the trampoline table.
1 lea 0x2ee28d($rip), %rax ;get the base address of trampoline table
2 mov 0x2f02ce(%rip), %rcx ;get the function index
3 mov (%rax, %rcx, 0x8), %rcx ;get the function address
4 callq *(%rcx)

Figure 5. The efficient and secure control-data integrity mechanism
implemented by instrumenting indirect transfer using a trampoline
table. This makes sure that indirect calls can only target a unique
entry in the trampoline table.

Trampolines table

Function A_Addr

Function B_Addr

Enclave code

Function A

Function B

ptr = A;

Call *ptr;

Enclave code

Function A

Function B

ptr = IndexA;
check ptr < table size;
Call *(base+ptr*8);

Figure 6. Control data integrity instruments code to replace the
indirect transfers with a trampoline address. All indirect transfers
will be checked to enforce the aligned transferring.

Our trampoline table is more efficient and secure than
previous works. IFCC [47] employs a standard trampoline
table to protect indirect-call targets. Its table entry is a jump
instruction; its implementation ensures that an indirect call
can only point to a jump-table entry by masking the least
significant bits. IFCC allows the control to transfer to any
entry in the table. At the same time, it suffers indirect dis-
closure attacks when the code is randomized. Readactor [15]
mitigates this issue by further mapping the trampoline table
with the execute-only permission using the extended page
table (EPT) mechanism. Our trampoline table benefits from
the non-permission region offered by CRBC, which is non-
writable and non-readable, and does not depend on the system
privilege; therefore, its integrity and confidentiality are al-
ways guaranteed. In addition, as the permission check of non-
permission region is realized by bound-checking the memory
accesses of other permission regions, its overhead to ensure
confidentiality is negligible compared to Readactor based on
virtualization.

5 Implementation
We have implemented MPTEE, including its flexible
memory-permission enforcement and enforcement integrity,
as shown in Table 3.

Technique LoC Base Framework

Dynamic permission enforcement 421 LLVM Backend
Adaptive permission enforcement 142 Intel SGX SDK
Enforcement integrity 1,832 LLVM Backend
Others 682 -

Table 3. The implementation complexity of MPTEE in Linux. Our
implementation involves modifying the source code of the SDK and
instrumenting application code using LLVM [13].

5.1 Permission Enforcement
Permission enforcement involves the modification of SGX
SDK and code instrumentation. We implement the four new
APIs in the enclave library and modify the sign_tool, parser,
loader to change the memory layout of the enclave accord-
ing to Figure 2. We instrument new bndmk, bndcu, bndcl in-
structions to initialize the bound registers and implement
bound checks. Code instrumentation relies on an LLVM
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IR pass to identify the memory reads, writes and the indi-
rect transfers. Figure 7 shows an example of instrumenta-
tion code for X permission. Currently, the reserved areas are
managed by a simple first-fit memory allocation algorithm.
mpt_mmap/mpt_munmap are mapped to the malloc/free to the
corresponding reserved areas according to the permission.

1 ;(*ptr_fun)()
2 ;call *ptr_fun
3 lea ptr_fun, rcx
4 call rcx
5

1 ;(*ptr_fun)()
2 lea ptr_fun, rcx
3 bndcu rcx, bnd0 ;range check
4 bndcl rcx, bnd0
5 call rcx
6

Figure 7. Example of instrumentation code for permission enforce-
ment. The left hand side shows the original code. The right hand
side shows the instrumented code after using Intel MPX.

To enable adaptive permission enforcement, we use macros,
__MPX_NOX__, __MPX_NOW__, __MPX_NOR__, to control MPX
bound checks. If the macro is defined, the correspond bound
check is enabled; otherwise, it is disabled. A python script
parses the config.xml to set the Macro. Then the script
passes the macro value to the compiler through the -D flag.
When applying this pass, the configuration in config.xml
leads to different MPX code. If developers specify the X=2MB,
-D__MPX_NOX__ will be passed to the compiler to remove the
bound check using bnd0.

5.2 Enforcement Integrity
Enforcement integrity works on LLVM IR to identify sensi-
tive data, function pointer assignments, and indirect control
transfers. This IR pass constructs the trampoline table and
inserts the computation instructions. Similar to CPI [23], to
collect all sensitive data, we start from the arguments of the
interface functions. We exploit data-flow analysis to trace the
variables, which might propagate to the interface functions.
Then, we recursively collect the data that may propagate to
the previous variables. Through such a recursive analysis, we
can conservatively collect all sensitive data that may propa-
gate to the arguments of the interface functions. All of the
accesses to the sensitive data will be instrumented to access
the new values saved in the safe region.

In the implementation of control-data integrity, we instead
collect all control data including return addresses, and tar-
gets of indirect calls and indirect jumps. Since we borrow
SafeStack to identify and protect return addresses, in the im-
plementation, we focus on the targets of indirect calls and
jumps. Specifically, our IR pass analyzes the operand type of
store instructions. If it is a function pointer or a label, the IR
pass first finds whether this address exists in the trampoline
table. If not, it adds its address to the trampoline table and
replaces the operand with trampoline .size − 1. Otherwise, it
just gets the index and replaces the operand with the index. As
the aggregate variables may contain other aggregate variables,
we also need to recursively analyze the nested variables.

6 Evaluation
In this section, we extensively evaluate MPTEE from the
following perspectives: performance, utility, and effectiveness.
Our experiments were performed on a Dell workstation, with
an Intel Xeon E3-1225v5 CPU and 8G RAM, running an
Ubuntu 16.04 Server, SGX SDK v2.0, SGX driver v0.10, and
LLVM v6.0.

6.1 Performance Evaluation
We now evaluate the runtime and memory overheads
of MPTEE with both macro-benchmarks and micro-
benchmarks.

6.1.1 Macro-benchmark
SQLite is a C-language library that implements a small and
fast SQL database engine. It is widely used in mobile phones
and computers. The implementation of SQLite contains many
memory access operations, we use it to measure the overhead
of our system. We adopt a ported SGX version of SQLite [43].
In this experiment, we run speedtest, a performance testing
script included in SQLite. We record the time cost for four
operations into a database—inserting, selecting, updating and
deleting. We run the test 50 times. In each test, we loop each
operation 1,000 times and report the median.

0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

Insert Select Update Delete
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Figure 8. The runtime performance evaluation results of four fre-
quently used operations in SQLite. CRBC denotes enabling cross-
region bound check. EI denotes enabling enforcement integrity.
MPTEE denotes enabling cross-region bound check, enforcement
integrity and safe stack.

Figure 8 shows the performance of the four database op-
erations. Overall, MPTEE imposed an overhead in the total
execution time from 2% to 8% with an average overhead of
6.6%. The source code of SQLite uses a large number of
structures with function pointers as members. According to
our instrumentation log, the address table (trampoline) con-
tains 394 entries, and there are 3,736 address assignments for
these entries. Figure 8 also shows the runtime performance
impact of different techniques in MPTEE. CRBC imposes
a 2%–7% overhead, but enforcement integrity imposes an
overhead smaller than 1%, which, we believe, benefits from
the extremely efficient design of isolation and control-data
integrity. In these four operations, the selecting, updating,
and deleting operations have a higher overhead than inserting.
All of these three operations have conditions like WHERE b
BETWEEN ?1 AND ?2. Intuitively, these operations require
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more frequent memory accesses, thus leading to more bound
checks. The experiment results are therefore expected.
Memcached. Memcached is an in-memory key-value store
for small chunks of arbitrary data (strings, objects), which is
widely used in production. We evaluated Memcached v1.5.22,
which uses memaslap v1.0.18—a load generation and bench-
mark tool for Memcached servers. We set the get/set opera-
tion ratio to 1: 1, the key size to 16 bytes, and run memaslap
for one hour. After the instrumentation, its address table in-
cludes 99 entries, 9,597 bndcu/bndcl instructions. The origi-
nal throughput is 256,292 (tps), and MPTEE slows it down by
2.18%. There is almost no significant change in the response
time because the time taken to transfer data is much greater
than the time taken to memory check operations. The results
show that MPTEE imposes little performance overhead to
Memcached.

According to these results, we believe that MPTEE is
able to protect realistic SGX applications and their defense
mechanisms efficiently.

6.1.2 Micro-benchmark
Nbench is a lightweight benchmark for testing CPU and mem-
ory performance, which includes a number of well-known
algorithms. We use the ported SGX-nbench [40] as a micro-
benchmark. We run each testcase 100 times and report the me-
dian value. In each run, nbench iterates through its tasks 1,000
times and returns the average time cost. To breakdown the per-
formance overhead, we run nbench with two settings: CRBC
and enforcement integrity. Figure 9 shows the performance
overhead by applying MPTEE in each testcase of nbench.
Overall, MPTEE imposed a runtime overhead from 0% to
35% with an average overhead of 20%. The testcase, Fourier,
is not affected by MPTEE. However, LU DECOMPOSITION is
affected more significantly, with an overhead of 35%.
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Figure 9. The runtime performance overhead of applying MPTEE
to nbench. The default nbench is the baseline. MPTEE-nbench
denotes that we run nbench with MPTEE. It is represented with
relative overheads in percentage, compared to the baseline.

In order to understand the sources of the additional over-
head, we further tested the impact of three key technologies
separately—CRBC, enforcement integrity, and SafeStack.
Table 4 shows the performance overhead of each testcase in
running nbench with the each of the three key techniques en-
abled. This table shows that enforcement integrity and SafeS-
tack both have little impact on nbench. After using MPTEE,
most of the additional running time of nbench comes from
CRBC—20% overhead on average.

Benchmark Baseline CRBC EI SS
(µs)

NUMERIC SORT 534 19.46% 0.29% 0.34%
STRING SORT 537 20.47% 0.29% 0.32%
FP EMULATION 1,001 22.9% 0.98% 0.18%
FOURIER 20 0.38% 0.21% 0.24%
ASSIGNMENT 10,942 27.09% 1.59% 0.54%
IDEA 65 0.82% 0.77% 1.46%
NEURAL NET 7,384 27.98% 1.59% -0.42%
LU DECOMPOSITION 287 34.28% 0.11% 0.28%
Average 0.00% 19.17% 0.72% 0.36%

Table 4. The runtime performance overhead of using MPTEE
in nbench. Baseline corresponds to a native run nbench without
MPTEE, and it is measured in microseconds. The next three
columns are represented with relative overheads in percentage com-
pared to the baseline when we only enable one technique. SS denotes
SafeStack while EI denotes enforcement integrity.

Benchmark Baseline CRBC EI SS

NUMERIC SORT 2,434K 19.51% 0.01% 0%
STRING SORT 3,260K 58.37% 2.21% 0.15%
FP EMULATION 8,545K 39.08% -0.4% 0%
FOURIER 93K 13.5% 0.0002% 0%
ASSIGNMENT 73,724K 96.95% 0.25% -0.06%
IDEA 643K 31.54% 1.47% -0.04%
NEURAL NET 45,343K 81.91% 1.4% 0%
LU DECOMPOSITION 2,106K 117% -0.08% 0%
Average 0.00% 57% 0.61% 0.01%

Table 5. The number of instructions executed at runtime while run-
ning nbench.

To better understand the performance impacts of MPTEE,
we also counted the number of executed instructions in run-
ning the testcases of nbench. Table 5 shows the number of
executed instructions in percentage. CRBC imposes an aver-
age of 58% more executed instructions. Enforcement integrity
and SafeStack have a negligible impact on executed instruc-
tions. Although the number of executed instructions has in-
creased by 58%, the newly added instructions, bndcu and
bndcl, cost fewer clock cycles—the IPC (instructions/cycle)
of the testbed is 1.97, and the IPC of bndcu, bndcl is 2.
The newly added instructions are shorter than the average
instruction length. The binary size actually increased by 48%.
Currently, we instrument every memory write/read opera-
tion. However, we can reduce the size increase. First, we can
check only the memory operations of the indirect address and
relative address. Second, we can exploit an instruction opti-
mization technique [30] to reduce the number of instructions.
We believe that these optimizations can effectively reduce the
binary size.

We also analyze the memory overhead and the change in
binary size. Table 6 shows general static information about
the binary. In particular, the #Inst column also shows that
CRBC inserts more instructions than enforcement integrity.
In addition, we can see that the binary size is bigger than the
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Case #Inst #Bndck #Indirect Bin. size code data MD. Mem.

nbench 41K N/A N/A 290K 233K 36K 23K 5048K
nb.-CRBC 49K 2,272 N/A 430K 264K 36K 128K 5180K
nb.-EI 47K N/A 50 425K 264K 36K 125K 5268K
nb.-MPTEE 51K 66,332 50 456K 294K 36K 125K 5380K

Table 6. The memory overhead of MPTEE to nbench. #Inst denotes
the number of instructions in the nbench binary; #Bndcu denotes
the number of the bndcu and bndcl instructions that MPTEE in-
strumented. Binary size denotes the size of nbench, including code,
data, as well as metadata; code denotes the size of the text section in
the binary. data denotes the size of the data segment in the binary.
metadata denotes the size of symbol, relocation, and string table in
the binary.

default. The added part mainly contains the space occupied by
the newly inserted instructions, and the added metadata part,
such as the trampoline table. In term of memory overhead,
MPTEE actually imposes negligible overhead as the memory
that is added statically is much smaller than the memory
space required at runtime, so the new memory is amortized by
regular memory operation and can be considered negligible.
Overhead of permission setting. We also evaluate the
performance overhead of two operations, mpt_mmap and
mpt_mremap. We allocate objects with randomized permis-
sion, X/RX/RWX/RW/R, to compare the time overhead of
mpt_mmap with normal malloc. We also construct two permis-
sion change types to compare the time cost of mpt_mremap
with m_protect. First, that the target permission region is ad-
jacent to the current region, and second, that it is not adjacent.
We iterate the two comparisons 1000 times.
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Figure 10. The normalized
overhead of mpt_mmap and
mpt_mremap. It shows the
increase in the running time of
the two operations relative to
the running time of the normal
malloc and mprotect.

Figure 10 shows the results from the comparisons.
mpt_mmap has a larger overhead than malloc. The implemen-
tation of mpt_mmap calls malloc after it ensures the heap ac-
cording to flags. As we sealed the EPC pages out of the
enclave, mpt_mmap needs to unseal the memory pages first,
so mpt_mmap costs more time than malloc. When we use
mpt_mremap to change the current permission to target, if they
are adjacent, the overhead is less than the usage of mprotect.
As mpt_mremap only needs to adjust the boundary, it is faster
than calling mprotect, which needs to modify the page table
and switch the context. However, if the two permission re-
gions are not adjacent, the overhead is more than 10%. This
is because the permission change needs to copy memory. Ac-
tually, the overhead depends on the size of the objects. In our
experiment. the size is one memory page (4KB).

6.1.3 Benefits from adaptive permission enforcement
To show how the adaptive permission enforcement improves
the performance of CRBC, we run nbench with differ-
ent settings. CRBC denotes that we only use the original
CRBC to enforce the permissions of different memory ranges.
Adaptive-X denotes that we set the executable range stati-
cally and use CRBC to enforce the readable and writable
memory permission. Adaptive-R denotes that we set the read-
able range statically and use CRBC to enforce the executable
and writable memory permission. Adaptive-RWX denotes
that we ensure the memory permission statically and do not
need CRBC. Figure 12 shows the performance slowdown of
each setting. As CRBC relies on instrumentation and bound-
checking to enforce the memory permission, it can incur up to
20% runtime overhead. Adaptive-RWX instead purely relies
on hardware for permission checking; it incurs almost zero
runtime overhead. One interesting observation is that adaptive-
X and adaptive-R have different slowdowns. Adaptive-X used
the bound registers, bnd1 and bnd2, while Adaptive-R used
bnd0 and bnd2. However, the frequency of bound-checking
is different in these two cases, leading to different runtime
overhead.

6.1.4 Compared with SGX-Shield NRW
SGX-Shield uses the R15 register to create the NRW boundary
to remove the read and write permissions for code pages. We
use the mbedTLS [27] to compare SGX-Shield with MPTEE.
Note that SGX-Shield only supports executable-only permis-
sion using the dedicated R15 register. For a fair comparison,
we removed the current software-DEP part from SGX-Shield
and modify the enclave_main() as described in §6.2. Note
that, in this evaluation, the adaptive permission enforcement
is not enabled. Figure 11 shows the overheads of requesting
HTML files from the HTTPS server on the original SGX-
Shield and SGX-Shield with MPTEE. The slowdown of SSL
handshaking is almost the same, but overall, SGX-Shield-
MPTEE has a lower overhead–1.9%, which is 2.2% in the
original SGX-Shield. We believe that the reduced number of
available general-purpose registers creates additional register
spilling. Note that SGX-Shield-MPTEE can be much better
if the adaptive permission enforcement is enabled. Moreover,
SGX-Shield uses the R15 register to implement the NWR
boundary, which can only provide one permission. In com-
parison, MPTEE provides more permission ranges with ad-
justable sizes. Meanwhile, MPTEE also provides memory
isolation and CDI while the original SGX-Shield does not
have these capabilities.

6.2 Utility Analysis
SGX SDK provides nearly 90 SGX APIs. Compared to it,
MPTEE introduces four additional APIs. The format for con-
figuring regions is also simple. To confirm that MPTEE is
an easy-to-use and practical tool, we apply it to two SGX
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Figure 11. The performance eval-
uation results with mbedTLS.
Each bar represents the slow-
down (%) using SGX-Shield and
SGX-Shield-MPTEE, compared
to the baseline (i.e., Intel SGX
SDK for Linux).

Figure 12. The nbench perfor-
mance evaluation with adaptive
permission enforcement. Each
bar represents the slowdown fac-
tor(%) compared to the baseline
(i.e., Intel SGX SDK for Linux).

programs—SGXELIDE and SGX-Shield, both of which use
MPTEE to protect their codes. The following presents the
effort required for the applications.

a) SGXELIDE treats the program code as data and dy-
namically restores secrets after an enclave is initialized.
It modifies the p_flag field of the ELF program header
to make the code section writable. With MPTEE, we re-
move the write permission for the code section in SGX-
ELIDE. Specifically, to enforce the NX code, we remove
the modification to p_flags. In its source code, we replace
malloc(meta.length) with mpt_mmap(meta.length, RX) in
elide_restore(). After Elide retrieves and decrypts the code
contents in Heap, we call mpt_write to write the restored code
to execute-only region.

b) SGX-Shield is similar to SGXELIDE. We first remove
this NRW boundary from its LLVM MachineFunction

pass. We insert mpt_mmap(sgx_end-sgx_start, X) into
enclave_main() before update_reltab(). enclave_main()
is the entry point of this enclave program. update_reltab()
is used to relocate the randomized code units. sgx_end,
sgx_start are the end address and start address of the pro-
gram. We call mpt_write to write the randomized binary code
into the execute-only region.

In summary, MPTEE is compatible with SGX applications,
requiring minimum effort to configure the memory regions
and change the source code.

6.3 Effectiveness Evaluation
We first analyze the potential attacks against MPTEE and
then use two cases to show its effectiveness.

6.3.1 Security Analysis
We now analyze the security of our mechanisms from the
perspective of possible attacks in our threat model. There
exist two kinds of possible attacks. First, an attacker might
hijack the control flow by exploiting vulnerabilities in the
enclave code. A control-flow attack might skip the bound
check instructions by directly jumping into invalid memory
reads/writes to protected regions that do not grant the cor-

responding permissions. We call this check-skipping attack.
In this attack, permission enforcement is broken because
the checks are not triggered at all. Alternatively, an attacker
can exploit the enclave code vulnerabilities to call bndmk in-
structions to modify the bound registers. We call this attack
bound-manipulating attack. In this attack, the permission en-
forcement is broken because bounds have been maliciously
tampered.
Preventing check-skipping attacks. To successfully issue
such attacks, the control flow must be hijacked by corrupt-
ing control data such as function pointers. After that, the
attacks must use control transfer instructions, including call,
jmp, ret, to jump to the invalid memory access instructions
following bound-check instructions. Such attacks however
cannot succeed in MPTEE because our control-data integrity
mechanisms ensure that the control data cannot be corrupted.
Therefore, MPTEE is secure from check-skipping attacks.
Preventing bound-manipulating attacks. Another possi-
ble attack is to manipulate the bounds by abusing the bndmk
instruction. The bndmk instruction exists in only two loca-
tions. One is in mpt_mremap, and the other is in the enclave
initialization. We have a clear rule that both cases cannot be
invoked in an indirect way; therefore, we exactly know where
the interfaces are called and thus where the bound variables
are. Our memory isolation (Figure 4) ensures that all data that
ever recursively influences the bound variables are identified
as sensitive data and thus are isolated. This way, attackers
cannot manipulate the bound variables. A remaining issue
is that attackers may employ control-flow attacks to exploit
unintended instruction (starting from the middle of a legal
instruction) to manipulate bounds. This is also prevented by
our control-data integrity mechanism.

6.3.2 Case Studies

Protecting SGXELIDE code. After we modified the source
code of SGXELIDE as mentioned in §6.2, we compile and
generate the enclave dynamic library program, enclave.so,
using clang with our LLVM IR pass. To validate that we
removed the W permission for the code section, we attempted
to write the code section in SGXELIDE, which, as expected,
triggered a segmentation fault crashing the program.
Protecting SGX-Shield code. We then use SGX-Shield with
MPTEE to build a demo program. Then, we read the memory
on a function address. As expected, we received a segmenta-
tion fault, and our program crashed. The test case confirms
that the attempt of reading the execute-only memory is pre-
vented. SGX-Shield is not secure because attackers can con-
trol the R15 register to shift the NRW boundary thus disabling
SFI [5]. However, in MPTEE, values in the bound registers
are never stored to memory, and bound-related data is pro-
tected using enforcement integrity. Therefore, MPTEE also
improves the security of SGX-Shield.
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7 Discussion
The current and most widely used variant of SGX is called
SGX1. Intel will release the second generation called SGX2.
SGX2 provides two special instructions, EMODPR and EMODPE,
to support the dynamic permission changes. EMODPE is used
to extend the access rights of an existing EPC page, which
is running in Enclave Mode [32]. EMODPR is used to restrict
the access rights in an initialized enclave, which can only
be executed in a privileged mode. In our paper, we focus
on SGX1 for two reasons. First, SGX1 is used widely. As
a hardware component, SGX1 cannot be easily upgraded to
SGX2. It is therefore foreseeable that SGX1 will still be the
dominating version for a while. Second, MPTEE’s design is
compatible with SGX2. Applications using MPTEE can run
seamlessly in SGX2 without modification. More importantly,
our permission reduction still only depends on itself, but
MODPR depends on the system privilege in SGX2. At the same
time, the permission-changing instructions in SGX2 are still
subject to bypassing and abusing if the code in the enclave
is vulnerable. As such, the enforcement integrity technique
in MPTEE is still required, which is also compatible with
SGX2.

8 Related work
Page-permission management. Memory Protection Keys
(MPK) [53] is Intel’s upcoming hardware feature for con-
trolling accesses to memory on a per-page basis. ERIM [50]
exploits MPK to provide hardware-enforced isolation with
low overhead in a non-SGX environment. However, MPK
techniques have two drawbacks in memory isolation on SGX.
First, its permissions only have accessible and writable, not
executable. Second, it relies on the page-table structure, which
is not consistent with SGX threat model. There is a security
risk with modifying the protection key. MPTEE can provide
permission enforcement securely.
Execute-only memory enforcement. Backes et al. [2]
Gionta et al. [19] employ OS and hardware support to re-
alize execute-only memory. In SGX, the OS is however as-
sumed to be untrusted. Crane et al. proposed Readactor [15]
and Readactor++ [16] to implement execute-only memory
leveraging the extended page table mechanism (EPT). EPT
allows marking pages as (non-)readable, (non-)writable, or
(non-)executable. In addition, some other measures are used
to provide secure environments. Pomonis et al. [30] proposed
kR^X to protect the kernel by leveraging the execute-no-read
memory and fine-grained KASLR. The authors rearranged the
kernel code and data and used SFI to prevent invalid accesses
to kernel code. In comparison, MPTEE offers various permis-
sion enforcements including execute-only memory efficiently
by employing Intel MPX and SGX permission bits.
Memory isolation. IMIX [18] extends the x86 ISA with a
new memory-access permission to mark memory pages as
security sensitive, which can be leveraged as a primitive to

protect the data of a wide variety of memory-corruption de-
fenses. SGXBounds [22] provides an efficient memory-safety
approach for SGX based on a simple combination of tagged
pointers and a compact memory layout; it focuses on the
memory safety of objects, but not the memory isolation of
the program region. MemSentry [21] proposed a framework
to isolate safe regions with commodity hardware features.
Youren et al. [44] designed a multi-domain SFI scheme to
resolve the tension between isolation and sharing in system
software for SGX, which is implemented by leveraging MPX.
To the best of our knowledge, MPTEE is the first to imple-
ment the flexible memory permission management on SGX.

9 Conclusion
In this paper, we presented a flexible, isolated, and efficient
memory-protection mechanism, MPTEE, for Intel SGX. We
propose multiple techniques that employ recent hardware fea-
tures such as Intel MPX to flexibly and efficiently enforce
different memory permissions (e.g., execute-only memory)
for multiple regions in SGX. The elastic cross-region bound
check uses only three bound registers but offers six differ-
ent memory permission regions. The adaptive permission
enforcement can further minimize the performance overhead.
We also propose an efficient enforcement integrity technique
to prevent attacks from bypassing or abusing MPTEE. We
implemented MPTEE and thoroughly evaluated its perfor-
mance and effectiveness. The evaluation results show that
MPTEE is able to flexibly and effectively enforce memory
permissions with a small performance overhead.
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