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Abstract—Memory-corruption attacks such as code-reuse at-
tacks and data-only attacks have been a key threat to systems
security. To counter these threats, researchers have proposed a
variety of defenses, including control-flow integrity (CFI), code-
pointer integrity (CPI), and code (re-)randomization. All of
them, to be effective, require a security primitive—intra-process
protection of confidentiality and/or integrity for sensitive data
(such as CFI’s shadow stack and CPI’s safe region).

In this paper, we propose SEIMI, a highly efficient intra-
process memory isolation technique for memory-corruption de-
fenses to protect their sensitive data. The core of SEIMI is
to use the efficient Supervisor-mode Access Prevention (SMAP),
a hardware feature that is originally used for preventing the
kernel from accessing the user space, to achieve intra-process
memory isolation. To leverage SMAP, SEIMI creatively executes
the user code in the privileged mode. In addition to enabling the
new design of the SMAP-based memory isolation, we further
develop multiple new techniques to ensure secure escalation of
user code, e.g., using the descriptor caches to capture the potential
segment operations and configuring the Virtual Machine Control
Structure (VMCS) to invalidate the execution result of the control
registers related operations. Extensive experimental results show
that SEIMI outperforms existing isolation mechanisms, including
both the Memory Protection Keys (MPK) based scheme and
the Memory Protection Extensions (MPX) based scheme, while
providing secure memory isolation.

I. INTRODUCTION

Memory-corruption attacks such as control-flow hijacking
and data-only attacks have been a major threat to systems
security in the past decades. To defend against such attacks,
researchers have proposed a variety of advanced mechanisms,
including enhanced control-flow integrity (CFI), code-pointer
integrity (CPI), fine-grained code (re-)randomization, and data-
layout randomization. All these techniques require a security
primitive—effective intra-process memory protection of the
integrity and/or confidentiality of sensitive data from potentially
compromised code. The sensitive data includes critical data
structures that are frequently checked against or used for
protection. For example, O-CFI [39] uses a bounds lookup
table (BLT), and CCFIR [58] uses a safe SpringBoard to
restrict the control flow; CPI [31] uses a safe region, and
Shuffler [55] uses a code-pointer table to protect the sensitive
pointers; Oxymoron [6] maintains a sensitive translation table,
and Isomeron [19] uses a table to protect randomization secrets.

The effectiveness of all such techniques heavily depends on
the integrity and/or confidentiality of the sensitive data.

To efficiently protect sensitive data, researchers proposed
information hiding (IH) which stores sensitive data in a memory
region allocated in a random address and wishes that attackers
could not know the random address thus could not write or
read the sensitive data. Unfortunately, recent works show that
memory disclosures and side channels can be exploited to
readily reduce the randomization entropy and thus to bypass
the information hiding [22–24, 36, 41]. As such, even a robust
IH-based defense can be defeated.

To address this problem, recent research instead opts for
practical memory isolation which provides efficient protection
with a stronger security guarantee. Memory isolation, in general,
can be classified into address-based isolation and domain-based
isolation. Address-based isolation checks (e.g., bound-check)
each memory access from untrusted code to ensure that it
cannot access the sensitive data. The main overhead of this
method is brought by the code that performs the checks. The
most efficient address-based isolation is based on Intel Memory
Protection Extensions (MPX), which performs bound-checking
with hardware support [30].

Domain-based isolation instead stores sensitive data in
a protected memory region. The permission to accessing
this region is granted when requested by the trusted code,
and is revoked when the trusted access finished. However,
memory accesses from untrusted code (i.e., the potentially
vulnerable code that can be compromised by attackers) cannot
enable the permission. The main source of the performance
overhead of domain-based memory isolation is the operations
for enabling and disabling the memory-access permissions. The
most efficient domain-based isolation is to use Intel Memory
Protection Keys (MPK) [25, 30, 40, 47].

In general, existing address-based isolation and domain-
based isolation both incur non-trivial performance overhead
compared to the IH-based scheme. Worse, the overhead will be
significantly elevated when the workloads (i.e., the frequency
of memory accesses that require bound-checking or permission
switching) increase. For example, when protecting the shadow
stack, the MPK-based scheme (i.e., domain-based) incurs a
runtime overhead of 61.18% [40]. When protecting the safe
region of CPI using the MPX-based scheme (i.e., address-



based), the runtime overhead is 36.86% [21]. Both cases are
discouraging and would prevent practical uses of the defense
mechanisms. As such, we need a more efficient isolation
mechanism that can adapt to various workloads.

In this paper, we propose SMAP-Enabled Intra-process
Memory Isolation (SEIMI), a system for highly efficient
and secure domain-based memory isolation. SEIMI leverages
Supervisor-mode Access Prevention (SMAP), a widely used
and extremely efficient hardware feature for preventing kernel
code from accessing user space. SEIMI uses SMAP in a
completely different way. The key idea of SEIMI is to run
user code in the privileged mode (i.e., ring 0) and to store
sensitive data in the user space. SEIMI employs SMAP to
prevent memory accesses from the “privileged untrusted user
code” to the “user mode” sensitive data. SMAP is temporarily
disabled when the trusted code (also in the privileged mode)
accesses the sensitive data, and re-enabled when the trusted
code finishes the data access. Any memory access to the user
space will raise a processor exception when SMAP is enabled.
Since SMAP is controlled by the RFLAGS register which is
thread-private, disabling SMAP is only effective in current
thread. Thus, temporarily enabling SMAP does not allow any
concurrent access to sensitive data from other threads.

The new and “reverse” use of SMAP in SEIMI however
brings new design challenges: How to prevent the user code in
ring 0 from corrupting the kernel and abusing the privileged
hardware resources. To prevent the kernel corruption, we choose
to use the hardware-assisted virtualization technique (i.e., Intel
VT-x) to run the kernel in a more-privileged mode (i.e., the
VMX root mode). The user code instead runs in ring 0 of the
VMX non-root mode. Therefore, the user code is isolated from
the kernel by virtualization. It is worth noting that Dune [7]
also uses Intel VT-x to provide user-level code with privileged
hardware features. But it requires that the code running in ring
0 is secure and trusted. To support untrusted code running in
ring 0, we propose multiple novel techniques to prevent the
user code from abusing the following two types of hardware
resources: (1) privileged data structures (e.g., the page tables)
and (2) privileged instructions.

First, to prevent the user code from manipulating privileged
data structures (e.g., page table), we store the privileged data
structures in the VMX root mode, and SEIMI leverages Intel
VT-x to force all the privileged operations to trigger VM
exits (i.e., trapping into the VMX root mode). SEIMI then
finishes the privileged operations in the VMX root mode. This
way, the privileged data structures will never be exposed to
the user code. Second, to prevent the execution of privileged
instructions, we use both automatic and manual approaches to
comprehensively identify such instructions and instruct SEIMI
to sanitize their execution in the VMX non-root mode through
three techniques: (i) triggering VM exits and stopping the
execution, (ii) invalidating the execution results, and (iii) raising
processor exceptions and disabling the execution. With these
techniques, the user code can never effectively execute the
privileged instructions.

We note that our techniques for enabling secure execution

of untrusted user code with ring-0 privilege will offer valuable
insights and opportunities for future research. For example,
LBR is a privileged hardware feature used by transparent code-
reuse mitigation [42] and context-sensitive CFI [48]. Reading
LBR has to trap into the kernel, which incurs expensive context
switching. With the techniques used in SEIMI, since the user
code is running in a privileged mode, it can read LBR efficiently
without context switching.

We have implemented SEIMI on the Linux/X86_64 platform.
To evaluate and compare the performance overhead, we
deployed the MPX-based scheme, the MPK-based scheme,
and SEIMI to protect four defense mechanisms: O-CFI [39],
Shadow Stack [40], CPI [31], and ASLR-Guard [35]. We not
only conduct the experiments on SPEC CPU2006 benchmarks,
but also on 12 real-world applications, including web servers,
databases, and JavaScript engines. Compared to the MPK-based
scheme, SEIMI is more efficient in almost all test cases; while
compared with the MPX-based scheme, SEIMI achieves a
lower performance overhead on average.

In sum, we make the following contributions in this paper.
• A novel domain-based isolation mechanism. We pro-

pose a novel domain-based memory isolation mechanism
that creatively uses SMAP in a reverse way; it can
efficiently protect a variety of software defenses against
memory-corruption attacks.

• New techniques for isolating user code. We identify
new security threats when running untrusted user code
in ring 0 and propose new solutions to these threats in
SEIMI. These techniques are of independent interest and
show that safely running user code in a privileged mode
can be practical.

• New insights from implementation and evaluation.
We implement and evaluate SEIMI, and show that it
outperforms existing approaches. Our study suggests that
using SMAP for domain-based isolation is not only
practical but efficient. The enabling of running the user
code in a privileged mode will also allow future defenses
to efficiently access privileged hardware.

II. BACKGROUND

A. Information Hiding

Information hiding (IH) protects a memory region by putting
it in a randomized location. Since the memory region is
located in a small portion of the huge address space, guessing
the randomized address in a brute-force way will likely
cause crashes. The effectiveness of such an information-hiding
technique heavily relies on the entropy of the randomness.
Since such an IH technique tends to be efficient and is easy
to deploy, it has been widely used in a variety of defense
mechanisms, including control-flow integrity (CFI) [39, 40, 58],
code (re-)randomization [6, 11, 19, 35, 53, 55], code-pointer
integrity [31], and data-layout randomization [9, 17].

B. Intra-process Memory Isolation

Compared to information hiding, intra-process memory isola-
tion can provide a stronger security guarantee in protecting the
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sensitive data used in the defenses against memory-corruption
attacks. We classify sensitive data into three categories.

• Confidentiality only. Some defense mechanisms, such as
CCFIR [58], O-CFI [39], Oxymonron [6], and Shuffler [55],
grant read permission to the defense code (i.e., trusted
code) but revoked from the untrusted code (i.e., application
code). In these mechanisms, sensitive data is the valid,
randomized target addresses of control transfers. Since the
target addresses are written only at the load-time, they
can be stored in read-only memory. The only exception
is Shuffler [55] which updates the target addresses at
runtime through another process using the shared memory
mechanism.

• Integrity only. Some defense mechanisms, such as CFI’s
shadow stack [40], CPI [31], and ReRanz [53], allow the
sensitive data to be read and written by the trusted code but
read-only by the untrusted code. In these mechanisms, the
sensitive data includes control data such as return address
and function pointer, which needs to be updated by the
defense mechanisms at runtime. However, as long as the
integrity is guaranteed, attackers cannot divert the control
flow, so the read permission can be granted to attackers.

• Both confidentiality and integrity. In defenses such as
TASR [11], Isomeron [19], StackArmor [17], Diehard [9],
and ASLR-Guard [35], the sensitive data holds secret
information such as randomized code addresses that requires
runtime update. As such, the untrusted code must be
prevented from reading and writing the sensitive data.

Existing memory-isolation mechanisms. Memory isolation
can be address-based or domain-based. Address-based isolation
sanitizes (e.g., bound-check) addresses in memory read/write
operations which can be fairly frequent. As such, the saniti-
zation efficiency is the key to ensure the overall performance
of the isolation. Intel provides MPX (with dedicated registers
and instructions) for efficient bound-checking, thus offering
the most efficient address-based isolation. Specifically, address-
based schemes generally place the isolated memory region at
the highest address space [30], so that memory accesses can
be instrumented to check against a single bound instead of
two. Thus, they can reduce the performance overhead further.

Domain-based isolation protects sensitive data by temporarily
disabling the access restriction. When the defense code (i.e.,
trusted code) is about to access the sensitive data, the isolation
mechanism disables the access restriction, and after the access,
the restriction is resumed. Processors provide multiple hardware
supports for controlling the access restriction, including the
virtual memory page permission in MMU, the physical memory
page permission in EPT, and MPK. Among them, Intel MPK
is the most efficient one. Specifically, MPK divides memory
into 16 domains. The read/write permission of each domain
is controlled in the PKRU register. At runtime, the WRPKRU
instruction can modify the PKRU register to manipulate the
access permission. Specifically, for the sensitive data which
only needs the integrity protection, domain-based schemes

generally only control the write permission. It could avoid
switching the access permission when the defense code only
performs the read operation to the sensitive data.

C. Intel VT-x Extension

VT-x [15] is Intel’s virtualization extension to the x86 ISA.
VT-x splits CPU into two operating modes: the VMX root mode
(for running VMM) and the VMX non-root mode (for running
virtualized guest OSes). Transitions between the VMX modes
are facilitated by VM control structure (VMCS), where the
hardware automatically saves and restores most architectural
states. The VMCS also contains a myriad of configuration
parameters that allow the VMM to control the guest VMs,
which gives the VMM considerable flexibility in determining
which hardware to expose to the guest. For example, a VMM
can configure the VMCS to determine which instruction and
which exception in the VMX non-root mode can cause a VM
exit. Moreover, a guest can manually trigger a VM exit through
the VMCALL instruction.

D. SMAP in Processors

To prevent the kernel from inadvertently executing mali-
cious code in user-space (e.g., by dereferencing a corrupted
pointer), Intel and AMD provide the Supervisor-mode
Access Prevention (SMAP) hardware feature to disable the
kernel access to the user space memory [29]. Other processor
vendors also provide similar features, such as the Privileged
Access Never (PAN) in ARM [5] and the Permit Supervisor
User Memory Access (SUM) in RISC-V [43]. Because the
kernel code requires access to the user space directly and
frequently (e.g., I/O operations), enabling and disabling these
features are typically very fast.

In x86, the running states are divided into the supervisor-
mode (hereinafter referred to as S-mode) and the user-mode
(hereinafter referred to as U-mode). When the current privileged
level (CPL) is 3, the state is U-mode, and when the CPL is less
than 3, the state is S-mode. Meanwhile, the memory pages are
also divided into the supervisor-mode page (hereinafter referred
to as S-page) and the user-mode page (referred to as U-page)
based on the U/S bit in the page table entry. When SMAP
is disabled, the code in the S-mode can access the U-page.
When SMAP is enabled, the code in the S-mode cannot access
the U-page. Code in the S-mode can enable/disable the access
to an U-page by setting the AC (Access Control) flag of the
RFLAGS. The processor provides two privileged instructions
(executable only in ring 0), STAC and CLAC, to set and clear
the flag. In addition, when the POPFQ instruction is executed
in the S-mode (ring 0-2), the AC flag can also be modified.
We measured the latency of POPFQ, STAC/CLAC, and WRPKRU
(used to configure MPK) to identify their micro-architectural
characteristics. Table I summarizes the results. STAC/CLAC has
a much smaller latency than WRPKRU does. As such, switching
SMAP using STAC/CLAC will be much faster than switching
MPK, which motivates us to develop SEIMI.
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TABLE I: Latency of instrs. which are measured 10 million times.
Instructions Cycles Description

VMCALL 541.7 Complete a hypercall (trigger a VM exit).
SYSCALL 95.2 Complete a system call (trap into the kernel).

POPFQ 22.4 Pop stack into the RFLAGS register.
WRPKRU 18.9 Update the access right of a pkey in MPK.
STAC/CLAC 8.6 Set/Clear the AC flag in the RFLAG register.

III. OVERVIEW

A. Threat Model

SEIMI shares a similar threat model as traditional memory-
corruption defense mechanisms. The goal of SEIMI is to
provide intra-process isolation for a safe memory region
that is required by defense mechanisms against memory-
corruption attacks. The target programs can be server programs
(e.g., Nginx web server) or local programs (e.g., browsers).
We assume that the target programs may have the memory-
corruption vulnerabilities that could be exploited by adversaries
to gain arbitrary read and write capabilities. We also assume
that the developers of the programs are benign, so malware
is out of the scope. However, the target programs may allow
local execution that is in a contained environment. For instance,
adversaries can trick web users to click malicious URL links,
and malicious script code can run locally in a browser.

We assume that a memory-corruption defense itself (includ-
ing the IH-based defenses mentioned in §II-B) is secure. That is,
breaking SEIMI’s isolation is a prerequisite for compromising
the defense mechanism. Since the defense mechanism aims to
prevent memory-corruption attacks, when SEIMI is effective,
adversaries cannot launch code-injection attacks or code-reuse
attacks (e.g., using unintended instructions) to maliciously
disable or enable SMAP. In other words, the target defense
mechanism and SEIMI protect each other. We further assume
that the target OS is secure and trusted.

B. High-Level Design

Because application code is intended to run in the user mode,
all existing intra-process memory isolation techniques utilize
only the hardware support available in this mode, such as Intel
MPK and MPX. In this paper, we turn our attention to the
privileged hardware feature—SMAP (see §II-D). As shown in
Table I, switching SMAP (using STAC/CLAC instructions) is
much faster (8.6 vs. 18.9 CPU cycles) than switching MPK.
Therefore, we conjecture that domain-based memory isolation
techniques using SMAP would lead to better performance,
which motivates the development of SEIMI.

Figure 1 shows the basic idea of SEIMI. The isolated
memory region is allocated in the U-pages, and the other
memory regions are set to be S-pages. The application runs
in ring 0 (because STAC/CLAC instructions can only run in
this ring level). SMAP is enabled by default. To access the
isolated memory, the trusted code temporarily disables SMAP
by executing STAC. When the access completes, the trusted
code executes CLAC to re-enable SMAP to prevent accesses
from untrusted code. Although this mechanism exposes a time
window in which SMAP is disabled, the window cannot be
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USupervisor-mode Page User-mode Page

Regular Memory Isolated Memory
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RWCode (RX)Heap (RW) Stack (RW)

Access Denied

Ring 0 U USMAP

Fig. 1: The memory layout of the process in ring 0 under SEIMI.

exploited to launch the concurrent attacks (i.e., accessing the
isolated memory region from other threads). This is because
the disabling of SMAP is through the RFLAGS register which is
thread-private; it is effective in only the current thread. More
details about this are discussed in §V-B.

Running untrusted code in ring 0 may corrupt the kernel.
To address this problem, SEIMI places the OS kernel in “ring
-1”. To this end, we adopt the Intel VT-x technique to separate
the target application and the kernel, i.e., placing the target
process in the VMX non-root mode (guest) and the kernel in
the VMX root mode (host).

C. Key Challenges

Although running the user code in ring 0 of the VMX non-
root mode could realize the SMAP-based memory isolation
without corrupting the kernel, it still faces several challenges.
C-1: Distinguishing SMAP reads and writes. In some
cases, sensitive data may require integrity protection only;
the read restriction brings extra performance overhead. In
some other cases, the defense mechanisms would require
sensitive data to be readable but not writable to untrusted code.
These situations demand SEIMI to distinguish read and write
operations. Unfortunately, SMAP cannot provide separated read
and write permissions.
C-2: Preventing leakage/manipulation of the privileged
data structures. In general, a guest VM needs to manage its
own memory, interrupts, exceptions, I/O, etc. Some data struc-
tures are privileged, e.g., the page tables, the interrupt
descriptor table (IDT), and the segment descriptor
table. An attacker in ring 0 may leak or manipulate these
structures to gain a more powerful ability, e.g., modifying the
page table to disable the DEP mechanism.
C-3: Preventing abuses of the privileged hardware features.
When the process runs in ring 0, privileged hardware features,
in addition to SMAP, become available. Attackers may abuse
privileged instructions to launch more powerful attacks. For
example, an attacker can use the MOV to %CR0 instruction to
clear the WP bit to gain the write permission to the non-writable
pages (the code pages).

D. Approach Overview

Separating read/write in SMAP. To address challenge C-1,
we propose SMAP read/write separation based on a shared-
memory method. When allocating the isolated memory region
for the sensitive data, we allocate two virtual memory areas
for the same physical memory region; one is configured as
U-pages that can be read and written (hereinafter referred
to as the isolated U-page region), and the other is set to be
S-pages that can only be read (hereinafter referred to as the
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Fig. 2: The architecture overview of SEIMI.

isolated S-page region). When the trusted code needs to modify
the sensitive data, it operates the isolated U-page region after
disabling SMAP. When it only needs to read the sensitive data,
it operates the isolated S-page region directly.
Protecting privileged data structures. To address challenge
C-2, we place the privileged data structures and their operations
into the VMX root mode. In general, the operations on these
structures are only performed when the process accesses the
kernel through events such as system calls, exceptions, and
interrupts. We therefore leverage Intel VT-x to intercept and
force all these events to trigger VM exits, and then perform
corresponding operations in the VMX root mode. This way,
the data structures stay only in the VMX root mode and will
not be exposed to the VMX non-root mode.
Preventing privileged instructions. The privileged hardware
features are all used through the privileged instructions. To
address challenge C-3, we comprehensively collect and protect
all the privileged instructions using multiple new techniques.
In particular, SEIMI sanitizes the execution of all privileged
instructions in the VMX non-root mode by (i) triggering the
VM exits and stopping the execution, (ii) invalidating the
execution results, and (iii) raising processor exceptions and
disabling the execution.

IV. SECURELY EXECUTING USER CODE IN RING 0

Figure 2 shows the architecture overview of SEIMI. The
core of SEIMI is a kernel module that manages VT-x. It
enables VT-x and places the kernel in the VMX root mode
when loaded. Processes using SEIMI run in ring 0 of the VMX
non-root mode so that they have direct access to SMAP, while
other processes run in ring 3 of the VMX root mode. This
arrangement is transparent to the kernel; SEIMI automatically
switches the VMX modes when the execution returns from the
kernel to the target process.

The SEIMI module includes three key components: mem-
ory management, privileged-instruction prevention, and event
redirection. The memory management component is used to
configure the regular/isolated memory region in the target
process to realize the SMAP-based isolation (§IV-A). The
privileged-instruction prevention component is used to prevent
the privileged instructions from being abused by attackers
(§IV-B). The event redirection component is used to configure
and intercept the VM exits that are triggered when the process
accesses the kernel through system calls, interrupts, and
exceptions. After intercepting these events, it delivers the
requests to the kernel for actual processing (§IV-C). The three
components, as a whole, ensure the safe running of user code
in ring 0 and achieve the SMAP-based memory isolation.
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A. Memory Management

In contrast to traditional VMs, SEIMI does not have an OS
running in the VMX non-root mode that takes care of memory
management. Therefore, SEIMI has to help the guest manage
its page table, which, however, must satisfy the following
requirements:

• R-1: Because the host kernel handles the system calls from
the guest, the memory layout of the user space should remain
the same in both guest and host page tables.

• R-2: The physical memory of the guest should be managed
by the host kernel directly.

• R-3: SEIMI should be able to flexibly configure the U-page
and the S-page in the guest virtual memory space.

• R-4: The guest should not access the memory in the host.

A simple solution that satisfies the requirements is to copy (to
satisfy R-1 and R-2) the host page table of the user space (to
satisfy R-4) as the guest page table in the SEIMI module. The
guest page table contains the mapping from the guest virtual
address to the host physical address directly, and changes the
pages in the non-isolated memory space to the S-page (satisfy
R-3). Because the guest page tables are allocated in the host
kernel memory, and the kernel memory is invisible in the guest
page table, the guest page table will not be exposed to attackers.
However, since the page table is a tree structure, and there are
four levels in X86_64 (PML4, PDPT, PD, PT), this solution
has to copy the entire page table, which is complicated and
expensive when tracking all updates of the host page table and
synchronize them with the guest page table.
A shadow mechanism for (only) page-table root. To reduce
the time and space cost, we propose an alternative solution that
reuses the last three level page tables, and copies only the first
level page table, i.e., PML4. The PML4 page has 512 entries;
each indexes 512GB of virtual memory space, so the whole
virtual address space is 256TB. Among them, the first 256
entries point to the user space while the last 256 entries point
to the kernel space; the user and the kernel space are each
128TB. We copy the PML4 page of the host page table to a
new page, which we call the PML4’ page. In the PML4’ page,
we clear the 256th~511th entries (because the guest should
not access the kernel pages), and the 0th~255th entries of the
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TABLE II: The privileged instructions and the instructions that will
change the behaviors in different rings in the 64-Bit mode of X86_64.

Line Type Detailed Instructions Method

1
E

X
IT

-T
yp

e
VM[RESUME/READ/WRITE/...], INVEPT, INVVPID

Unco.2 INVD, XSETBV

3 ENCLS (e.g, ECREATE, EADD, EINIT, EDBGRD...)

Cond.

4 RDMSR, WRMSR
5 IN, OUT, IN[S/SB/SW/SD], OUT[S/SB/SW/SD]
6 HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
7 LGDT, LLDT, LTR, LIDT
8 MOV to/from DR0-DR7
9 MOV to/from CR3, MOV to/from CR8

10

IN
V

-T
yp

e

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

INV

11 MOV to/from CR2
12 SWAPGS
13 CLI, STI
14 LAR, LSL, VERR, VERW
15 POPF, POPFQ

16

E
X

P-
Ty

pe

L[FS/GS/SS], MOV to [DS/ES/FS/GS/SS], POP [FS/GS]
#GP17 Far CALL, Far RET, Far JMP

18 IRET, IRETD, IRETQ

19 SYSEXIT, SYSRET #PF

20 XSAVES, XRSTORS, INVPCID #UD

PML4’ page have the same values as their counterparts in the
PML4 page.
Configuring the U-page and S-page. Each page table entry
has a U/S bit that indicates whether it is a user-mode entry
or a supervisor-mode entry. Given a virtual memory page, if
the corresponding entries in all levels of the page tables are
user-mode entries (U/S bit is 1), the page will be a U-page;
otherwise, if any entry is a supervisor-mode entry (U/S bit
is 0), the page will be an S-page. In the host page table, all
user-space pages are U-page. However, as SEIMI copies the
guest page table from the host page table, most page table
entries are identical. To configure S-pages in the guest page
table, SEIMI takes the following strategy. Figure 3(a) shows
our memory management. The 0th-254th entries of the PML4’
page are modified to be supervisor-mode entries, which are
used for the non-isolated memory region. The 255th entry of
the PML4’ page is still a user-mode entry that is reserved for
the isolated memory region. In this way, SEIMI configures
the non-isolated memory region to be S-pages in the guest
page table; however, the region is still U-pages in the host
page table.
Supporting the read-only isolated S-page region. To map
the same physical page as a read-only S-page and a read-
write U-page (as mentioned in §III-B), SEIMI first reserves
the 254th entry in the PML4’ page, and let it reference the
same PDPT page that is referenced by the 255th entry. SEIMI
then sets the 254th entry as a supervisor-mode entry (shown
in Figure 3(b)). Similar to the method of setting the S-page,
SEIMI flips the R/W bit of the page table entry to mark the
page as read-only.

B. Intercepting Privileged Instructions

SEIMI must intercept all privileged instructions in ring 0
of the VMX non-root mode and prevent them from accessing
privileged hardware features. Here we present how we identify

all privileged instructions, and enable SEIMI to intercept and
invalidate them.

1) Identifying Privileged Instructions: The identification has
two steps: (1) automated filtering of privileged instructions and
(2) manual verification. The goal is to find instructions that
are privileged or exhibit different functionalities when running
in ring 0 and ring 3. First, to automatically filter privileged
instructions, we embed each instruction with random operands
into a test program and run it in ring 3. By capturing the
general protection exception and the invalid opcode exception,
we manage to automatically and completely filter all privileged
instructions. Such filtering is conservative and will not have
false negatives. Second, we manually review the description of
all X86 instructions by reading the Intel Software Developers’
Manual [29] to confirm that the instructions found in the first
step are all privileged instruction. By reviewing the manual,
we also identify instructions that behave differently in ring 0
and ring 3.

We have identified 20 groups of instructions, as shown
in Table II. Instructions in bold and italic (lines 14-17) are
instructions that behave differently in ring 0 and ring 3.
All other instructions are the privileged instructions. These
instructions are further categorized into three types according
to how they are intercepted by SEIMI: EXIT-Type (§IV-B2),
INV-Type (§IV-B4), EXP-Type (§IV-B3). Some of these han-
dling mechanisms may employ several methods for intercepting
these instructions, which are listed in the Method column.

For most privileged instructions, Intel VT-x provides the
support for monitoring their execution. SEIMI leverages this
support to capture them. For the other instructions, SEIMI
invalids their execution condition that is required for their
correct execution. If there are multiple execution conditions
for one instruction, we choose the one which incurs a lower
performance overhead and does not affect other instructions.

2) Triggering VM Exit: The Intel VT-x technique provides
VMM with the ability to monitor behaviors in a VM. When
the instructions of the EXIT-Type (see Table II) execute in
the VMX non-root mode, they can trigger the VM exit events
and be captured by the VMM. The VM exits are divided into
unconditional exits (lines 1-2) and conditional exits (lines 3-9).
The conditional exit refers to that the triggering of VM exits
depends on the configuration of the control field in the VMCS.
For example, the privileged instructions in SGX (line 3) can
be captured by the Intel VT-x technique via configuring the
ENCLS-exiting bitmap field in the VMCS. To prevent such
instructions from being executed in ring 0, SEIMI explicitly
configures the EXIT-Type privileged instructions to trigger VM
exits in order to capture and stop their execution.

3) Raising Exceptions: For the EXP-Type instructions,
SEIMI raises exceptions during their execution.
Raising #UD. For the instructions in line 20, we disable the
support of them in VMCS, so that the invalid opcode exception
(#UD) will be raised when executing them.
Raising #GP. For the instructions in lines 16-18, Intel VT-x
however does not provide any support for interception. These
instructions are related to the segment operation, and their
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Fig. 4: The segmentation-related handling in SEIMI.

execution changes the segment register. Since the application
runs in ring 0, attackers may switch to any segment, so we
also need to control the execution of these instructions.

We observe that when changing a segment register, the
hardware will use the target selector to access the segment
descriptor table. During this process, if the segment descriptor
table is empty, the CPU will raise a general protection exception
(#GP). Therefore, we can use this feature to capture these
instructions—emptying out the descriptor table. However, this
will lead to two problems: (1) how to ensure the normal
execution of a program with an empty segment descriptor
table, which is used in the addressing of every instruction. 2)
how to ensure the correct functionality of the segment related
instructions (lines 16-17) when the table is empty;

Segment-switching exception using descriptor cache: To
address these two problems, we use the segment descriptor
cache in X86. Each segment register has a visible part for
storing the segment selectors and a hidden part for storing
the segment descriptor information [16]. This hidden part is
also called descriptor cache (as shown in Figure 4). When
executing an instruction that does not switch the segment, the
hardware directly obtains the segment information from the
descriptor cache. Only when an instruction that switches the
segment being executed, the hardware accesses the segment
descriptor table and loads the target segment information into
the descriptor cache (①). Since X86 allows the descriptor cache
to be inconsistent with the descriptor table, we can fill the
correct segment descriptor information in the descriptor cache
and empty out the segment descriptor table. Specifically, we
set the contents of all segment registers in the guest-state field
of the VMCS, including the selector and the corresponding
segment descriptor information. When entering the VMX non-
root mode, the information will be directly loaded into the
guest segment register (②), and we set the value of the base
and limit fields in the GDTR and LDTR registers to 0. This
approach does not affect normal execution of the instructions
that do not switch the segment, and cause the exception only
for instructions that switch the segment. When an exception is
captured, the SEIMI module will check whether this operation
is legal1. If it is legal, the module will perform the emulation
for that instruction to fill the requested segment information
into the corresponding segment register in the VMCS and
return to the VMX non-root mode.
Raising #PF. The SYSEXIT/SYSRET will switch the segment
and directly fill the fixed value into the descriptor cache (③)
without accessing the segment descriptor table, however. We
observe that, although they do not raise the #GP exception,

1The legal operation refers to the legal access that the program should
perform with the CPL=3, rather than running in ring 0.

no special handling is needed because their execution will set
CPL to 3 and run in ring 3, which prevents instructions from
being fetched from any S-page in ring 3. Therefore, when the
CPU executes the next instruction of the SYSEXIT/SYSRET,
the instruction fetch always raises a page fault exception (#PF).

4) Invalidating the Execution Effects: For the INV-Type
instructions, our solution is instead to invalidate their execution
effects, thus preventing attackers from using these instructions
to obtain information or change any kernel state.

CR*-related instructions. For the %CR0 and %CR4 control
registers–related load/store instructions (line 10), Intel VT-x
supports the configuration of VMCS to control the operation of
these instructions. The %CR0 and %CR4 registers in the VMCS
have a set of guest/host masks and read shadows. Each
bit in the guest/host mask indicates the ownership of the
corresponding bit in %CR0/%CR4—when the bit is 0, the guest
owns the bit, and the guest can read and write the bit in the
%CR0/%CR4; when the bit is 1, the host owns the bit. In the
latter case, when the guest reads the bit in the %CR0/%CR4, the
value of the corresponding bit is read from the corresponding
read shadows; when the guest writes the bit, it does not write
to the %CR0/%CR4. Based on this feature, SEIMI sets all the
bits of the guest/host mask to 1, and all bits in the read
shadows to 0. In this way, the value of the %CR0/%CR4 read
from guest is all 0. Writing to these two registers does not
really modify the values of the %CR0/%CR4. The %CR2 control
register (line 11) is used to store the fault address when a
#PF occurs. Since the exception in the guest directly triggers
the VM exits, the fault address is stored in the VMCS, and
the %CR2 does not record any fault address. An attacker could
not reveal any #PF information from this register, and thus
modifying this register has no effect.

SWAPGS, L[AR/SL], and VER[R/W]. The SWAPGS instruc-
tion (line 12) is used to quickly exchange the base address
stored in the %GS with the value in the IA32_KERNEL_GS_BASE
MSR register. SEIMI sets this MSR register and the %GS
segment base address to the same value, so that the execution
of this instruction has no effect. The LAR and LSL instructions
(line 14) are used to obtain the access right and segment
limit information from the corresponding descriptor. The VERR
and VERW instructions (line 14) are used to verify a segment
is readable and writable. Since the descriptor table is set to
empty, executing these instructions will trigger a descriptor
load segment violation, and the RFLAG.ZF flag will be set to 0.
SEIMI cannot emulate the execution of these instructions,
so the execution will be ignored. Fortunately, these four
instructions are very rarely used in applications.

CLI/STI and POPF/POPFQ. While CLI/STI (line 13)
instructions can modify the system flag, IF, recorded in RFLAGS,
POPF/POPFQ (line 15) instructions can additionally modify
IOPL and AC. The IF flag is used to mask the hardware
interrupts, and the IOPL is used to control the execution
conditions of the I/O related instructions. In SEIMI, the
modification against IF and IOPL however will not have any
effect. Both interrupts and I/O instructions trigger unconditional
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VM exits. Even if an attacker modifies IF and IOPL flags, it
will not change any behavior in the interrupts or I/O. We next
describe how to protect AC which is used to control SMAP.
Eliminating the effects of POPFQ on AC. The POPFQ
instruction may also enable/disable SMAP by manipulating
the AC flag. Therefore, we need to make sure that either the
user code does not have such an instruction at all or it cannot
manipulate the AC flag. Since the POPFQ instruction can be
legitimately used for other purposes, we choose to prevent them
from manipulating the AC flag. Our approach is to insert an
“and” instruction before each POPFQ instruction such that the
AC flag of the stack object (i.e., in (%RSP)) is always 0. That
is, the POPFQ instruction can never change the AC flag to 1.
Since in the threat model, attackers cannot hijack control flows
until breaking SEIMI, they cannot skip the and instruction.

C. Redirecting and Delivering Kernel Handlers

System-call handling. The SYSCALL instruction, which is
used to complete a system call, cannot transfer the control
flow from the VMX non-root or root mode. To address this
problem, we choose to replace SYSCALL with VMCALL by
mapping a code page into the target memory space, which
contains two instructions: VMCALL and JMP *%RCX. We then
set the IA32_LSTAR MSR register in guest, which is used to
specify the entry of the system call, to the address of this
VMCALL. Once the process executes a SYSCALL, the control
flow will be transferred to execute this VMCALL instruction to
trigger a hypercall, and the address of the next instruction of
this SYSCALL will be stored into the %RCX register. The SEIMI
module vectors hypercalls through the kernel system call table
and calls the corresponding system call handler. After the
handler returns, the module executes VMRESUME to return back
to the VMX non-root mode and executes the JMP instruction
to jump to the next instruction of the SYSCALL.
Hardening system calls against confused deputy. We
identify a new confused deputy problem that also exists in
previous intra-process isolation mechanisms (e.g., the ones
based on MPX and MPK). Specifically, attacks can leverage
system calls to indirectly access the isolated memory region
because OS kernels have the privilege to access the entire
user space, and their code are not constrained by the address-
based and domain-based methods. For example, by specifying
the buffer address as the address of the isolated memory,
write(fd, buf, count) can read the data in the isolated
memory and write it to the file associated with fd which
can be stdout. Therefore, an attacker could launch the data-
only attacks to modify the second parameter of write to leak
the sensitive data in the isolated memory without hijacking
the control flow. Similarity, read(fd, buf, count) can be
exploited to overwrite the isolate memory by altering buf.
To address this problem, we collect all system calls that take
a memory address and a count as parameters. In the kernel
module, SEIMI dynamically checks the specified address and
the count to make sure that the specified memory range has
no overlapping with the isolated memory region; otherwise,
SEIMI immediately returns an error in the system call.

Interrupts and exceptions handling. During the execution
of the target process in SEIMI, all interrupts and exceptions
will trigger the VM exits that should be handled in SEIMI.
To realize this, SEIMI configures VMCS, so that, when an
interrupt/exception occurs, the control flow will transfer to the
SEIMI module. Then, SEIMI vectors the interrupt/exception
through the interrupt descriptor table, performs the permission
check of the target gate, and calls the corresponding handler.
Since the target process runs in ring 0, the U/S bit in the
error_code of the exception is 0 instead of 1. To ensure that
the exception handler in the kernel can handle this exception
correctly, we set the U/S bit to 1. After the handler returns, the
module executes the VMRESUME to return to the VMX non-root
mode. Note that the fault address of the page fault exception in
the isolated S-page region should be relocated to the isolated
U-page region because there is no mapping in the isolated
S-page region of the host page table, and the kernel can not
handle the exception in this region.
Linux signal handling. SEIMI naturally supports Linux
signals; it processes signals when the control flow is transferred
to the VMX non-root mode from the VMX root mode.
Specifically, the module checks the signal queue by calling the
signal_pending() function in the kernel before returning to
the VMX non-root mode. If a signal is in the queue, the module
calls the do_signal() to save the interrupted context and
switches to the context of the signal handler. After that, it sets
the new context to the VCPU, and returns to the VMX non-root
mode to execute the handler. When the handler returns, it will
be trapped into the SEIMI module through the sigreturn().
The module restores the previously saved context to the VCPU,
and then returns to the VMX non-root mode and continues.

V. IMPLEMENTATION

A. SEIMI APIs and Usage

Users can allocate and free a continuous isolated mem-
ory region by using void *sa_alloc(size_t length,
bool need_ro, long *offset) and bool sa_free(void
*addr, size_t length). If the argument need_ro is false,
sa_alloc() will only allocate an isolated U-page region, and
return the base address. If need_ro is true, it will also allocate
an isolated S-page region which is shared with the isolated
U-page region. The offset value from the isolated S-page region
to the isolated U-page region will be returned via argument
offset. Assuming that the address of sensitive data in the
isolated U-page region is addr, its address in the isolated S-
page region is addr+off. Therefore, the defense can read the
content of this sensitive data through addr+off, even if SMAP
is enabled. The program can use asm("stac\n") to disable
SMAP before accessing the isolated memory region, and use
asm("clac\n") after accessing. Since SEIMI supports all
POSIX APIs, programmers can use the Linux APIs as usual.

Given the code, SEIMI will then compile and link it into an
executable file with SEIMI’s library. In order to run the target
application in the VMX non-root mode, users should load the
kernel module of SEIMI and specify the target application
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before running it. When the kernel module is launched, it
enables VT-x for all cores and places the current system in the
VMX root mode immediately.

B. The Start and Exit of the Target Process

Process start. Since all user applications in Linux start via the
execve() system call, the SEIMI module intercepts execve
and checks its parameters to monitor the start of the target
process by using the ftrace framework. For other processes,
the SEIMI module will deliver them to the kernel to start in
the default way—ring 3 of the VMX root mode. Upon the
start of the target process, the module first invokes the original
handler of this system call in kernel to initialize the process, and
then creates a VCPU structure (i.e., VMCS) for this process
and uses the context of the target process to initialize this
VCPU. VCPU contains the initial context when the process is
running in ring 0 of the VMX non-root mode, where the %RIP
stores the entry of the target process, and the RPL fields of
the segment selector %CS and the %SS are set to 0. Next, the
module executes the VMLAUNCH instruction to place the target
process into the VMX non-root mode. Since the RPL field of
%CS is 0, the target process will enter into ring 0.
Process exit. To monitor the exit of the target pro-
cess, the SEIMI module also intercepts the kernel API,
do_group_exit(). Once the exit event occurs, the module
will force the target process to exit and free the VCPU structure.
Supporting multi-threading. For multi-threaded and multi-
process applications, the SEIMI module also intercepts the
clone() system call to create and initialize a VCPU for the
child thread or process, and then places them into the VMX
non-root mode. The module also intercepts the kernel API
do_exit() to monitor the exit of the child thread or process.
Defeating the concurrent attacks. SEIMI defeats concurrent
attacks, because SEIMI creates a new VCPU for a child thread
or process, and each VCPU has independent guest registers
(including the RFLAGS register). Hence, disabling SMAP by
setting the AC flag in RFLAGS in one thread is only effective
in the current thread, but not in other threads. The thread-
independent feature also ensures that it is safe even if a VM
exit event occurred when SMAP is disabled. Furthermore, the
AC flag in the newly created VCPU is forced to be cleared
(i.e., SMAP is enabled by default).

C. Realizing the Secure Memory Management

The memory management component is critical to ensuring
the security of SEIMI. In §IV-A, we have introduced the
design of memory management in SEIMI. In this subsection,
we will detail some important implementation details.

Avoiding overlaps in the 254th and 255th entries of
PML4’. In order to avoid the application using the isolated
memory region, the SEIMI module prevents the stack and
ld.so from being allocated in this region by intercepting the
load_elf_binary function in the kernel and modifying the
mmap_base of this process. Since users may use the mmap()
system call to allocate a memory region at a fixed address, the

module also verify this system call to avoid allocating memory
in the isolated memory region.

Handling VSYSCALL. To speed up the system calls such
as gettimeofday(), Linux provides virtual system calls
(VSYSCALL) by mapping a 4KB code page called the
VSYSCALL page at the fixed address 0xFFFFFFFFFF600000.
When an application invokes these three system calls, it directly
calls the corresponding functions in this VSYSCALL page.
Since the address of the VSYSCALL page exceeds the user
space, the 511th entry of the PML4’ page is required, and the
511th entry of PML4’ points to the three level page table pages—
PDPT’, PD’, and PT’—created specifically for referencing the
VSYSCALL page. This page is set to the S-page. The reason
why the 511th entry is not copied from the PML4 page is that
there are also some pages of the kernel mapped in this entry.

Tracking updates of the PML4 page. At runtime, the kernel
may update (e.g., updating the mapping) the PML4 page in the
host page table, which requires the copied the PML4’ page in
the guest page table to be synchronized with PML4. To track
such updates, the module sets the PML4 page as read-only. This
way, any attempts to write the page will trigger page faults and
thus be intercepted by SEIMI. The interception is realized by
modifying the interrupt descriptor table (IDT). Upon
a write event, the module emulates the execution of the fault
instruction and synchronizes the PML4’ page. Since PML4 is
the page root of the page table, the kernel rarely modifies it.
Therefore, such synchronization incurs a negligible overhead.

Avoiding accessing the kernel by exploiting the TLB.
Although the kernel space is not mapped in the target process,
the target process could still access some kernel pages. This
is because some address mappings of the kernel (i.e., some
S-pages in the kernel) are residual in TLB, and these S-pages
can be accessed by the target process due to running in the S-
mode. An intuitive approach is to flush TLB during the context
switch between the target process (guest) and the kernel (host).
But it will incur high performance overhead. The Virtual
Processor Identifier (VPID) is intended for avoiding such
TLB flushing. This is done by assigning an unique VPID for
each guest VM and the host, and they can only access their own
TLB entries which are grouped by VPID. In SEIMI, each target
process (guest VM) and the kernel (host) are assigned an unique
VPID. Moreover, to synchronize the guest TLB with the page
table, SEIMI also intercepts page-table updates by using the
mmu_notifier mechanism and invalidates the corresponding
mappings in the TLB entries of the target process.

Handling API requests. Upon the call of sa_alloc(),
SEIMI will call do_mmap() in the kernel with the MAP_FIXED
flag to allocate a readable and writable virtual memory space as
the isolated U-page region in the 255th entry of the PML4’ page.
When the parameter need_ro is true, the SEIMI module will
modify the PML4’ page to make the 256th and 255th entries
point to the same PDPT page, and the 254th entry is set to the
read-only user mode entry. This way, the isolated S-page region
and the isolated U-page region differ by 512GB. Otherwise, if
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need_ro is false, the SEIMI module does not modify the
254th entry, and this entry does not reference to any PDPT
page. Upon the call of sa_free(), the module will call the
do_munmap() in the kernel to free the memory region.

VI. EVALUATION

In §IV and §V, we have identified and addressed the security
threats of placing the user code in a privileged mode. Therefore,
by design, SEIMI does not introduce new security problems.
So in this section, we focus on the performance evaluation
of SEIMI. We implemented SEIMI on Ubuntu 18.04 (Kernel
4.20.3) that runs on a 2.10 GHz Intel(R) Xeon(R) Gold 6130
CPU with 32 cores and 32GB RAM.
Defenses Configuration. To evaluate the practicality and
performance of SEIMI, we adopted four IH-based defenses,
OCFI [39], ShadowStack (SS for short) [40], CPI [31], and
ASLR-Guard (AG for short) [35], and applied SEIMI to protect
their secret data, i.e., OCFI’s BLT, SS’s shadow stack, CPI’s
safe region, and AG’s safe-vault. For comparison, we also
implemented the MPX-based and MPK-based schemes for these
defenses. For SS, we adopted the compact register scheme [40]
and reserved the %R15 register in LLVM and glibc library. For
CPI, we used the optimized version of ERIM [47].
Microbenchmarks. Compared with the MPX-based scheme
and MPK-based scheme, SEIMI requires that all kernel
accesses trigger VM exits. We used lmbench [37] (v.3.0-a9)
to measure the overheads imposed by SEIMI on basic kernel
operations. To avoid mixing the overhead of domain-switching
(enable/disable SMAP), we run lmbench directly on SEIMI
to only evaluate the overhead on kernel operations.
Macrobenchmarks. To evaluate and compare the performance
of three isolation mechanisms, we chose the CPU-intensive
benchmarks, i.e., the SPEC CPU2006 C/C++ benchmarks. We
compiled them at the O2 optimization level with the link-
time optimization, and ran them with the ref dataset. We used
the four defenses, OCFI, SS, CPI, and AG, to protect each
benchmark. For each combination of benchmark and defense,
we conducted experiments for four cases: (1) protected only
by the IH-based defense, (2) protected by the MPX-based
defenses, (3) protected by the MPK-based defenses, and (4)
protected by the SEIMI-based defenses. The baseline does not
enforce any protection.
Real-world applications. Microbenchmarks and macrobench-
marks are incomplete indicators of system performance for
real workloads. To evaluate SEIMI’s robustness and impact
on real world applications, we chose 12 popular applications
used in desktop and server. They fall in three categories:
web servers, databases, and JavaScript engines. For web
servers, we use Nginx-1.4.0, Apache-2.4.38, Lighttpd-1.4
and Openlitespeed-1.4.51. For databases, we use MySQL-
5.5.14, SQLite-3.7.5, Redis-3.2.6, and Memcached-1.5.10. For
Javescript engines, we use ChakraCore (release-1.11), V8
(release-8.0), JavaScriptCore (v.251703), and SpiderMonkey
(v.59.0a1.0). Similar to macrobenchmarks, we also conduct
experiments with the four defenses and four protection cases.

TABLE III: Latency on process-related kernel operations (in µs);
smaller is better.

Config
null null open select signal signal fork exec sh
call I/O stat close TCP install handle proc proc proc

Native 0.21 0.26 0.57 1.23 5.35 0.27 0.99 355 870 2162
SEIMI 0.71 0.82 1.33 2.58 6.11 0.79 3.02 463 1029 2368

Slowdown 2.4X 2.2X 1.3X 1.1X 14% 1.9X 2.1X 30.4% 18.3% 9.5%

A. Microbenchmarks Evaluation

Table III shows the complete test results for process-related
latency reported by lmbench, including system calls, select()
on TCP sockets, signal installation and handling, and process
creation (e.g., fork() and exec()), etc. The results show that
SEIMI incurs an overhead of 68.37% (geomean) for all test
cases. In particular, it incurs a significant overhead in handling
lightweight system calls and signals (bold font in the table).
This is in fact expected—the lightweight system call tests
(such as null call) are mainly used to test the latency of
trapping user-space program into the kernel. For example, null
call only calls getppid() which involves very little kernel
operation in a loop. In contrast, hypercalls are more expensive
than system calls (as shown in Table I). As a result, system calls
with simple kernel operations tend to have higher performance
overheads with SEIMI. For signals, SEIMI performs extra
operations on saving and restoring the interrupted context, thus
incurring higher performance overhead.

TABLE IV: Context-switching latency (in µs); smaller is better.
Config 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Native 2.05 2.06 3.1 8.13 12.2 8.43 12.6
SEIMI 2.46 2.45 3.6 10.1 14.8 11.52 15.9

Slowdown 20.0% 18.9% 16.1% 24.2% 21.3% 36.7% 26.2%

Table IV shows the latency of context switches with various
numbers of processes and different working set sizes via pipe-
based taken passing. Context switch time is defined here as the
time needed to save the state of one process and restore the
state of another process. The results show that tests with more
processes have a higher overhead; however, tests with larger
working set sizes but same number of processes have a smaller
overhead. The geomean overhead of SEIMI is 22.51%.

TABLE V: File & VM system latency (in µs); smaller is better.

Config
0K File 10K File Mmap Prot Page 100fd

Create Delete Create Delete Latency Fault Fault select

Native 5.4717 4.7816 10.9 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 5.3421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowdown 27.2% 11.7% 33.0% 12.6% 84.4% 63.2% 33.6% 67.8%

Table V shows the latency of file creation/deletion, file
mappings, protection fault, page fault, and select() on file
descriptors. The geomean overhead of SEIMI is 33.56%, with a
maximum of 84.4% and a minimum of 11.7%. The protection
fault and page fault tests reflect the overhead incurred by
SEIMI on the exception handling via triggering the more
expensive VM exits. The overheads in other tests are mainly
incurred by the system-calls handling in SEIMI.
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Fig. 5: Performance overhead on the SPEC benchmarks incurred by defenses when using IH/MPX/MPK/SEIMI to protect their sensitive data.
All overheads are normalized to the unprotected benchmarks. Some benchmarks are missing, because the defenses failed to compile or run.

TABLE VI: Local-communication latency (in µs); smaller is better.

Config
Pipe AF UDP RPC/ TCP RPC/ TCP

UNIX UDP TCP conn

Native 5.582 9.2 9.883 14.9 13.9 17.6 22
SEIMI 7.428 11.7 11.7 20 17.6 23.9 24

Slowdown 33.1% 27.2% 18.4% 34.2% 26.6% 35.8% 9.1%

Table VI shows the results for various local communication-
related operations, such as TCP connection and IPC communi-
cation using pipe, TCP, UDP, RPCs, and UNIX sockets. The
geomean overhead of SEIMI is 24.23%, with a maximum of
35.8% and a minimum of 9.1%.

B. Macrobenchmarks Evaluation

Figure 5 shows the performance overhead of four defenses
with different isolation schemes. The geometric mean of
performance overheads incurred by OCFI, SS, CPI, and AG
with the IH-based scheme are 5.19%, 3.33%, 3.44%, and 0.98%,
respectively. To better compare SEIMI with MPK/MPX,
we define Overheadscheme as the overhead incurred by a
defense with a specific isolation scheme. We also define ∆pk

(=Overheadmpk − Overheadseimi) as the relative overhead
between MPK and SEIMI; ∆px is the relative overhead
between MPX and SEIMI.

OCFI. As shown in Figure 5(a), when using MPX, MPK,
and SEIMI to protect OCFI, the performance overheads are
26.63%, 34.83% and 18.29%. Compared to MPK, SEIMI is
faster in all 19 cases, and the range of ∆pk is [0.08%, 231.03%].
Compared to MPX, SEIMI is faster on nine cases. For these
nine cases, the range of ∆px is [2.13%, 143.37%]; for the
remaining cases, the range of ∆px is [-281.99%, -14.94%].

SS. As shown in Figure 5(b), when using MPX, MPK, and
SEIMI to protect SS, the performance overhead are 14.57%,
21.08%, and 12.49%, respectively. Compared to MPK, SEIMI
is faster on all cases, and the range of ∆pk is [0.27%, 90.5%].
Compared to MPX, SEIMI is faster on eight cases. For these
eight cases, the range of ∆px is [1.04%, 98.39%]; for the
remaining cases, the range of ∆px is [-110.84%, -7.96%].
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Fig. 6: The impact of bound-checking frequency (CFreq) and
permission-switching frequency (SFreq) on performance.

CPI. As shown in Figure 5(c), when using MPX, MPK, and
SEIMI to protect CPI, the performance overhead are 6.20%,
6.11%, and 4.15%, respectively. Compared to MPK, SEIMI
is faster on all cases except 447.dealII, 462.libquantum, and
473.astar (∆pk is -1.64%, -5.26%, and -1.07%). This is because
these cases have more frequent VM exits than others. For other
cases, the range of ∆pk is [0.01%, 100.93%]. Compared to
MPX, SEIMI is faster on ten cases (10/17). For these ten
cases, the range of ∆px is [0.48%, 17.88%]; for the remaining
cases, the range of ∆px is [-121.86%, -0.7%].

AG. As shown in Figure 5(d), when using MPX, MPK, and
SEIMI to protect AG, the performance overhead are 10.35%,
2.14%, and 1.04%, respectively. 433.milc (∆pk=-1.25%) is the
only case where MPK is faster than SEIMI, which is also
due to more frequent VM exits. For the remaining cases, the
range of ∆pk is [0.01%, 11.34%]. Compared to MPX, SEIMI
is faster on all cases except 473.astar (∆px=-13.38%). For the
remaining cases, the range of ∆px is [2.28%, 28.27%].

Performance Analysis: On average, the performance over-
head incurred by SEIMI is much less than the MPX-based
scheme and the MPK-based scheme. However, in some cases,
the MPX-based scheme may outperform SEIMI. We conduct
the following analysis to explain the reasons. The overhead
incurred by the address-based scheme mainly comes from the
bound-checking while the overhead incurred by the domain-
based mainly comes from the enabling and disabling of the
access permission. Therefore, which performs better depends
on the protection workloads. We define CFreq as the number
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TABLE VII: Performance overhead on real world applications incurred by four defenses when using IH/MPX/MPK/SEIMI to protect their
sensitive data. All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.

Applications
OCFI SS CPI AG

IH MPX MPK SEIMI IH MPX MPK SEIMI IH MPX MPK SEIMI IH MPX MPK SEIMI

Nginx 1.10% 3.86% 5.32% 1.77% 1.86% 7.33% 10.49% 2.43% 0.90% 6.38% 8.95% 3.08% 0.74% 7.60% 5.27% 2.01%
Apache 1.58% 4.71% 2.82% 1.82% 1.64% 6.36% 6.83% 2.15% 1.45% 5.01% 2.58% 1.80% — — — —
Lighttpd 2.94% 3.42% 5.74% 4.46% 2.77% 6.85% 6.33% 3.78% 1.70% 6.83% 3.42% 2.46% — — — —
Openlitespeed 1.44% 5.39% 3.88% 1.61% 1.04% 1.92% 3.39% 1.42% 0.91% 2.89% 2.99% 1.38% — — — —

MySQL 1.75% 12.09% 8.08% 3.79% 3.17% 9.60% 11.99% 3.94% — — — — — — — —
SQLite 1.61% 2.11% 2.70% 1.84% 1.42% 3.46% 2.19% 1.94% 1.36% 3.11% 2.66% 2.18% — — — —
Redis 4.51% 5.46% 13.12% 10.31% 1.18% 2.81% 5.36% 5.06% 1.24% 4.47% 4.81% 3.93% — — — —
Memcached 1.64% 6.64% 7.46% 2.74% 2.38% 5.57% 8.13% 3.44% 1.04% 6.02% 7.28% 1.60% — — — —

ChakraCore 3.03% 12.09% 9.90% 4.10% 4.37% 7.92% 10.09% 5.15% — — — — — — — —
V8 2.57% 11.63% 5.04% 3.37% 2.05% 8.01% 4.05% 2.96% — — — — — — — —
JavaScriptCore 2.22% 22.87% 39.65% 26.81% 20.69% 38.34% 47.77% 31.82% — — — — — — — —
SpiderMonkey 1.75% 9.32% 7.63% 4.15% 1.84% 7.56% 7.79% 5.19% — — — — — — — —
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Fig. 7: Performance comparison of MPK and SEIMI.

of bound-checks per millisecond and SFreq as the number of
permission switches per millisecond.

SEIMI vs. MPX. Figure 6 reveals how CFreq and SFreq
affect the performance when applying the four defenses with
MPX and SEIMI. In this figure, each point represents one
benchmark; the x-axis is CFreq/SFreq, and the y-axis is the
ratio of the benchmark’s overhead when it is protected by a
defense and two different isolation schemes. The green solid
line is the power trendline of the MPX overhead divided by
the SEIMI overhead. The points within the black dotted box
are drawn by adopting unequal interval scale because the
frequency ratio is too large. The points above the dotted red
line indicate the cases in which MPX has a higher overhead
than SEIMI. Specifically, SEIMI outperforms MPX in 56.92%
of benchmarks. Statistically, when CFreq/SFreq is larger than
51.88, 86.21% of benchmarks have a lower overhead with
SEIMI, compared to MPX. That is, when the bound-checking
frequency is 52 times of the access permission switching
frequency, SEIMI is more efficient than MPX in most cases.

SEIMI vs. MPK. Figure 7 reveals how SFreq affects the
performance when applying the four defenses with MPK
and SEIMI. It shows that, compared to MPK, as the access
permission switching frequency increases, the performance
gain of SEIMI becomes more apparent. This is expected
because switching SMAP using STAC/CLAC is much faster
than switching MPK using WRPKRU (shown in Table I).

Case study. Table VIII shows six representative cases in three
categories. We can see that when the bound-checking frequency
is much larger than access permission switching frequency, the
domain-based isolation is better. Since the domain-switching
overhead in SEIMI is lower than MPK, SEIMI has more
performance advantage than MPK when compared with MPX.

TABLE VIII: The effects of bound-checking frequency and
permission-switching frequency on performance.

Benchmark Overhead CFreq. SFreq.

Type-1: MPX>MPK>SEIMI
OCFI+namd 19.11% > 0.12% > 0.04% 1,657,879 9
SS+hmmer 100.00% > 3.23% > 1.61% 1,058,448 1,165

Type-2: MPK>MPX>SEIMI
OCFI+bzip2 31.46% > 20.15% > 15.17% 1,765,116 14,979
AG+sjeng 22.22% > 20.30% > 12.74% 3,302,912 7,467

Type-3: MPK>SEIMI >MPX
CPI+xalan 118.71% > 82.01% > 66.19% 49,443 19,137
OCFI+gobmk 84.48% > 47.42% > 21.94% 991,377 36,119

C. Real-world Applications Evaluation

Web servers. We used ApacheBench (ab) to simulate 10
concurrent clients constantly sending 10,000 requests; each
request asks the server to transfer a file remotely (over a 5m
long CAT 5e cable). We also vary the size of the requested
file, i.e., {1K, 5K, 20K, 100K, 200K, 500K}, to represent
different configurations. Table VII shows the performance
overhead (geo_mean) of web servers under protection of the
four defenses with the IH/MPX/MPK/SEIMI-based schemes.
As the requested file size increases, the overheads of all schemes
decline. From the table, we can see that SEIMI is slower than
MPX only when protecting Lighttpd with OCFI. For all other
cases, SEIMI is more performant than MPX and MPK.
Databases. Since different databases have different bench-
marks, we evaluated them by using the corresponding bench-
marks which are consistent with prior works: (1) For MySQL,
we evaluated its latency with the sysbench utility [3]. MySQL
was configured with 4 tables of 100,000 rows on which a
read-write workload was executed with 4 threads; (2) For
Redis, we evaluated its SET and GET throughput with the
redis-benchmark tool, which is released together with Redis;
(3) For Memcached, we evaluated it with twemperf [4]. We
created 1,000 connections and 10 calls per second, and the
item size is set to 400 KBytes; (4) For SQLite, we evaluated
its latency by inserting 2,000 rows and selecting 2,000 times.
From the table, we can see that SEIMI is slower than MPX
only when using OCFI and SS. For all other cases, SEIMI is
more performant than MPX/MPK on average.
JS engines. We evaluated the four JS engines with the Kraken
benchmark [2] from Mozilla, which is widely used to test
realistic workloads. We evaluated each of the 14 test suites in

12



Kraken and calculated the geo_mean of the overheads. From
the table, we can see that SEIMI is more performant than
MPX/MPK in most cases (except protecting JavaScriptCore
with OCFI). Moreover, we can see that neither address-
based schemes nor domain-based schemes are suitable for
JavaScriptCore due to the significant performance overhead.

VII. DISCUSSION

Overloading the AC flag. The AC flag in the RFLAGS register
is designed to enable/disable the alignment checking of data
accesses when used in the U-mode; it is re-purposed for control-
ling SMAP when used in the S-mode. As such, SEIMI cannot
rely on the AC flag for alignment checking. However, this does
not limit the application of SEIMI, because for compatibility
issues, such alignment checking is actually disabled by default
in both most Linux and Windows applications. For example, the
memcpy library function is highly optimized by using unaligned
data accesses in glibc.
Nested virtualization. SEIMI requires VT-x. As a result,
it cannot be used inside a VM unless the target hypervisor
supports nested VT-x [8]. To evaluate the performance char-
acteristics of such a configuration, we did two experiments:
(1) running SPEC on SEIMI, and SEIMI runs on a KVM;
(2) running the process-related benchmark (the worst cases in
SEIMI) in lmbench on SEIMI + KVM similarly. We found
that for SPEC, compared to native, the KVM incurs an overhead
of 10.24% on average, and SEIMI + KVM only incurs 12.11%
on average. But for lmbench, compared to native, the KVM
incurs an overhead of 23.14% on average, and SEIMI + KVM
incurs 6.07X slowdown on average. This is because the VM
exit is highly expensive in nested virtualization. So how to
promote the performance of SEIMI in nested virtualization is
an interesting topic of future consideration.
Possible incompatibility with future instructions. In §IV-B,
we proposed multiple techniques to identify and intercept
the privileged instructions. When new instructions are to
be supported by the processors, SEIMI would require extra
effort to support these extensions. We believe supporting new
instructions in SEIMI is possible: First, almost all instructions
have execution conditions, therefore we could destroy these
conditions to avoid the normal execution of these instructions;
Second, processors usually provided the control of hardware
support for the more recent released instructions in the control
registers and model-specific registers, therefore we could
configure such registers of the guest to disable the support.
Transient execution attacks. Recent attacks [13] have
demonstrated that transient execution attacks are practical in
extracting private data from isolated memory regions. Both
address-based and domain-based isolation mechanisms are
subject to Meltdown-type attacks [13]. For instance, Meltdown-
MPX [13, 28] and Meltdown-PK [13] attacks successfully
break the isolation based on Intel MPX and MPK. Recently,
Xiao et al. [57] shown that SMAP is bypassable. Therefore,
we anticipate SEIMI would be vulnerable to Meltdown-type
attacks as well unless the hardware is patched. Beside the

Meltdown-type attacks, the newly disclosed Microarchitectural
Data Sampling (MDS) attacks (such as RIDL [49], Fallout [14],
and ZombieLoad [45]) can also leak private data by exploiting
CPU-internal buffers (e.g., Line Fill Buffers, Load Ports, and
Store Buffers) [1]. To mitigate the MDS attacks, Intel updated
microcode to modify/extend the VERW instruction to clear these
buffers [1] (although it has been proven has flaws [50]). In
SEIMI, VERW will fail to execute due to the descriptor load
segment violation. However, the internal buffers will still be
overwritten even with such a violation [1]. Therefore, SEIMI
does not affect this new functionality of VERW.

VIII. RELATED WORK

Leveraging privileged hardware for user code. Dune [7]
is the only work we are aware of that also leverages the Intel
VT-x virtualization technology to provide user-level programs
with system privileges. It runs a user-level process in ring 0
of the VMX non-root mode, allowing the process to manage
the exceptions, the descriptor tables, and the page tables. It
however requires that the code running in ring 0 is secure and
trusted. For the untrusted code, such as a plugin in the browser,
Dune runs a sandbox in ring 0 and confines the untrusted
code in ring 3. Compared to Dune, an inherent difference is
that SEIMI allows an untrusted code to run in ring 0, which
brings significant challenges but, on the other hand, ensures the
efficiency—running untrusted code in ring 3 will incur frequent
context switching thus significant performance overhead.

In addition, SEIMI has various innovative system designs.
For example, SEIMI uses SMAP to realize an efficient
intra-process memory isolation and designs a new memory
virtualization method that translating the guest virtual address
to the host physical address directly, thus avoiding the memory
virtualization overhead (incurred by the TLB misses) in
traditional two-dimensional paging mechanisms2 [52].

Address-based memory isolation. SFI [51] guarantees that
the target code cannot read or write outside of designated
sections of the memory space, which could be used to realize
the intra-process memory isolation. Except the aforementioned
MPX-based method, Isboxing [20] overwrites the instruction
prefixes to change the default operation size to limit the
size of the address space, which however allows only up to
4GB address space. Segmentation also provides intra-process
memory isolation [44] by requiring the code to possess a
descriptor to address a particular section of memory. However,
segmentation is only supported in 32-bit mode [29].

Domain-based memory isolation. Similar to Intel MPK,
ARM also supports the memory domains [5], which is available
only on 32-bit processors. VT-x introduces an instruction,
VMFUNC, that enables fast switches between EPTs in virtualiza-
tion. Recent works [25, 30, 34] use this feature to realize intra-
process memory isolation by setting double-EPT which contains
mappings corresponding to the isolated memory region.

2 The guest virtual address is first translated into the guest physical address
through the guest page table, which is then translated to the host physical
address through the extended page table (EPT).
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Hardening information hiding. Some works have been
proposed to harden IH. In particular, ProbeGuard [10] detects
probing attacks that try to derandomize information hiding
and patches the vulnerable code to prevent probing. SafeHid-
den [54], on the other hand, employs runtime monitoring,
continuous randomization, and thread memory localization to
maintain the entropy of information hiding.

Marking as sensitive pages. The outcoming control-flow
enforcement technology (CET) [27] provides the isolation for
the shadow stack by marking as the shadow stack page in
the page tables. The shadow stack page cannot be accessed
by normal memory access instructions. Unfortunately, CET is
tailored towards CFI and cannot be easily repurposed for other
mitigations [21]. IMIX [21] and MicroStache [38] provides a
similar but more generic method for the sensitive data, which
however requires modifying hardware.

Tagged architectures. Recent research has revisited tagged
architectures [46, 56], in which the hardware associates a “tag”
with each byte in memory that encodes a security policy. Tags
can be used to, for example, grant call instructions exclusive
rights for writing to certain memory regions, preventing return
addresses from being overwritten [46]. More generally, such
architectures can readily be leveraged for intra-process memory
isolation, by assigning access permissions to each instruction
in the code section, and each byte in memory. However, such
architectures are not yet supported by commodity hardware.

Trusted execution environment. Many works study how to
isolate a specific component of an application. Wedge [12]
provides privilege separation and isolation among its sthreads.
Shreds [18] uses ARM memory domains to divide execution
within a user-space thread. Light-weight contexts (lwCs) [33]
isolates units within an address space. Secure Memory Views
(SMV) [26] uses per-thread page tables to enforce isolation
while allowing sharing between threads. LOTRx86 [32] creates
a PrivUser in ring 1 to isolate the component. Intel’s SGX [29]
allows (components of) applications to execute with hardware-
enforced isolation against even untrusted OS. All these methods
are not practical for isolating the sensitive data of memory-
corruption defenses due to high switching frequency.

IX. CONCLUSION

Intra-process memory isolation is a fundamental building
block for memory-corruption defenses. In this paper, we
propose a highly efficient intra-process memory isolation
technique, SEIMI, which leverages the widely used and
efficient hardware feature—SMAP. To use this privileged
hardware, SEIMI safely places the user code in a privileged
mode by using the Intel VT-x techniques. To avoid introducing
security threats, we propose multiple new techniques to ensure
the safe privilege escalation of the user code. Experiments
show that SEIMI is much more efficient than the state-of-the-
art isolation techniques. We believe that SEIMI can not only
benefit previously defenses, but also potentially open a new
research direction—enabling the efficient access to a variety of

privileged hardware features, which does not require context
switch, to defense mechanisms.
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