Exaggerated Error Handling Hurts! An In-Depth Study and
Context-Aware Detection

Aditya Pakki, and Kangjie Lu

University of Minnesota

ABSTRACT

Operating system (OS) kernels frequently encounter various errors
due to invalid internal states or external inputs. To ensure the secu-
rity and reliability of OS kernels, developers propose a diverse set of
mechanisms to conservatively capture and handle potential errors.
Existing research has thus primarily focused on the completeness
and adequacy of error handling to not miss the attention. However,
we find that handling an error with an over-severe level (e.g., un-
necessarily terminating the execution) instead hurts the security
and reliability. In this case, the error-handling consequences are
even worse than the error it attempts to resolve. We call such a case
Exaggerated Error Handling (EEH). The security impacts of EEH
bugs vary, including denial-of-service, data losses, broken control-
flow integrity, memory leaks, etc. Despite its significance, detecting
EEH remains an unexplored topic.

In this paper, we first conduct an in-depth study on EEH. Based
on the findings of the study and rules generated via manual inves-
tigation, we then propose an approach, EECATCH, to detect EEH
bugs in a context-aware manner. EECATCH accurately identifies
errors and extracts their contexts (both spatial and temporal), and
automatically infers the appropriate severity level for error han-
dling. Using the inferred severity level, EECATcH finally detects
EEH bugs in which the used error handling exceeds the inferred
severity level. To demonstrate the effectiveness and scalability of
EeCartcH, we develop a prototype that uses inter-procedural, field-
and context-sensitive static analysis. By analyzing the whole Linux
kernel, EECATCH reports hundreds of potential EEH bugs that may
cause security issues such as crashing the system. After evaluating
104 cases reported by EECATCH, we manually confirmed 64 EEH
bugs and submitted patches for all of them. Using our patches,
Linux maintainers have fixed 48 reported EEH bugs, confirming
the effectiveness of EECATcH. To the best of our knowledge, we are
the first to systematically study and detect EEH bugs. We hope the
findings could raise the awareness of the critical consequences of
EEH bugs to help developers avoid them.

CCS CONCEPTS

« Security and privacy — Operating systems security;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS °20, November 09-13, 2020, Orlando, FL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/20/11...$15.00
https://doi.org/10.1145/1122445.1122456

KEYWORDS

OS Kernel Bug, Exaggerated Error Handling, Static Analysis; Bug
Detection

ACM Reference format:

Aditya Pakki, and Kangjie Lu. 2020. Exaggerated Error Handling Hurts! An
In-Depth Study and Context-Aware Detection. In Proceedings of CCS 20,
Orlando, FL, USA, November 09-13, 2020, 17 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

OS kernels form the bedrock for software applications and hard-
ware, and they are expected to work correctly in both malicious and
benign scenarios. When a system encounters an error—an invalid
internal state or input, the error-handling (EH) mechanisms are
often the first line of defense for ensuring the security and relia-
bility of the system. For example, before a size variable obtained
from the userspace is used for memory writes, the kernel typically
uses a bound-check to capture an over-size error and handles it
properly instead of continuing (a buffer overflow) or terminating (a
denial-of-service) the execution. According to our study, the Linux
kernel alone has more than 446K EH sites, showing the prevalence.

One can classify error handling into multiple levels based on
severity. While less-severe errors require only warning or logging,
more-severe errors may warrant the termination of whole-system
execution. For example, in case of a failure in the ioctl system call
for a USB driver, the appropriate EH is typically logging the error
to the ring buffer, and the kernel continues its execution instead of
terminating. By contrast, if the file system fails to mount during
system boot time, the kernel would issue a panic call that hangs the
system. This extreme EH is in fact necessary to avoid potential disk
corruption or data loss. When an error is handled at a level lower
than the desired severity level, the error is considered inadequately
handled. On the contrary, if the impact of the EH is more severe than
the actual consequences of the error, it unexpectedly introduces
security and reliability issues such as unnecessarily crashing the
kernel. We name such cases as Exaggerated Error Handling (EEH),
a new class of semantic bugs. Figure 1 shows an example of an
EEH bug that unnecessarily crashes the process via BUG_ON (an EH
function) when the field cx231xx_send_usb_command is NULL. In this
scenario, returning an error -EINVAL is sufficient as all the callers
of cx231xx_i2c_register can handle this error safely.

According to our study, a majority of EEH bugs occur due to
the following reasons: regression issues introduced by code fixes,
subjective error severity estimation, assertion usage in production
code, and inconsistent EH mechanisms in the call chain. In our
study, we identified the top two reasons for the occurrence of EEH
bugs (78%) as (1) incorrect reasoning about the severity of the error
and (2) improper use of assertions in production code. Further,
developers do not want to introduce unintended regressions caused

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CCS ’20, November 09-13, 2020, Orlando, FL, USA

/% drivers/media/usb/cx231xx/cx231xx-i2c.c */

int cx231xx_i2c_register(struct cx231xx_i2c *bus) {
struct cx231xx *dev = bus->dev;

- BUG_ON(!dev->cx231xx_send_usb_command) ;

+ if (!dev->cx231xx_send_usb_command)

+ return -EINVAL;

L Y T

}
9 /* the error is handled properly in callers in
10 * cx231xx-cards.c, without crashing the process */

Figure 1: A new EEH bug detected by EECATCH. It avoids a process
crash when cx231xx_send_usb_command is NULL by replacing line 4
with lines 5 and 6.

by their fixes. Due to the challenges of testing the whole kernel,
errors are often handled locally, rather than evaluating the global
impact of their fixes.

EEH bugs may cause critical issues hurting security and relia-
bility, such as denial-of-service, data losses, memory leaks, infor-
mation leaks, inconsistent resource release, among others. More
importantly, these bugs can be introduced anywhere within the sys-
tem, and are often located in the less frequently executed code [62].
Linus Torvalds frequently advises the Linux contributors about the
need to use appropriate EH mechanisms, rather than terminating
a process [51, 52]. Unfortunately, EEH bugs are still common. In
particular, we studied 168 crashes of the Linux kernel reported
by Syzkaller [55]. We identified that at least 34 (20%) crashes are
caused by EEH bugs.

Although EEH may cause critical security issues, to the best
of our knowledge, EEH remains an unexplored topic. Due to the
critical consequences of missing the handling of an error, prior
research has primarily focused on the completeness [16, 23, 50] and
adequacy [22, 45] of EH. Security researchers propose techniques
to avoid failures by focusing heavily on the cause of errors and
their patterns, often underestimating the security impact of EH
code that is “beyond” fixing the errors.

Despite the significance of EEH bugs, detecting them suffers
from the following challenges. First, even for the same error, EH
can vary according to the error context. For example, a failure in
heap memory allocation in the arch subsystem deserves a kernel
crash, whereas in the sound subsystem, it is merely logged, without
impacting the rest of the kernel. Therefore, effective detection of
EEH must be context-aware. However, it is unclear what contexts
are related to EH, and how they can be modeled and extracted.
Second, determining the severity of the error is not straightforward.
An EEH bug’s EH is at a higher severity level compared to its
expected level. There are no guidelines in the kernel on properly
assigning the severity to either errors or its EH. To detect bugs, it is
important to determine the severity of not only various errors with
particular contexts but also EH. Third, EH is diverse and there is
no single comprehensive list of EH techniques. However, EEH bug
detection requires precise identification of EH along the call chain.
Fourth, performing manual analysis to determine the severity of
446K EH is impractical. Such an analysis also requires determining
the appropriate severity level of the fix. Thus, it is important to
develop a reliable strategy that can identify EH. The technical
challenges encountered in detecting EEH bugs are summarized as
follows.

Pakki and Lu

o Identifying errors and EH Deducing the appropriate error
severity requires identifying errors and the corresponding EH.
Unlike exceptions in object-oriented languages, there are no clear
patterns to identify errors, their handlers, terminating functions,
and wrappers of such functions in the kernel.

Understanding error contexts The appropriate severity for
EH highly depends on the contexts of errors. It is not clear yet
what factors constitute the contexts for EH. It is also unclear how
the contexts should be modeled and incorporated to determine
the appropriate severity for an error.

In this paper, we first study the EEH problem in the Linux ker-
nel. We collect 239 instances of EEH bugs via Git. We manually
identify the errors, the EH mechanisms, and assign the severity
level based on the consequences. We observed that 208 out of 239
(87%) instances of EEH are fixed by either eliminating existing EH
or replacing them with a lower-severity EH. The remaining cases
required extensive logic changes to fix the EH. By encoding the
manually identified rules of our study, we develop EECATCH, a tool
capable of detecting EEH bugs in the Linux kernel. EECATcH first
automatically identifies errors and EH mechanisms. In the second
step, EECATCH models a two-dimensional context of errors that con-
tains appropriate spatial and temporal context information. Based
on the identified errors and their contexts as well as associated
EH mechanisms, EECATCH automatically infers the appropriate
severity level for errors with particular contexts. By identifying
the severity level of the deployed EH and comparing it with the
inferred one, EECATcH detects EEH bugs. To ensure the detection
precision, EECATCH incorporates inter-procedural, flow-, context-,
and field-sensitive static analysis for the context-aware detection.
EeCaTtcH employs a probabilistic approach to bug detection [11].
The technique is vulnerable to false positives (§6.3), false negatives
(§6.4), and requires manual effort to confirm bugs.

We implemented EECATCH using the LLVM infrastructure [26]
and evaluated its effectiveness and scalability by applying it to the
latest stable version of the Linux kernel. It finished the analysis for
the whole kernel within 56 minutes and we found 104 potential EEH
warnings. We identified 64 new EEH bugs and sent patches to the
maintainers for all confirmed bugs. At the time of paper submission,
Linux maintainers have fixed 48 bugs using our patches. These new
bugs have critical security impacts. The majority of the detected
bugs, 66% of 64 bugs (see Table 10), can crash the process, which is
particularly critical for long-running servers. Two bugs can crash
the kernel. EECaTcH has a low false-negative rate in detecting
previous EEH bugs; evaluation results show that it can detect 92.1%
of the 239 previous EEH bugs (see §6). These results show that
EeCATcH is scalable and effective in detecting general EEH bugs in
the Linux kernel.

We make the following research contributions in this paper.

o First study of EEH. We introduce, to the best of our knowledge,
the concept of Exaggerated Error Handling, a new class of se-
mantic bugs. We conduct the first in-depth study against EEH
in the Linux kernel. The study covers the causes and impact of
EEH bugs and categorizes EH based on the severity levels. The
study provides an interesting and important step in detecting
EEH bugs in OS kernels.

Exaggerated Error Handling

o Context-aware detection of EEH. We propose a novel ap-
proach that effectively detects EEH bugs in a context-aware
manner. By modeling and extracting both spatial and tempo-
ral contexts, our detection can automatically infer the severity
level for errors with particular contexts and uses that for detect-
ing EEH bugs. To realize the context-aware detection, we also
develop techniques to automatically detect errors in the kernel
by tracking the error variables and to identify EH functions based
on their patterns.

e Open-source prototype and new bugs. We develop a proto-
type for EECATcH, which will be open-sourced With EECaTcH,
we found 64 new EEH bugs in the latest version of the Linux
kernel, which may cause critical security and performance issues.
Most of the bugs were fixed with our patches. We hope that the
findings and the prototype could help future developers avoid
EEH bugs.

2 A STUDY OF EEH

In this section, we first provide background information about
errors and EH in the Linux kernel. Then, we study a set of previously
fixed EEH bugs we manually collected via the git history of the
Linux kernel. In particular, we will describe the importance of
contexts in determining the severity level of EEH bugs.

2.1 Errors and Error Handling in the Kernel

Errors, faults, and failures. For consistency, we use the defini-
tions presented in the seminal paper by]J.C. Laprie [25], and define
errors as deviations from expected behaviors. Faults are the root
cause behind an error, such as hardware failures or software bugs.
Failures are the consequences of incorrect handling of the errors. In
this paper, we will use errors interchangeably with error codes to in-
dicate deviations. Error handlers are code pieces performing the EH.
OS kernels and other critical systems are designed for availability
and to minimize halting on failures.

Unlike other modern programming languages such as C++, Java,
Python, etc.; C language does not provide any structured EH prim-
itives such as exceptions. Due to such limitations, developers in-
stead use the runtime indicators of errors, typically error codes, to
capture and handle errors. As a programming convention, Linux
developers negate the standard error codes and assign them to the
errno variable to indicate the captured errors. Further, the error is
typically propagated via the return value of a function to its callers.
Unlike numeric error codes, a NULL pointer also captures an error
for pointer variables. Correctly processing these errors is important
to ensure that the system is not prone to crashes or exposing itself
to new exploits.

Error-handling primitives. Previous researchers analyzing
Linux kernel [16, 22, 23, 31, 50] modeled error returning (i.e., an
error code propagates to its caller) as valid EH, Such cases account
for 37% of all EH [22]. We believe that researchers adopted this
strategy to avoid tracking complicated data flow. However, error
returning is not an actual EH because the caller function that takes
the returned value will have to eventually handle the error. In our
model, we classify valid EH into the following three categories.
o Terminating Execution. Fatal errors such as the ones causing
data loss or damage to the system are of the highest severity level.

CCS ’20, November 09-13, 2020, Orlando, FL, USA

/% drivers/tty/tty_ldisc.c - Apr 16, 2017%/
static void tty_ldisc_restore(struct
tty_struct *tty, struct tty_ldisc *old)

old = tty_ldisc_get(tty, old->ops->num);
WARN_ON(IS_ERR(0ld));

tty->1ldisc = old;

/* Null pointer dereference */

9 - tty_set_termios_ldisc(tty, old->ops->num);

® N o U AW
s

1 + if (tty_ldisc_failto(tty, old->ops->num) < 0) {

12 + const char *name = tty_name(tty);

13+ pr_warn("Falling back ldisc for %s.\n", name);
14

15 %}

Figure 2: Commit# 598c2d41f fixing a potential EEH bug. It causes
a process crash (in line 9) or even machine crash [18] (in line 6)
when the kernel.panic_on_warn value is either zero or non zero,
respectively.

The corresponding EH would either terminate the machine or
crash the process execution by calling either BUG (see Figure 1)
or panic in the kernel. Depending on the specific configuration,
assertion failures typically crash the process as well. We model
the severity difference between a process crash and a kernel crash
but use terminating functions to describe both scenarios.

e Logging errors. Logging and monitoring for important errors
is a common EH strategy. Depending on the severity of the error,
various logging levels (kern_levels.h) are used to ensure appro-
priate response and escalation. The Linux kernel uses seven levels
of error severity (see Table 2) to log errors. Unfortunately, var-
ious subsystems customize the logging functions to suit their
demands, and introduce new logging functions, within a limited
scope.

e Ignoring errors. Contrary to other application software, the
kernel code frequently handles potential errors, without com-
promising the correctness, by ignoring them. There are three
reasons often stated for such behavior. First, the kernel previously
validated a scenario to ensure subsequent failure-free execution.
For example, checking for NULL from a kmalloc() call using
__GFP_NOFAIL is unnecessary, as the memory allocation does not
fail. Second, capturing and handling every possible error can
add performance overhead by generating branches (unnecessary
speculative execution). Third, an erroneous scenario may not be
critical at all to impact the execution. For example, developers
ignore potential errors while unregistering a device driver [16].
Within the scope of this paper, we treat functions ignoring errors
as a valid EH strategy, as long as it does not introduce issues.

Factors determining severity level. The severity levels indicate
the relative seriousness of the error’s occurrence and the potential
consequences of not handling at the said level. For example, EEH
bugs can occur when an error is handled at a higher severity level
than its intended level. Based on our EEH bug dataset, we identified
that the appropriate severity level of the EH depends on the error
and its context. For each of the 239 bugs, we collect the existing
EH, updated EH, and the errors. We determined the updated EH
of 218 bugs is consistent with the other EH within the function or
the module. The remaining 21 bugs required major code changes
(12 out of 21) impacting EH across modules or incorrect regression

CCS ’20, November 09-13, 2020, Orlando, FL, USA

fixes (9 out of 21). These observations suggest that severity depends
not only on the error but also the error-context.

Level| Error-handlers | EH Category | Examples

Crashing kernel Terminate Execution | panic

Terminate process | Terminate Execution | BUG

Severe errors Logging errors WARN, pr_[emerg,alert,crit]
Important errors | Logging errors pr_err

Warnings Logging errors pr_warn

Non critical errors| Logging errors pr_info, pr_dbg, pr_notice
No EH Ignoring errors No visible indicators

QU W N RO

Table 1: The assigned severity levels to errors in EECATCH based on
their impacts, and corresponding EH mechanisms at each severity
level.

Assigning severity levels for errors and EH. Based on the EH
primitives discussed earlier, we attempt to assign the severity level
based on our empirical observations of identified EEH bugs, and
previous work by other researchers [27]. Table 1 shows the mod-
eled severity levels and the corresponding EH mechanisms. We
borrow the idea of classification used in the logging levels within
the kernel (kern_level.h) to determine relative severity between
various errors. The seven error logging levels used in the kernel
are emerg, crit, alert, err, warn, notice, info, and, debug.

In our study, we observe that developers use subjective pref-
erences to assign severity of errors. Among the severity levels in
Table 2, we combine critical, alert, and emergency logging levels
to indicate severe errors. Similarly, debugging, information, and
notice levels represent non-severe errors. Finally, we model a ker-
nel crash as the most severe error and ignoring error as the least
severe category. WARN and BUG_ON can crash the Linux kernel by set-
ting panic_on_warn and panic_on_oops kernel sysctl, respectively.
Besides Android OS, most Linux configurations do not enable ei-
ther parameter. Thus we model WARN, BUG_ON, and panic at different
severities, based on their impact.

2.2 Exaggerated Error Handling in the Kernel

We study existing EEH bugs to find insights into the effective detec-
tion of EEH bugs. In this part, we briefly describe our collection of
previous EEH bugs, the composition of the dataset, and our insights
from the study.

Feature ‘ Details

Errors NULL, standard error codes such as -ENOMEM.
Severity levels 7 Error-logging levels found in kern_level . h.

Log functions printk, pr_X, dev_X; X is one of the severity levels.
Terminate execution | panic(), BUG(), WARN*

Table 2: Initial set of known errors, EH, and severity levels in the
Linux kernel. * In Android OS, as panic_on_warn and panic_on_oops
are enabled, WARN and BUG_ON cause a panic.

Dataset collection for previous EEH bugs. Due to the paucity
of previous research identifying EEH bugs, we rely on a pattern-
based search to identify Linux kernel commits, involving the said
bugs. We searched the git log of the kernel, using grep for commits
that contained one of "reduce”, "remove", or "replace”, along with
the terminating or logging functions listed in Table 2 which is em-

pirically prepared for OS kernels. By studying the commit messages

Pakki and Lu

and the code changes, we identify the error, the original EH mech-
anism, the impact of new EH mechanism, and their severities. We
collected patches submitted between Jan 2016 and Nov 2019 and
identified 86 commits involving EEH bugs, containing 343 valid
exaggerated error-handling changes (a single commit may fix sev-
eral EEH bugs). After eliminating bugs that can be categorized into
other common semantic bug categories, such as buffer overflow or
memory corruption, we observed that 29 commits were identified
by Syzkaller. We infer that the remaining commits are fixed via
manual analysis.

Insights of study. We present interesting insights about EEH bugs
in this section. @) EEH bugs are present across all subsystems within
the kernel. However, due to the code size and quality, they are over-
represented in the drivers subsystem, followed by fs. @ BUG() is
the most common erroneous EH in exaggerated error-handling
bugs. Maintainers are always on the lookout for new additions of
BUG(). However, numerous wrappers of BUG exist and are added
to the active code. @ Syzkaller, a fuzzing tool for Linux kernel,
enables panic_on_warn and causes a panic when it encounters a
WARNQ). In the commits identified manually, there are no instances
of EEH bugs involving WARN_ON. @ Incorrect error logging occurs
infrequently. However, 24% of EEH bug fixes use logging as an EH
technique. @ The top three causes for EEH bugs include, using
assertions in production code (38.2%), liberal use of BUG and WARN
wrappers (29.7%), and failure to track the impact across other callers
(8.1%). Further reasoning shows that the occurrence of EEH bugs
is mainly because (1) developers are unaware of the EEH issues
and (2) it is hard for developers to induce the proper EH due to the
complexity of kernel code.

Impacts of EEH bugs. Based on our study of the dataset, we
determined the security impact of the identified EEH bugs Table 3.

e Crashing a machine can cause denial-of-service (DoS) exploits.
We observed that a majority of the commits (62.1%) lead to po-
tential DoS. As Syzkaller reports a crash caused by panic, BUG_ON,
and WARN_ON as fatal, we manually identified the impact of 32
instances of bugs detected by it. 12.5% of the bugs detected by
Syzkaller can cause DoS without enabling either panic_on_warn
or panic_on_oops. 59% of 32 instances cause memory corruption,
and the remaining do not have a security impact.

e A process crash within the file system avoids data corruption.

However, 22.7% of the patches can cause data corruption, based

on the resources they acquired before a crash.

15.2% of the commits are also vulnerable to memory leaks caused

by crashes. A memory leak can occur upon encountering BUG_ON.

Since the acquired resources are not freed automatically, we treat

such cases as memory leaks. We exclude cases involving panic,

as a machine crash is severe compared to memory leaks.

e According to the 2017 OWASP vulnerability study [39], inaccu-
rate logging of the errors is one of the top 10 vulnerabilities. Most
exploits start with vulnerability probing, and incorrect logging
levels can miss the detection of these vulnerabilities. Our dataset
contains 8.9% of the commits categorized as inaccurate logging.

e Other consequences of inaccurate monitoring can cause infor-
mation leak of kernel pointers, and potentially introducing an
exploitable vulnerability.

Exaggerated Error Handling

DoS Incorrect Data Memory | Information
logging | corrupt. leak Leak
62.1% | 8.9% | 227% | 152% | 15.8%

Table 3: Common security impacts of EEH bugs.

1 /% File: net/netlink/af_netlink.c */

2 static void __init netlink_add_usersock_entry(void) {

3 listeners = kzalloc(sizeof(*listeners) ..., GFP_KERNEL);

4 if (!listeners)

5 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
6

7

8 struct sock * __netlink_kernel_create(...) {

9 listeners = kzalloc(sizeof(*listeners) ..., GFP_KERNEL);

10 if (!listeners)
11 return NULL;

14 void netlink_kernel_release(struct sock *sk) {

15 if (sk == NULL || sk->sk_socket == NULL)
16 return;
17 3

Figure 3: A simplified example showing diverse EH explained
using temporal context.

The Linux community’s view of EEH. A bug capable of crash-
ing the kernel is critical (CVSS greater than 8.0 out of 10), as the
vulnerabilities are susceptible to DoS exploits. The Linux creator,
Linus Torvalds, repeatedly emphasizes the need for appropriate
EH mechanisms, rather than crashing the kernel [51, 52]. From a
developers viewpoint, kernel maintainers reject patches that use
BUG as an EH strategy. Despite the widespread community mea-
sures to avoid crashes, caused by incorrect EH, there are over 13K
instances of BUG and its wrappers, at the time of writing the paper.
Therefore, it is important to not only study EEH bugs, but also
develop techniques capable of precisely identifying these bugs in
the kernel.

2.3 Contexts of Errors

After analyzing the EEH bugs from the dataset in §2.2, we ob-
served that, in addition to the error itself, its context frequently
determines the appropriate severity level of EH.

Modeling the life-cycle. We found that the severity of an error
depends on the life-cycle phase (i.e., temporal context) the error is
in. We use Figure 3 to show how the temporal context determines
the severity. Two functions within the file af _netlink.c attempt
to allocate the same size memory using kzalloc. In case of failure,
netlink_add_usersock_entry crashes the kernel (line 5), whereas
__netlink_kernel_create returns NULL (line 12) to its wrapper
netlink_kernel_create. By contrast, during the finalization life-
cycle phase, when the kernel_kernel_release attempts to release
memory and fails, it ignores the error (line 16). Therefore, the EH
for the same error is different in terms of severity level for different
life-cycle phases. We generate a rule based on these observations
that, depending on the life-cycle phase of the function with an error,
the corresponding EH can differ in terms of severity, within the
same module. By applying this rule to the dataset in §2.2, we narrow
the possible EH techniques in both initialization and finalization
phases. We mark the functions not belonging to either category as
regular functions.

CCS ’20, November 09-13, 2020, Orlando, FL, USA

Modeling the subsystem. In addition to the life-cycle phases,
we further found that the subsystem an error is located in also
influences the severity of the error, which we refer to as spatial
context. The kernel groups the major subsystems according to their
functionality. Besides the standard error codes, each subsystem uses
its own EH techniques. To generalize the EH and severities across
subsystems, we extract the spatial context from the EEH bug dataset.
Despite their functional similarities, drivers and sound subsystems,
use different EH. Excluding the bugs detected by Syzkaller, EEH
bugs in sound do not crash the kernel, whereas 24 out of 28 patches
in drivers terminate the process. In fact, we found 3 instances in
the entire sound subsystem capable of a process crash but 15K in-
stances in drivers. The corresponding error density is one instance
of terminating function per 304K and 840 lines, respectively. We
conclude that not all code in the kernel is critical. It is dependent
on the subsystem containing the error. We present a more detailed
evaluation of the spatial context in Table 4.

To effectively capture the diverse error handlers, we model the
error-context to contain both local factors involving the subsystem,
and the global factors determined by the life-cycle. We evaluate
the importance of each factor within the context and empirically
determine the granularity based on our results.

3 EECATCH OVERVIEW

Program initialization

Alias Analysis
IR Generation Call Graph

S1. Error and EH S2. 2D Ctx Determination
'| Identification
: Spatial ctx
i | - logging fn. =
'| - terminating fn. l»d |1 3
! | - error path id. errors g 0 |4
- error variable id. e
<Error,ctx>
Ranked EEH Bugs
warnings
1 1.
2. >0
3. 3.
<0 |a ; a.
S4. Bug Detection

Figure 4: An overview of EECATCH.

While the first part of the paper presents the study of EEH,
in the second part, we will present EECATCH, a tool that uses the
findings of the study to effectively find EEH bugs in a context-aware
manner. As shown in Figure 4, EECaTcH identifies EEH bugs with
the following steps.

Automatic identification of errors and error handlers. Defin-
ing comprehensive specifications for errors and error handlers in
the Linux kernel is a challenge. EECATCH attempts to detect the

CCS ’20, November 09-13, 2020, Orlando, FL, USA

errors and models different error handlers using static analysis
and pattern-based detection. EECATCH identifies errors through
their representations—error variables, which employs backward
data-flow analysis. To identify error handlers; using an initial set of
error handlers (see Table 2), EECATCH automatically expands the
list via association mining. It also collects wrappers of standard
terminating functions (BUG and panic) by tracking unreachable in-
structions and functions with __noreturn attribute. In all, EECATCH
automatically identifies 62 wrappers of terminating functions, and
643 functions that log errors.

Extracting two-dimensional error contexts. From our study
(§2.3) of the EEH bugs, we observed that same errors are often han-
dled differently given different spatial and temporal contexts. As
such, EECATCH generates a context-aware model for determining
the severity level of an error. Our model uses both spatial and tempo-
ral factors of the function encompassing the error. The spatial con-
text consists of subsystem (e.g., subsystems sound and filesystem)
information, whereas a temporal context uses the life-cycle phase
(e.g., phases initialization and finalization) information. In the
absence of a probability distribution model, EECATCH determines
the granularity and importance of these contexts, empirically, as
explained in §2.3.

Inferring the severity level for <error, contexts>. The goal of
this step is to automatically infer the appropriate severity level
for errors with particular contexts (i.e., <error, contexts>). Using
static analysis to determine the proper EH for each error in the
kernel, is error-prone and infeasible. Instead, EECATCH uses statis-
tical analysis to infer the severity of <error, contexts>. The idea is
to first collect peer cases that share the same error and contexts
as the one in question. Then, by statistically analyzing in which
severity level such an error is commonly handled, EECATCH infers
the appropriate severity level.

Detecting EEH bugs in a context-aware manner. Given a user-
defined hyperparameter 6, an error, its peer set of EH, and the
inferred severity level of the error, EECATCH reports deviations as
warnings. If the severity level of the actual EH is higher than the
inferred one, EECATCH reports it as an EEH case. EECATCH prunes
the generated list of warnings and ranks them according to their
likelihood of being an EEH bug. At last, we confirm the reported
EEH warnings and fix them manually by reducing the severity
level of the EH to the suggested level, without introducing security
issues. EECATCH requires manual effort to confirm EEH bugs and
to guarantee the soundness of the fix. We describe the sensitivity
analysis of 6 in §6 and accuracy of EECATCH in §6.3 and §6.4.

4 METHODOLOGY

In this section, we describe the major components of EECATCH,
including accurate extraction of errors, identifying EH mechanisms,
modeling the spatial and temporal contexts, inferring the severity
of errors in specific contexts, and detecting EEH cases.

4.1 Identifying Errors
The first step in detecting EEH bugs is the identification of errors.

Representation of errors. Errors are not only numerous but
also take diverse forms in OS kernels. As such, it is challenging to

Pakki and Lu

generally and automatically identify the actual errors. Fortunately,
we observe that for a handled error (since EECATCH aims to detect
EEH, we focus on handled errors), a corresponding error variable is
used to indicate and capture the error. A common pattern is the use
of standard error codes, e.g., EINVAL, to represent different errors.

Identifying error variables. Since handled errors are always rep-
resented by error variables, the key step of identifying errors is to
precisely identify error variables, which is still a challenge for a
number of reasons. First, OS kernel code is huge and the number
of variables is often in the order of millions. Static analysis of these
variables is not scalable and error-prone. Second, error variables
often propagate across modules, involving complicated data flow.
Third, identifying all possible errors is impossible, as there are no
predefined error sets. Developers often add custom error codes. To
minimize the impact of these challenges, we leverage the program-
ming convention of C on what constitutes an error. The kernel
defines a set of standard error codes in linux/include/errno.h to
represent a majority of erroneous scenarios. Further, NULL pointers
as return values are also treated as errors in C.

1 /* File: net/dccp/ccid.c */

2 struct ccidx ccid_new(const u8 id, struct sock *sk, bool rx) {
3 if (ccid_by_number(id) == NULL)

4 return NULL;

5

6)

7 /% Caller: net/dccp/feat.c */

8 int dccp_hdlr_ccid(struct sock sk, u64 ccid, bool rx) {
9 struct ccid #new_ccid = ccid_new(ccid, sk, rx);

10 if (new_ccid == NULL)

11 return -ENOMEM;

12 S

13 return 0;

14}

Figure 5: A simplified example to show how EECarcH tracks
errors. In this example, ccid_new returns NULL to the caller
dcep_hdlr_ccid. The latter propagates a different error code ~ENOMEM
to its callers.

Given an error variable V, containing one of the possible values
for an error, the problem is now transformed to identifying the seed
of V. Identifying the seed is necessary to avoid analyzing the same
error code, tainting multiple variables. The key idea to identify seeds
relies on the observation - in the presence of an error, the control-
flow uses a conditional statement to distinguish the normal path and
the error (or EH) path. Starting from the error variable V, used in
the conditional statement, we track the seed of V within a function,
by performing an intra-procedural backward data-flow analysis.
We terminate tracking a variable when the analysis reaches either a
function callsite or a local variable. On reaching a function callsite,
EECATCH queries if a function can return one or more errors to
its callers. If a function is not yet evaluated, EECATCH recursively
performs the same data-flow analysis, starting from the return
instruction of the function. EECATCH memoizes all errors returned
by a function to its callers, at a function level.

To illustrate the above technique, we use the example shown in
Figure 5. The function dccp_hdlr_ccid in line 9 captures the error
(NULL) from the return value of ccid_new. The error path in line
11 returns another error (-ENOMEM) to its callers, while the regular
path returns 0 in line 13. EECATCH performs a dataflow analysis,

Exaggerated Error Handling

identifies line 10, and assigns the seed of error, NULL, to the callsite
of ccid_new.

4.2 Identifying and Classifying Error Handling

It is important to identify EH as it marks the end of an error’s
lifetime. Detecting EH is necessary to accurately reason about an
error and its impact. Within the kernel, EH is not only unstructured
but also numerous. Classifying the EH can avoid reasoning about
each function individually, and help study the properties of each
category as a whole. Unlike error codes which can be constrained
to a smaller subset, EECATCH requires as complete EH set as pos-
sible, to minimize false negatives. An error within the subset can
be handled by a wide range of error handlers taking diverse forms.
Thus, a major component of EECaTcH identifies EH and assigns
each handler a severity. The key insight in identifying EH code in
the kernel requires to reliably track the error path of a conditional
statement capturing errors. By performing an inter-procedural, for-
ward data-flow analysis along the error path, EECATCH collects
various EH for an error. One thing to note is that, unlike previous
research tools, the error path does not terminate if the error code
is returned to the caller. As such, we track each caller recursively
until the error variable is either overwritten or encounters an EH.
As mentioned in the study, EH techniques are of three types, termi-
nating functions, error logging functions, and ignoring the error.
Starting from the initial set (Table 2), and using an inter-procedural
data-flow analysis, we describe how we collect other EH.

Collecting terminating functions. On encountering a fatal er-
ror, the expected EH mechanism involves terminating the execu-
tion. Functions panic and BUG are well known to developers to crash
the machine and kernel process, respectively. However, we do not
have an exhaustive list of terminating functions. Therefore, we first
collect basic terminating functions and then collect wrappers of
them to augment the list. Specifically, BUG and panic are the two
basic terminating functions. The functions use unreachable() to
notify the compiler about potential abnormal execution. To find
wrappers of such functions, we scan for unreachable instructions,
unreachable() in the kernel, and use backward slicing to detect the
functions causing a crash. Moreover, we check for the functions
marked with noreturn attributes. This attribute indicates a function
has no further scope and does not unwind the call stack. We mark
functions in either of these categories as terminating execution.
With all the analyses, we collect 62 EH functions that can terminate
the execution.

Association mining for logging functions. Besides terminat-
ing execution, the most common EH strategy is error logging. In
our study (see Table 4), we identified 248K conditional statements
that use error logging as its EH. Yet, not all errors logged are of
the same importance. The majority of these error logging functions
handle errors that do not cause security impact. However, other log-
ging functions are important in identifying potential vulnerability
probing [39] and to triage fatal crashes [62]. It is important to com-
prehensively detect error handlers that can handle both severe and
non-severe errors. Besides using patterns to identify new logging
functions as described by researchers in [31], we employ association
rule mining [7] to extract a comprehensive set of error handlers
limited to logging the errors. In the previous works [22, 31], the

CCS ’20, November 09-13, 2020, Orlando, FL, USA

authors use a pattern-based approach to detect logging functions.
Such a technique cannot detect macros or the numerous logging
functions without a fixed pattern.

Association rule learning is capable of generating strongly corre-
lated rules among frequently occurring events, in large codebases.
We attempt to learn new EH performing error logging, not pre-
viously identified by other tools. We rely on the insight that an
error path of a conditional statement contains error handlers at a
higher frequency, compared to its regular path. Given a conditional
statement validating an error, learning new EH via association rule
mining works as follows.

First, we determine the error path based on the predicate of
the conditional statement. An error path is often the path where
the predicate evaluates to NULL or less than zero. We mark the
other path as the normal execution path. Second, for both error and
regular paths, we perform an intra-procedural analysis identifying
the logging statements. Third, a logging function maps to the source
code via debugging information. Further, we extract the function
name via regular expression search. Fourth, we count the number
of occurrences of each error-handler in the error path and normal
path, over the entire kernel. To minimize false positives in detecting
EEH bugs, we use 0.9 as the confidence and support as 4 or more
instances.

4.2.1 Classifying Severity Levels for EH. It is important to clas-
sify EH according to their severity, as terminating the program
on encountering a fatal error may be the best solution, to avoid
data loss or machine damage. In this paper, we assign an integer
number to a severity level from 0 (highest severe) to 6 (least severe)
as seen in Table 1. We made the design for two major reasons. First,
Linux kernel and most production quality software use numeric
severity levels to distinguish among log levels. Our design extends
this model to accommodate terminating functions (BUG, panic) and
no EH. Second, using numerical severity levels can establish a total
ordering over EH strategies. For example, an EH at level 0 strictly
dominates an EH at level 4, or various EH at level 3 are all of the
same severity.

Unfortunately, manually modeling each function is not only
error-prone but also infeasible. Instead, we model error handlers by
categorizing them based on impact and assigning a non-negative
value. In this paper, we treat error handlers with lower severity
values to produce more severe consequences. We model termi-
nating functions as level 0 and the no EH at the highest value
6. More comprehensive reasoning for other severity levels is de-
scribed in §2.1. EECATCH automatically extracts the severity of
logging functions captured via its argument or its name. For ex-
ample printk (KERN_CRIT) and pr_crit() log errors with a severity
level crit.

Modeling the severity of error handlers must account for po-
tential outliers. For example, logging functions are susceptible to
subjective usage; developers might use pr_crit instead of pr_emerg
for their logging. Relying on a name-based strategy might introduce
inaccuracies within the model. To mitigate the impact we classify
EH according to their intent and impact, and then assign a severity
level. We estimate programmer intent based on the type of EH (e.g.,
missing error handlers indicate a low priority error). The impact is
determined by the security consequences for the said error. Another

CCS ’20, November 09-13, 2020, Orlando, FL, USA

notable EH function - WARN can crash the Android kernel but is not
considered critical in other Linux configurations. Accordingly, we
model WARN as a non-fatal error.

4.3 Analyzing and Modeling Error Contexts

After augmenting the initial knowledge set with new error handlers,
EECATCH attempts to generate a context for the error and its han-
dlers. A context-sensitive approach to EH improves the accuracy of
EeCartcH. This approach is effective in determining the appropri-
ate EH for each error, in the kernel. On one hand, it is impossible
to enumerate all possible factors affecting the error-context, and
determining the error handlers. On the other hand, a context-aware
and flow-sensitive, interprocedural dataflow analysis, generates a
long call-chain from the seed of the error to EH. Such a strategy can
reduce the sensitivity of the tool. Instead, we extract the context
determined as the function containing the conditional statement,
to minimize the impact of these two challenges.

4.3.1 Spatial Context. We observe that in which severity level
an error should be handled highly depends on where the error
occurs. For example, over 15K errors in drivers are handled via
crashing the process or system. Yet, the sound subsystem has 3
instances that can terminate the process. Such a diversity in the
EH indicates the importance of modeling the subsystem as con-
text. We refer to the name of the subsystem, where the conditional
statement identifies an error, as the error’s spatial context. A key
question in extracting spatial context is determining the appropri-
ate granularity. In the absence of an underlying data distribution
model, we rely on our observations to determine the granularity.
We perform a study to identify the errors handled exclusively via
logging (see Table 4). For the severe errors, we observed that the
larger subsystems - drivers, fs, arch, and net have a higher number
of errors per severity level. Thus, refining the spatial context by one
more level, for these four subsystems, will not impact the precision.

On the other hand, a division treating every module (entire file
name) as its own context would generate a smaller set of error han-
dlers with fine-grained spatial context and rules with low confidence.
EeCatcH’s design uses statistical analysis to detect exaggerated
error-handling and requires a large number of error handlers to
generate meaningful rules. Using a function or a module as a sub-
system would generate a smaller set of error handlers, thereby a
high false-positive rate.

4.3.2 Temporal Context. In our study, we further observed that,
besides the spatial context, errors are often handled differently
based on the life-cycle phase of the corresponding code, as described
in §2.3. For example, memory-allocation failures in a function in
the initialization phase are an indication of serious errors in the
mm subsystem and require a kernel crash. However, other EH of
memory allocation failure in other phases can be either ignored
(example using __GFP_ATOMIC) or retried multiple times (see fs).
Therefore, phases also influence the severity of errors. We refer to
the life-cycle phase, the error is located in, as temporal context. Based
on our observations, we categorize temporal context into three
categories; initialization, finalization, and regular functions. We
chose the above categories to minimize the false positives, and are
based on our empirical observation from the dataset. The temporal

Pakki and Lu

context can be further augmented based on function similarity [2,
10] or name-based function matching [41]. These tools also use
static analysis techniques but are prone to false positives. Thus
we did not use them in our current design and instead rely on
information captured by various life-cycle phases.

Initialization Functions. During boot time via initcall, the ker-
nel starts allocating resources for successful operation in its later
stages. Resources allocated before initialization include filesystem,
core kernel, various subsystems, architecture-specific functions,
privileged(root) functions, timer in drivers, etc. Once the kernel is
initialized, these functions are removed to conserve kernel memory
and to avoid inadvertent write operations. Faults in this context
are dangerous to the correct working of the system. The typical
error handlers in this context crash the machine, via panic, to en-
able faster recovery. To determine the function set in this context,
we perform a forward control-flow traversal from the initcall,
along the callsites in these functions. We also observed that all the
functions marked with the __init section “attribute”, belong to the
initialization phase.

Finalization Functions. On the other hand, the errors occurring
in the exit functions are considered finalization functions. Previous
research works studying the error code propagation have observed
that errors in the finalization context of driver code [16] can be
ignored as the driver and kernel functionality is not negatively
impacted. Similar to the initialization function, we instead look for
the __exit section for each function to determine these finalization
functions. Further, we track the callees from these functions and
treat them as finalization functions.

One potential improvement of modeling temporal context in-
volves grouping probe and register functions within the initializa-
tion phase set. Similarly, remove and unregister functions belong
to the finalization set.

4.3.3 Chain construction from errors to error handlers. We have
identified the set of errors and various EH strategies. Further,
EEeCATcH also stores a set of errors, a function can return to its
callsite. The goal of this step is to generate a set of peer error han-
dlers per error, within a specific context. We can represent the
factors as a tuple T containing four elements - the error, its context,
a peer set of error handlers, and inferred severities of error handlers.
EeCarcH performs a backward data-flow analysis from each error
until the analysis encounters one of the following in its path - a
terminating function, a logging function, a caller with void type, or
if the error is either lost or overwritten in the caller. The last two
cases are an indication of error being handled without emitting any
severity indicators. On encountering an error-handler, the severity
is inferred via the severity level, and it is accounted for in the peer
set. To avoid state explosion by traversing the same path multiple
times, we memoize the errors and error handlers per function.

4.4 Statistical Analysis for EEH Bug Detection

The final step of EECATcH is performing statistical analysis via
cross-checking [54] to identify potential EEH bugs. To avoid an-
alyzing the semantics of the code and minimize false positives in
static analysis, cross-checking can determine deviations from the
majority. We define Component Severity Threshold (CST) of an

Exaggerated Error Handling

error, as the ratio of error handlers at a severity level, (deviating
from the majority) to the total number of error handlers within the
peer set. For effective statistical analysis, it is important to generate
reasonably large peer error handlers set, per tuple.

For an error occurring in an error-context, array V of size n
contains the occurrences of EH at each severity level. V; indicates
the frequency of EH at a severity level i. 0 is a user-defined hyper-
parameter, threshold, such that 0 < § < 1. We detect an EEH
bug if EH at level j satisfies the following three conditions - Equa-
tion 1, Equation 2, and Equation 3.

o There is a majority EH within V. The maximum EH severity level
m in the peer set occurs when

n,i+m

Vi > Z v (1)
iz

e The majority EH CST,, is greater than or equal to 6.

Vi
== 2>1-0 @)
N7
o The exaggerated severity level j must be higher than m. (A nu-
merically smaller value for j indicates a more severe error.)

0<j<m 3)

Post evaluating all errors, the output of EECATCH is a list of
warnings, i.e., potential EEH bugs. EECATCH employs a probabilistic
approach to bug detection and requires manual effort to differentiate
bugs from false positives. We employ ranking and pruning strategies
to generate a smaller subset for human analysts. For each error, the
tool infers exaggerated error-handling by identifying elevated error
handlers, among the peers of error handlers.

5 IMPLEMENTATION

We implemented EECATCH as a set of LLVM (of version 10.0.0)
passes, including passes for errors and error handlers identification
via association mining, context analysis and modeling, and exag-
gerated error-handling bug detection and report generation. As the
accuracy of a static analysis tool relies on a precise control flow
graph, we use the call-graph (including indirect calls) generated by
Crix [32] and alias analysis results generated by LLVM. We present
other interesting implementation details within the system.

Compiling kernel source code. To generate the IR bitcode files
from the Linux source code, we use -02 optimization, enable debug-
ging (-g), and disable inlining. LLVM’s Alias Analysis infrastructure
introduces false positives in the MayAlias category with OO0, and the
O2 optimization can improve the points-to results. To ensure pre-
cision while not missing a significant number of aliases, EECATCH
adopts the MustAlias results provided by LLVM as the baseline. It
further extends the alias set through context- and field-sensitive
data-flow analysis of MayAlias result set. EEH requires the identifi-
cation of callers handling the error. Inlining replaces the call-sites
with function code and can introduce false negatives in determining
the error-context, so we disable inlining.

CCS ’20, November 09-13, 2020, Orlando, FL, USA

5.1 Collecting Error-Handling Functions

Terminating functions. The accuracy of EECATCH relies on hav-
ing an exhaustive list of error handlers and their severities. To sup-
plement the widely known terminating functions, BUG and panic;
we rely on LLVM’s UnreachableInst that models unreachable(), to
detect wrappers of these functions. We search each function for this
instruction and then determine potential successors by tracking its
control-flow. If the control-flow terminates, we extract the function
and mark them as terminating functions. To avoid false positives,
we count the occurrences across the kernel and eliminate the func-
tions with a single instance. Using this strategy, we collected 62
new terminating functions, a majority of which are wrappers of
BUG and panic.

Logging functions. Unlike terminating functions, functions that
only log errors have multiple patterns in the source code. Most of the
semantic information is lost in the IR, and functions are translated
to a printk call. To collect macros that do not have clear patterns
such as error severities at the end of the function name [31], we use
association mining [7] similar to PR-Miner [28]. The intuition here
is, an EH strategy is more likely to exist in the error path rather
than in the normal path. To minimize false positives, we set the
confidence to 0.9, and a support value greater than 4. Using this
technique, we identified 112 new error handlers macros that log
errors.

5.2 Fine-tuning Contexts and Severity Levels

Extracting Temporal Context. Unlike determining the initial-
ization function set (see §4.3.2), collecting the finalization function
set is not straightforward. Although the functions marked with
the __exit attribute provide an initial set F, a comprehensive set
of finalization functions are unavailable. To overcome this chal-
lenge, we perform a forward control-flow analysis for each call-site
found in the functions within Fy. We recursively track and store
the life-cycle phase of each call-site function. We mark a function
as a finalization function if the function’s confidence is greater than
0.95 and has a support value greater than one. We collect 1,481 ad-
ditional functions to the finalization set. We evaluate the accuracy
of the collected functions in §6.2.

Granularity of the spatial context. We determine the granu-
larity of spatial context empirically from two studies, to minimize
underfitting and overfitting to a specific model. In the first study,
we collect the EH macros (see §4.1), and the frequency count of
each subsystem containing the errors. The second study (Table 4)
detects errors whose EH strategy is limited to logging functions.
From these two studies, we determined that (1) larger subsystems
localize EH within a subsystem. (2) Treating each directory within
the subsystem as an independent context generates rules with low
confidence and a high false-positive rate. Based on these observa-
tions, we refine the spatial context for drivers, arch, net, and fs
subsystems, to contain the subsystem and the directory. For exam-
ple: drivers/media and drivers/dma are different spatial contexts,
whereas the spatial context of sound/soc and sound/x86 is sound.

Grouping severity levels. As there are no predefined severity
levels for error handlers, EECATCH must infer their severities, based
on their impact. Previous research [27] suggests that developers

CCS ’20, November 09-13, 2020, Orlando, FL, USA

Pakki and Lu

Subsystem /

Level ch block certs crypto drivers fs init ipc kernel lib mm net samples scripts security sound virt
Emergency 58 0 0 0 126 27 4 0 19 1 17 5 0 0 0 0 0
Alert 23 0 0 0 303 120 0 0 65 6 16 4 0 0 0 10 0
Critical 17 2 0 6 498 140 1 0 15 3 2 66 0 0 1 56 0
Error 658 54 8 379 89500 4877 14 34 612 329 259 2561 92 75 413 7862 75
Warning 349 45 0 37 16015 1204 13 3 440 89 112 438 10 7 51 715 3

Table 4: Criticality of standard error codes determined via known logging functions. We can refine the subsystems fs, drivers, arch, and net

across the spatial dimension, without introducing noise.

struggle to determine the severity levels that are next to each other,
compared to levels further apart (for example, an EH at level 4 is
easy to distinguish from EH at level 1, compared to level 3). In our
study of EEH bugs (see §2), we did not find error handlers that
use logging, to fix their EH within adjacent levels (2 to 3 or 3 to 4).
To avoid subjective determination of the error severity, we group
alert, crit, and emerg to a single level - crit. Similarly, we group
info, notice, and debug to the info level. A categorization of the
error severity levels is available in Table 1.

5.3 Bug Reporting and Ranking

EeCATCH outputs a report containing potential EEH bugs for hu-
man analysts to verify. To ensure that the users can quickly validate
the report, the tool generates the error, its source code, the EH,
its severity, the error-context, the peer EH severities. It also sug-
gests the expected severity level, determined as the majority rule.
EeCatcH employs ranking and pruning strategies to produce a
subset, containing a higher proportion of true positives. First, the
ranking strategy prefers reports that are further away from the
expected severity, followed by smaller values of relative frequency,
among the error handlers. Second, EECATCH prioritizes reports
where the majority error handlers can cause security issues, such
as crash, due to process termination. Users can prioritize bug fixing
depending on the severity, while pruning and ranking ensures the
top reports are likely to be true positives.

5.4 Scalable Data-Flow Analysis through
Memoization

EeCartcH performs a data-flow analysis for each error to identify
the error handlers along the call chain. As error return is not con-
sidered a valid EH strategy, the analysis must explore the call chain
repeatedly. Each function within the call chain generates its own set
of callers. In the kernel, the chain grows exponentially per error. To
avoid repeatedly performing the same data-flow analysis for multi-
ple callers within the same path, EECATCH employs a memoization
strategy, to store the results per function. For each error within a
function, EECATCH stores the tuple containing the error, possible
error handlers, their severities and the error-context. EECATCH uses
these results to ensure that the analysis is scalable and updates the
entries once per error, within the function. This strategy reduced
the running time of exaggerated error-handling bug detection pass
from 26 hours to 32 minutes. Further, EECATCH uses a dynamic
callgraph that minimizes the overall space overhead.

10

6 EVALUATION

Experimental setting. In this section, we evaluate EECATCH and
its bug detection capabilities using the Linux kernel of version 5.3.0-
rc2. The top git commit number of the kernel is 609488bc979f, the
latest stable version as of August 1, 2019. To evaluate our model’s
capabilities, we chose the Linux kernel as it is complex, critical, and
open sourced. We performed the experiments on Ubuntu 18.04 LTS
with LLVM version 10.0 installed. The machine has 64GB RAM and
an Intel CPU (Xeon R CPU E5-1660 v4, 3.20GHz) with 8 cores. Using
the allyessconfig, we generated 18,071 LLVM IR bitcode files to
cover as many modules as possible. The generated bitcode files are
for x86 architecture.

Hyper-parameter selection. Bug detection in EECATCH relies
on one user-defined hyper-parameter, threshold (8). We chose the
value of 6 to optimize for both false negatives and false positives.
Increasing 6 would decrease the likelihood of a warning being a bug,
which increases the manual effort. On the other hand, decreasing
0 improves the false-positive rate at the cost of completeness (i.e.,
having more false negatives). To determine 6, we evaluate EECATCH
against a set of known bugs as identified in §2.2. The entire dataset
contains 239 EEH bugs. We reverted their patches to test if EECATCH
can detect them. Table 5 shows the results of this experiment. Based
on the evaluation, we choose 6 = 0.2 in the current implementation
to make a trade-off between false positives and false negatives. In
this setting, we can detect 208 EEH bugs out of the possible 239.
The false-negative cases involve incorrect error logging severity
(7/31), complex code modifications (16/31), and limitations of static
analysis (8/31).

Threshold | Generated | Pruned Known
2 Warnings | Warnings | bugs
0.01 5 0 0

0.1 56 0 9

0.15 237 53 125

0.2 640 104 208

0.25 1157 260 208

0.4 5375 3022 212

Table 5: Evaluating the hyper-parameter value, 8, among possible
choices.

Analysis-time performance. EECATCH completed the analyses
of the kernel for exaggerated error-handling cases within 56 min-
utes. Specifically, the analysis to identify and generate exaggerated
error-handling warnings required 32 minutes. The other passes
such as callgraph generation and alias analysis required 3 and 19
minutes, respectively.

Manual effort. Detecting EEH bugs via EECATCH involves man-
ual effort. For detecting EEH in the Linux kernel, we approximately

Exaggerated Error Handling

spent 120 man-hours to identify various rules based on code in-
spection, 45 man-hours to evaluate various parameters, and 90
man-hours to evaluate warnings and report true EEH bugs.

6.1 Bug Findings

Based on the initial knowledge set (see Table 2) of this experiment,
we identified 2.28 million conditional statements, 62 new EH func-
tions that terminate execution, and 112 new error handlers macros
that log errors. In all, we collected 705 EH functions logging the
error or terminating the execution. We also collected 13,683 and
12,891 functions in the init and exit functions sets, for the tem-
poral error-context. By setting the 6 to 0.2, EECATCH generated
640 warnings for potential EEH bugs, across varying severities. We
first perform pruning to prioritize identifying security-critical bugs
(i.e., the ones that may crash the kernel). This step eliminates cases
with severity level less than level 4 (see Table 1). The typical con-
figuration for error logging in the Linux machines is WARNING, thus
levels 4 or higher would indicate severe errors of interest to the
maintainers. We rank the remaining results based on the likelihood
of them being an EEH bug; that is, the smaller the CST (Component
Severity Threshold), the higher the confidence a deviation is a true
positive. This selection returns us 104 warnings. We then manually
confirm these warnings for real EEH bugs.

We analyzed the 104 reports manually and finally confirmed 64
new EEH bugs. We then submitted patches for all of the confirmed
bugs. EECATCH generates a detailed report for each bug suggesting
the severity level. Based on this information, it took researchers a
total of 90 man-hours to confirm the bugs and submit patches. We
spent a significant amount of time analyzing the impact of the fixes
compared to identifying true positives. However, we believe the
effort is manageable considering our lack of kernel development
expertise, and the critical nature of the bug fixes. At the time of
writing the paper, maintainers applied patches to fix 48 EEH bugs
and confirmed 4 other patches. The four confirmed cases indicate
the presence of EEH bugs, but the fixes either require substantial
code changes or thorough auditing of all callers of the function.
We are still discussing with the maintainers to fix the remaining
bugs. Table 10 contains a detailed list of EEH bugs and a summary
version of it is in Table 6. Based on our analysis of the warnings,
we present some of the interesting findings in the remaining part
of this section.

Bug Memory Inconsistent | Excessive | Local
statistic corruption state logging DoS
Submitted 4 18 15 2 26
Confirmed 4 11 14 2 21

Table 6: Summary of EEH bugs detected by EECATCH.

Distribution and latent period. Of the confirmed bugs, the ma-
jority of the bugs are in drivers subsystem, followed by fs, net;
and a couple in kernel subsystem. We expected to find bugs in the
driver code given the code quality. However, our spatial model for
error-context refines the drivers subsystem by another level. These
results indicate that using a fine-grained subsystem, for example
using drivers/media, instead of drivers, is effective in detecting
EEH bugs. Second, most of the bugs (66%) can crash the existing

11

CCS ’20, November 09-13, 2020, Orlando, FL, USA

process (BUG) and have an average latent period of 7 years, with
30 bugs having a latent period greater than 10 years. The other
cases can cause inconsistent state in the kernel, generate excessive
notifications, memory corruption, and information leaks due to
stack dump.

Bug classification. The majority of the confirmed bugs 90% use
BUG as the error handlers. To confirm the validity of our model, in
identifying other error handlers, we studied all 104 warnings re-
ported by EECATCH. Among the 104 warnings, 28 cases involve WARN,
8 cases involve panic, and the remaining involve critical logging
functions. The two valid cases of panic, bugs 41 and 42 in Table 10
detected by EECATCH, are due to incorrect regression patches. We
further evaluated all the error handlers involving panic in the ker-
nel and observed that 78% of the panic calls are in init temporal
error-context. On the other hand, 18% of the panic cases are in
drivers/scsi and fs/btrfs subsystems. These observations further
validate our error-context model and indicate likely reasons for the
skewed distribution in our result set.

Security impact of found bugs. The impact of the detected EEH
bugs involves Denial of Service (i.e., crashing the process or the
whole kernel), memory corruption, inconsistent states, and informa-
tion leak. Temporal violations of memory corruption are possible
when a process exits from its current context, without releasing
its resources. First, two of the bugs calling panic, bugs #41 and #42
in Table 10, can crash the kernel caused by triggering a memory
allocation failure. As C lacks automatic garbage collection, heap-
allocated memory during a process crash is not recovered until a
reboot. Second, bug #29, occurring in the btrfs file system, acquires
a lock on the file system. It allocates at least 1KB on heap memory
and crashes the process via BUG_ON. Besides memory leak, it locks
the filesystem leading to a kernel crash [38]. Third, EECATCH can
detect bugs that cause information leak either by excessive logging
(see bug#3) or by leaking kernel addresses (Figure 6). DCCP_BUG_ON()
causes an information leak but does not crash the process. Finally,
bug #6 fixes an incorrect control-flow bug, where the execution of
the code halts in drm_dev_init(). The error is detected earlier and
logged in the caller devm_drm_dev_init().

1 /* net/dccp/feat.c */

2 int dccp_feat_default_value(u8 feat_num) {

3 int idx = dccp_feat_index(feat_num);

4 DCCP_BUG_ON(idx < @);

5 // wrapper calls stack_dump() without a crash
6
7

return idx < @ ? @ : dccp_feat_table[idx].default_value;

Figure 6: A potential EEH bug detected by EECATCH, causing
an information leak.

Security impact due to fixing strategies. As the majority of
detected bugs involve BUG, we use the suggested severity of the
error handlers to fix the issues. Most of our patches required less
than 5 lines of code change and replaced the error handlers by re-
turning the error upstream to the caller, introducing lower severity
error handlers and appropriate checks, or using WARN instead of
BUG. The soundness of our patches depends on the suggested EH’s
CST(Component Severity Threshold), determined from the peer
error handlers set. Besides, EECATcH also requires manual effort

CCS ’20, November 09-13, 2020, Orlando, FL, USA

to verify the security impact of the patch caused by demoting the
severity level of EH.

6.2 Importance of Error-Context

In this section, we evaluate the importance of using error-context in
identifying EEH bugs. We conduct the same experiment, described
in §6, by modifying the definition of the context to contain - only
spatial context, only temporal context, and with no context. We
further evaluate the emitted warnings and search for the previously
confirmed EEH bugs. Table 7 shows the results of this experiment.

EECATCH Temporal Spatial No
Statistic context only | contextonly | context
Warnings 640 573 1528 221
Pruned Warnings 104 308 389 43
EEH Bugs 64 13 48 7

Table 7: Impact of error-context in detecting EEH bugs; threshold
= 0.2. The columns are the various context configurations within
EeCarca.

Evaluation of spatial context. By running EECATCH only with
the spatial context, we observed that EECATCH generates 1528 warn-
ings. Similar to our main experiment, we rank and evaluate the
warnings less than level 4. In this experiment, we identified 48
of the 64 EEH bugs among 389 warnings. We believe the lack of
temporal context introduces both a large number of false positives
and many false negatives.

Evaluation of temporal context. Running EECATCH without the
spatial context resulted in generating 573 warnings. After ranking
and looking at the 308 warnings below level 4, we detected 13
EEH bugs. Moreover, we relaxed the threshold to 0.5, and found 21
bugs, fewer than 48 bugs, detected by modeling the spatial context.
Therefore, lacking the spatial context introduces a large number of
false negatives.

Evaluation with no context. In the third experiment to study
the error-context, we consider error and the error handlers with
previously established severity levels. By eliminating the error-
context feature, we generated 221 warnings and detected 7 EEH
bugs from a pruned list containing 43 warnings. The significant
decrease in warnings compared to other error-context is due to a
higher proportion of errors being handled at level 6 (Table 1) and
are eliminated by Equation 2. These experiments suggest modeling
the error-context can dramatically improve the detection of EEH
bugs within the Linux kernel. Additionally, the results suggest that
the spatial context explores new branches, and the temporal context
bounds the search space.

6.3 False Positives

We analyze 104 warnings post ranking and pruning the 640 warn-
ings, and identify 64 bugs. The false-positive rate of evaluated bugs
of EECATCH is 64 out of 104, for a false-positive rate of 40%. While
we are confident that analyzing more warnings would identify more
EEH bugs, it will further increase the false-positive rate. We analyze
the causes of false positives as follows.

Multiple error severities. If an error is logged and handled dif-
ferently across the call-chain, EECATCH currently chooses the more

12

Pakki and Lu

severe level as the valid EH severity. Such a strategy minimizes EEH
false negatives but introduces false positives when the actual EH
strategy ignores the error. We estimate 50% of the false positives are
due to an incorrect assignment of severity level. A possible solution
is to use the average severity level in the call-chain.

Switch-statement default. We observed that the default case
of switch statements in the kernel (SwitchInst) often uses exag-
gerated error-handling techniques and contributes to 25% of false
positives. This is commonly seen in drivers and net subsystems
which perform validation of user input. While the IR was able to
generate correct instructions for the other cases of switch state-
ment, EECATCH marks the default case as an EEH bug. Currently,
our model cannot eliminate such bugs, as the warning is a valid EH
according to our definition.

Statistical analysis. As described in §4.4, EECATCH employs a
probabilistic approach to distinguish an EEH bug from false posi-
tives. This approach eliminates reasoning about the semantics of
the error, but it can introduce false positives. While we did not
identify such a scenario in our evaluation, increasing 6 can cause
false positives in this category. Besides, we tuned other hyper-
parameters to minimize the false positive rate. Table 9 contains a
detailed evaluation of hyper-parameters.

Others. 10% of the false positives are due to other causes, including
imprecise call-graph, limitations of data-flow analysis and points-
to analysis, difficult to analyze warnings, among others. We rely
on manual analysis to eliminate the majority of false positives in
these categories. One can mitigate a few of these false positives by
employing more sophisticated programming analyses like symbolic
execution [42] or dynamic taint analysis, among others.

6.4 False Negatives

EECATCH uses a simple model to detect exaggerated error-handling
bugs and attempts to minimize the false positives at the cost of
completeness. We list a few of the design choices leading to poten-
tial false negatives. First, EECATCH defines errors as the standard
error codes set in errno.h. However, there are numerous other non-
standard errors, within each subsystem, not captured by EECATCH.
Second, we use both statistical analysis and heuristic-based design
to detect the error-context and infer error handlers’ severity. These
design choices are potential sources for false negatives in detecting
EEH bugs. Third, we use a hyper-parameter (6) to avoid reasoning
about the code semantics for identifying the EH severity. Using
statistical analysis can mitigate false positives yet it is vulnerable to
false negatives. Fourth, data-flow analysis is not precise. Potential
false negatives caused by data-flow analysis include overwritten
return value and lost errors within the same function [16].

6.5 Portability

Besides the recursive backward data-flow analysis, the three main
components within EECATCH are the identification of EH, the mod-
eling of two-dimensional context, and the modeling of severity
levels of EH. Classifying and assigning the severity levels to EH
is based on error log levels available in most production software.
We empirically analyze how EECATCH might implement the other
two techniques in other codebases, including POSIX-based OS,
Chromium browser, OpenSSL, and microkernel-based OS such as

Exaggerated Error Handling

CCS ’20, November 09-13, 2020, Orlando, FL, USA

Software Written Lines of Error & EH identification Error-context identification Severity Relative
in code Levels effort
POSIX kernels C 15M Similar to Linux Similar to Linux v Similar
Chromium C++ 8M Error codes, exception handling Spatial and temporal contexts v Greater
OpenSSL C 500K Erro% coc.les, logglpg, and N/A due to code size & impact v Lesser
terminating functions
Fuchsia OS C/Cat 9.5M Error codes, exception handling, Similar spatial & temporal v Similar

logging & terminating functions

contexts for Zircon microkernel

Table 8: Portability of EECATCH’s techniques. The ’Relative effort’ column compares the effort of software against the Linux kernel.

Fuchsia, as summarized in Table 8. We describe the impact of hyper-
parameters used in EECATCH in Table 9.

Linux and other POSIX-based kernels (e.g., FreeBSD, Android,
and Darwin-XNU) are written in C and are compatible based on the
POSIX standard. They store standard error codes in a single file such
as errno. h, use terminating functions, logging functions, and share
similar contexts. In fact, besides identifying the corresponding EH,
EECATCH requires minimal modification to detect EEH bugs in the
other kernels. OpenSSL, written in C, is also similar to Linux, in
terms of identifying errors and EH. Due to its smaller code size and
its criticality as application software, a fine-grained error-context
is unnecessary. Therefore, EECATCH is portable to OpenSSL and
similar sized applications by running without a context (see §6.2).

C++-based software such as Chromium browser and Zircon mi-
crokernel in Fuchsia OS, use exceptions and error codes to handle
errors. Extracting various user-defined exception error handlers
and generating patterns for terminating and logging functions do
require certain coding expertise. On the other hand, these soft-
ware programs are similar to the kernel in modeling contexts. For
example, spatial contexts can include discrete modules and third-
party software. Temporal contexts include resource allocation, func-
tional operations, and resource release functions. As such, porting
EeCartcH to C++ based software is straight-forward, and we foresee
manageable manual effort in generating various specifications.

7 DISCUSSION

In this section, we discuss limitations of EECATCH that can be po-
tentially improved and explored as future work directions.

Capturing more errors. There are a wide variety of custom error
codes in use within the kernel. EECATCH uses association mining to
identify EH macros. However, we ignore the error macros that use
positive integers, or variables with return values less than zero, to
minimize the false positives. An improved model can include such
macros and the associated error handlers, to make the EECATCH
more complete. To detect these errors, one might perform associa-
tion mining starting with the known EH and identifying the errors
leading to these EH. After eliminating the standard errors, we iden-
tify the error-variables that have a high likelihood of containing an
EH as error codes.

Model accuracy. One can improve the detection rate of EEH bugs
by modeling more factors within the error-context. Our model
uses equal weights for spatial and temporal contexts - to indicate
equal importance. However, a more precise model might weight
the factors of error-context proportionate to their importance. One
such model might prioritize local EH, which is using the same EH

13

as the majority EH within each function, higher than the temporal
context (see §6.2).

On the other hand, we can also improve the accuracy of EECATCH
by refining the temporal context. There are research works [2, 10,
41] that attempt to determine functions with similar context, using
various techniques. By modeling a list of similar functions based on
their names, previous works [19, 30, 41, 44] can enhance EECATCH’s
temporal context.

Exploitability of EEH bugs. EEH bugs may cause DoS attacks
via a system crash. Fuzzers, such as Syzkaller, identified a number
of crashes that can be classified as EEH bugs. These bugs not only
cause DoS, but are also capable of memory corruption, information
leak, and inconsistent state. The goal of exploit generation is to
trigger the corresponding error that leads to the EEH bug. Therefore,
a successful exploit has two parts: (1) reaching the code of the
error (2) triggering the error. Automated exploit generation is a
challenging and open problem; it is out of the scope of this work.
However, we discuss the following techniques that could facilitate
the exploit generation. To reach the error code, an analyst can
use either directed fuzzing (e.g., [4, 13, 14]) or symbolic execution
(e.g., UC-KLEE [42]). To trigger heap-based errors (the majority of
detected bugs), a line of research [24, 43] has tried to use different
vulnerabilities to manipulate heap allocation failures [17].

Minimizing manual effort via automation. While designing
EECATCH, we spent a large amount of manual effort in identify-
ing various error-context. We argue that the effort is manageable
given the complexity of the target system and the impact of the
identified bugs. The automation effort of EECATCH took us over 480
man-hours, and its techniques scale to other large systems, writ-
ten in C. To reduce the manual effort, EECATCH employs a flexible
specification list containing new error handlers and is extensible to
include new error-context within its model.

Hyperparameter optimization. We chose the value of § empir-
ically to minimize both the human effort in verifying the warnings
and the false-negative rate. A robust model accounts for over-fitting
by evaluating on a validation dataset (e.g., k-fold cross-validation).
However, we have not performed validation before evaluating the
test data (whole kernel). Given the size of our study set, we believe
k = 10 to be an optimal size for cross-validation, without repetition.
Further, our study is indirectly impacted by variables including,
granularity of spatial context, number of severity levels, support
and confidence values for terminating functions, logging functions,
and temporal context identification phases (see Table 9). We chose
the confidence values to be permissive (two standard deviations
from the mean), and picked support values based on our observa-
tions from the training dataset. These parameter values present

CCS ’20, November 09-13, 2020, Orlando, FL, USA

an external threat to validity when applying EECATCH on other
software systems.

8 RELATED WORK
8.1 Detection of EH bugs

Rule-based EH specification. Previously, researchers relied on
observations to generate specifications in large software such as
the kernel. Prior works such as LRSan [58], Talos [21], and Au-
toISES [49] use range-based numeric values to represent errors. In
the kernel, these values are in the file errno.h. EECATCH also uses
range-based values and NULL to represent errors. Other works us-
ing implicit programming rules to identify EH include Hector [46],
EIO [16], Rubio-Gonzélez et al. [45], and Pex [64]. CheQ [31] uses
keyword- and wrapper-based approach to identify EH that in-
cludes error return, error logging, and stopping execution. Unlike
EeCarcH, all these works treat error return as valid EH. EECATCH
uses rule-based specification to detect EH. It further identifies oc-
currences of UnreachableInst and __noreturn in the IR to collect
wrappers of terminating functions.

Automatic inference of EH specification. To minimize the
manual effort, many researchers proposed techniques to auto-
matically infer the specifications of EH based on code properties.
Acharya et.al [1] inferred APIs by mining static traces of a system’s
run-time behaviors. Tools using APIs to infer specifications include
APISan [63], ErrDoc [50], PEH [22], and Apex [23]. On the other
hand, there are many other tools [9, 12, 29, 37, 48, 61] that infer the
specification not limited to APIs. Similar to these tools, EECATCH
also uses statistical analysis to detect EH that logs the error. It
expands the number of logging functions by identifying macros
across modules.

Detection of incorrect EH. Research works focusing on the
adequacy of EH in software include identifying missing-check
bugs [16, 22, 50]. Aspirator [62] performs a postmortem failure
diagnosis of EH causing catastrophic failures in distributed sys-
tems. Their detector works on Java byte code and is simple - it
issues warnings when the EH is empty. There are other works that
can detect incorrect EH by either using fault injectors [5, 35, 47]
or an unintended crashes while fuzzing [13, 56]. However, both
techniques cannot explore deeper paths. By contrast, EECATCH tar-
gets exaggerated error-handling, an opposite type of bugs against
inadequate-EH bugs.

8.2 Analysis of OS Kernels

Static analysis. EECATCH performs a static analysis of the Linux
kernel. There are other research tools that also analyze the kernel,
such as Dr. Checker [34] and K-Miner [15]. The tools perform data-
flow analysis on device drivers and perform multiple passes from
the system calls. Researchers also use Coccinelle [40] to perform
static analysis using source code pattern matching to find bugs, such
as [57]. Similarly, Smatch [6], which is based on Sparse [53], is a
code-checking framework targeted to find simple bugs in the kernel
using source-code analysis. Other complementary approaches to
static analysis use machine learning [61] and symbolic execution [8,
42, 63]. EECATCH uses inter-procedural, field-, and context-sensitive,
static analysis techniques to efficiently identify EEH bugs over the

14

Pakki and Lu

whole kernel. It tracks various error handlers across each call-chain,
using scalable data-flow analysis techniques.

Dynamic analysis. Besides static analysis, dynamic analysis
techniques such as fuzzing are capable of detecting crashes.
Syzkaller [55] detected many crashes that are due to EEH bugs.
As previously described, dynamic analysis suffers from limitations
in exploring deeper paths and requires significant fuzzing time to
detect the bugs. In comparison, EECATCH can generate 640 EEH
warnings in less than an hour.

Statistical analysis. Engler et.al [11] were among the first to
explore the idea of statistical analysis, cross-check a property,
and detect bugs. Despite the unsound approach, the idea was
widely adopted by other researchers such as Yamaguchi et.al [60],
APISan [63], Crix [32], and Juxta [36], to detect bugs in the OS
kernels. EECATCH also uses statistical analysis to infer the severity
of errors to minimize false positives.

Semantic-bug detection. Research works targeting detection of
semantic bugs include - Deadline [59] and Wang et.al [57] to de-
tect double fetch bugs, UniSan [33] to detect uninitialized uses of
variables, LRSan [58] to detect lacking recheck bugs. Moreover,
Pallas [20] detects inconsistent bugs in fast paths, DCNS [3] detects
incorrect sleeping functions in atomic context bugs, and Hector [46]
detects bugs involving a failure to release resources. These tools ei-
ther use the multi-pass framework provided in LLVM IR or perform
code based pattern mining using Coccinelle. We built EECATCH as
a sequence of LLVM passes, to benefit from the information con-
tained in the IR. In comparison, EECATCH detects a new class of
semantic bugs - EEH bugs across the kernel using two-dimensional
context information.

9 CONCLUSION

In this paper, to the best of our knowledge, we present the first
study of Exaggerated Error Handling (EEH) bugs, a new class of
critical semantic bugs that has been largely overlooked. EEH bugs
may unnecessarily cause DoS such as crashing the whole system
or the process. Based on the findings from our study, we develop
EeCaArtcH, an effective and scalable tool for detecting EEH bugs.
EeCatcH models and extracts both spatial and temporal contexts of
errors to determine the appropriate error-handling mechanisms and
thus to detect EEH. EECATCH’s analysis is context-, field-sensitive,
inter-procedural, and built on top of LLVM. Evaluating EECATCH on
the entire Linux kernel, we found 64 new EEH bugs that may cause
critical security issues like crashing the kernel. Linux maintainers
have fixed most of the bugs using our patches. We hope that this
paper raises the awareness of the critical impact of EEH so that
developers could minimize EEH in the future.

10 ACKNOWLEDGMENT

We would like to thank our shepherd, Herbert Bos, and the anony-
mous reviewers for their helpful suggestions and comments. We are
also grateful to Linux maintainers for providing prompt feedback
on patching bugs. This research was supported in part by the NSF
awards CNS-1815621 and CNS-1931208. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
NSF.

Exaggerated Error Handling

REFERENCES

(1]

[2

[

[10]

(1

=
&

[13]

[14

[15]

[16]

[17

(18]

[19]

[20

[21]

[22

[23

[24]

Mithun Acharya and Tao Xie. 2009. Mining API error-handling specifications
from source code. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 370-384.

Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1-27.

Jia-Ju Bai, Julia Lawall, Wende Tan, and Shi-Min Hu. 2019. DCNS: Automated
Detection Of Conservative Non-Sleep Defects in the Linux Kernel. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19). ACM, New York,
NY, USA, 287-299. https://doi.org/10.1145/3297858.3304065

Marcel Bshme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2329-2344.

Pete Broadwell, Naveen Sastry, and Jonathan Traupman. 2002. FIG: A prototype
tool for online verification of recovery mechanisms. In Workshop on Self-Healing,
Adaptive and Self-Managed Systems. Citeseer.

Dan Carpenter. 2009. Smatch - the source matcher. http://smatch.sourceforge.

Aaron Ceglar and John F Roddick. 2006. Association mining. ACM Computing
Surveys (CSUR) 38, 2 (2006), 5.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-vivo Multi-path Analysis of Software Systems. SIGPLAN Not. 47,
4 (March 2011), 265-278. https://doi.org/10.1145/2248487.1950396

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
2001. An empirical study of operating systems errors. In ACM SIGOPS Operating
Systems Review, Vol. 35. ACM, 73-88.

Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-Gonzalez. 2018. Path-Based
Function Embedding and Its Application to Error-Handling Specification Mining.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA,
4233A$433. https://doi.org/10.1145/3236024.3236059

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs As Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. SIGOPS Oper. Syst. Rev. 35, 5 (Oct. 2001), 57-72. https://doi.org/
10.1145/502059.502041

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering 27, 2 (2001), 99-123.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 679-696.

Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In Proceedings of the 31st International Conference on Software Engineering.
IEEE Computer Society, 474-484.

David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-
Miner: Uncovering Memory Corruption in Linux. In Proceedings of the 2018
Annual Network and Distributed System Security Symposium (NDSS). San Diego,
CA.

Haryadi S Gunawi, Cindy Rubio-Gonzélez, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, and Ben Liblit. 2008. EIO: Error Handling is Occasionally
Correct.. In FAST, Vol. 8. 1-16.

Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic heap layout
manipulation for exploitation. In 27th {USENIX} Security Symposium ({ USENIX}
Security 18). 763-779.

Tetuso Honda. 2017. tty: Avoid possible error pointer dereference at tty_ldisc_-
restore(). https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=598c2d41{f44889dd8eced4f117403e472158d85.

Einar W Host and Bjarte M @stvold. 2009. Debugging method names. In European
Conference on Object-Oriented Programming. Springer, 294-317.

Jian Huang, Michael Allen-Bond, and Xuechen Zhang. 2017. Pallas: Semantic-
Aware Checking for Finding Deep Bugs in Fast Path. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS °17). 709-722.

Z. Huang, M. DAngelo, D. Miyani, and D. Lie. 2016. Talos: Neutralizing Vulnera-
bilities with Security Workarounds for Rapid Response. In 2016 IEEE Symposium
on Security and Privacy (SP). 618-635. https://doi.org/10.1109/SP.2016.43

Z. Jia, S. Li, T. Yu, X. Liao, J. Wang, X. Liu, and Y. Liu. 2019. Detecting
Error-Handling Bugs without Error Specification Input. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 213-225.
https://doi.org/10.1109/ASE.2019.00029

Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. APEx: Automated inference of
error specifications for C APIs. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 472-482.

Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.
ret2dir: Rethinking kernel isolation. In 23rd {USENIX} Security Symposium

15

[25]

[26

[27]

™
&,

[29

[30

[31

[32

[33

[34

[36

(37

[38

[40

[41

[42

[43

[44

[45

[46

CCS ’20, November 09-13, 2020, Orlando, FL, USA

({USENIX} Security 14). 957-972.

Jean-Claude Laprie. 1995. Dependable computing: Concepts, limits, challenges.
In Special issue of the 25th international symposium on fault-tolerant computing.
42-54.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO 04). IEEE Computer Society, Washington, DC, USA, 75-.
http://dl.acm.org/citation.cfm?id=977395.977673

Heng Li, Weiyi Shang, and Ahmed E. Hassan. 2017. Which log level should
developers choose for a new logging statement? Empirical Software Engineering
22,4 (01 Aug 2017), 1684-1716. https://doi.org/10.1007/s10664-016-9456-2
Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large Software Code.
SIGSOFT Softw. Eng. Notes 30, 5 (Sept. 2005), 306-315. https://doi.org/10.1145/
1095430.1081755

Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 306-315.

Hui Liu, Qiurong Liu, Cristian-Alexandru Staicu, Michael Pradel, and Yue Luo.
2016. Nomen est omen: Exploring and exploiting similarities between argument
and parameter names. In Proceedings of the 38th International Conference on
Software Engineering. 1063-1073.

Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Automatically Identifying
Security Checks for Detecting Kernel Semantic Bugs. In Computer Security —
ESORICS 2019, Kazue Sako, Steve Schneider, and Peter Y. A. Ryan (Eds.). Springer
International Publishing, Cham, 3-25.

Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic- and Context-Aware Criticalness and Constraints Inferences. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1769-1786. https://www.usenix.org/conference/usenixsecurity19/
presentation/lu

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
Kernel Memory Initialization to Eliminate Data Leakages. In Proceedings of the
23rd ACM Conference on Computer and Communications Security (CCS). Vienna,
Austria.

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy Analysis for
Linux Kernel Drivers. In 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, Vancouver, BC, 1007-1024.

Paul D. Marinescu, Radu Banabic, and George Candea. 2010. An Extensible
Technique for High-Precision Testing of Recovery Code. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference (USENLX ATC
10). USENIX Association, USA, 23.

Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding File
System Bugs. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP). Monterey, CA.

Alon Mishne, Sharon Shoham, and Eran Yahav. 2012. Typestate-based semantic
code search over partial programs. In Acm Sigplan Notices, Vol. 47. ACM, 997-
1016.

Ingo Molnar. 2015. Deprecate BUG_ON() use in new code, introduce CRASH._-
ON(). https://lore kernel.org/patchwork/patch/568291/.

OWASP. 2017. OWASP Top 10 - The Ten Most Critical Web Application Security
Risks. https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.
pdf.

Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. 2008.
Documenting and automating collateral evolutions in linux device drivers. In
EuroSys.

Michael Pradel and Koushik Sen. 2018. DeepBugs: A learning approach to name-
based bug detection. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 147.

David A. Ramos and Dawson Engler. 2015. Under-Constrained Symbolic Exe-
cution: Correctness Checking for Real Code. In Proceedings of the 24th USENIX
Security Symposium (Security). Washington, DC.

Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. 2017. Modular synthesis
of heap exploits. In Proceedings of the 2017 Workshop on Programming Languages
and Analysis for Security. ACM, 25-35.

Andrew Rice, Edward Aftandilian, Ciera Jaspan, Emily Johnston, Michael Pradel,
and Yulissa Arroyo-Paredes. 2017. Detecting argument selection defects. Pro-
ceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1-22.
Cindy Rubio-Gonzalez, Haryadi S Gunawi, Ben Liblit, Remzi H Arpaci-Dusseau,
and Andrea C Arpaci-Dusseau. 2009. Error propagation analysis for file systems.
In ACM Sigplan Notices, Vol. 44. ACM, 270-280.

Suman Saha, Jean-Pierre Lozi, Gaél Thomas, Julia L Lawall, and Gilles Muller.
2013. Hector: Detecting resource-release omission faults in error-handling code
for systems software. In 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 1-12.

https://doi.org/10.1145/3297858.3304065
http://smatch.sourceforge
https://doi.org/10.1145/2248487.1950396
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1145/502059.502041
https://doi.org/10.1145/502059.502041
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=598c2d41ff44889dd8eced4f117403e472158d85
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=598c2d41ff44889dd8eced4f117403e472158d85
https://doi.org/10.1109/SP.2016.43
https://doi.org/10.1109/ASE.2019.00029
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1007/s10664-016-9456-2
https://doi.org/10.1145/1095430.1081755
https://doi.org/10.1145/1095430.1081755
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://lore.kernel.org/patchwork/patch/568291/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf

CCS ’20, November 09-13, 2020, Orlando, FL, USA Pakki and Lu

[47] Martin Susskraut and Christof Fetzer. 2006. Automatically finding and patching
bad error handling. In 2006 Sixth European Dependable Computing Conference.
IEEE, 13-22.

[48] Mana Taghdiri and Daniel Jackson. 2007. Inferring specifications to detect errors
in code. Automated Software Engineering 14, 1 (2007), 87-121.

[49] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Specification and Detecting Violations..
In USENIX Security Symposium. 379-394.

[50] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing error
handling bugs in c. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 752-762.

[51] Linus Torvalds. 2007. BUG_ON in workingset_node_shadows_dec triggers. https:

//Tkml.org/lkml/2016/10/4/1.

Linus Torvalds. 2007. Do not use BUG. https://yarchive.net/comp/linux/BUG.

html.

[53] Linus Torvalds. 2019. Sparse - a Semantic Parser for C. https://sparse.wiki.kernel.

org/index.php/Main_Page.

Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.

Aletheia: Improving the usability of static security analysis. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,

762-774.

[55] Dmitry Vyukov. 2015. Syzkaller.

[56] Dmitry Vyukov. 2019. Syzbot and the Tale of Thousand Kernel
Bugs. https://events19.linuxfoundation.org/wp- content/uploads/2017/11/
Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry- Vyukov-Google.pdf.

[57] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017. How
Double-Fetch Situations turn into Double-Fetch Vulnerabilities: A Study of Dou-
ble Fetches in the Linux Kernel. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 1-16. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei

[58] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check It Again: Detecting

Lacking-Recheck Bugs in OS Kernels. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (CCS 4AZ18). Association

for Computing Machinery, New York, NY, USA, 18994A$1913. https://doi.org/

10.1145/3243734.3243844

Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.

Precise and Scalable Detection of Double-Fetch Bugs in OS Kernels. In Proceedings

of the 39th IEEE Symposium on Security and Privacy (Oakland). San Francisco,

CA.

[60] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. 2015. Automatic Inference
of Search Patterns for Taint-Style Vulnerabilities. In 2015 IEEE Symposium on
Security and Privacy. 797-812. https://doi.org/10.1109/SP.2015.54

[61] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. 2013.
Chucky: Exposing missing checks in source code for vulnerability discovery. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 499-510.

[62] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle

Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent

Most Critical Failures: An Analysis of Production Failures in Distributed Data-

Intensive Systems. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14). USENIX Association, Broomfield, CO, 249-265. https:

//www.usenix.org/conference/osdil4/technical-sessions/presentation/yuan

Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.

2016. APISan: Sanitizing API Usages through Semantic Cross-Checking. In

25th USENIX Security Symposium (USENIX Security 16). USENIX Association,

Austin, TX, 363-378. https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/yun

[64] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. Pex: A permission check analysis framework for linux
kernel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1205-
1220.

[52

[54

[59

[63

A APPENDIX
A.1 Detected Bugs

16

https://lkml.org/lkml/2016/10/4/1
https://lkml.org/lkml/2016/10/4/1
https://yarchive.net/comp/linux/BUG.html
https://yarchive.net/comp/linux/BUG.html
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1109/SP.2015.54
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun

Exaggerated Error Handling

CCS ’20, November 09-13, 2020, Orlando, FL, USA

Component Hyper-parameter Rules used in Linux kernel Rule generation technique Sensitivity Software
EH identification =~ Logging functions Confidence = 0.9, support = 4 instances Determined via association mining 90% F,P,0,C
Track hablel ibute. .
EH identification =~ Terminating functions rac Unrezj\c ablelnst and __noreturn attribute Control-flow analysis 95% P
Number of instances > 1
Spatial context Granularity Subsystem and folder Empirically determined (Table 4) 95% FP,C
e L Track __init attribute for function, and for their callees Control-flow analysis.
Temporal context Initialization phase support > 1 instance, confidence = 0.95 Assumes normal distribution 99% EP
AT Track __exit attribute for function, and for their callees Control-flow analysis.
Temporal context Finalization phase support > 1 instance, confidence = 0.95 Assumes normal distribution 80% EP
Likelihood tation (Equation 2
Bug detection Threshold 0.2 ikelihood computation (Equation 2) 60% F,P,O,C

Empirically determined (Table 5)

Table 9: Hyper-parameters used in modeling EECATcH. Column Sensitivity indicates the estimated true positive rate of applying the rules
from column 3 to the Linux kernel. Column Software refers to the applicability of rules to other software. F, P, O, and C indicate Fuchsia OS,
POSIX-based kernels, OpenSSL, and Chromium browser respectively.

ID File Function Handler Impact Sev Years Status
1 drivers/spi/spi-dw.c dw_spi_add_host BUG_ON Inconsistent state 2 10 A
2 drivers/net/ppp/pppoe.c pppoe_pernet BUG_ON DoS 2 10 A
3 net/atm/clip.c unlink_clip_vcc pr_crit excessive logging 3 15 A
4 drivers/media/.../vpfe_capture.c(15) vpfe_register_ccdc_device BUG_ON local DoS 1 10 A
5 drivers/net/.../orinoco/orinoco_usb.c ezusb_priv BUG_ON Inconsistent state 2 6 A
[3 drivers/gpu/drm/drm_drv.c drm_dev_init BUG_ON Inconsistent state 1 1 A
7 drivers/uwb/lc-dev.c uwb_dev_add BUG_ON local DoS 2 4 X
8 drivers/uwb/lc-dev.c uwb_dev_add BUG_ON local DoS 2 4 X
9 drivers/uwb/lc-dev.c uwb_dev_add BUG_ON local DoS 2 4 X
10 drivers/xen/grant-table.c grow_gnttab_list BUG_ON Inconsistent state 2 2 A
11 drivers/xen/grant-table.c nr_status_frames BUG_ON Inconsistent state 2 2 A
12 drivers/xen/grant-table.c gnttab_expand BUG_ON Inconsistent state 2 2 A
13 drivers/xen/grant-table.c gnttab_init BUG_ON Inconsistent state 2 2 A
14 drivers/nfc/s3fwrn5/firmware.c s3fwrn5_fw_recv_frame BUG_ON excessive checking 2 4 A
15 drivers/media/.../cx231xx-i2c.c cx231xx_i2c_register BUG_ON memory corruption 2 10 A
16 drivers/media/.../saa7146_video.c video_begin BUG_ON memory corruption 2 15 A
17 drivers/media/.../saa7146_video.c video_end BUG_ON memory corruption 1 15 A
18 drivers/base/regmap/regcache.c regcache_read BUG_ON memory corruption 1 8 S
19 drivers/base/regmap/regcache.c regcache_write BUG_ON memory corruption 1 8 S
20 drivers/base/regmap/regcache.c regcache_sync BUG_ON local DoS 1 6 S
21 drivers/base/regmap/regcache.c regcache_sync_region BUG_ON memory corruption 1 5 S
22 drivers/char/tpm/tpm_ppi.c tpm_eval_dsm BUG_ON memory corruption 1 5 A
23 drivers/staging/.../fileops.c kpc_dma_transfer BUG_ON memory corruption 2 <1 A
24 drivers/staging/.../fileops.c kpc_dma_transfer BUG_ON local DoS 2 1 A
25 drivers/net/hamradio/hdledrv.c hdledrv_register BUG_ON local DoS 2 14 A
26 drivers/net/caif/caif_serial.c caif_xmit BUG_ON local DoS 2 9 A
27 fs/btrfs/check-integrity.c btrfsic_process_superblock ~ BUG_ON memory corruption 1 8 C
28 fs/ecryptfs/crypto.c crypt_scatterlist BUG_ON memory corruption 1 12 A
29 fs/btrfs/extent_io.c __clear_extent_bit BUG_ON DoS 1 8 C
30 fs/gfs2/trans.c gfs2_trans_begin BUG_ON local DoS 1 12 S
31 net/mac80211/util.c wiphy_to_ieee80211_hw BUG_ON memory corruption 1 11 A
32 net/rfkill/core.c rfkill_register BUG_ON memory corruption 1 10 A
33 kernel/bpf/core.c bpf _prog_realloc BUG_ON inconsistent state 2 5 A
34 drivers/atm/fore200e.c fore200e_send ASSERT inconsistent state 2 14 A
35 drivers/atm/fore200e.c fore200e_send ASSERT local DoS 2 14 A
36 drivers/atm/fore200e.c fore200e_close ASSERT inconsistent state 2 14 A
37 drivers/block/rbd.c __rbd_object_map_load rbd_assert inconsistent state 2 <1 S
38 drivers/infiniband/hw/cxgb3/iwch_gp.c iwch_modify_qp BUG_ON leak, inconsistent state 2 12 C
39 drivers/gpu/../amdgpu_dm.c dm_update_crtc_state BUG_ON memory corruption 2 1 S
40 drivers/infiniband/ulp/srpt/ib_srpt.c srpt_queue_response BUG_ON memory corruption 2 8 A
41 arch/x86/platform/olpc/olpc_dt.c prom_early_alloc panic DoS 1 <1 C
42 drivers/clk/samsung/clk.c samsung_cmu_register_one panic DoS 1 4 A
43 drivers/scsi/aic94xx/aic94xx_task.c asd_unbuild_smp_ascb BUG_ON memory corruption 2 13 S
44 drivers/target/tcm_fc/tfc_io.c ft_recv_write_data BUG_ON memory corruption 1 8 A
45 fs/nfsd/nfs4xdr.c nfsd4_encode_replay BUG_ON local DoS 2 15 A
46 drivers/gpu/../vmwgfx_resource.c vmw_resource_alloc_id BUG_ON memory corruption 2 8 S
47 fs/ocfs2/dlm/dlmmaster.c dlm_migrate_lockres BUG_ON inconsistent state 1 8 A
48 drivers/media/.../saa7146_fops.c saa7146_buffer_finish BUG_ON inconsistent state 1 14 A
49 fs/nfsd/nfs4layouts.c nfsd4_layout_setlease BUG_ON memory corruption 2 5 S
50 drivers/net/ppp/ppp_generic.c ppp_pernet BUG_ON inconsistent state 2 10 A

Table 10: List of new bugs detected by EECAaTcH. Column 6, Sev is the peer severity referenced from Table 1, suggested by EECATCH. Years in
column 7 is the latent period the detected bugs. The fields A, C, S, X in Status column 8 indicate the status of the patch - applied, confirmed,
submitted, and module not present in mainline respectively. Bug #4 has 15 instances of EEH, individually detected by EECATcH but fixed
with a single patch.

17

	Abstract
	1 Introduction
	2 A Study of EEH
	2.1 Errors and Error Handling in the Kernel
	2.2 Exaggerated Error Handling in the Kernel
	2.3 Contexts of Errors

	3 EeCatch Overview
	4 Methodology
	4.1 Identifying Errors
	4.2 Identifying and Classifying Error Handling
	4.3 Analyzing and Modeling Error Contexts
	4.4 Statistical Analysis for EEH Bug Detection

	5 Implementation
	5.1 Collecting Error-Handling Functions
	5.2 Fine-tuning Contexts and Severity Levels
	5.3 Bug Reporting and Ranking
	5.4 Scalable Data-Flow Analysis through Memoization

	6 Evaluation
	6.1 Bug Findings
	6.2 Importance of Error-Context
	6.3 False Positives
	6.4 False Negatives
	6.5 Portability

	7 Discussion
	8 Related Work
	8.1 Detection of EH bugs
	8.2 Analysis of OS Kernels

	9 Conclusion
	10 Acknowledgment
	References
	A Appendix
	A.1 Detected Bugs

